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Abstract. Unit group computations are a cryptographic primitive for
which one has a fast quantum algorithm, but the required number of
qubits is Õ(m5). In this work we propose a modification of the algorithm
for which the number of qubits is Õ(m2) in the case of cyclotomic fields.
Moreover, under a recent conjecture on the size of the class group of
Q(ζm + ζ−1

m ), the quantum algorithms is much simpler because it is a
hidden subgroup problem (HSP) algorithm rather than its error estima-
tion counterpart: continuous hidden subgroup problem (CHSP). We also
discuss the (minor) speed-up obtained when exploiting Galois automor-
phisms thnaks to the Buchmann-Pohst algorithm over OK-lattices.

1 Introduction

The difficulty to compute class groups and its cardinality, the class group, plays
an important role in cryptography. Notably, they are at the foundation of a time
commitments protocol [49], a scheme of homomorphic encryption [15] and a ver-
ifiable delay function [50]. Note that the particular cases play an important role
as the former two examples use quadratic fields and for the latter the cyclotomic
case can be the fastest.

From a perspective of theoretical computer science, these schemes are broken
because there exists a quantum algorithm of polynomial time complexity [10].
However, from a cryptographic point of view it is required to obtain a more
precise estimation of the amount of qubits and of quantum gates, as it was done
for the other primitives of public key cryptography[7,4,40,6,44,51,29,45,40].

Let us recall the chronology of the works addressing this question. Note that
both in the classical and quantum algorithms class group and unit group are
very similar and they are sometimes computed simultaneously in order to have
a halting condition, as in the classical algorithm of Buchmann and McCurley.
In 1994, Shor designed a quantum algorithm to factor integers and, respectively,
solve the discrete log problem in cyclic groups [48]. Kitaev [33] reformulated the
algorithms by reducing both problems to finding the set of periods of functions
⋆ The first author has been funded by the Hybrid quantum initiative (HQI) of the
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defined over Zr with finite r and taking values in a finite set; this is the hidden
subgroup problem (HSP). Note that the parameter r affects the time and space
complexity only in a polynomial manner.

In 2002, Hallgren [28]3 reduced the computation of a fundamental unit of a
real quadratic field to finding the set of periods of a function defined over R.
More generally, if a function defined over Rm has a lattice (discrete subgroup) of
periods, then finding the set of periods is the continuous hidden subgroup prob-
lem (CHSP). As for factoring and discrete log, the unit group is sub-exponential
on a classical computer and polynomial on a quantum one.

When m = 1, the main difference between HSP and CHSP is the problem of
finding α ∈ R when given approximations of kα and ℓα for two integers k and ℓ
; this is solved using continued fractions. To compute fundamental units for a
family of number fields of constant degree, one has to solve CHSP for m ≥ 1
bounded by a constant. In contemporary works, Hallgren [27] and Schmidt [46]
replaced the continued fractions by an LLL-based algorithm of Buchmann and
Pohst [13].

To this point, CHSP and HSP have an identical quantum part and differ
in the classical post-treatment. When the degree of the number fields is free to
be unbounded in a family of discriminants going to infinity, one has to solve
CHSP for unbounded parameters m, possibly as large as the logarithm of the
discriminants. In this case, the previous algorithms [27,46] require an exponential
time in m, the degree of the number fields, as it was shown by Biasse and Song
in [11, Prop. B.2]4.

In 2014, Eisenträger et al. [21]5 achieved to make this algorithm polynomial-
time for arbitrary degree number fields. For this the periodic function is multi-
plied by a Gaussian. Before the full version [22] of this work was made public,
a second team, de Boer et al. [19], worked on a more thorough analysis of the
algorithm and established in 2019 the precise complexities (space and time) for
the CHSP.

Our contribution and cryptographic recommendations. The goal of this article
is to make possible a precise resource comparison between computing unit and
class groups on one side and breaking symmetric cryptosystems like AES on
the other side, as requested by the NIST specifications [43]. Indeed, experts in
the technology of quantum computers study the NISQ scenario in which error-
corrected quantum computers with 100-to-1000 qubits become available whereas
a quantum computer with 1020 qubits remains unfeasible or too expensive to be
considered. In this context, the estimation of the number of qubits as “polyno-
mial” in [22] is not enough. We instantiate the case of unit and class group in
the general frame of CHSP [19] and obtain that the number of qubits is O(m5),
e.g. when m = 10000 a quantum attack requires 1020 error-corrected qubits.

3 The version of 2002 had 6 pages whereas the version published in 2007 has 19 pages.
4 The proposition has number 2 in the version of 2015.
5 The 10-page-long original version of 2014 doesn’t contain the proofs, which were

made public only in the 47-page-long version of 2019.
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We continue by investigating possible weak number fields K: is it a security
problem if K has automorphisms? Is it a weakness if K is cyclotomic?

In Section 3.3 we explain that automorphisms allow to implement LLL over
OK and obtain a speed-up which is at most polynomial in the number of auto-
morphisms.

In the case of cyclotomic fields, the speed-up is not automatic: if one runs the
general algorithm on these fields, the number of qubits is O(m5 logm). However,
we make the following observation: Assume that L is an unknown lattice,
M ⊂ L is known and has a short basis, and one has an algorithm to
produce vectors near L∗. Then one can use the short basis of M to
bring any vector near L∗ to their nearest vector of M∗ and they will
automatically be in L∗.

Cryptographic recommendations. A precise estimation of the resources to
compute class and unit groups shows that they are more resistant than symmet-
ric cryptosystems if one avoids weak keys. If one wants to use class group based
(CGP-based) cryptography then:

– one must avoid fixed degree fields as they use O(m) qubits;
– one must avoid cyclotomic fields as they use O(m2 logm) qubits; Also a

HSP-based algorithm exists;
– one might prefer to use fields with automorphisms to speed-up the compu-

tations as they require Ω(m3) qubits and the speed-up concerns only the
Buchmann-Pohst algorithm and is polynomial in the number of automor-
phisms.

Road map. The article is organized as follows. In Section 2 , we explain our im-
provement as a general problem of lattices, outside the context of unit groups and
quantum computing. Then, in Section 3 we make a detailed presentation of the
quantum algorithms for unit groups and combine results to state the complexity
of the algorithms for arbitrary number fields. We exploit the automorphisms
in Subsection 3.3. In Section 4 we instantiate the previous complexities in the
case of cyclotomic and abelian fields, and compare with our improvement from
Section 2. Finally, in Section 4.2 we make an attempt to reduce the unit-group
computations to HSP instead of CHSP, this reduces massively the number of
qubits needed, especially for cyclotomic fields of index pk for small primes p.

