SUPPLEMENTARY INFORMATION

Unveiling Structural Defects by ¹³⁹La NMR and Raman Spectroscopies at the Origin of Surface Stability for the Design of Cerium-Based Catalyst

Rémy Pointecouteau^{1,2}, Pierre Florian³, Vincent Rodriguez⁴, Nicolas Bion² and Alain Demourgues^{1*}

1. CNRS, University of Bordeaux, Bordeaux INP, ICMCB UMR CNRS 5026, F-33600, Pessac, France

2. CNRS, University of Poitiers, IC2MP UMR CNRS 7285, F-86000, Poitiers, France

3. CNRS, UPR CNRS 3079 CEMHTI, F-45100, Orléans, France

4. Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, F-33405 Talence Cedex, France

FIGURE CAPTION

Figure 1-SI: Powder XRD patterns of Ce1-x-yZrxLayO2-z complex oxides annealed at 600°C under air

Figure 2-SI: Powder XRD patterns of Ce1-x-yZrxLayO2-z complex oxides annealed at 1200°C under air

Figure 3-SI: Comparison of the best fit simulations of the 139 La NMR spectra of Ce_{0.9}La_{0.1}O_{1.95} annealed at 600°C and using one- (left) and two- (right) Czjzek-like components. Simulations account simultaneously for the static (top) and spinning (bottom) experimental spectra.

Figure 4-SI: Comparison of the best fit simulations of the 139 La NMR spectra of Ce_{0.8}Zr_{0.12}La_{0.08}O_{1.96} annealed at 600°C and using one- (left) and two- (right) Czjzek-like components. Simulations account simultaneously for the static (top) and spinning (bottom) experimental spectra.

Figure 5-SI: Comparison of the best fit simulations of the ¹³⁹La NMR spectra of Ce_{0.9}La_{0.1}O_{1.95} annealed at 1200°C and using one- (left) and two- (right) Czjzek-like components. Simulations account simultaneously for the static (top) and spinning (bottom) experimental spectra.

Figure 6-SI: Comparison of the best fit simulations of the 139 La NMR spectra of Ce_{0.84}Zr_{0.12}La_{0.08}O_{1.96} annealed at 1200°C and using one- (left) and two- (right) Czjzek-like components. Simulations account simultaneously for the static (top) and spinning (bottom) experimental spectra.

Figure 7-SI: Best fit simulations of the ¹³⁹La NMR spectra of $Ce_{0.70}Zr_{0.15}La_{0.15}O_{1.95}$ annealed at 600°C (left) and 1200°C (right) and using two Czjzek-like components. Simulations account simultaneously for the static (top) and spinning (bottom) experimental spectra.

Figure 8-SI: Best fit simulations of the ¹³⁹La NMR spectra of $Ce_{0.60}Zr_{0.20}La_{0.20}O_{1.90}$ annealed at 600°C (left) and 1200°C (right) and using two Czjzek-like components. Simulations account simultaneously for the static (top) and spinning (bottom) experimental spectra.

*Figure 9-SI : Schematic representation of various valence and deformation vibration mode of Td site, following the frequency order proposed by Nakamoto.*⁴⁵

Figure 10-SI: Raman spectra deconvolution of Ce_{1-x-y}Zr_xLa_yO_{2-z} complex oxides annealed at 600°C

Figure 11-SI: Raman spectra deconvolution of Ce_{1-x-y}Zr_xLa_yO_{2-z} complex oxides annealed at 1200°C

Figure 12-SI: Raman spectra of $Ce_{1-x-y}Zr_xLa_yO_{2-z}$ complex oxides annealed at 1200°C

TABLE CAPTION

Table 1-SI	: Elemental	analysis	obtained	by ICP-OES
------------	-------------	----------	----------	------------

Theoretical compositions	%at. Ce	%at. Zr	%at. La
$Ce_{0.9}La_{0.1}O_{1.95}$	89	-	11
$Ce_{0.8}Zr_{0.2}O_2$	80	20	-
$Ce_{0.8}Zr_{0.12}La_{0.08}O_{1.96}$	80	11	90
$Ce_{0.7}Zr_{0.15}La_{0.15}O_{1.92}$	71	14	15
$Ce_{0.6}Zr_{0.20}La_{0.20}O_{1.90}$	60	20	20
$Ce_{0.62}Zr_{0.30}La_{0.08}O_{1.96}$	60	32	8

