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Abstract14

In geosciences, data assimilation (DA) addresses the reconstruction of a hidden dynam-15

ical process given some observation data. DA is at the core of operational systems such16

as weather forecasting, operational oceanography and climate studies. Beyond the re-17

construction of the mean or most likely state, precise inference of the state posterior dis-18

tribution remains a key challenge, i.e. quantify uncertainties as well as to inform intrin-19

sical stochastic variabilities. Indeed, DA schemes, such as variational DA and Kalman20

methods, can have difficulty in dealing with complex non-linear processes. A growing21

literature investigates the cross-fertilization of DA and machine learning. This study pro-22

poses an end-to-end Neural Network (NN) scheme based on a Variational Bayes (VB)23

inference formulation. It combines an ELBO (Evidence Lower BOund) variational cost24

to a trainable gradient-based solver to infer the state posterior pdf given observation data.25

The inference of the posterior and the trainable solver are learnt jointly. We demonstrate26

the relevance of the proposed scheme for a Gaussian parameterization of the posterior27

and different case-study experiments. It includes a benchmark w.r.t. state-of-the-art schemes.28

We discuss further the generalization of the proposed approach to non-Gaussian poste-29

rior.30

Plain Language Summary31

The spatio-temporal reconstruction of a dynamical process from some observational32

data is at the core of a wide range of applications in geosciences. This is particularly true33

for weather forecasting, operational oceanography and climate studies. However, the re-34

construction of a given dynamic and the prediction of future states must take into ac-35

count the uncertainties that affect the system. Thus, the available observational mea-36

surements are only provided with a limited accuracy. Besides, the encoded physical equa-37

tions that model the evolution of the system do not capture the full complexity of the38

real system. Finally, the numerical approximation generates a non-negligible error. For39

these reasons, it seems relevant to calculate a probability distribution of the state sys-40

tem rather than the most probable state. Using recent advances in machine learning tech-41

niques for inverse problems, we propose an algorithm that jointly learns a parametric42

distribution of the state, the dynamics governing the evolution of the parameters, and43

a solver. Experiments conducted on synthetic reference datasets, as well as on datasets44

describing environmental systems, validate our approach.45

1 Introduction46

The reconstruction and forecasting of dynamical systems from available observa-47

tions are key challenges in Earth science (see, e.g. Welch et al., 1995). These tasks have48

been classically addressed by DA approaches, especially variational DA and ensemble49

Kalman schemes (see, e.g. Evensen et al., 2009). In this general context, the quantifi-50

cation of estimation uncertainties as well as the inference of the intrinsical variabilities51

of the processes in play are crucial. It is especially important when dealing with misrep-52

resented physical processes (Machenhauer & Kirchner, 2000) and unresolved small-scale53

processes (Hamill & Whitaker, 2005) with respect to the space-time observational res-54

olution.55

In a variational setting, assumptions (Le Dimet & Talagrand, 1986) moved from56

explicit model formulations to weaker ones (see, e.g. Trémolet, 2007). This allows to take57

into account the model error. However, standard variational methods do not always al-58

low to estimate uncertainties of the predicted state-space. Concerning ensemble meth-59

ods, estimating model error also became crucial and efforts were made to adapt ensem-60

ble methods to non-deterministic model (Sasaki, 1970). This led to the development of61

the iterative ensemble Kalman filter in presence of additive noise by Sakov et al. (2018).62

Unlike variational methods, ensemble methods provide a Gaussian estimate of the pos-63
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terior distribution of the state-space through a covariance matrix updated at each step64

(see, e.g. Evensen, 2003a; Evensen & Van Leeuwen, 2000).65

Recently, a rich literature has emerged to apply machine learning (ML) paradigms66

to address DA issues. ML schemes are particularly efficient to solve complex and high-67

dimensional optimization problems. Its numerous successful applications in various fields68

are proof of this. Applications include image classification (Le, 2013; Krizhevsky et al.,69

2012), natural language processing (Otter et al., 2020), language translation (Sutskever70

et al., 2014) computational physics (Raissi et al., 2017; Mohan et al., 2020)...71