2 Our improvement seen as a lattice problem

Let ⟨x, y⟩ denote the dot product of two vectors x, y ∈ Cn. Given a lattice
L ⊂ Rm, we call dual of L the lattice

L∗ = {y ∈ Rm | ∀x ∈ L, ⟨x, y⟩ ∈ Zn}.

Let us recall a series of properties of L∗ (see [3] for a reference).

Lemma 21 1. If L is generated by the rows of a matrix B then L∗ is generated
by the rows of (Bt)−1; in particular detL∗ = 1/detL;

2. If M is a sublattice of L then L∗ ⊂M∗ and [L :M ] = [M∗ : L∗].
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2.1 Informal presentation

The CHSP algorithm to compute unit groups calls L the lattice of units and
follows the following strategy:

1. Use a quantum procedure to generate vectors of Cn in a small ball around
each vector of a set of generators of L∗.

2. Apply the Buchmann-Pohst algorithm (which is classical of polynomial time)
and the previously found vectors to find a basis of L∗.

3. Invert the matrix of the previously found basis to obtain a basis of L (this
is classical of polynomial time).

A characteristic of Buchmann-Pohst’s algorithm is that it has a large pre-
cision decrease6, namely one needs a large number of bits of precision on the
vectors computed in Step 1 in order to have much fewer bits of precision on the
basis of L∗. Given a precision requirement τ , i.e. log τ bits of precision, in [19] one
computes that the input of Buchmann-Pohst must have precision which depends
on k. In this work we reduce the number of qubits required by Step 1.

In the case of cyclotomic fields, one has a basis for the lattice of cyclotomic
units M ⊂ L. This allows to compute a basis of M∗ which contains the unknown
lattice L∗. Our idea is as follows: when given a vector sufficiently close to L∗, solve
CVP with respect to M∗ and automatically it will be in L∗. In more detail, let
m1, . . . ,mn be a basis of L. We do Step 1 at low precision and obtain ỹ and then
we correct it into y so that ⟨y,mi⟩ ∈ Zn for all i = 1, 2, . . . , n. At this point we
have a generating set of L∗ at high precision. For simplicity of exposition we can
still apply the Buchmann-Pohst algorithm. In view of a practical implementation
one can also use an algorithm for Hermite normal form.

2.2 Precise statement

Step 1 produces vectors ỹ close to L∗ such that y := CVP(ỹ, L∗) follow a con-
tinuous distribution on Rm which is close to a discrete Gaussian distribution c
on L∗. The following definition is a precise description of its output and focuses
on the properties of c used in the following sections.

Definition 22 (Dual lattice sampler) Let c : L∗ → C be a map such that∑
ℓ∗∈L∗ |cℓ∗ |2 = 1. Let 1/4 > ϵ > 0, 1/2 > δ > 0 and r > 0 be three parameters.

An algorithm is a dual lattice sampler of parameters (ϵ, δ, r) if it outputs a vector
x ∈ Rm such that, for any finite set S ⊂ L∗, one has

Prob

(
y ∈

⋃
ℓ∗∈S

B(ℓ∗, δλ∗1)

)
≥
∑
ℓ∗∈S

|cℓ∗ |2 − η.

for a map c satisfying:

6 See Th 10 in [19] for a precise estimation.
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CVP

M∗

L∗

Fig. 1: Illustration of Algorithm 2.

1. Uniformity property: there exists ε ≤ 1/4 such that, for every strict sub-
lattice N ⊊ L∗ : ∑

ℓ∗∈N

|cℓ∗ |2 <
1

2
+ ε.

2. Concentration property: There exists r = r(m) and 0 < p < 1
2 − ε − η

such that: ∑
|ℓ∗|>r

|cℓ∗ |2 < p.

We can now define the problem we tackle.

Problem 1. Let M ⊂ L ⊂ Rm be two lattices. Let ϵ, δ, r > 0 and k ∈ N be
parameters. We are given

– a basis of M ;
– an upper bound on [L :M ];
– a dual lattice solver for L of parameters δ and η of our choice.

Compute a basis (z1, . . . , zm) ∈ L given by the value of [L :M ] and the coordi-
nates of the zi in a basis of 1

[L:M ]M .

Let BM be the matrix whose rows are the basis (z1, . . . , zm) of M . We propose
the following solution to this problem, where we will make precise later the value
of δ so that the time complexity is polynomial.
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Algorithm 1 Full computation of L using the dual lattice sampler.
Input: – upper bound of detL of the lattice L and a lower bound on λ∗

1

– ϵ, δ, r > 0 and a dual sampler of L of these parameters;
– a basis of a sublattice M ⊂ L

Output: a basis of L
1: k ← m log2(

√
mLip(f)) + log2(detL)) ▷ Value from [19, Th 3]

2: for i = 1, 2, . . . , k do ▷ Step 1 - Quantum
3: ỹi ← output(dual lattice sampler, δλ∗

1(L) = 1/2 ∥BM∥ )

4: yi ← BDD(ỹi,M
∗, 1/2 ∥BM∥)

5: end for
6: Use Buchmann-Pohst algorithm on (y1, . . . , yt). Compute the Hermite normal form

to find a basis (y′
1, . . . , y

′
m) of L∗ from (y1, . . . , yk). Here the vectors have exact

integer coordinates in a basis of M∗. ▷ Step 2 - Classical
7: Compute the Smith normal form (SNF) of (y′

1, . . . , y
′
m) to obtain the exact value

of [L : M ]. Output (B−1)t ∈ 1
[L:M ]

Matm(Z), where B ∈ Matm(Z) is the matrix a
basis of L∗ written in a basis of M∗. ▷ Step 3 - Classical

Notation 23 For any matrix B ∈ GLn(C) and any α, β ∈ R+

⋃
{∞} the oper-

ator norm is
∥B∥α,β = max{∥Mv∥α | ∥v∥β ≤ 1}.

When α and β are not specified7, ∥B∥ denotes ∥B∥∞,1:

∥B∥ = ∥B∥∞,1 = max
j

∑
i

|Bi,j |.

When α = β we simply write ∥B∥α. Note that

∥B∥∞,1 ≥ ∥B∥2 = max
i

√∑
j

|Bi,j |2 ≥ ∥B∥∞,1 /
√
m.

In this article, the complexity of the algorithms depends on O(log ∥B∥∞,1) =
O(log ∥B∥2+logm). Since log ∥B∥ = Ω(m), this justifies that we drop the indices
of the operator norm.

Theorem 24 a) Algorithm 1 solves Problem 1 if δλ∗1(M) < 1/(2 ∥BM∥). The
number of qubits is O(Qm) with Q given in Equation (1).

