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1.  Introduction
The reconstruction and forecasting of dynamical systems from available observations are key challenges in earth 
sciences (see e.g., Welch & Bishop, 1995). These tasks have been classically addressed by data assimilation (DA) 
approaches, especially variational DA and ensemble Kalman schemes (see e.g., Evensen, 2009). DA methods 
have greatly improved over years, especially by accounting for model error, which is important when dealing 
with misrepresented physical processes (Machenhauer & Kirchner, 2000) and unresolved small-scale processes 
(Hamill & Whitaker, 2005) with respect to the space-time model resolution. Whereas Kalman-based ensemble 
methods (Evensen, 1994; Gordon et al., 1993) do take into account model error from the beginning, in a varia-
tional setting, operational systems based on 4D-Var (Rabier et al., 2000) moved from strong constraints assump-
tions (Le Dimet & Talagrand, 1986) to weak constraints one (see e.g., Trémolet, 2006) to reach this goal. In both 
approaches, estimating the model error in the form of a model error covariance matrix becomes crucial.

In many applications, such as risk assessment (see e.g., Mohsan et al., 2021), it is critical to evaluate the uncer-
tainty in the state predicted by the DA method. This is the issue we focus on in this paper. This uncertainty quan-
tification problem can be viewed as estimating the whole posterior distribution of the state given observations 
rather than focusing on the mean or mode of this posterior. However, standard variational methods do not directly 

Abstract  In geosciences, data assimilation (DA) addresses the reconstruction of a hidden dynamical 
process given some observation data. DA is at the core of operational systems such as weather forecasting, 
operational oceanography and climate studies. Beyond the reconstruction of the mean or most likely state, 
the inference of the state posterior distribution remains a key challenge, that is, quantify uncertainties as well 
as to inform intrinsical stochastic variabilities. Indeed, DA schemes, such as variational DA and Kalman 
methods, can have difficulty in dealing with complex non-linear processes. A growing literature investigates 
the cross-fertilization of DA and machine learning. This study proposes an end-to-end neural scheme based 
on a variational Bayes inference formulation to jointly address DA and uncertainty quantification. It combines 
an Evidence Lower BOund variational cost to a trainable gradient-based solver to infer the state posterior 
probability distribution function given observation data. The inference of the posterior and the trainable solver 
are learnt jointly. We demonstrate the relevance of the proposed scheme for a Gaussian parameterization of the 
posterior and different case-study experiments, including Lorenz 63 dynamics and river flow measurements. A 
benchmark with respect to state-of-the-art schemes is provided.

Plain Language Summary  The spatiotemporal reconstruction of a dynamical process from some 
observation data is at the core of a wide range of applications in geosciences. This is particularly true for 
weather forecasting, operational oceanography and climate studies. However, the reconstruction of a given 
dynamic and the prediction of future states must take into account the uncertainties that affect the system. 
Thus, the available observation measurements are only provided with a limited accuracy. Besides, the encoded 
physical equations that model the evolution of the system do not capture the full complexity of the real system. 
Finally, the numerical approximation generates a non-negligible error. For these reasons, it seems relevant 
to calculate a probability distribution of the state system rather than the most probable state. Using recent 
advances in machine learning techniques for inverse problems, we propose an algorithm that jointly learns 
a parametric distribution of the state, the dynamics governing the evolution of the parameters, and a solver. 
Experiments conducted on synthetic reference data sets, as well as on data sets describing environmental 
systems, validate our approach.
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allow to estimate uncertainties of the predicted state and have to be specifically tuned to this purpose (Isaksen 
et al., 2010), while Kalman-based ensemble methods provide a Gaussian estimate of the posterior distribution 
of the state through a covariance matrix updated at each time step (see e.g., Evensen, 2003; Evensen & Van 
Leeuwen, 2000) which is relevant in Gaussian-linear case and typically fail in cases with strong non-linearity 
(Evensen et  al.,  2022). Particle filters (Gordon et  al.,  1993; Van Leeuwen,  2009) are the main methods for 
sampling the full posterior probability distribution function (pdf), but they suffer from curse of dimensionality 
when dealing with high-dimensional states (Snyder et al., 2008). This may prevent their application to real-world 
cases. As variational Bayes (VB) refers to the field of research dedicated to approximating the full posterior of 
latent variables of a Bayesian model given observation data (Blei & Jordan, 2006; Jordan et al., 1999), we note 
that assessing the uncertainties in the predicted state is indeed a VB problem. Inferring the posterior through a 
VB formulation often requires to maximize an Evidence Lower BOund (ELBO; see e.g., Hoffman et al., 2013). 
To this end, learning-based approaches appeared to be particularly relevant (Kingma & Welling, 2013).

Recently, a rich literature has emerged to apply machine learning (ML) paradigms to address DA issues. ML 
schemes are particularly efficient to solve complex and high-dimensional optimization problems and encounter 
numerous successes including image classification (Krizhevsky et al., 2012; Le, 2013), natural language process-
ing (Otter et al., 2020), language translation (Sutskever et al., 2014) computational physics (Mohan et al., 2023; 
Raissi et  al.,  2019). Regarding DA, ML-based algorithms offer new means to learn the governing equations 
of the dynamics (Fablet et al., 2018; Long et al., 2018) and the associated flow operator (Bocquet et al., 2020; 
Scher & Messori, 2019), or model correction terms (Farchi et al., 2021), directly from model outputs. Some 
approaches are even designed to be used in a plug-and-play manner in state-of-the-art DA schemes (Fablet, 
Chapron, et  al.,  2021). When considering variational DA, trainable emulators of the adjoint operator of the 
dynamics (Nonnenmacher & Greenberg, 2021) or directly of the gradient-based DA solver (Fablet, Chapron, 
et  al.,  2021) emerged as appealing solutions. Similarly, recent studies have explored learning-based Kalman 
techniques (de Bézenac et al., 2020). The latter is particularly relevant to address uncertainty quantification. The 
underlying assumption of the existence of the linear-Gaussian latent space may however restrict their application 
in real-world case-studies. Generative adversarial networks also naturally arose as appealing ML tools to develop 
new ensemble DA schemes (Silva et al., 2023).

In this paper, we propose a ML-based approach to consistently approximate by a Gaussian distribution the poste-
rior distribution of the state of a dynamical system given a set of observations. This involves estimating both the 
mean and the covariance parameters of the Gaussian distribution. Since we are producing probabilistic predic-
tions, the standard mean square error (MSE) is not appropriate as a learning cost. Instead, we choose the loga-
rithmic score as the learning function which is consistent with probabilistic predictions. Our approach relies on a 
training stage where both true states and observations are available. To circumvent the instability when minimiz-
ing the chosen learning function, we constrain our output parameters to be close to an optimum with respect to 
another cost derived from a VB inference formulation. We prove that the optimum of this cost should be a good 
first-guess of the minimum of our learning function. Our end-to-end architecture exploits a trainable surrogate 
representation of the dynamics and a trainable gradient-based solver. It can therefore be considered as an exten-
sion of Fablet, Chapron, et al. (2021) to estimate the covariance of the posterior in addition to the mean. To the 
best of our knowledge, this is the first study which combines a trainable solver for variational DA along with a 
VB formulation. We claim that our approach could be extended to broader families of posteriors than Gaussian.

This paper is structured as follows. Section 2 introduces necessary background on weak-constraint variational 
DA. Section 3 presents the proposed approach, based on ELBO maximization, and the associated end-to-end 
neural framework. Numerical experiments on Lorenz 63 dynamics and discharges on Danube river network are 
reported in Section 4. Finally, concluding remarks are provided in Section 5.