Regarding DA, ML-based algorithms offer new means to learn the governing equa-72

tions of the dynamics (Fablet et al., 2018; Long et al., 2018) and the associated flow op-73

erator (Fablet et al., 2021; Bocquet et al., 2020; Scher & Messori, 2019), or model cor-74

rection terms (Long et al., 2018; Farchi et al., 2021), directly from the data. These al-75

gorithms can be used in a plug-and-play manner in state-of-the-art DA schemes. When76

considering variational DA, trainable emulators of the adjoint operator of the dynam-77

ics (Nonnenmacher & Greenberg, 2021) or directly of the gradient-based DA solver (Fablet78

et al., 2021) emerged as appealing solutions. Similarly, recent studies have explored learning-79

based Kalman techniques (de Bézenac et al., 2020). The latter is particularly relevant80

to address uncertainty quantification. The underlying assumption of the existence of the81

linear-Gaussian latent space may however restrict their application to real-world case-82

studies. Generative adversarial networks also naturally arose as appealing ML tools to83

develop new ensemble DA schemes (Silva et al., 2021).84

In this paper, we further explore how to bridge learning-based schemes and DA to85

infer the posterior distribution of the state of a dynamical system given a set of obser-86

vations. Following a VB inference formulation, we develop an end-to-end neural archi-87

tecture to retrieve a parametric approximation of the posterior. Our neural scheme de-88

rives from an underlying ELBO cost and exploits a trainable surrogate representation89

of the dynamics and a trainable gradient-based solver. It can be regarded as an exten-90

sion of Fablet et al. (2021) to a state-space associated with the parameters of the pos-91

terior. To the best of our knowledge, this is the first study which combines a trainable92

solver for variational DA along with a VB formulation. We demonstrate the relevance93

of the proposed scheme for different case-studies using a Gaussian approximation for the94

posterior pdf. We further discuss the generalization of the proposed approach to non-95

Gaussian posterior and related works.96

This paper is structured as follows. Section 2 introduces DA and uncertainty quan-97

tification. Section 3 presents the proposed approach, based on ELBO maximization, and98

the associated end-to-end neural framework. Numerical experiments on Lorenz 63 dy-99

namics and discharges on Danube river network are reported in Section 4. Finally, con-100

cluding remarks are provided in Section 5.101

2 Problem statement102

DA relies on state-space formulation for some time-dependent state x and associ-103

ated time-dependent observations y. Within a time-continuous setting, it leads to (see104

(Trémolet, 2007)):105

∂x

∂t
(t) = M(x(t)) + η(t)106

y(t) = H(x(t)) + ϵ(t), t ∈ Ω (1)107

with M the dynamical model and H the observation operator. Variable η and ϵ repre-108

sent respectively the model error and the observational error. Assuming a zero-mean ran-109

dom process η, the weak-constraint variational DA formulation (Sasaki, 1970) states the110

reconstruction or forecasting of x given y as the following minimization issue:111

Uϕ(x, y) = ||H(x)− y||2R + ||x− ϕ(x)||2Q, (2)112
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where ϕ is the flow operator associated with dynamical operator M. ϕ is also referred113

to a time-stepping operator:114

ϕ(x)(t) = x(t−∆) +

∫ t

t−∆

M(x(u))du. (3)115

On the right side of Equation 2, the first term represents the data fidelity term with re-116

spect to the observation, whereas the second one penalizes the discrepancy between the117

state and the underlying dynamics. The considered norms are Mahalanobis norm with118

respect to covariance matrices R and Q. R is the observational error matrix while Q is119

the model error matrix. The estimation of these matrices is of paramount importance120

(see, e.g. Tandeo et al., 2018; Trémolet, 2007). Especially, in Kalman methods (Evensen121

& Van Leeuwen, 2000), the error matrices drove the inference of the posterior. Particle122

filters (Gordon et al., 1993; Van Leeuwen, 2009), lag-innovation (Belanger, 1974), and123

Bayesian inference-based methods such as Stroud et al. (2018); Tandeo et al. (2015) ad-124

dressed the estimation of these matrices. Particle filters suffer high-dimensional prob-125

lems (Snyder et al., 2008)). Other approaches assume additive time-independent noise126

processes. This may restrict their applicability when considering time-varying and state-127

dependent noise processes.128

We aim at addressing these shortcuts thanks to the modeling versatility of the deep129

learning schemes. As shown in Fablet et al. (2021), one may learn jointly dynamical prior130

ϕ (Equation 3) and a gradient-based solver for the minimization of cost Uϕ (Equation131