We prepare the proof with two lemmas.

Lemma 25 (Lemma 5 in [19]) We note k = α(m +m log2R + log2(detL)),
for an absolute constant α > 1.

7 The norm operator used in the analysis of the Buchmann-Pohst algorithm [19, Ap-
pendix B] is ∥·∥∞,1.
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Let ỹ1, ỹ2, . . . , ỹk be the first k vectors output by a dual basis sampler. For
i = 1, 2, . . . , k put yi = CVP(ỹi, L). Then for any value of the absolute constant
α > 2 we have

Prob(y1, . . . , yk generate L) ≥ 1− cm,

where c < 1 is an explicitly computable constant.

From now on, we fix such a k, and we use it in Algorithm 1.

Algorithm 2 Babai’s BDD solver.
Input: ỹ ∈ Rm such that d(ỹ,M∗) < 1/(2 ∥BM∥)
Output: CVP(ỹ,M∗), as a vector and as coordinates in a basis of M∗

compute z̃ := Bt
M ỹ;

round z = (z1, . . . , zn) := (⌊z̃1⌉, . . . , ⌊z̃n⌉)
return y := BM∗z ∈M∗ and z ∈ Zm.

Let us put δ such that d(ỹ,M∗) = δλ∗1(M). The following result can be seen
as a reformulation of a result of Babai.

Lemma 26 ([2] Eq. (4.3)) Algorithm 2 solves BDD(ỹ,M∗, δλ∗1(M)) in clas-
sical polynomial time when δλ∗1(M) < 1/(2 ∥BM∥2), where BM is the matrix of
a basis of M .

Proof. We claim that ⌊Bt
M ỹ⌉ = Bt

My
′ where y′ = CVP(ỹ,M∗). Indeed∥∥Bt

M ỹ −Bt
My′∥∥

∞ ≤
∥∥Bt

M ỹ −Bt
My′∥∥

2
≤ ∥BM∥2 ·

∥∥ỹ − y′∥∥
2
= ∥BM∥2 δλ

∗
1(M) < 1/2.

Since ⌊Bt
M ỹ⌉ = Bt

My
′, by Lemma 21, y = BM∗ = ((BM )t)−1(Bt

My
′) = y′, so

the algorithm is correct.

Proof (Proof of Theorem 24.a)). We structure the proof in several steps.
step 1. We apply Lemma 25 to the lattice L∗. Then, with probability 1− cm,

the vectors y1, y2, . . . , yk generate L∗.
step 2. Let us fix i ∈ {1, 2, . . . , k}. By the definition of the dual sampler, with

probability greater than 1−η, dist(ỹi, L∗) < δλ∗1(M
∗). Hence Lemma 26 applies

and Line 4 is executed in classical polynomial time.
Since, L∗ ⊂ M∗ and y′i := CVP(ỹi, L

∗) belongs to M∗. Since d(ỹi, L∗) <
λ∗1(M)/2, y′i is the closest vector of M∗ to ỹi, or equivalently y′i = yi. We
summarize by yi = CVP(ỹ, L).

step 3. Algorithm 2 can output z in addition to y. This means that the vectors
yi ∈ L∗ are given by their integer coordinates with respect to a basis of M∗.

In Line 6, one computes the HNF [16, Sec 2.4.2] by manipulating integer co-
efficients only. This is done in classical polynomial time without loss of precision.

step 4. Since BM ∈ Matk(Z), (B−1
M ) ∈ 1

detBM
Matk(Z). Finally, BM and its

SNF [16, Sec. 2.4.4] have the same determinant, which equals [L : M ]. Hence,
the last step computes [L :M ] in polynomial time.
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3 Previous results on the quantum unit-group calculation

3.1 A summary on CHSP

We first define the Continuous Hidden Subgroup Problem to which the problem
of computing the unit group can be reduced.

Definition 31 (Continuous Hidden Subgroup Problem - CHSP [22]) Let
f : Rm → S, where S = ⊕i∈{0,1}nC|i⟩ is the space of states of n qubits.
The function f is an (a, r, ε)-oracle hiding the full-rank lattice L if and
only if it verifies the following technical conditions:

1. L is the period of f , i.e. ∀x∀ℓ ∈ L, f(x+ ℓ) = f(x). (periodicity)
2. The function f is a-Lipschitz. (Lipschitz condition)
3. ∀x, y ∈ Rm such that dist(x− y, L) ≥ r, we have |⟨f(x) | f(y)⟩| ≤ ε. (strong

periodicity)

Given an efficient quantum algorithm to compute f , compute the hidden lattice
of periods L.

Let us now recall the algorithm which solves CHSP. We mimick the technique
which solve the Hidden Subgroup Problem (HSP). For this latter, let g : G→ S,
with G a finite cyclic group. The solution goes as follows:

1. compute the superposition
∑

x∈G |x⟩ and then apply g to obtain the super-
position of the values of g: |ψ(g)⟩ =

∑
x∈G g(x)| x ⟩;

2. apply the Quantum Fourier Transform (see [48]) to obtain∑
y∈G ĝ(y)| y ⟩; this expression is equal to

∑
y∈H⊥ ĝ(y)| y ⟩

3. measure the state to obtain an element g ∈ H⊥.

A few iterations of the algorithm allow to have a set of generators of H⊥ and
hence to compute h.

Coming back to the continuous case, if we were able to implement the Fourier
Transform, we would be able to draw random vectors of L∗. If a set of generators
is known, then one can extract a basis to completely describe L∗. Then L would
be obtained thanks to Lemma 21. The obstacle is here that Rm is infinite and
the Fourier Transform (QFT) is now an integral instead of a finite sum so we
cannot compute the QFT precisely. As a way around, we do an approximate
computation of the QFT by the means of a Riemann sum, which amounts to
restrict the domain to a segment and to discretize it. Set ρσ(x) = exp(−π2||x||2

σ2 ).

Lemma 32 (Thm. 2 in [19]) There exists dual lattice sampler quantum algo-
rithm of polynomial time which uses Qm+ n qubits, where

Q = O

(
m log

(
m log

1

η

))
+O

(
log

(
Lip(f)

ηδλ∗1

))
. (1)
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Algorithm 3 A CHSP solver
Input: A function f which can be computed in polynomial time, as in Definition 31

having a hidden period lattice L. We require detL up to one bit of precision and
Lip(f). A parameter τ of required precision.