2.  Background on Weak-Constraint Variational Formulation
DA relies on state-space formulation for some time-dependent state 𝐴𝐴 𝐴𝐴 and associated time-dependent observa-
tions 𝐴𝐴 𝐴𝐴 . Within a discretized setting, 𝐴𝐴 𝐴𝐴(𝑡𝑡) and 𝐴𝐴 𝐴𝐴(𝑡𝑡) are random vectors of respective dimension 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 with 𝐴𝐴 𝐴𝐴 ≥ 𝑑𝑑 
for each 𝐴𝐴 𝐴𝐴  . Given 𝐴𝐴 𝐴𝐴(𝑡𝑡0) , the state-space formulation could be set as:

𝑥𝑥(𝑡𝑡) = (𝑥𝑥(𝑡𝑡 − Δ𝑡𝑡)) + 𝜂𝜂(𝑡𝑡) 𝑡𝑡 ∈ Ω𝑇𝑇 = {𝑡𝑡0 + Δ𝑡𝑡𝑡 . . . , 𝑡𝑡0 +𝑁𝑁Δ𝑡𝑡}

𝑦𝑦(𝑡𝑡) = (𝑥𝑥(𝑡𝑡)) + 𝜖𝜖(𝑡𝑡), 𝑡𝑡 ∈ 𝑂𝑂𝑇𝑇 ⊂ Ω𝑇𝑇

� (1)
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with 𝐴𝐴  the dynamical model and 𝐴𝐴  the observation operator. In the following, we improperly denote by 𝐴𝐴 𝐴𝐴 and 
𝐴𝐴 𝐴𝐴 the concatenation of 𝐴𝐴 𝐴𝐴(𝑡𝑡) and 𝐴𝐴 𝐴𝐴(𝑡𝑡) on each 𝐴𝐴 𝐴𝐴  for which they exist. Random noise 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  represent respectively 

the model error and the observation error. Assuming a zero-mean random noise 𝐴𝐴 𝐴𝐴 , the weak-constraint variational 
DA formulation (Sasaki, 1970) states the reconstruction or forecasting of 𝐴𝐴 𝐴𝐴 given 𝐴𝐴 𝐴𝐴 as the minimization of the 
following cost:

𝑈𝑈𝜙𝜙(𝑥𝑥𝑥 𝑥𝑥) =
∑

𝑡𝑡𝑖𝑖∈𝑂𝑂𝑇𝑇

‖(𝑥𝑥(𝑡𝑡𝑖𝑖)) − 𝑦𝑦(𝑡𝑡𝑖𝑖)‖2𝐑𝐑 +
∑

𝑡𝑡𝑖𝑖∈Ω𝑇𝑇

‖𝑥𝑥(𝑡𝑡𝑖𝑖) − 𝜙𝜙(𝑥𝑥)(𝑡𝑡𝑖𝑖)‖2𝐐𝐐,� (2)

where, to match notation of Fablet, Chapron, et al. (2021), we have defined 𝐴𝐴 𝐴𝐴 as the following operator

𝜙𝜙(𝑥𝑥)(𝑡𝑡) = (𝑥𝑥(𝑡𝑡 − Δ𝑡𝑡)).� (3)

Note that in Equation  2, we deliberately omit the background term used to measure the distance to a given 
background state, which acts as a Tikhonov regularization term on the minimization issue. We made this choice 
because our approach does not require the explicit use of a background term in a cost function. On the right 
side of Equation 2, the first term represents the data fidelity term with respect to the observations, whereas the 
second one penalizes the discrepancy between the state and the underlying dynamics. The considered norms are 
Mahalanobis norm (see Appendices A and B) with respect to covariance matrices 𝐴𝐴 𝐑𝐑 and 𝐴𝐴 𝐐𝐐 , of respective shape 

𝐴𝐴 𝐴𝐴 × 𝑑𝑑 and 𝐴𝐴 𝐴𝐴 × 𝑛𝑛 . 𝐴𝐴 𝐑𝐑 is the observation error covariance matrix while 𝐴𝐴 𝐐𝐐 is the model error covariance matrix. 
The estimation of these matrices is of paramount importance (see e.g., Tandeo et al., 2018; Trémolet, 2007) to 
correctly estimate 𝐴𝐴 𝐴𝐴 . Lag-innovation (Belanger, 1974), and Bayesian inference-based methods such as Stroud 
et al. (2018) and Tandeo et al. (2015) addressed the estimation of these matrices.

3.  Proposed Approach
The minimization of the variational cost of Equation 2 allows to estimate the state x but not to approximate the 
whole posterior distribution 𝐴𝐴 𝐴𝐴(𝑥𝑥|𝑦𝑦) . We propose a deep learning scheme which approximates the posterior by a 
Gaussian distribution. In Section 3.1, we derive a new cost, named stochastic variational cost, to estimate covar-
iances in addition to the mean state. Then, based on the work of Fablet, Chapron, et al. (2021), we introduce a 
deep learning scheme in Section 3.2 that imposes its outputs to be close to a minimum of the stochastic variational 
cost. Our deep learning scheme consists of two elements, a neural solver of the stochastic variational cost, and a 
surrogate model over posterior parameters. Finally, in Section 3.3 we explain how both elements of our approach 
could be learned jointly from ground-truth data with respect to a logarithmic score. This score allows us to eval-
uate the quality of the approximation we make to the true posterior. In contrast to Kalman methods (Evensen & 
Van Leeuwen, 2000), our approach does not rely on the prior computation of the model error covariance matrix.

3.1.  Deriving Stochastic Variational Cost Through Variational Bayes Formulation

We consider the state-space formulation of Equation  1. In the following, 𝐴𝐴  is a linear operator such that 
𝐴𝐴 (𝑥𝑥(𝑡𝑡)) = 𝐇𝐇𝑥𝑥(𝑡𝑡) with 𝐴𝐴 𝐇𝐇 a 𝐴𝐴 𝐴𝐴 × 𝑛𝑛 matrix. VB inference (Kingma & Welling, 2013) relies on the approximation 

of the true posterior pdf 𝐴𝐴 𝐴𝐴(𝑥𝑥|𝑦𝑦) by a parametric target pdf 𝐴𝐴 𝐴𝐴(𝑥𝑥|𝑦𝑦) . For any parametric target pdf, the log of the 
evidence, in this case the log probability of observations 𝐴𝐴 𝐴𝐴 , admits the following lower bound:

log �(�) ≥ ��∼�(⋅|�) log
(

�(�, �)
�(�|�)

)

,�

with equality whenever 𝐴𝐴 𝐴𝐴(𝑥𝑥|𝑦𝑦) = 𝑝𝑝(𝑥𝑥|𝑦𝑦) for any 𝐴𝐴 𝐴𝐴 . This lower bound is called ELBO. We can equivalently rewrite 
this inequality:

log 𝑝𝑝(𝑦𝑦) ≥ 𝔼𝔼𝑥𝑥∼𝑞𝑞(⋅|𝑦𝑦) log(𝑝𝑝(𝑦𝑦|𝑥𝑥)) −𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞(𝑥𝑥|𝑦𝑦)‖𝑝𝑝(𝑥𝑥)),� (4)

where �KL denotes the Kullback-Leibler divergence which measures how two distributions differ from each other, 
and is given by:

𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞‖𝑝𝑝) = 𝔼𝔼𝑥𝑥∼𝑞𝑞 log

(
𝑞𝑞(𝑥𝑥)

𝑝𝑝(𝑥𝑥)

)
.�
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Maximizing the ELBO can then lead to a computationally-tractable maximization of a lower-bound of the like-
lihood 𝐴𝐴 𝐴𝐴(𝑦𝑦) (Hoffman et al., 2013). Thus, VB inference consists in maximizing the ELBO with respect to 𝐴𝐴 𝐴𝐴 , so 𝐴𝐴 𝐴𝐴 
approximates the posterior distribution.