2). This joint learning feature lets us introduce an augmented state-space formulation132

to directly account for a parametric approximation of the posterior of the state p(x|y)133

rather than state x. As detailed hereafter, we exploit a ELBO criterion (see, e.g. Hoff-134

man et al., 2013) to extend Equation 2 to this augmented state-space formulation.135

3 Proposed approach136

3.1 VB formulation137

For a state-space formulation such as Equation 1, VB inference (Kingma & Welling,138

2013) relies on the approximation of the true posterior p(x|y) by a parametric target dis-139

tribution qθ(x). θ refers to the parameters of this approximation. The ELBO provides140

a lower-bound to the likelihood of the observations y:141

log p(y) ≥ Ex∼qθ log

(
p(x, y)

qθ(x)

)
,142

with equality whenever qθ(x) = p(x|y). We can equivalently rewrite this inequation :143

log p(y) ≥ Ex∼qθ log (p(y|x))−DKL(qθ||p(x)), (4)

where DKL denotes the Kullback-Leibler divergence and measures how two distributions144

differ from each other. The Kullback-Leibler divergence between two distributions is given,145

for two pdf p and q, by the following expression :146

Ex∼q log

(
q(x)

p(x)

)
.147

The ELBO can then lead to a computationally-tractable maximization of a lower-bound148

of the likelihood p(y) (Hoffman et al., 2013).149

Let us further assume a Gaussian approximation for target distribution qθ and a150

Gaussian additive noise model for observation likelihood p(y|x), that is to say qθ ∼ N (µ,Σ)151

and p(y|x) ∼ N (x,R). For a linear observation operator H, we then derive:152

Ex∼qθ log (p(y|x)) = −1

2
(Tr(R−1Σ) + ||H(µ)− y||2R),153
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up to a function of R. Under the assumption that norm of the posterior covariance is154

significantly smaller than that of the observation covariance, this term reduces to − 1
2 ||H(µ)−155

y||2R.156

Concerning the Kullback-Leibler divergence in ELBO expression of Equation 4, if157

we further assume that the prior satistifies p(x) ∼ N (m,S), then we can derive the fol-158

lowing analytical expression:159

−DKL(qθ||p(x)) = −1

2

(
Tr(S−1Σ) + ||µ−m||2S + log

(
|S|
|Σ|

))
. (5)160

If we no longer assume a specific form for the prior p(x), the expression −DKL(qθ||p(x))161

is a non-positive function of approximate posterior parameters θ. Let us call g this non-162

negative function. To match the generic formulation of the prior term in Equation 2, we163

consider the following form for g(θ):164

g(θ) = −||ϕ(θ)− θ||2.165

This form is also widely used in machine learning regularizing techniques experimented166

by Ryu et al. (2019); Venkatakrishnan et al. (2013) and referred to as plug-and-play meth-167

ods for inverse problems. Besides, we may note that Equation 5 may be rewritten in this168

form. As ϕ is usually unknown, we should rely on an estimator ϕ̃ of ϕ to compute g. Over-169

all, from the ELBO formulation, we infer the parameters θ = (µ,Σ) of a Gaussian ap-170

proximation of the true posterior p(x|y) according to the minimization of a variational171

cost given by172

Uϕ̃(θ, y) = λ||H(µ)− y||2 + ||θ − ϕ̃(θ)||2. (6)173

For the sake of simplicity, we have further assume a scalar covariance matrix R with pa-174

rameter λ. This variational formulation is similar to that considered in Fablet et al. (2021).175

These authors provided a NN approach to jointly learn the operator ϕ̃ and a gradient-176

based solver of variational cost Equation 6 to infer the approximate posterior qθ(x) from177

available observations y.178

3.2 Proposed neural architecture179

We introduce the proposed end-to-end neural architecture based on variational cost180

defined in Equation 6. This neural architecture combines two main components: a neu-181

ral parameterization for operator ϕ̃, and a trainable gradient-based solver.182

Fablet et al. (2021) noticed that a learned ϕ̃ leads to better results than imposing183

the dynamics. Consequently, we used a constrained convolutional NN representation of184

ϕ̃. Recall from Equation 6 that the minimum of the stochastic variational cost w.r.t ϕ̃185

is reached whenever ϕ̃ is equal to the identity. As long as we want to find dynamical trends186

in the evolution of parameters, we constrain the convolutional NN to differ from the iden-187

tity. We impose the constraint in the architecture of the convolutional NN itself. As in188