Compositions	Cell Parameters	Crystallite size
(T _{cal} = 1200°C)	(Å)	(nm)
Ce _{0.9} La _{0.1} O _{1.95}	5.449 (1)	97 (1)
$Ce_{0.8}Zr_{0.2}O_{2}$	5.367 (3)	66 (1)
$Ce_{0.8}Zr_{0.12}La_{0.08}O_{1.96}$	5.413 (1)	39 (1)
Ce _{0.7} Zr _{0.15} La _{0.15} O _{1.92}	5.423 (2)	36 (1)
$Ce_{0.6}Zr_{0.2}La_{0.2}O_{1.90}$	5.411 (1)	29 (1)
$Ce_{0.62}Zr_{0.3}La_{0.08}O_{1.96}$	5.346 (4)	55 (1)

Table 2-SI: Structural and textural characteristics of $Ce_{1-x-y}Zr_xRE_yO_{2-z}$ oxides annealed at 1200°C under air

Table 3-SI: Experimental ¹³⁹La NMR Parameters of $Ce_{1-x-y}Zr_xRE_yO_{2-z}$ complex oxides annealed at 1200°C under air.

Compositions	% site 1	δ _{iso} 1	$\Delta \delta_{iso}$ 1	σc 1	% site 2	δiso 2	$\Delta \delta_{iso} 2$	σc 2
$(T_{cal} = 1200^{\circ}C)$		(ppm)	(ppm)	(MHz)		(ppm)	(ppm)	(MHz)
Ce _{0.9} La _{0.1} O _{1.95}	-	-	-	-	100	266	33	13.1
Ce _{0.8} Zr _{0.12} La _{0.08} O _{1.96}	19	284	40.7	4.62	81	296	54.9	11.6
Ce _{0.7} Zr _{0.15} La _{0.15} O _{1.92}	27	273	33.8	9.94	73	329	33.3	18.6
Ce _{0.6} Zr _{0.2} La _{0.2} O _{1.90}	25	275	18.0	12.1	75	346	26.9	20.1

Table 4-SI: Experimental 139 La NMR Parameters of $Ce_{1-x-y}Zr_xRE_yO_{2-z}$ complex oxides with error bars.

Presse-papi	ia mise en r	ыне Га	Po	lice	5	_	ļ	Alignement		G	Nombre	CC Fai	nditionnell	e∗ deta	bleau • Si	yle			*	• Cellules
•	×	/ fx	292,93																	
A B	С	D	E	F	G	Н	1	J	K L	М	N	0	Р	Q	R	S	Т	U	v	V
sfo1	120,11																			
600°C					+/-				1200°C					+/-						
site	%	δ_{iso}	$\Delta \delta_{iso}$	CQ	%	δ_{iso}	$\Delta \delta_{iso}$	CQ	site	%	δ_{iso}	$\Delta \delta_{iso}$	CQ	%	δ_{iso}	$\Delta \delta_{\text{iso}}$	CQ			
		(ppm)	(kHz)	MHz		(ppm)	(kHz)	MHz			(ppm)	(kHz)	MHz		(ppm)	(kHz)	MHz			
Ce _{0,80} Zr ₀	_{),10} La _{0,10} C	2							Ce _{0,80} Zr _{0,1}	₁₀ La _{0,10} O	2									
La(1)	75	293	5,22	21,3		0,8	0,04	0,1	La(1)	66	293	2,92	27,2		0,4	0,13	0,1			
La(2)	25	277	3,71	8,78		0,5	0,08	0,19	La ₍₂₎	34	282	13,10	7,57		0,7	0,23	0,25			
Ce _{0,62} Zr ₀	_{0,30} La _{0,04} Y	0,04 0 2							Ce _{0,62} Zr _{0,3}	30La _{0,04} Y	_{0,04} O ₂									
La ₍₁₎	58	324	16,29	19,4		3,0	1,13	0,51	La ₍₁₎	70	379	9,99	29,6		2,4	0,59	0,3			
La(2)	42	285	5,20	8,87		0,7	0,24	0,3	La(2)	30	302	7,93	12,5		1,4	0,74	0,5			
Ce _{0,70} Zr ₀	_{),19} La _{0,15} C	02							Ce _{0,70} Zr _{0,1}	19 La 0,15 O	2									
Lam	67	293	3.54	27.6		1.1	0.35	0.2	Lam	73	329	4.00	37.2		1.7	0.38	0.4			