Let us further assume a Gaussian parametrization for target pdf 𝐴𝐴 𝐴𝐴(𝑥𝑥|𝑦𝑦) and a Gaussian additive noise model for 
observation likelihood 𝐴𝐴 𝐴𝐴(𝑦𝑦|𝑥𝑥) . In practice, we set

𝑞𝑞(𝑥𝑥|𝑦𝑦) =
∏

𝑡𝑡𝑖𝑖∈Ω𝑇𝑇

𝑞𝑞(𝑡𝑡𝑖𝑖)(𝑥𝑥(𝑡𝑡𝑖𝑖)|𝑦𝑦)with 𝑞𝑞(𝑡𝑡𝑖𝑖)(𝑥𝑥(𝑡𝑡𝑖𝑖)|𝑦𝑦) =  (𝑥𝑥(𝑡𝑡𝑖𝑖) ; 𝜇𝜇(𝑡𝑡𝑖𝑖),𝚺𝚺(𝑡𝑡𝑖𝑖)),�

and

𝑝𝑝(𝑦𝑦|𝑥𝑥) =
∏

𝑡𝑡𝑖𝑖∈𝑂𝑂𝑇𝑇

𝑝𝑝(𝑦𝑦(𝑡𝑡𝑖𝑖)|𝑥𝑥(𝑡𝑡𝑖𝑖))with 𝑝𝑝(𝑦𝑦(𝑡𝑡𝑖𝑖)|𝑥𝑥(𝑡𝑡𝑖𝑖)) =  (𝑦𝑦(𝑡𝑡𝑖𝑖) ; 𝐇𝐇𝑥𝑥(𝑡𝑡𝑖𝑖),𝐑𝐑).�

Following Appendix B, we then derive:

𝔼𝔼𝑥𝑥∼𝑞𝑞(⋅|𝑦𝑦) log(𝑝𝑝(𝑦𝑦|𝑥𝑥)) = −
1

2

∑

𝑡𝑡𝑖𝑖∈𝑂𝑂𝑇𝑇

(
Tr
(
𝐇𝐇𝑇𝑇𝐑𝐑−1𝐇𝐇𝐇𝐇(𝑡𝑡𝑖𝑖)

)
+ ‖𝐇𝐇𝜇𝜇(𝑡𝑡𝑖𝑖) − 𝑦𝑦(𝑡𝑡𝑖𝑖)‖2𝐑𝐑

)
,� (5)

up to a function of R. Under the assumption that norm of the posterior covariances is significantly smaller than 
that of the observation covariance, this term reduces to 𝐴𝐴 −

1

2

∑
𝑡𝑡𝑖𝑖∈𝑂𝑂𝑇𝑇

‖𝐇𝐇𝜇𝜇(𝑡𝑡𝑖𝑖) − 𝑦𝑦(𝑡𝑡𝑖𝑖)‖2𝐑𝐑 .

With regards to the Kullback-Leibler divergence in ELBO expression of Equation 4, an analytic expression is 
only tractable for some specific priors. By analytic expression, we mean an expression built with well-known 
operations that lend themselves readily to calculation. For illustration purposes, let assume a Gaussian prior 
whose pdf satisfies 𝐴𝐴 𝐴𝐴(𝑥𝑥) =

∏
𝑡𝑡𝑖𝑖∈Ω𝑇𝑇

 (𝑥𝑥(𝑡𝑡𝑖𝑖) ; 𝑚𝑚𝑚 𝐒𝐒) , then we can derive the following analytical expression:

−𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞(𝑥𝑥|𝑦𝑦)‖𝑝𝑝(𝑥𝑥)) = −
1

2

∑

𝑡𝑡𝑖𝑖∈Ω𝑇𝑇

(
Tr
(
𝐒𝐒−1𝚺𝚺(𝑡𝑡𝑖𝑖)

)
+ ‖𝜇𝜇(𝑡𝑡𝑖𝑖) − 𝑚𝑚‖2

𝑆𝑆
+ log

(
|𝐒𝐒|

|𝚺𝚺(𝑡𝑡𝑖𝑖)|

))
.� (6)

In the general case, that is, without assuming any specific form for the prior, we can only state that −�KL(�(�|�)||�(�)) 
−�KL(�(�|�)||�(�))is a non-positive function of the approximate posterior parameters 𝐴𝐴 𝐴𝐴 = {𝜃𝜃(𝑡𝑡𝑖𝑖) = (𝜇𝜇(𝑡𝑡𝑖𝑖),𝚺𝚺(𝑡𝑡𝑖𝑖)), 𝑡𝑡𝑖𝑖 ∈ Ω𝑡𝑡} . Let 

us call g this non-negative function. To match the generic formulation of the prior term in Equation 2, we consider 
the following form for 𝐴𝐴 𝐴𝐴(𝜃𝜃) :

𝑔𝑔(𝜃𝜃) = −
∑

𝑡𝑡𝑖𝑖∈Ω𝑇𝑇

‖Φ(𝜃𝜃)(𝑡𝑡𝑖𝑖) − 𝜃𝜃(𝑡𝑡𝑖𝑖)‖2,� (7)

where 𝐴𝐴 𝚽𝚽 is an operator on time-series space.

This form is widely used in ML regularizing techniques experimented by Ryu et al.  (2019); Venkatakrishnan 
et al. (2013) and referred to as plug-and-play methods for inverse problems. Besides, as detailed in Appendix C, 
we may note that Equation 6 may be rewritten in this form. Since the prior is left unspecified, 𝐴𝐴 𝚽𝚽 is unknown, and 
we rely on an estimator 𝐴𝐴 Φ̃ of 𝐴𝐴 𝚽𝚽 to compute 𝐴𝐴 𝐴𝐴 . Overall, from the ELBO formulation, we infer the cost given by

𝑈𝑈𝚽̃𝚽(𝜃𝜃𝜃 𝜃𝜃) =
∑

𝑡𝑡𝑖𝑖∈𝑂𝑂𝑇𝑇

‖𝐇𝐇𝜇𝜇(𝑡𝑡𝑖𝑖) − 𝑦𝑦(𝑡𝑡𝑖𝑖)‖𝐑𝐑 +
∑

𝑡𝑡𝑖𝑖∈Ω𝑇𝑇

‖Φ̃(𝜃𝜃)(𝑡𝑡𝑖𝑖) − 𝜃𝜃(𝑡𝑡𝑖𝑖)‖2.� (8)

As long as 𝐴𝐴 Φ̃ is a valid approximation of 𝐴𝐴 𝚽𝚽 , the minimum of such a cost with respect to 𝐴𝐴 𝐴𝐴 should be a good solu-
tion for the posterior approximation. Notice that Equation 8 can be viewed as a variational cost associated with an 
augmented state space formulation on the posterior parameters, which is why we call it stochastic variational cost.