Fablet et al. (2021), we use Gibbs Energy NN (Perez et al., 1998) with two scale repre-189

sentations.190

Once we design a neural formulation for the dynamical operator ϕ̃, the minimisa-191

tion of stochastic variational cost Equation 6 is performed by means of a neural solver.192

We use a ResNet architecture with Long Short-Term Memory blocks (Schmidhuber et193

al., 1997)). Each block is fed on one side with the increment between the estimated pa-194

rameters at the entry of the block and the input parameters θ(0), and on the other side195

by the gradient of the variational cost with respect to θ applied on the current estimated196

parameters. The number of iterations has been tuned during experiments and optimal197

values are comprised between 5 and 10 iterations. Figure 1 shows the working princi-198

ple of the end-to-end architecture. The proposed neural architecture was implemented199

using pytorch framework and the Adam optimizer.200
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Figure 1. Proposed end-to-end architecture. Illustration comes from L63 experiment. Given

a partial observation piece of data y and an initial pdf state (µ0,Σ0), the proposed network cal-

culates the optimized parameters (µK ,ΣK) after K steps in the solver. On the right handside,

red curve contains µ and the blue envelope is a rescaled visualisation of Σ. δ(k) is the difference

between the parameters at iteration step (k) and at iteration step (k − 1). LSTM and GENN

stands respectively for Long-Short Term Memory and Gibbs Energy NN.

3.3 Learning setting201

A cost function to measure the proximity between qθ and x|y needs to be chosen.202

As we are predicting probability distribution, the logarithmic score is a proper scoring203

rule (see Dawid & Musio, 2014). Considering a supervised setting with access to true204

state during training, we only have a single realization of x|y for each y. We cannot cal-205

culate the proper score Ez∼x|y(− log(qθ(z))) because there is no exact ground truth for206

the distribution x|y. An approximation is required.207

Let us consider a training dataset which comprises observation series {y1, ...,yN},208

and true states {x1, ...,xN}, with each yi ∈ Rdy×RNt and xi ∈ Rdx×RNt . dy is the209

spatial dimension of the observation domain, dx is the spatial dimension on which we210

wish to reconstruct the posterior. Nt is the length of the time window. Let note Γ the211

neural solver and Φ the NN dynamical operator. The output of the system for an input212

parameter θ(0) and an observation series y will be noted as ΘΦ,Γ(θ
(0),y). For a dataset213

of size N, we have N outputs ΘΦ,Γ(θ
(0)
i ,yi) = {µi

k,Σ
i
k, k ∈ [0, Nt]}. Score S is set as214

a log-likelihood criterion, given by the following :215

S(ΘΦ,Γ(θ
(0)
i ,yi),xi) = −

Nt∑
k=0

log(p{µk,Σk}((xi)k). (7)216

p{µk,Σk} is the pdf of a gaussian law of parameters {µk,Σk}. The overall partially su-217

pervised criterion is :218

N =
1

N

N∑
i=0

S(ΘΦ,Γ(θ
(0)
i ,yi),xi). (8)219
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4 Numerical experiments220

To assess the relevance of the proposed approach, we consider two case-studies: namely,221

the Lorenz 63 dynamics and an application to a real dataset corresponding to the mon-222

itoring of Danube river discharges. In the following, our approach will be referred to as223

4DvarnetSto. The baseline approach is the Ensemble Kalman Filter and will be abbre-224

viated as EnKF.225

4.1 L63 dynamics226

4.1.1 Standard L63 dynamics227

The Lorenz dynamics is a system made of the following ordinary differential equa-228

tions (Lorenz, 1963)):229

dx1

dt
= σ(x2 − x1)230

dx2

dt
= ρx1 − x2 − x1x3231

dx3

dt
= x1x2 − βx3. (9)232

We use the following parametrization : σ = 8, ρ = 28, and β = 8
3 . In this setup, the233