Output: (x̃1, . . . , x̃m) such that (x1, . . . , xm) is a basis of L for xi = CVP(x̃i) and
∥xi − x̃i∥ ≤ τ

1: k 7→ log2(
√
mLip(f)) + log2(detL)) ▷ value from [19, th 3]

2: for i = 1, 2, . . . , k do ▷ Step 1 - Quantum

3: ỹi ← output(dual lattice sampler: δλ∗
1 =

(λ∗
1)

3(detL)−1

2O(mk)∥BL∗∥m∞
) ▷ value from [19,

Appendix B.3 Th 4]
4: pass ▷ compare to Algorithm 1
5: end for
6: Apply the Buchmann-Pohst algorithm on (ỹ1, . . . , ỹk) and obtain (ỹ′

1, . . . , ỹ
′
m) so

that CVP(ỹi, L
∗)i=1,m is a basis of L∗ ▷ Step 2 - Classical

7: Output the rows of (B−1)t where B has rows ũ′
i. ▷ Step 3 - Classical

Theorem 33 (Space complexity of the CHSP solver, Th 1 of [19]) We set8
η = 1/k2. Let Nf be the amount of qubits necessary to encode f . We fix τ the
error expected on basis’ vectors. Then, Algorithm 3 is correct and requires a
number of qubits:

Nqubits = O(m3 · log(m)) +O(m3 · log(Lip(f))) +O(m2 · log(det(L)))
+O

(
m · log Lip(f)

λ∗
1

)
+O

(
m · log 1

λ∗
1 ·τ

)
+O(Nf ).

(2)

The complexity of the algorithm depends on λ∗1 which has the advantage that
it is an invariant of the lattice. However, λ∗1 is difficult to lower bound and in
some applications one has bounds on the coefficients of BL, the matrix of some
basis of L.

Lemma 34 2−3m ∥Bt
L∥ ≤ 1

λ∗
1
≤ ∥BL∥.

Proof. The first inequality is [19, Corollary 6 in Appendix B.1].
The second inequality is direct. Let v ∈ L∗ such that ∥v∥2 = λ∗1. By Nota-

tion 23 we have ∥BLv∥1 ≤ ∥BL∥ ∥v∥∞. Since v ∈ L∗, v ̸= 0, BLv ∈ Zn and then
∥BLv∥1 ≥ 1. Also, ∥v∥2 ≥ ∥v∥∞, so

1 ≤ ∥BL∥λ∗1,

which proves the second inequality.

8 The complexity of the CHSP solver depends on log 1/η and not on η itself. Hence
the contribution of η is hidden in the Õ notation.
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3.2 Reduction of the computation of the unit group to CHSP

In this subsection, we present the method of [22] to reduce the computation of
the unit group to the CHSP. For completeness, we reproduce the description
of [10, Sec ]. Let G := Rn1+n2 × (Z/2Z)n1 × (R/Z)n2 , and the mapping

φ : (u1, . . . , un1+n2 , µ1, . . . , µn, θ1, . . . , θn2)
7→ ((−1)µ1eu1 , . . . , (−1)µn1 eun1 , e2iπθ1eun1+1 , . . . , e2iπθn2 eun1+n2 )

Let σ1, σn1
and respectively σn1+1, . . . , σn1+n2

be the real and the complex
embeddings of K. We consider the Cartesian ring

E = σ1(OK)× · · · × σn1+n2
(OK).

An E-ideal is a sub-Z-lattice Λ of E which is such that ∀x ∈ E, xΛ ⊂ Λ.
We define

g : G→ {E-ideals}
x 7→ g(x)E.

Definition 35 (Ex. 5.3 of [22]) Set H = ⊗i∈NC|i⟩, HQ = ⊗Q
i=0C|i⟩ and πQ :

H → HQ the projection on the first Q qubits. We define the straddle encodings of
parameter ν, strν : R → H, strm,ν : Rm → Hm and f : {lattices of Rm} → Hm

as follows:

– | strν(x)⟩ = cos(π2 t)|k⟩+ sin(π2 t)|k + 1⟩, where k = ⌊x/ν⌋, t = x/ν − k;
– | strm,ν(x1, . . . , xm)⟩ = ⊗m

i=1| strν(xi)⟩;
– | strlattice,m,ν(L)⟩ = γ−1/2

∑
x∈L e

−π∥x∥2/s| strm,ν(x)⟩
with γ =

∑
x∈L e

−2π∥x∥2/s2 .

Note that computing strlattice,m,ν up to an error τ requires O(mν log τ) qubits. In
Appendix A we propose an alternative function f which can be used for totally
real K and doesn’t use the straddle encoding.

Finally, one defined f as follows:

f : G
g−→ {E-ideals} | str⟩−−−→ {quantum states} = Hm

Q . (3)

The following result is the conjunction of several results from [22].

Theorem 36 (Theorems 5.5, D.4 and B.3 of [22]) Let K be a number field
of degree n, discriminant D, unit rank m and regulator R. Let L := LogO∗

K

which is the hidden period of the function f of Equation (3).
Set s = 3 · 22n

√
nD and ν = 1/(4n(s

√
n)2n). Then f5 = ⊗5f is an (r, a, ε)-

oracle with ε = 243/1024, Lip(f) = a =
√
πns
4ν +1 and r = s

√
n
n−1

2ν
√
m, where

c is an explicitly computable constant. In particular, ε < 1/4, r < λ1(L)/6 and

log2 Lip(f) = O
(
m2 +m logD

)
.
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Proof. Note first that if K = Q or is quadratic imaginary then m = 0 and there
is nothing to be computed. Also note that n/2 − 1 ≤ m ≤ n − 1 so we can
interchange O(m) and O(n) in the asymptotic complexity.

By [22, Th 5.5] f is an (r,∞, ε)-oracle hiding the lattice L = logO∗
K with

r = (s
√
n)n−12ν

√
n and ε′ = 3/4.

By [22, Th D.4] f is a-Lipschitz with a =
√
πns
4ν + 1.

By [22, Lem E.1] f5 := f⊗f⊗f⊗f⊗f is an (5 Lip(f), r, (ε′)5)-oracle hiding
the same lattice.

In particular, (ε′)5 = 243/1024 < 1/4 satisfies the requirements of the CHSP
solver (see Def 22).

The condition r < λ1(L)/6 is satisfied as λ1(L) ≥ 1/2 by [22, Lem B.3] and

r = O

(
s
√
n
n−1

2

4n(s
√
n)2n

)
≤ 1

2sn−1
≤ 1

6 · 2n
√
D
<

1

12
.

Finally, we have

log2 Lip(f) = O(ms) = O(m2 +m logD).