3.2.  Proposed Neural Architecture

Within a learning setting, the approximate posterior is parameterized by a set 𝐴𝐴 𝐴𝐴 of weights and biases of a neural 
network (NN) framework, and is denoted 𝐴𝐴 𝐴𝐴𝜔𝜔(𝑥𝑥|𝑦𝑦) . Additionally, let us give ourselves an initial state 𝐴𝐴 𝐴𝐴

(0) for the 
parameters of the posterior approximation, which depends on 𝐴𝐴 𝐴𝐴 . For example, we can choose as initial mean state 
the linear interpolation between available observations, and as initial covariance matrix the identity matrix. Then, 
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our approach takes as input the initial state 𝐴𝐴 𝐴𝐴
(0) and the observations 𝐴𝐴 𝐴𝐴 , and outputs the parameters of the target 

distribution. In our approach, 𝐴𝐴 𝐴𝐴 , as defined in Section 3.1, is a function of 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴
(0) and 𝐴𝐴 𝐴𝐴 . We then write the output 

of our approach 𝐴𝐴 𝐴𝐴𝜔𝜔(𝜃𝜃
(0)
, 𝑦𝑦) . Note that this implies that each 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑖𝑖) and 𝐴𝐴 𝚺𝚺(𝑡𝑡𝑖𝑖) are function of 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴

(0) , and 𝐴𝐴 𝐴𝐴 . We make 
explicit the dependence on 𝐴𝐴 𝐴𝐴 by noting in the following 𝐴𝐴 𝐴𝐴𝜔𝜔(𝑡𝑡𝑖𝑖) and 𝐴𝐴 𝚺𝚺𝜔𝜔(𝑡𝑡𝑖𝑖) . The set of parameters 𝐴𝐴 𝐴𝐴 of the network 
are trained to optimize an inference score 𝐴𝐴 (𝑞𝑞𝜔𝜔(𝑥𝑥|𝑦𝑦), 𝑝𝑝(𝑥𝑥|𝑦𝑦)) , that we will detail in Section 3.3, which allows to 
estimate the proximity between the true posterior and its approximation by the target distribution.

The rest of this section is devoted to describing our architecture in Section 3.2.1 and the reasons why we chose 
it in Section 3.2.2.

3.2.1.  Neural Set-Up

Our end-to-end approach is made of two key ingredients: a neural parameterization for the operator 𝐴𝐴 Φ̃ , and a train-
able gradient-based solver of the stochastic variational cost defined in Equation 8. 𝐴𝐴 Φ̃ is parameterized as a convo-
lutional NN with specific constraints. The neural solver is a recurrent NN with stacked long short-term memory 
(LSTM) cells which implements a gradient-based solver for the targeted cost function. As our framework relies 
on two different components, remark that we can write 𝐴𝐴 𝐴𝐴 = {𝜔𝜔Φ̃, 𝜔𝜔𝑠𝑠} with 𝐴𝐴 𝐴𝐴Φ̃ the NN parameters of 𝐴𝐴 Φ̃ and 𝐴𝐴 𝐴𝐴𝑠𝑠 the 
NN parameters of the solver. From a coding perspective, the proposed neural architecture was implemented using 
PyTorch framework. Figure 1 shows the working principle of our end-to-end architecture.

Architecture of 𝐴𝐴 Φ̃ . 𝐴𝐴 Φ̃ is a convolutional NN with specific constraints, known as Gibbs Energy NN (Fablet, 
Beauchamp, et al., 2021). More precisely, we have 𝐴𝐴 Φ̃(𝜃𝜃) = 𝑓𝑓1◦𝑓𝑓2(𝜃𝜃) . f2 is a convolutional layer where the central 
values of all convolution kernels are set to zero such that f2(θ)(tj) does not depend on θ(tj). f1 is a convolutional 
NN which composes a number of convolution layers with rectified linear unit activation, where the kernel size 
of all convolution layers is 1 along time and space dimensions. In the experiments, f1 has 3 convolution layers.

Neural solver parametrization. The minimization with respect to θ of the stochastic variational cost (Equation 8) 
is performed by means of a neural solver. We use a residual NN architecture with LSTM blocks (Schmidhuber 
& Hochreiter, 1997). Each block is fed on one side with the increment between the estimated parameters at the 
entry of the block and the input parameters θ (0), and on the other side by the gradient of the stochastic variational 

Figure 1.  Proposed end-to-end architecture. Illustration comes from L63 experiment. Given a partial observation piece of data 𝐴𝐴 𝐴𝐴 and an initial pdf state 𝐴𝐴 𝐴𝐴
(0) , the 

proposed network calculates the optimized parameters 𝐴𝐴 𝐴𝐴
(𝐾𝐾) after 𝐴𝐴 𝐴𝐴 steps in the solver. On the right-hand side, red curve contains the mean state and the blue envelope is 

a rescaled visualization of the covariance. 𝐴𝐴 𝐴𝐴
(𝑘𝑘) is the difference between the parameters at iteration step 𝐴𝐴 (𝑘𝑘) and at iteration step 𝐴𝐴 (𝑘𝑘 − 1) . GENN stands for Gibbs Energy 

NN and ResNet for residual network.
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cost with respect to θ applied on the current estimated parameters. This solver optimizes iteratively the estimated 
parameters. To be more explicit, after k iterations in the LSTM-based solver, the parameters are updated as follow:

⎧
⎪
⎨
⎪
⎩

𝑔𝑔
(𝑘𝑘+1) = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

(
𝛼𝛼∇𝜃𝜃𝑈𝑈Φ̃

(
𝜃𝜃
(𝑘𝑘)
, 𝑦𝑦
)
, ℎ

(𝑘𝑘)
, 𝑐𝑐

(𝑘𝑘)
)
,

𝜃𝜃
(𝑘𝑘+1) = 𝜃𝜃

(𝑘𝑘) − 
(
𝑔𝑔
(𝑘𝑘+1)

)
,

�

with α a scalar parameter, h (k), c (k) internal states of the LSTM model and 𝐴𝐴  a linear layer. The number of itera-
tions in the LSTM-based solver has been tuned during experiments and optimal values are comprised between 
10 and 20 iterations.

3.2.2.  Motivation

Combination of 𝐴𝐴 Φ̃ and the neural solver. Optimizing an inference score S can be very complex, so appropriately 
constraining the model is a fast and efficient solution to converge quickly to an optimum. We demonstrate in 
the developments of Section 3.1 that minimizing the cost of Equation 8 approximately equates to maximize the 
ELBO inference cost. The chosen architecture allows to constrain the model by making sure via the learned solver 
that the output θω(θ (0), y) is close to a minimum of Equation 8. To summarize, we look for the best solution in the 
sense of inference among the suitable solutions in the sense of stochastic variational cost. The idea of a learned 
dynamical operator coupled with a learned neural solver was introduced in Fablet, Chapron, et al. (2021). As the 
formulation of Equation 8 is somehow similar to that considered in Fablet, Chapron, et al. (2021), we adapt their 
architecture to our case.

Choice of a Gibbs Energy NN for 𝐴𝐴 Φ̃ . From Equation 8, we note that the minimum of the stochastic variational cost 
with respect to 𝐴𝐴 Φ̃ is reached whenever 𝐴𝐴 Φ̃ is equal to the identity, whatever θ is. Letting 𝐴𝐴 Φ̃ be equal to the identity 
suppresses the constraint corresponding to the second term on the right-hand side of Equation 8. Thus, 𝐴𝐴 𝐴𝐴Φ̃ would 
become a function of μ(ti) and y. Consequently, 𝐴𝐴 Φ̃ would remain equal to Id, and covariance parameters would 
remain constant throughout the remainder of the training phase. This has to be prevent since we want to keep 
optimizing the covariance parameters during training. To this end, the Gibbs energy NN forces the convolutional 
NN to differ from the identity operator. Additionally, thanks to this constraint parametrization, 𝐴𝐴 Φ̃ can be inter-
preted as a surrogate model over the mean and covariance parameters of the target distribution. Notice that other 
choices of NN representation could have been made, such as convolutional auto-encoder. For an intercomparison, 
we refer to Beauchamp et al. (2020).