Lorenz 63 system has a chaotic solution. An RK4 (Butcher, 1996) integration scheme234

with 0.01 time step enables us to simulate the time series. Figure 2 (a) is a trajectory235

of this dynamics for 200 time steps.236

4.1.2 Stochastic L63 dynamics237

In order to introduce model noise in L63 dynamics, we use the stochastic frame-238

work designed by Chapron et al. (2018). It intends to mimic stochastic behaviour in large-239

scale geophysical flow dynamics. The ordinary differential equation (Equation 9) becomes240

a stochastic differential equation :241

dX1 =

(
σ(X2 −X1)−

4

2Γ
X1

)
dt242

dX2 =

(
ρX1 −X2 −X1X3 −

4

2Γ

)
dt+

ρ−X3

Γ
1
2

dBt243

dX3 =

(
X1X2 − βX3 −

8

2Γ
X3

)
dt+

X2

Γ
1
2

dBt.244

(10)245

dBt is a white noise, formally the derivative of a standard Brownian motion. Γ is the246

new parameter of our model which is fixed to 2 in our experiments. Note that if Γ −→247

∞, we recover the original model. Figure 2 (b) is a 3D plot for a time series of this stochas-248

tic Lorenz 63 version. Adding the model noise strongly deteriorate the smoothness and249

the convergence to standard Lorenz attractor.250

4.1.3 Training setting and results251

For both dynamics, we consider time series of 200 time steps. Training set contains252

10000 time series, validation and test set 2000 each. Observations of the real state are253

made available solely for the first variable of the system, every 8 timesteps. We train our254

NN in two stages. First, we constraint the covariance matrix to be diagonal and we find255

a first optimum. In a second step, we start a new learning session to find a non-diagonal256

covariance matrix initialized by the previous diagonal matrix.257

We compare our method with the EnKF of Evensen (2003b). In our experiment,258

the EnKF has 1000 ensemble members and the initial state is chosen as if the first time259
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Figure 2. Evolution of Lorenz dynamics for (a) standard model (see Equation 9) and (b)

stochastic model of Chapron et al. (2018) (Equation 10) for 200 time steps of 0.01 length each.

The value on each axis has been standardized and normalized according to scalar mean and

standard deviation calculated on the training set.

step of the time window was entirely observed. Notice that the inference with the en-260

semble method is done by filtering and not by smoothing (see, e.g. Evensen & Van Leeuwen,261

2000) which would have led to better performance. The objective here is not so much262

to compare the reconstruction error of our method and the best possible ensemble method263

but rather to demonstrate that our approach is better suited for entropy-based minimiza-264

tion criterion. Table 1 compiles the important results for the appropriate scores. If the265

first variable is observed for both our approach and EnKF, the 4DVarnetSto outperforms266

the EnKF in each score for both dynamics. By adding observed variables in EnKF ex-267

periment, the R-score and P-score decrease. For the standard dynamics, the P-score for268

the EnKF with all variables observed becomes lower than its value in the 4DvarnetSto269

experiment, but the R-score stay above. To minimize the P-score with the EnKF, we270

inflated the covariance matrix by 1.15. Covariance matrix inflation is a common tech-271

niques in ensemble methods to avoid filter divergence (see, e.g. Anderson & Anderson,272

1999). Notice that without covariance inflation, the R-score is much lower and reaches273

0.36 when all variables are observed. For the stochastic dynamics, the results of our ap-274

proach with one observed variable are comparable to the EnKF with x1 and x2 observed.275

In this case, the model noise is sufficient to avoid the use of an inflation factor in the EnKF276

experiments.277

Figure 3 compares our estimated states (orange) and the associated 95% confidence278

interval with the real states (blue) defined by Equation 9 in the context of standard dy-279

namics. Figure 4 presents the same elements for the stochastic dynamics defined by Equa-280

tion 10. Both figures represent time series for which the attractor changes its wing. The281

change of wing is realized when the variables x1 and x2 simultaneously go from a max-282

imum to a minimum or vice versa. In Figure 3, the mean state estimated by our approach283

(top three graphs) and the actual state of the system are almost merged. Moreover, the284

area representing the uncertainty is also very thin but widens for a given variable when285

an extremum is reached. The uncertainty is slightly larger for the unobserved variables286

x2 and x3 than for the observed variable x1. Comparatively, the EnKF with only x1 ob-287

served shows an estimated state further from the true state and a higher uncertainty (mid-288

dle three graphs). This is particularly noticeable during the transition from one wing to289

–8–
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Model Model noise R-score P-score