Corollary 37 Let K be a number field of discriminant D and unit rank m. For
any error bound τ > 0. There exists a quantum algorithm of time poly(m, logD, log τ)
using a number of qubits

Nqubits = O(m5 +m4 logD) +O(m log τ−1)

which, for a set of units µ, ε1, . . . , εm such that µ is a root of unity and the other
have infinite order and

O∗
K ≃ µZ/ω × εZ1 × · · · × εZm,

the algorithm outputs σi(log(σi(εj))1≤i≤m,1≤j≤n + τi,j with τi,j ∈ R such that
|τi,j | ≤ τ .

Proof. By Theorem 36, there exists a function f which hides LogO∗
K and which is

an (a, r, ε)-oracle such that r ≤ λ1(L)/6 and ε < 1/4. By Theorem 33 there exists
a polynomial-time algorithm which uses a number of qubits as in Equation (2).

In the CHSP solver one takes stores the values of f on Qm qubits, so the
O(Nf ) = O(Qm). We are left with estimating Q. For this, the main part is
Lemma 21:

O(log(1/λ∗1)) = log2(∥BL∥) = O(m+
1

m
logD).

We used the fact that L admits an LLL-reduced basis, which is enough to bound
1/λ∗1, but this cannot be computed because we have no basis of L until the end
of the CHSP algorithm. We inject this in Equation (2) and obtain the announced
value.

Given LogO∗
K , we are left with computing µ, ε1, . . . , εm. Let ω be the number

of roots of unity of K and recall that ω divides D. By multiplying the time by
logD, we can enumerate the divisors of D, so we can assume that we know ω.
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By Dirichlet’s Theorem, an m-tuple such that Vol(Log(εj)) = R and a root
of unity of order ω, form a basis of the unit group.9

Remark 38 10 The analytic class number formula states that Rh =
√
D

1+o(1)
.

Very little is known on the distribution of h but no conjecture, e.g. the Cohen-
Lenstra heuristic, is contradictory with the fact that h = 1 and R =

√
D

1+o(1)

for a proportion of 1− o(1) of the number fields. Hence, maxi(∥log εi∥) ∼ R1/m

and the unit group is fully determined only when log τ = Ω(
√
D). In that case

CHSP doesn’t compute the full unit group in polynomial-time.
Note however that in the case of classical algorithms there is no algorithm

which computes a partial information on the regulator without fully computing it
(see for instance [12]). So the algorithm studied in this article suggests a quantum
advantage in the case of unit groups.

Example 1. 1. If K = Q(ζn) with prime n then m = (n − 1)/2 and log2D =
(m− 2) log2m. If one applies Algorithm 1 without taking notes that it is a
very particular, the algorithm uses O(m5 logm) qubits.

2. If K is a Kummer extension, i.e. K = Q( n
√
D) for some integer without

powersD, then O(log discK) = O(logD) and the number of qubits is O(n5+
n4 logD). The value of n andD are independent. When n is fixed, i.e; the case
of real quadratic fields, the number of qubits is O(discK). When n ∼ logD,
the number of qubits is (logD)5/(log logD)4.

The large number qubits used by the present algorithm is in contrast with
Shor’s algorithm, which requires 2m + O(1) qubits in the case of factorization
and discrete logarithms and 7m + O(1) in the case of elliptic curve discrete
logarithms. The paragraph "Conclusion and Research Directions" at the end
of [19, Sec 1] states that, even if the complexity in logD is ignored and one
uses approximation techniques in the quantum Fourier transform, the algorithm
requires Ω(m3) qubits. We refer to Appendix B for an informal discussion about
the security levels one can propose in the case of quantum algorithms.

3.3 Exploiting automorphisms

In this section we tackle the case of cyclotomic fields without using the cyclotomic
units. Instead we use the fact that K has Galois automorphisms.

The main impact of this section is to reduce the practical cost of the Buchmann-
Pohst step (which is non-quantum). Indeed, this step consists in applying LLL
to a lattice L which has more algebraic structure: it is a Z[ζk]-module for an
integer k. From an asymptotic point of view, Fieker and Stehlé [24] proved that,
if one is to find a new Z[ζk]-basis of L which is shorter in a sense to be specified
later, one has the best asymptotic complexity up to a polynomial factor if one
follows the steps:
9 We used here a different proof than in [22] where one reduces the case of CHSP

defined on arbitrary abelian groups to the case of CHSP over Rm.
10 We are indebted to Bill Allombert who has made this objection.
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1. forget the Z[ζk]-module structure;
2. reduce the basis of the underlying Z-lattice;
3. compute again the Z[ζk]-module structure.

From a practical point of view though, we shall explain that it is faster to work
directly with the Z[ζk]-module structure.

The structure of Z[G]-lattice. In the following, a lattice which has a structure
of R-module for some ring R is called a R-lattice. When G := Aut(K/Q), the
group of Galois automorphisms, is abelian, as it is the case for cyclotomic fields,
O∗

K/(O∗
K)tors has a structure of Z[G]-lattice. Indeed, for σ ∈ G and u ∈ O∗

K we
set σ · u = σ(u) and for set σ1, . . . , σk ∈ G of ring generators of Z[G], and any
λ =

∑
e1,...,ek

ce1,...,ekσ
e1
1 · · ·σek

k we set

uλ =
∏

e,...,ek

(σe1
1 (u) · · ·σek

k (u))ce1,...,ek .

Lemma 39 Let G := Aut(F/Q) and σ ∈ G of order k.

1. Then O∗
F is an Z[ζk]-lattice.

2. If k is not of the form

k = 2ε
∏

peii with ε ∈ {0, 1} and pi ≡ 1 (mod 4)

then O∗
F is a OQ(i

√
d)-lattice for some divisor d of k.

Proof. 1. If σ ∈ G, every Z[G]-lattice is a Z[σ]-lattice. In order to prove that Φk

is the minimal polynomial of the endomorphism associated to σ, let u ∈ O∗
F and

set v = uΦk(σ). Then vσ−1 = uσ
k−1 = u/u = 1 and further σ(v) = v. But σ ∈

Aut(F/Q), so v ∈ O∗
F

⋂
Q = ±1 ∈ (O∗

F )tors. Equivalently, Φk(σ)(u) ∈ (O∗
F )tors

and Φk is an annihilating polynomial of σ. Since it is irreducible, it is the minimal
polynomial of σ. But ζk has the same minimal polynomial, so Z[σ] ≃ Z[ζk].
2. It is a classical result that, if one sets p∗ = (−1)

p−1
2 p for a prime p, then

Q(
√
p∗) ⊂ Q(ζp).