Choice of a LSTM for the solver. NNs with LSTM cells belong to the class of recurrent NN. They are particu-
larly suitable for processing sequential data. In our case, our working data is a sequence of time-space series θ (k) 
obtained by gradient descent (see Equation 9). LSTM-based updates are the classical parameterization of learned 
solver schemes (see e.g., Andrychowicz et al., 2016; Hospedales et al., 2021).

3.3.  Learning Setting

In our experimental setting, we have access during training stage to a data set of true states x = {x (i), 1 ≤ i ≤ m}, 
and corresponding observation data set y = {y (i), 1 ≤  i ≤ m}, with x (i) and y (i) realizations of the discretized 
setting given in Equation 1. The outputs of our approach θω(θ (0), y (i)) is composed of means and covariances 
denoted 𝐴𝐴 𝐴𝐴

(𝑖𝑖)
𝜔𝜔 (𝑡𝑡𝑗𝑗) and 𝐴𝐴 𝚺𝚺

(𝑖𝑖)
𝜔𝜔 (𝑡𝑡𝑗𝑗) for tj ∈ Ωt, where dependence on y (i) is indicated by upper indices to keep the notation 

uncluttered. In this context, a commonly used method to evaluate the performed DA approach is the MSE. This 
criterion measures the distance in the mean square sense between the true state of the system and the average state 
predicted by the approach. In the case of our approach, this corresponds for a time series x (i) to the following cost:

𝑀𝑀𝑀𝑀𝑀𝑀
(
𝐱𝐱(𝑖𝑖), 𝜃𝜃𝜔𝜔

(
𝜃𝜃
(0)
, 𝐲𝐲(𝑖𝑖)

))
=

1

𝑁𝑁

𝑁𝑁∑

𝑗𝑗=1

‖𝐱𝐱(𝑖𝑖)(𝑡𝑡𝑗𝑗) − 𝜇𝜇
(𝑖𝑖)
𝜔𝜔 (𝑡𝑡𝑗𝑗)‖22,� (9)

where ‖.‖2 is the Euclidean norm. The score of Equation 9 is denoted R-score in the following, which stands for 
reconstruction score.

However, this metric only allows us to compare the mean of the random vector x|y with the mean of our approx-
imated posterior. This is insufficient if we want to compare our posterior approximation with the whole true 
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posterior distribution. The right framework to assess statistical forecast is through proper scoring rule (Dawid & 
Musio, 2014; Gneiting & Raftery, 2007; Tsyplakov, 2013). A scoring rule is a function S(q, x) of a pdf q and an 
outcome x. By extension, we denote 𝐴𝐴 𝐴𝐴(𝑞𝑞𝑞 𝑞𝑞) = 𝔼𝔼𝐱𝐱∼𝑝𝑝(𝑥𝑥)𝑆𝑆(𝑞𝑞𝑞 𝑞𝑞) . A scoring rule is, by definition, said to be proper if:

𝑆𝑆(𝑝𝑝𝑝 𝑝𝑝) ≥ 𝑆𝑆(𝑞𝑞𝑞𝑞𝑞 ).�

It is further strictly proper if the equality holds only for q = p.

Even if the distribution forecast depends on observations as in our approach, using a proper scoring rule is still 
consistent, as proved by Tsyplakov (2011) and Holzmann and Eulert (2014). In this context the logarithmic score 
defined by

𝑆𝑆log(𝑞𝑞𝑞 𝐱𝐱) = log 𝑞𝑞(𝐱𝐱),�

is a strictly proper scoring rule (Dawid & Musio, 2014). That is why we set our training objective L as the mini-
mization of the opposite of the logarithmic score, which leads to:

L
(
𝐱𝐱(𝑖𝑖), 𝜃𝜃𝜔𝜔

(
𝜃𝜃
(0)
, 𝐲𝐲(𝑖𝑖)

))
= −

1

𝑁𝑁
𝑆𝑆log

(
𝑞𝑞𝜔𝜔

(
⋅ | 𝐲𝐲(𝑖𝑖)

)
, 𝐱𝐱(𝑖𝑖)

)
,

=
1

2𝑁𝑁

𝑁𝑁∑

𝑗𝑗=1

(
‖𝐱𝐱(𝑖𝑖)(𝑡𝑡𝑗𝑗) − 𝜇𝜇

(𝑖𝑖)
𝜔𝜔 (𝑡𝑡𝑗𝑗)‖𝚺𝚺(𝑖𝑖)

𝜔𝜔 (𝑡𝑡𝑗𝑗)
+ log|𝚺𝚺(𝑖𝑖)

𝜔𝜔 (𝑡𝑡𝑗𝑗)|
)
,

� (10)

where we have deliberately omitted the constant 𝐴𝐴
𝑛𝑛

2
log 2𝜋𝜋 . We denote this criterion P-score for probabilistic score 

in the following. The P-score is also known as negative log-likelihood. Notice that the R-score and the P-score 
are proportional only when the covariance of the approximate posterior reduces to a constant scalar covariance 
matrix. The mean R-score and P-score over the whole data set x is given by averaging respectively Equations 9 
and 10 over the m couples of true states and observations of the data sets x and y.

The parameters ω of our network are optimized to minimize the P-score by the stochastic gradient descent Adam 
available in PyTorch. In our experimental learning setting, we set a batch size of 64 and a maximum number of 
1,000 epochs. At predefined epochs, the learning rate is decreased. It ranges from 10 −3 to 10 −7. The parameter-
ization for which the P-score is the lowest on the validation data set is saved. We let the reader refer to the code 
available online (https://doi.org/10.5281/zenodo.7729564) for additional details on the implementation.

4.  Numerical Experiments
To assess the relevance of the proposed approach, we consider two case-studies: namely, the Lorenz 63 dynamics 
and an application to a real data set corresponding to the monitoring of Danube river discharges. In the following, 
our approach will be referred to as 4D-VarnetSto. The baseline approach is the Ensemble Kalman Smoother and 
will be abbreviated as EnKS. The different approaches will be evaluated against two main criteria: the average 
P-score (Equation 10) and the average R-score (Equation 9) over the test data set.

4.1.  L63 Dynamics

4.1.1.  Standard L63 Dynamics

The Lorenz dynamics is a system made of the following ordinary differential equations (Lorenz, 1963):

𝑑𝑑𝑑𝑑1

𝑑𝑑𝑑𝑑
= 𝜎𝜎(𝑥𝑥2 − 𝑥𝑥1),

𝑑𝑑𝑑𝑑2

𝑑𝑑𝑑𝑑
= 𝜌𝜌𝜌𝜌1 − 𝑥𝑥2 − 𝑥𝑥1𝑥𝑥3,

𝑑𝑑𝑑𝑑3

𝑑𝑑𝑑𝑑
= 𝑥𝑥1𝑥𝑥2 − 𝛽𝛽𝛽𝛽3.

� (11)

We use the following parametrization: σ = 8, ρ = 28, and 𝐴𝐴 𝐴𝐴 =
8

3
 . In this setup, the Lorenz 63 system has a chaotic 

dynamics. A fourth-order Runge-Kutta integration scheme (Butcher, 1996) with 0.01 time step enables us to 
simulate the time series. Figure 2a is a trajectory of this dynamics for 200 time steps.
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4.1.2.  Stochastic L63 Dynamics

In order to introduce model noise in L63 dynamics, we use the stochastic framework designed by Chapron 
et al.  (2018). It intends to mimic stochastic behavior in large-scale geophysical flow dynamics. The ordinary 
differential equation (Equation 11) becomes a stochastic differential equation:

𝑑𝑑𝑑𝑑1 =

(
𝜎𝜎(𝑋𝑋2 −𝑋𝑋1) −

4

2Γ
𝑋𝑋1

)
𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑2 =

(
𝜌𝜌𝜌𝜌1 −𝑋𝑋2 −𝑋𝑋1𝑋𝑋3 −

4

2Γ

)
𝑑𝑑𝑑𝑑 +

𝜌𝜌 −𝑋𝑋3

Γ
1

2

𝑑𝑑𝑑𝑑𝑡𝑡,

𝑑𝑑𝑑𝑑3 =

(
𝑋𝑋1𝑋𝑋2 − 𝛽𝛽𝛽𝛽3 −

8

2Γ
𝑋𝑋3

)
𝑑𝑑𝑑𝑑 +

𝑋𝑋2

Γ
1

2

𝑑𝑑𝑑𝑑𝑡𝑡.