4DvarnetSto No 0.45 -4.60
with x1 observed Yes 3.51 -1.42

EnKF No 1.40 -0.48
with x1 observed Yes 23.8 4.9

EnKF No 1.70 -3.60
with x1 and x2 observed Yes 4.44 -1.85

EnKF No 0.84 -5.08
with all variables observed Yes 2.60 -2.47

Table 1. Scores of 4DVarnetSto and EnKF for L63 simulations for both dynamics. Model

noise sets to ”No” indicates standard dynamics (see Equation 9), ”Yes” implies stochastic one

(see Equation 10). Only the first variable is observed when performing 4DvarnetSto. In EnKF

experiments, from one to all variables are considered as observed. For the standard dynamics,

the covariance matrix is inflated by a factor of 1.15. Two benchmark score are evaluated : the

mean square error of the reconstruction of the true state (R-score), and the mean of the negative

log-likelihood of the predicted parametric distribution applied in true state (P-score, see Equation

8).

the other (between t = 50 and t = 125). The uncertainty is then very high because290

the sequential approach of the EnKF does not allow to predict in advance which wing291

the trajectory is heading for. When observing the 3 variables for the EnKF (bottom three292

graphs), the estimated state and uncertainty are improved. Except for the first few time293

steps corresponding to a calibration phase of the EnKF and the change of wing, the es-294

timated and actual state almost coincide.295

4.2 Danube river network for discharge measurements296

The upper Danube basin is an European river network which covers a large part297

of Austria, Switzerland and of the south of Germany. Figure 5 shows the topography of298

the Danube basin as well as the locations of the 31 stations at which daily measurements299

of river discharge are available. Stations considered as observed or unobserved in our ex-300

periment are colored differently. The daily measurements series have lengths from 51 to301

110 years. We restrict ourselves to the period 1960-2010 for which all stations have avail-302

able measurements. This dataset have been widely studied in the community of multi-303

variate extremes (see for example Mhalla et al. (2020); Asadi et al. (2015)).304

This experiment with a real dataset aims to meet several objectives. Learning an305

unknown dynamics and associated uncertainties is challenging. The data-driven mod-306

els that can be learned lacks important variables (precipitation, snow melt) to be highly307

reliable, and consequently encompass high error model. Thus, the ability of our approach308

to adapt to a high level of model error is studied. Finally, we assess how informative the309

estimated fluctuation of variances is.310

The main difference between this experiment and those performed for Lorenz dy-311

namics is that our dataset does not include true state but solely observations. Conse-312

quently, we cannot exactly use the supervised criterion of Equation 8. Assuming that313

the observational error is negligible compared to the model error, we replace Equation314

7 by315

S(ΘΦ,Γ(θ
(0)
i ,yi,Mi),yi) = −

Nt∑
k=0

log(p{µk,Σk}((yi)k). (11)

–9–
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Figure 3. Experiments with standard Lorenz dynamics (Equation 9). For a set of observa-

tions (cyan dots) on given timesteps (light blue dashes on the time axis), the true state (blue

curve) and estimated state (orange curve) are plotted for our approach and EnKF with one or all

variables observed. The estimated 95% confidence intervals are represented by the green area.

Figure 4. Experiments with the stochastic Lorenz dynamics of Chapron et al. (2018) (Equa-

tion 10). See Figure 3 for details.
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Figure 5. Topographic map of the upper Danube basin with the 31 gauging stations. A

dataset of 50 years of daily measurements is considered (from 1960 to 2010). In training set-

ting, we assume that some stations are observed (red dots) and the other are unobserved (black

squares). We further assume that the observed stations have available observations only once

every four days.

Using this framework, half of the stations are considered to be observed every four days316

(see red locations in Figure 5). We consider time series of 48 consecutive days. For each317

time series, our goal is to estimate the mean and covariance of the approximate poste-318

rior distribution of flow on each day of the time series and at each station, wherever ob-319

servations are missing. The training dataset comprises 9999 time series of 48 days, val-320

idation and test set 1749 each. To construct these datasets, we divided the 51 years of321

daily measurement into 550-day blocks. In each block, the first 350 days create 303 time322

series for the training dataset. The 200 remaining days are divided in two and create 53323

time series for validation set and as many for the test set. Figures 6 & 7 show the es-324

timated mean state, the confidence interval and the observations for a summer and win-325

ter month, respectively. The stations are identical from one figure to another. Season-326

ality plays an important role in discharge analysis, and here, we focus on the summer327

and winter seasons. In summer, flows are lower than in winter and subject to important328