When k′ | k one has Q(ζk′) ⊂ Q(ζk). Hence if k is divisible by 4 or a prime p ≡ 3
(mod 4), one can take d = 4 or d = p in the statement of the lemma.

Norm-Euclidean rings OK . Recall that Z[i] = Z[ζ4] and OQ(i
√
3) = Z[ζ3] are

norm-Euclidean: let k = 3 or 4, in order to divide a ∈ Z[ζk] by b ∈ Z[ζk] one
rounds each coordinate of a/b ∈ Q[ζk] and denotes the result by q, and then
one sets r = a − bq; if NK/Q(r) < NK/Q(b) for all a, b we say that Z[ζK ] is
norm-Euclidean. Napias [42] showed that the LLL algorithm extends naturally
to the norm-Euclidean rings Z[i] and Z[ζ3].
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Definition 310 (norm-Euclidean ring, Prop 1.2.5 of [14], Def 2 of [32])
The Euclidean minimum of a number field K is

MK := max
x∈K

min
y∈OK

NK/Q(x− y).

In particular, when K is imaginary quadratic, MK = maxx∈C miny∈OK
|x− y|2.

If MK < 1 we say that K is norm-Euclidean.

Example 2 (Prop 1.2.4 of [14],Prop 3 of [32]). The following fields are norm-
Euclidean:

– Q(ζk) for k ∈ {1, 3, 4, 5, 7, 8, 9, 11, 12, 15, 16, 20, 24};
– Q(i

√
d) for d ∈ {1, 2, 3, 7, 11}.

Definition 311 (OK-LLL-reduced basis) Let K = Q(i
√
d) be an imaginary

quadratic field. We identify K with its embedding in C such that
√
−d is mapped

to a complex number of positive imaginary part.
We consider the dot product ⟨·, ·⟩ of Cm and we set ∥x∥ =

√
⟨x, x⟩, which is

a norm.
Let b1, b2, . . . , bm be independent in Cm. We say that L := ⊕m

j=1Z[ζk]bj
is a Z[ζk]-lattice and {bj} is a basis. Let {b∗1 = b1, b

∗
2, . . . , b

∗
m} be the Gram-

Schmidt orthogonalization of {bj} with respect to the dot product. We set µi,j =

⟨bi, b∗j ⟩/
∥∥b∗j∥∥2. We say that {bj} is OK-LLL-reduced with respect to MK < δ < 1

if the following two conditions hold:

1. ∥µi,j∥ ≤ MK for 1 ≤ j < i ≤ m; (size reduced)
2. ∥b∗i ∥

2
+ ∥µi,i−1∥2

∥∥b∗i−1

∥∥2 ≥ δ
∥∥b∗i−1

∥∥2. (Lovász condition)

In two contemporary works Kim and Lee [32] and Camus [14] extended LLL
to all norm-Euclidean rings Z[ζk] and OQ(i

√
D). In particular, when K is a norm-

Euclidean quadratic imaginary field, [14, Th. 1.3.8] states that any OK-reduced
basis b1, . . . , bm of L is such that

∥bj∥ ≤
(

1

δ −MK

)j−1

(detL)1/m.

A direct application of OK-LLL is the OK variant of Buchmann-Pohst algo-
rithm, that we propose in Algorithm 4.

Theorem 312 (adaptation to OK-lattices of Th 3.1 in [13]) Algorithm 4
is correct and terminates in O

(
(k +m)6(m+ log(D1/m/µ))

)
operations on a

classical computer.

Proof. The proof is a verbatim translation of the correctness proof in the case of
Z-lattices. By Equation 3.3, if b1, . . . , bm is a reduced basis of a lattice such that
detL ≤ D, then max(∥b1∥ , . . . , ∥bm∥) ≤ B. This is used in the proof of [13, Prop
2.2] to show that the successive minima of the lattice generated by the columns
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Algorithm 4 Buchmann-Pohst over OK

Input: a OK-lattice L ⊂ Cm given by approximations g̃1, . . . , g̃k ∈ Cm of g1, . . . , gk ∈
Cm which OK-span L; a lower bound µ of λ1(L); an upper bound D on detL

Output: approximations of a basis b1, . . . , bm over OK of L
1: B ← cmKD1/m; C ← (B/µ)mγ

1/2
m ; M̃ ← (k

√
m/2 +

√
k)C; q ←

⌈log2
(
(
√
mk + 2)M̃2(k−1)/2/µ

)
⌉

2: the the OK-LLL-reduction of the following matrix on the left to obtain the matrix
on the right 

⌊g̃12q⌋ · · · ⌊g̃k2q⌋

1

. . .
1


⇝


c̃1 · · · c̃k

m1 · · · mk


3: return c̃k−m+1, c̃2, . . . , c̃k

of the matrix in Algorithm 4 are bounded by M̃ . We use the upper bound of the
norm of an OK-reduced basis of [14, Prop 1.3.8] instead of [38, (1.12)] to obtain
the equivalent of [13, Eq (9)]:

∥c̃j∥ ≤ 2(k−1)/2M̃ 1 ≤ j ≤ k −m. (4)

For any vector (c̃,m) ∈ ⊕k
j=1Z(c̃j ,mj) such that m = (m(1), . . . ,m(k)) is not a

relation of b1, . . . , bk, i.e. m ̸∈ L∗, i.e.
∑k

j= m(j)b̃j ̸= 0. Then, the arguments in
the proof of [13, Th 3.1] can be copied in a verbatim manner to obtain:

∥c̃j∥ > 2(k−1)/2M̃ 1 ≤ j ≤ k. (5)

Since Equations (4) and (5) are contradictory for 1 ≤ j ≤ k − m, the only
possibility is that m ∈ L∗. We do the same transformations on the matrix with
bj instead of b̃j and call cj the vectors which replace c̃j in this case. What we
have proved is that c1 = c2 = · = ck−m = 0.

Since the transformations done in the LLL algorithm on the columns of the
matrix are reversible, they preserve the rank of any subset of rows of the matrix.
The rank of the first m rows of this matrix is dimL = m. Since c1 = c2 = · =
ck−m = 0, the vectors ck−m+1, . . . , ck form a basis of L.