� (12)

dBt is a white noise, formally the difference of a standard Brownian motion. Γ is the new parameter of our 
model which is fixed to 2 in our experiments. Note that if Γ → ∞, we recover the original model. Figure 2b is a 
three-dimensional plot for a time series of this stochastic Lorenz 63 version. Adding the model noise strongly 
deteriorate the smoothness and the convergence to standard Lorenz attractor.

4.1.3.  Training Setting and Results

For both dynamics, we consider a time series of 200,000 time steps. From this time series, we create a training 
set containing 10,000 sub-series of 200 time steps, and validation and test sets each consisting of 2,000 sub-series 
of 200 time steps. The sub-series overlap within a data set but do not overlap from one data set to another. Obser-
vations of the true state are made available solely for the first variable of the system, every 8 time steps, adding a 
white Gaussian observation noise of variance set to 2.

Including the parameters of the neural solver and those of 𝐴𝐴 Φ̃ , our network has roughly 19,000 parameters to learn. 
We train our NN in two stages. First, for each time series, the initial state θ (0) = {μ (0)Σ (0)} is initialized as follows:

•	 �μ (0) is the linear interpolation between observations for its first variable and the mean of the observations for 
the other variables;

•	 �Σ (0) is the identity matrix.

We find a first optimum while constraining the estimated covariance matrix to be diagonal. In a second step, we 
start a new learning session to find a non-diagonal covariance matrix using the previously found optimum as 
initial state θ (0). This two-step procedure aims to force the covariance matrix to be definite and positive during 
the training process. Imposing positive-definiteness directly on the whole output matrix is not an easy task while 

Figure 2.  Evolution of Lorenz dynamics for (a) standard model (see Equation 11) and (b) stochastic model of Chapron 
et al. (2018) (Equation 12) for 200 time steps of 0.01 length each.
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in the diagonal covariance matrix case this is easy to enforce. Indeed, it only 
requires strictly positive values for the outputs on the diagonal, and zeros 
elsewhere. So first, we find an optimal diagonal covariance matrix, then we 
search for a complete covariance matrix by perturbing this optimum.

We compare our method with the EnKS of Evensen and Van Leeuwen (2000). 
In our experiment, the EnKS has 500 ensemble members and a time lag of 30 
time units. No inflation is used. We have chosen a very large ensemble size 
because we want to be sure to correctly represent the approximation of the 
posterior made by the EnKS. Indeed, we mainly want to compare the quality 
of the approximation of the posterior made by the different approaches. For 
both dynamics, the EnKS is run through 20,000 time steps and evaluated 
on the last 15,000 time steps to be sure the calibration phase is over. Notice 
that in the stochastic dynamics case, the model error matrix of the EnKS is a 
diagonal matrix constant over time which coefficients are obtained by aver-
aging the model error. Thus, in the stochastic case, we expect our approach 
to approximate the posterior far better than the EnKS as it does not rely on a 
imperfect model and an approximate model error matrix. Table 1 compiles 
the results for the appropriate scores. If the first variable is observed for both 
our approach and EnKS, the 4D-VarnetSto outperforms the EnKS in each 
score for both dynamics. By adding observed variables in EnKS experiment, 
the R-score and P-score decrease. For the standard dynamics, the R-score for 
the EnKS with at least two variables observed become lower than its value 

in  the 4D-VarnetSto experiment, but the P-score stays above. This confirms that our posterior approximation is in 
any case better that the one proposed by the EnKS. As for the stochastic dynamics, the conclusion are rather simi-
lar. The R-score of our approach with one observed variable is better than the one of the EnKS. Again, regardless 
of the number of variables observed, the P-score is much lower using our approach than using the EnKS, and by 
even larger amounts than in the deterministic experiment. To conclude with the results of Table 1, we can state 
that in identical settings, our approach outperforms by far the EnKS in both criteria. Adding observed variables to 
the EnKS allows to obtain better R-score than our approach but the P-score stays above, which indicates that our 
approach is better suited for estimating the whole posterior than EnKS. As a side remark, our R-score is similar 
to the one reported by Fablet, Chapron, et al. (2021) (R-score of 1.34 in Table 1). This is a very good thing, as it 
indicates that adding complexity to their model does not deteriorate the quality of the state prediction.

Figure 3 compares estimated states (orange curve) and the associated 95% confidence interval (green area) with 
the real states (blue curve) defined by Equation 11 in the context of standard dynamics. Figure 4 presents the 
same elements for the stochastic dynamics defined by Equation 12. Both figures represent time series for which 
the attractor changes its wing. The change of wing is realized when the variables x1 and x2 simultaneously go 
from a maximum to a minimum or vice versa. In Figure 3, the mean state estimated by our approach (top three 
graphs) and the true state of the system are almost merged. Moreover, the area representing the uncertainty is 
also very thin but widens for a given variable when an extremum is reached. The uncertainty is slightly larger for 
the unobserved variables x2 and x3 than for the observed variable x1. Comparatively, the state reconstructed by 
EnKS when only x1 is observed (middle three graphs) coincides less well with the true state. The uncertainty is 
also larger, especially during the wing change (between t = 50 and 125). When the three variables are observed 
for the EnKS (bottom three graphs), the real state and the reconstructed state are difficult to distinguish, the area 
representing the uncertainty is very narrow and widens slightly during the wing change. In Figure 4, we first note 
that the EnKS with only x1 observed performs poorly. It does not succeed in correctly representing the dynamics 
(middle three graphs). When observing the three variables for the EnKS (bottom three graphs), the estimated state 
becomes accurate. However, the true state curve is almost never contained within the confidence interval. This 
visually confirms the poor results obtained on the P-score and indicate that the posterior approximation is not 
accurate. On the contrary, we observe that the confidence interval estimated by our approach seems consistent 
(top three graphs). The true state curve is globally contained within a fairly narrow confidence interval.

Approach Model noise R-score P-score

4D-VarnetSto with x1 observed No 1.35 −7.36

Yes 10.53 −3.46

EnKS with x1 observed No 2.19 0.41

Yes 17.32 15.26

EnKS with x1 and x2 observed No 0.56 −4.25

Yes 3.99 8.89

EnKS with all variables observed No 0.24 −6.71

Yes 2.81 10.21

Note. Model noise sets to “No” indicates standard dynamics (see 
Equation 11), “Yes” implies stochastic one (see Equation 12). Only the first 
variable is observed when performing 4D-VarnetSto. In EnKS experiments, 
from one to all variables are considered as observed. Two benchmark score 
are evaluated: the MSE of the reconstruction of the true state (R-score, see 
Equation  9), and the mean of the negative log-likelihood of the predicted 
parametric distribution applied in true state (P-score, see Equation 10).

Table 1 
Scores of 4D-VarnetSto and Ensemble Kalman Smoother (EnKS) for L63 
Simulations for Both Dynamics
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Figure 3.  Experiments with standard Lorenz dynamics (Equation 11). For a set of observations (cyan dots) on given timesteps (light blue dashes on the time axis), the 
true state (blue curve) and estimated state (orange curve) are plotted for our approach and Ensemble Kalman Smoother (EnKS) with one or all variables observed. The 
estimated 95% confidence intervals are represented by the green area.