variations in absolute value. This is linked essentially to snow or ice melts at altitude,329

as well as to episodes of heavy precipitation. For similar reasons, different station ele-330

vations, and thus different positions along the river system, were chosen. Stations up-331

stream of the river system have lower flows than those downstream. Flows at upstream332

stations vary greatly depending on local weather and climate events.333

The relative variance estimated by our approach is larger in Figure 6 than in Fig-334

ure 7. This finding is consistent with the initial considerations about variances in sum-335

mer and winter. The estimated variance is also more constant in summer than in win-336

ter. One can assume that the model error is such that it becomes difficult to detect pat-337

terns that would reduce the uncertainty. In winter, on the other hand, the estimated con-338

fidence interval varies significantly, and seems to widen at the peaks reached by the flow.339

We notice that our predictions are sometimes biased for a large number of consecutive340

time steps. This is particularly true in Figure 7 where a negative bias between the ob-341

servations and the predicted mean exist, especially for unobserved stations. The pres-342

ence of available observations drastically reduces the bias.343
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Figure 6. For a summer month (July 2007), we show the estimated discharge (red curve), the

95% confidence interval (green area) estimated by our method for observed and unobserved sta-

tions at different elevations. The daily measurements are also represented according to whether

they are available (light blue dots) or unavailable(deeper blue) as inputs. The discharges are ex-

pressed in m3/s.

In order to estimate the quality of the variance predictions of our approach, we first344

calculated the entropy defined by the score defined in Equation 11, with µk and Σk ob-345

tained by our approach, and averaged it over test dataset. Then, we created a compar-346

ative approach. To do so, we replaced our obtained Σk with a constant covariance ma-347

trix Σdiag. This covariance is diagonal and each diagonal coefficient is the variance be-348

tween our mean estimation µk and true observations (yi)k for a given station. The en-349

tropy computed with our approach is 0.068 against 1.06 with the naive approach. The350

variations of variances given by our approach allow a significant improvement of the en-351

tropy criterion.352

5 Conclusion353

Based on previous works which introduced an end-to-end learning framework for354

variational assimilation problems, we extend this approach to stochastic prediction given355

an ad hoc parametric family, namely the gaussian. Using a stochastic variational cost356

derived from an ELBO maximization w.r.t a target gaussian distribution, we have been357

able to find a gaussian approximation of the pdf of the posterior. The learning frame-358

work comprises a neural-network representation of the dynamics of the parameters and359
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Figure 7. Winter month (January 2000) (see Figure 6 for details).

a neural solver for the considered stochastic variational cost. Both solver and parame-360

ters are learnt jointly in a context of entropy optimization. This joint learning process361

offers new perspectives for VB-based cost minimization in DA problems.362

Lorenz 63 dynamics and discharges on Danube river networks have been studied.363

Concerning Lorenz dynamics, our approach captures well the dynamics and the uncer-364

tainty. When adding state-dependent model noise, we have been able to retrieve com-365

plex type of uncertainty structure. The experiments on the Danube river system pro-366

vide a setting where the dynamics are unknown, and the data to estimate them incom-367

plete. In this context, our approach allows us to calculate a consistent estimate of the368

flow, the associated dynamics and the uncertainties.369

Our findings also underlines that beyond state-of-the-art results obtained for mean370

squared error of reconstruction, our approach is well-suited for entropy criterion. This371

is a real improvement over reference ensemble methods which suffer from limitations and372

require careful adaptation to obtain good performance for an entropy criterion.373

Future works will focus on improving the accuracy of the upper quantile of the pre-374

dicted distribution. In fact, for both experiments, our predicted confidence intervals for375

high quantile are narrower than the empirical ones. A parameterization of the posterior376

by heavy tail distribution (see e.g. Resnick, 2007) could be an improvement track. More-377

over, as discharges are positive values, a Gaussian parametrization is not ideal to infer378

uncertainties. More broadly, symmetrical distribution cannot consistently large uncer-379

tainty in this problem as it could cover negative flow value. Extending our approach to380

non-symmetrical distribution would be of interest.381
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6 Open Research382

We provide our associated code available at https://github.com/Nicolasecl16/383

These/tree/main/4Dvarnetstochastic which comprises the generation of the synthetic384

datasets. Danube river network dataset is make available by the Bavarian Environmen-385

tal Agency at http://www.gkd.bayern.de.386
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