LLL over Z[i
√
d] as a practical improvement The constant hidden in the big Oh

of implementation is (inverse) proportional to log δ, which (inverse) proportional
to log(δ−MK). Hence the difference is of only a few percentages. The dependence
of the time in the rank is quartic, so we replace a number of operations of high-
precision real numbers by 24 = 16 times less complex numbers at the same
level of precision. Finally, using the Karatsuba trick, a multiplication of complex
numbers costs 3 multiplications of real numbers, so the overall gain is a factor
16/3 ≈ 5.33. An implementation [23] of Z[i

√
d]-LLL shows that the reduction
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of an OK-lattice is ≈ 5 times faster when its algebraic structure is used when
compared to forgetting it and using only the underlying structure of Z-lattice:
they used OK = Z[i], the coordinates of the basis vectors have 512 bits and
δ = 0.99 both over Z and Z[i].11

Consequences in cryptography. Given our current contribution, the speed-up due
to automorphisms is 5.33. It is an open question to extend it to a larger class of
OK-rings (e.g. [37] investigate if LLL can be extended to arbitrary OK by solving
CVP instances in dimension [OK : Z].). If Buchmann-Pohst can be extended,
the best speed-up that one can target is [OK : Z]3. Indeed, the dependence of
LLL in the dimension is quartic whereas the cost of the arithmetic over OK is
quadratic or quasi-linear if fast arithmetic is used

The speed-up due to the automorphisms is polynomial in the number of au-
tomorphisms. This is a familiar situation because a similar speed-up happens
for automorphisms in the case of classical algorithms for factorization, discrete
logarithms in finite fields and discrete logarithms on elliptic curves (see e. g. [30,
Sec 4.3],[5, Sec 5.3]). For instance, the attacks in [20] against ECDSA using
endomorphisms of the curve achieved a polynomial speed-up in an algorithm
of exponential complexity. The community reacted by suggesting to use elliptic
curves with endomorphisms as their effect was now considered to be benign,
e.g. [25]. In a similar manner, if the security of the class group of a given degree
and determinant is considered sufficient, we suggest to use fields with automor-
phisms in order to speed-up the protocol, e.g. it has been done by XTR in
cryptosystems based on discrete logarithms in finite fields [39].

4 A new algorithm using cyclotomic units

When K = Q(ζm) for an arbitrary integer m we define the group of cyclotomic
units to be the subgroup C of K∗ generated by −1, ζm and ζjm − 1 with j =
1, 2, . . . ,m− 1, intersected with the group of units O∗

K . We follow the notations
of [18, Sec. 3], in particular m and k don’t have the same meaning as in the other
sections. Factor m = pα1

1 pα2
2 · · · pαk

k and, for each index i, put mi = m/pαi
i .

For j = 1, . . . ,m− 1 we set

vj =

{
1− ζjm, if for all i we have mi ∤ j,
1−ζj

m

1−ζ
mi
m
, otherwise for the unique i such that mi | j.

4.1 Unconditional results

Lemma 41 (Theorem 4.2 in [35]) The lattice M := LogC admits the sys-
tem of generators {bj = Log(vj) | j = 1, 2, . . . ,m− 1}.
11 A similar speed-up was obtained in the case of Z[ζk]-LLL in [32]: an example took

20 s over Z[ζk] compared to 75 s over Z.
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Lemma 42 (Lemma 3.5 in [18]) For any integer j ∈ {1, 2, . . . ,m − 1} we
have

∥∥1− ζjm
∥∥
2
= O(

√
m). Hence ∥BM∥2 = O(

√
m).

Theorem 43 Algorithm 1 computes a basis of the unit group of Q(ζm) in poly(m)
time and uses O(m2 logm) qubits.

Proof. The only quantum step of Algorithm 1 is the dual lattice sampler, whose
parameters are δ = ∥BL∥ /λ∗1(L) and η = 1/k2 where

k = log2(
√
mLip(f)) + log2(detL))

is given in step 1 of the algorithm. In this section m is not necessarily equal to the
rankm′ of Z[ζ]∗ but O(m′) = O(m) so that we usem andm′ interchangeably. By
Lemma 32, the sampler used O(Qm) qubits with Q as below. We write a≪ b for
a = O(b). We use Th 36: log Lip(f) ≪ m2+m logD and then k ≪ m2+m logD.
We also use Lemma 42: log 1/(δλ∗1(L)) ≪ log(1/ ∥BM∥) ≪ logm and logD =
(m− 2) logm≪ m logm.

Q≪ m log(m log 1
η )) + log 1

δλ∗
1(L) + log(Lip(f))

≪ (m logm+m log log k) + logm+m2 +m logD
≪ m logm+m log logD + logm+m2 +m logD
≪ m2 +m logD
≪ m2 logm.

This is to be compared to the O(m5 +m4 logD) qubits used by number fields
in general (Cor 37) and O(m5 logm) used by cyclotomic field if the Algorithm 3
were used without taking profit of the cyclotomic units (Ex 1).

Remark 44 Our improvement can be used whenever the lattice of units has a
sublattice admitting a short basis and this is not limited to the cyclotomic fields
and, more generally, abelian fields. For instance, Kihel [31] proposed a family of
fields with dihedral Galois group which have a full-rank subgroup of units which
are short. Although one expects a speed-up in all these cases, the cyclotomic case
is even more special. Indeed, the parameter δ ≤ ∥BM∥ /λ∗1(L) depends in a large
extent on the index [L :M ]. By [36, Ex 8.5] (see also [17, Th 2.8]), in the case
of cyclotomic fields of prime conductor, [L :M ] = h+(m). By Conjecture 1 this
is small, so the impact of the full-rank subgroup is more important in this case.

4.2 Consequences of a recent conjecture for cyclotomic fields

One denotes h(m) the class group of Q(ζm), h+(m) the class group of its max-
imal real subfield, i.e. K := Q(ζm + ζ−1

m ), and one sets h−(m) = h(m)/h+(m).
A folklore conjecture states that h−(m) is large but easy to compute whereas
h+(m) is small but hard to compute. A recent work compiled existing conjec-
tures and pushed further the numerical computations, so one can give a precise
form to the folklore conjecture.
Conjecture 1 (Assumption 2 in [18]). For all integers m,

h+(m) ≤ poly(m)

for a fixed polynomial poly.
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Consequence of the conjecture : class number in real cubic fields without quan-
tum computers Marie-Nicole Gras [26] proposed an algorithm to compute class
numbers of cyclic cubic fields in polynomial time with respect to a bound on h.
If m is the conductor of a cyclic cubic field, then Conjecture 1 implies that h is
polynomial in m. Note also that Schoof [47] proposed an algorithm for Q(ζm)+

with prime m which is faster when a small bound on h+(m) is known.

Reduction of unit group computation to HSP

Theorem 45 Under Conjecture 1 the unit group of K = Q(ζm)+ and its class
group can be computed by an HSP algorithm in polynomial time and space.

Proof. Let N = poly(m)! and note that Conjecture 1 implies that O∗
K ⊂ C1/N .