Figure 4.  Experiments with the stochastic Lorenz dynamics of Chapron et al. (2018) (Equation 12). See Figure 3 for details.
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4.2.  Danube River Network for Discharge Measurements

The upper Danube basin is an European river network whose drainage basin covers a large part of Austria, Swit-
zerland and of the south of Germany. Figure 5 shows the topography of the Danube basin as well as the locations 
of the 31 stations at which daily measurements of river discharge are available. Stations considered as observed 
or unobserved in our experiment are colored differently. The daily measurements series have lengths from 51 to 
110 years. We restrict ourselves to the period 1960–2010 for which all stations have available measurements. This 
data set have been widely studied in the community of multivariate extremes (see for example Asadi et al., 2015; 
Mhalla et al., 2020).

This experiment with a real data set aims to meet several objectives. Learning an unknown dynamics and associ-
ated uncertainties is challenging. The data-driven models that can be learned lacks important variables (precip-
itation, snowmelt) to be highly reliable, and consequently encompass high error model. Thus, the ability of our 
approach to adapt to a high level of model error is studied. Finally, the approximation of the posterior made by 
our approach is compared to a Gaussian approximation which we call constant covariance approach. In this 
comparative approach, the mean state is estimated using the approach described in Fablet, Chapron, et al. (2021), 
and the covariance matrix is a diagonal matrix whose coefficients are constants and set as the variance of the 
error at each station.

In this experiment, we consider that the observed data correspond to the state of the system. It is equivalent to 
consider no observation noise, namely 𝐴𝐴 𝐲𝐲(𝑖𝑖) = 𝐱𝐱

(𝑖𝑖)

|𝑂𝑂𝑇𝑇
 for each i, where 𝐴𝐴 𝐱𝐱

(𝑖𝑖)

|𝑂𝑂𝑇𝑇
 is the restriction of x (i) to OT. To avoid 

divergence of the P-score on the set of observations Ot, we modify the P-score slightly by redefining it as follows:

L
(
𝐱𝐱(𝑖𝑖), 𝜃𝜃𝜔𝜔

(
𝜃𝜃
(0)
, 𝐲𝐲(𝑖𝑖)

))
=

1

2𝑁𝑁𝑡𝑡

∑

𝑡𝑡𝑗𝑗∈Ω𝑇𝑇 ∖𝑂𝑂𝑇𝑇

(
‖𝐱𝐱(𝑖𝑖)(𝑡𝑡𝑗𝑗) − 𝜇𝜇

(𝑖𝑖)
𝜔𝜔 (𝑡𝑡𝑗𝑗)‖𝚺𝚺(𝑖𝑖)

𝜔𝜔 (𝑡𝑡𝑗𝑗)
+ log|𝚺𝚺(𝑖𝑖)

𝜔𝜔 (𝑡𝑡𝑗𝑗)|
)
,� (13)

where Nt is the cardinal of ΩT\OT. Given the spatial dimension of the state, we limit ourselves to output diag-
onal covariance matrix. Consequently, our NN is trained using only the first step of the process described in 
Section 4.1.3. The initial state θ (0) is also defined as described in this first step. In order to leave the stochastic 
variational cost defined, we set R to the identity in Equation 8. Using the criterion of Equation 13, half of the 
stations are considered to be observed every 4 days (see red locations in Figure 5). We consider time series of 
48 consecutive days. For each time series, our goal is to estimate the mean and covariance of the approximate 
posterior distribution of flow on each day of the time series and at each station, including where observations 
are missing. The training data set comprises 9,999 time series of 48 days, validation and test set 1,749 each. To 
construct these data sets, we divided the 51 years of daily measurement into 550-day blocks. In each block, the 
first 350 days create 303 time series for the training data set. The 200 remaining days are divided in two and 

Figure 5.  Topographic map of the upper Danube basin with the 31 gauging stations. A data set of 50 years of daily 
measurements is considered (from 1960 to 2010). In training setting, we assume that some stations are observed (red dots) 
and the other are unobserved (black squares). We further assume that the observed stations have available observations only 
once every 4 days.
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create 53 time series for validation set and as many for the test set. Note that within a data set, time series are 
overlapping. Figures 6 and 7 show the estimated mean state (red curve), the confidence interval (green area) and 
the daily measurements (blue dots) for a summer and winter month, respectively. The stations are identical from 
one figure to another.

Seasonality plays an important role in discharge analysis, and here, we focus on the summer and winter seasons. 
In summer, flows are lower than in winter and subject to important variations in absolute value. This is linked 
essentially to snow or ice melts at altitude, as well as to episodes of heavy precipitation. For similar reasons, 
different station elevations, and thus different positions along the river system, were chosen. Stations upstream of 
the river system have lower flows than those downstream. Flows at upstream stations vary greatly depending on 
local weather and climate events.

The relative variance estimated by our approach is larger in Figure 6 than in Figure 7. This finding is consistent with 
the initial considerations about variances in summer and winter. The estimated variance is also more constant in 
summer than in winter. One can assume that the model error is such that it becomes difficult to detect patterns that 
would reduce the uncertainty. In winter, on the other hand, the estimated confidence interval varies significantly, 

Figure 6.  For a summer month (July 2007), we show the estimated discharge (red curve), the 95% confidence interval (green area) estimated by our method for 
observed and unobserved stations at different elevations. The daily measurements are also represented according to whether they are available (light blue dots) or 
unavailable(deeper blue) as inputs. The discharges are expressed in m 3/s.
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and seems to widen at the peaks reached by the flow. We notice that our predictions are sometimes biased for a large 
number of consecutive time steps. This is particularly true in Figure 7 where a negative bias between the obser-
vations and the predicted mean exist. It is visible for downstream and mid-river unobserved stations between 21 
January 2001 and 1 February 2001. The presence of available observations drastically reduces the bias.

In order to compare our approach with the constant covariance approach, 
we average the P-score and R-score restricted to Ωt\Ot over the test data set, 
for both our approach and the comparative constant covariance approach. 
As the discharges at different stations have not the same order of magni-
tude, we rescaled the discharges at each stations to a time series with mean 0 
and standard deviation sets to 1 before training both approaches. The scores 
for the rescaled discharges are given in Table  2. We find that estimating 
the covariance in addition to the mean state does not degrade the R-score. 
Indeed the R-score obtained by our approach and by the constant covari-
ance approach are almost identical. Moreover, we significantly improve the 
P-score over constant covariance approach and we can infer that the varia-
tions of variances given by our approach allow a significant improvement of 
posterior approximation.

Figure 7.  Winter month (January 2000) (see Figure 6 for details).

Approach R-score P-score

4D-VarnetSto 3.4 −0.018

Constant covariance 3.38 1.05

Note. Two benchmark scores are evaluated: the R-score and P-score on 
unobserved time steps average on test data set.

Table 2 
Scores of 4D-VarnetSto and Constant Covariance Approach for Rescaled 
Danube River Discharges

 19422466, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003446 by C
ochrane France, W

iley O
nline L

ibrary on [30/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

LAFON ET AL.

10.1029/2022MS003446

14 of 17

5.  Conclusion
Based on previous works which introduced an end-to-end learning framework for variational assimilation prob-
lems, we extend this approach to uncertainty quantification. Using a stochastic variational cost derived from 
an ELBO maximization with respect to a target Gaussian distribution, we have been able to find a Gaussian 
approximation of the pdf of the posterior. The learning framework comprises a neural-network representation of 
the dynamics of the parameters and a neural solver for the considered stochastic variational cost. Both solver and 
dynamics of the parameters are learnt jointly in a context of logarithmic score optimization. This joint learning 
process offers new perspectives for VB-based cost minimization in DA problems.