Compositions (T _{cal} = 600°C)	T' ₂ [V ₀ ²⁻]	F _{2g}		T ₂ [O ²⁻]		
	Wave number (cm ⁻¹)	Wave number (cm ⁻¹)	Wave number (cm ⁻¹)	Intensity (a.u.)	Gaussian Shape (%)	Wave number (cm ⁻¹)
$Ce_{0.9}La_{0.1}O_{1.95}$	252	455	540	0.037621	97	598
$Ce_{0.8}Zr_{0.12}La_{0.08}O_{1.96}$	263	460	542	0.015348	99	596
$Ce_{0.7}Zr_{0.15}La_{0.15}O_{1.92}$	259	460	542	0.020556	100	596
$Ce_{0.6}Zr_{0.20}La_{0.20}O_{1.90}$	260	458	547	0.053512	97	599
$Ce_{0.62} Zr_{0.30} La_{0.08} O_{1.96}$	261	462	541	0.030656	97	598

Table 5-SI: Supplementary Experimental RAMAN Parameters extracted from spectra deconvolutions of $Ce_{1-x-y}Zr_xRE_yO_{2-z}$ complex oxides annealed at 600°C under air.

Table 6-SI: Experimental RAMAN Parameters extracted from spectra deconvolutions of $Ce_{1-x-y}Zr_xRE_yO_{2-z}$ complex oxides annealed at 1200°C under air.

Compositions (T _{cal} = 1200°C)	T' ₂ [V ₀ ²⁻]	F_{2g}		T ₂ [O ²⁻]		
	Wave number (cm ⁻¹)	Wave number (cm ⁻¹)	Wave number (cm ⁻¹)	Intensity (a.u.)	Gaussian Shape (%)	Wave number (cm ⁻¹)
$Ce_{0.9}La_{0.1}O_{1.95}$	245	457	540	0.14327	90	585
${\sf Ce}_{0.8}{\sf Zr}_{0.12}{\sf La}_{0.08}{\sf O}_{1.96}$	255	458	568	0.019787	99	636
${\sf Ce}_{0.7}{\sf Zr}_{0.15}{\sf La}_{0.15}{\sf O}_{1.92}$	255	464	545	0.007307	95	584
$Ce_{0.6}Zr_{0.2}La_{0.2}O_{1.90}$	265	467	545	0.020298	93	590

Table 7-SI: Supplementary Experimental RAMAN Parameters extracted from spectra deconvolutions of $Ce_{1-x-y}Zr_xRE_yO_{2-z}$ complex oxides annealed at 1200°C under air.

Compositions	F _{2g}		N	N _{La}	
(T _{cal} = 1200°C)	Intensity (a.u.)	Intensity (a.u.)	Gaussian Shape (%)	$N = \frac{T_{2[0^{2^{-}}]}}{F_{2g}}$	$N_{La} = \frac{N}{x_{La}}$
$Ce_{0.9}La_{0.1}O_{1.95}$	8.2837	0.28672	62	0.0346	0.3460
$Ce_{0.8}Zr_{0.12}La_{0.08}O_{1.96}$	3.8858	0.26876	62	0.0692	0.8650
$Ce_{0.7}Zr_{0.15}La_{0.15}O_{1.92}$	1.1623	0.27344	28	0.2308	1.5387
$Ce_{0.6}Zr_{0.20}La_{0.20}O_{1.90}$	1.9758	1.2984	0	0.6571	3.2855