Letm′ = φ(m)/2−1 and let ε1, . . . , εm′ be a basis of C/⟨ζm,−1⟩. Note that it can
be computed using the HNF algorithm from the vectors vj of Lemma 41. Since K
is totally real, its only roots of unity are ±1. For any c ∈ C, we call vectorization
of c and denote vect(c) the unique (m′ + 1)-tuple in (e0, e1, . . . , em′) ∈ Z/2Z ×
(Z/NZ)m′

such that c = (−1)e0
∏m′

j=1 ε
ej
j .

We set

f : Z/2Z× (Z/NZ)m′ →
{

canonical representations
of Kummer extensions

}
(e0, e1, . . . , em′) 7→ K(ζN ,

N

√
(−1)e0

∏m′

j=1 ε
ej
j ))

(6)

We claim that the period of f is

period(f) = {vect(u) | u ∈ (OK)∗}.

Indeed, let (ej) and (zj) be such that f(e0, . . . , em′) = f(e0 + z0, . . . , em + zm′)
and set ε = (−1)e0

∏
j ε

ej
j and ζ = (−1)z0

∏
j ε

zj
j .

We have K(ζN , N
√
ε) = K(ζN ,

N
√
εζ). Let d := [K(ζN , N

√
ε) : K(ζN )]. Then

the criterion of isomorphism of Kummer extensions [34, page 58] states that N
√
ζ

belongs to K(ζN ). But N
√
ζ ∈ R and the maximal real subfield of K(ζN ) is K,

so N
√
ζ ∈ O∗

K . Conversely, if N
√
ζ ∈ O∗

K it is direct that (z0, . . . , zm′) is a period
of f .

Finally, to compute the complexity of the algorithm, we write a = P(b) for
a = bO(1) and a = polylog(b) for a = (log b)O(1). By [33], the cost of the HSP is
polylog(N). Since, for any n, n! ≤ nn, we have

time = polylog(N) = P(poly(m) log(poly(m))) = P(P(m)) = P(m).

5 Conclusion and open questions

1. The unit group algorithms follow a parallel path to those of other problems
like the class group e.g Buchmann’s algorithm computes the two groups
together and the quantum algorithm for class groups [9] is a generalization
of the one of Hallgren et al [22]. It is interesting to have a precise estimation
of the number of qubits for class groups depending on the bound on the class
number, on the computation of discrete logarithms in the class group etc.
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2. The idea of a small dual basis can be generalized: a) to all abelian fields;
b) to Galois fields with simple group of automorphisms and known units
e.g. [31].

3. The possibility of exploiting automorphisms of arbitrary order depends on
the possibility of a Buchmann-Pohst algorithm for OK -lattices. One might
explore such an algorithm which reduces the size of the norms on average
but can locally increase them.

4. The quantum algorithms being probabilistic, the output is not certified. Can
one do a classical algorithm to prove that a given set of units generate a
subgroup which is ℓ-saturated?

5. The technology of quantum computers is very new and it is not known how
many physical qubits correspond to a given number of logical ones. Have
the gates used by a HSP algorithms less errors and hence require less error-
correction? A precise analysis goes beyond the scope of this article.

A An alternative function hiding the units

We place ourselves in the case where K is totally real. As before we call n its
degree. Let P be a polynomial which defines K and let α1, . . . , αn be the n roots
of P in R. Let

w : {P ∈ R[x] | degP ≤ n− 1} → Rn

P 7→ (P (α1), . . . , P (αn)).

Clearly, w is a linear isomorphism.
Assume that disc(f) is squarefree and then OK = Z[x]/P . We define

f : Rn → (Rn[x] mod Zn[x])× (Rn[x] mod Zn[x])
(x1, . . . , xn) 7→ (w−1(ex1 , . . . , exn), w−1(e−x1 , . . . , e−xn)) mod Zn[x]

2.

We claim that the set of periods of f form a lattice Λ such that

2LogO∗
K ⊂ Λ ⊂ LogO∗

K .

Indeed, let ε be in O∗
K and set (x1, . . . , xn) = Log(ε2). Then w−1(ex1,...,e

xn )

is the representative of ε2 in the normal basis of K. The coordinates are all
integers because ε2 is in OK = Z[x]/⟨P ⟩. Similarly, w−1(e−x1 , . . . , e−xn) is the
representative of ε−2 in the normal basis. Its coordinates are integers because
ε−2 ∈O O∗

K .
Conversely, let (x1, . . . , xn) be such that f(x1, . . . , xn) = (0, . . . , 0) and let

ε = w−1(ex1 , . . . , exn). Since f(x1, . . . , xn) = 0, the coordinates of ε in the
normal basis are integers, so ε ∈ OK . Similarly, ε−1 ∈ OK , so ε is a unit.

Finally, given Λ, one solves a linear system over Z/2Z to find LogO∗
K . Since

K is totally real, its roots of unity are ±1 and LogO∗
K completely determines

O∗
K .
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B A discussion on quantum security levels

The NIST post-quantum challenge [43] is willingly open on the definition of the
computational resources on a quantum computer:

“Here, computational resources may be measured using a variety of dif-
ferent metrics (e.g., number of classical elementary operations, quantum
circuit size, etc.)”

A study conducted by Mosca et al. [41] revealed that part of the experts consider
that on the medium term one should not consider attacks which uses billions
of qubits but one should protect against attacks which use hundred qubits. A
similar situation happens in the case of classical algorithms: in 2015 the rec-
ommendations of the standardisation agencies (NIST, ANSSI, etc) was to use
2048-bit RSA keys. However, in [1] the authors made a precise estimation that
RSA 1024 can be broken with their implementation of NFS on a million cores
and they made a study that 98% of a sample of million+ servers use RSA 1024.
Moreover, more than 30% were supporting RSA 768 which had been broken
since 2009.

It is then necessary to be more precise on the quantum resources. We propose
a classification on the time complexity and the number of qubits, as in Table 1
(for a review of the quantum attacks on the various public-key primitives see
e.g. [8]). In this light, a verifiable delay function [50] based on the class group of
a number field of high-degree and non-cyclotomic is more secure than RSA.

polynomial subexponential exponential
time time time

O(m) qubits

factorization
discrete log

EC discrete log
IQC

lattices
error correction codes

O(m5 logm) qubits high degree CGP
superpolynomial

space isogenies

Table 1: Classification of cryptographic primitives w.r.t. the resources of quan-
tum attacks: factorization, discrete logarithms, elliptic curve (EC) discrete loga-
rithms, class group of orders of imaginary quadratic fields (IQC), supersingular
isogenies, lattices, error correction cryptosystems and class group (CGP) com-
putations.
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