Lorenz 63 dynamics and discharges on Danube river networks have been studied. As regards the Lorenz dynam-
ics, our approach captures well the dynamics and the uncertainty. When adding state-dependent model noise, we 
have been able to retrieve complex type of uncertainty structure. The experiments on the Danube river system 
provide a setting where the dynamics are unknown, and the data to estimate them incomplete. In this context, our 
approach allows us to calculate a consistent estimate of the flow, the associated dynamics and the uncertainties.

Our findings also underlines that beyond state-of-the-art results obtained for MSE of reconstruction, our approach 
is well-suited for logarithmic score. This is a real improvement over reference ensemble methods which suffer 
from limitations and require careful adaptation to achieve good performance on such score. This indicates that 
posterior approximation reached with our approach is more consistent than those provide by ensemble methods.

We claim that our approach could be applicable to problems of higher dimension thanks to the versatility of 
NNs, which could constitute interesting fields of application. Besides, future works will also focus on improving 
the accuracy of the upper quantile of the predicted distribution. A parameterization of the posterior by heavy 
tail distribution (see e.g., Resnick, 2007) could be an improvement track. Moreover, as discharges are positive 
values, a Gaussian parametrization is not ideal to infer uncertainties. More broadly, symmetrical distribution 
cannot consistently estimate large uncertainty in this problem as it could cover negative flow value. Extending 
our approach to non-symmetrical distribution would be of interest.

Finally, one limitation of our approach is the need for a data set of true states, which is generally not possible in 
practice. Thus, there is still significant room for further progress with respect to the application of such approach 
in operational settings.

Appendix A:  Mahalanobis Norm
Given a vector z of dimension n and a positive-definite matrix A of dimension n × n, the Mahalanobis norm of z 
is denoted ‖z‖A and is given by 

‖𝑧𝑧‖𝐀𝐀 = 𝑧𝑧
𝑇𝑇𝐀𝐀−1

𝑧𝑧𝑧�

Appendix B:  Proof of Equation 5
We first state an important result. Let 𝐴𝐴 𝐴𝐴(𝑥𝑥) =  (𝑥𝑥 ; 𝑚𝑚𝑚𝚺𝚺) be the pdf of a multivariate Gaussian. For any matrix 
A, we have (see Petersen & Pedersen, 2008, Section 8),

𝔼𝔼𝑥𝑥∼𝑝𝑝

[
𝑥𝑥
𝑇𝑇𝐀𝐀𝑥𝑥

]
= Tr(𝐀𝐀𝐀𝐀) + 𝑚𝑚

𝑇𝑇𝐀𝐀𝑚𝑚𝑚� (B1)

Let 𝐴𝐴 𝐴𝐴(𝑥𝑥) =  (𝑥𝑥 ; 𝜇𝜇𝜇𝚺𝚺) and 𝐴𝐴 𝐴𝐴(𝑦𝑦|𝑥𝑥) =  (𝑦𝑦 ; 𝐇𝐇𝑥𝑥𝑥𝐑𝐑) . Then, we have 

𝔼𝔼𝑥𝑥∼𝑞𝑞 log(𝑝𝑝(𝑦𝑦|𝑥𝑥)) = 𝔼𝔼𝑥𝑥∼𝑞𝑞

[
log

(
1

√
(2𝜋𝜋)

𝑛𝑛|𝐑𝐑|
exp −

1

2
(𝐻𝐻𝐻𝐻 − 𝑦𝑦)

𝑇𝑇
𝐑𝐑−𝟏𝟏(𝐻𝐻𝐻𝐻 − 𝑦𝑦)

)]
,

= −log

(√
(2𝜋𝜋)

𝑛𝑛|𝐑𝐑|
)
−

1

2
𝔼𝔼𝑥𝑥∼𝑞𝑞

[
(𝐇𝐇𝑥𝑥 − 𝑦𝑦)

𝑇𝑇
𝐑𝐑−𝟏𝟏(𝐇𝐇𝑥𝑥 − 𝑦𝑦)

]
,

= −log

(√
(2𝜋𝜋)

𝑛𝑛|𝐑𝐑|
)
−

1

2
𝑦𝑦
𝑇𝑇𝐑𝐑−𝟏𝟏

𝑦𝑦 + 𝑦𝑦
𝑇𝑇𝐑𝐑−𝟏𝟏𝐇𝐇𝜇𝜇 −

1

2
𝔼𝔼𝑥𝑥∼𝑞𝑞

[
𝑥𝑥
𝑇𝑇𝐇𝐇𝑇𝑇𝐑𝐑−𝟏𝟏𝐇𝐇𝑥𝑥

]
.

�
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From Equation B1, we obtain 

𝔼𝔼𝑥𝑥∼𝑞𝑞 log(𝑝𝑝(𝑦𝑦|𝑥𝑥)) = 𝑓𝑓 (𝐑𝐑) −
1

2
𝑦𝑦
𝑇𝑇𝐑𝐑−𝟏𝟏

𝑦𝑦 + 𝑦𝑦
𝑇𝑇𝐑𝐑−𝟏𝟏𝐇𝐇𝜇𝜇 −

1

2

(
𝜇𝜇
𝑇𝑇𝐇𝐇𝑇𝑇𝐑𝐑−𝟏𝟏𝐇𝐇𝜇𝜇 + Tr

(
𝐇𝐇𝑇𝑇𝐑𝐑−𝟏𝟏𝐇𝐇𝐇𝐇

))
,

= 𝑓𝑓 (𝐑𝐑) −
1

2

(
Tr
(
𝐇𝐇𝑇𝑇𝐑𝐑−𝟏𝟏𝐇𝐇𝐇𝐇

)
+ (𝑦𝑦 −𝐇𝐇𝜇𝜇)

𝑇𝑇
𝐑𝐑−1(𝑦𝑦 −𝐇𝐇𝜇𝜇)

)
.

�

where 𝐴𝐴 𝐴𝐴 (𝐑𝐑) = −
1

2
(𝑑𝑑 log 2𝜋𝜋 + log|𝐑𝐑|) . Equation 5 follows.

Appendix C:  Proof of Equation 7
We consider the following norm on the space spanned by θ = (μ, Σ): 

‖(𝜇𝜇𝜇𝚺𝚺)‖ = ‖𝜇𝜇‖2 +
(
Tr
(
𝚺𝚺

2
)) 1

2 ,�

where ‖.‖2 is the Euclidean norm. Then, given

𝑔𝑔(𝜃𝜃) = −
1

2

(
Tr
(
𝐒𝐒−1Σ

)
+ ‖𝜇𝜇 − 𝑚𝑚‖2

𝑆𝑆
+ log

(
|𝐒𝐒|
|𝚺𝚺|

))
,�

we obtain g(θ) = −‖Φ(θ) − θ‖ 2 if we consider the following expression for Φ: 

Φ(𝜇𝜇𝜇 𝚺𝚺) =

(
𝐋𝐋(𝜇𝜇 − 𝑚𝑚) + 𝜇𝜇𝜇

1

𝑑𝑑

(
Tr
(
𝐒𝐒−1𝚺𝚺

)
+ log

(
|𝐒𝐒|
|𝚺𝚺|

))
Id + 𝚺𝚺

)
,�

with L such that L 2 = S −1(μ − m)(μ − m) TS −1.

Extending this result, it proves that Equation 6 can be written in the form of Equation 7.

Data Availability Statement
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