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DETERMINANTS OF LAPLACIANS ON RANDOM

HYPERBOLIC SURFACES

BY FRÉDÉRIC NAUD

Abstract. For sequences (Xj) of random closed hyperbolic surfaces with vol-
ume Vol(Xj) tending to infinity, we prove that the regularized determinant of
the Laplacian det(∆Xj

) satisfies for all ǫ > 0 and with high probability as
j → +∞,

log det(∆Xj
)

Vol(Xj)
∈ [E − ǫ, E + ǫ],

where E > 0 is a universal constant. This result holds for various models of
random surfaces, including the Weil-Petersson model.

1. Introduction and results

1.1. On determinants. Let X = Γ\H2 be a compact connected hyperbolic sur-
face obtained as a quotient of the hyperbolic plane H2 by a co-compact group of
isometries. The hyperbolic Laplacian ∆X has a pure point spectrum on L2(X) and
it is denoted by

0 = λ0 < λ1 ≤ . . . λj ≤ . . . .

For all Re(s) large enough, we know by Weyl’s law that the spectral zeta function

ζX(s) =

∞
∑

j=1

1

λsj

is well defined and holomorphic. This zeta function ζX(s) actually has a meromor-
phic extension to C and is analytic at s = 0. The regularized determinant is then
usually defined by

log det(∆X) := −ζ′X(0),

which agrees with the formal computations. Practically, one performs the mero-
morphic continuation by noticing that for large Re(s) we have

ζX(s) =
1

Γ(s)

∫ ∞

0

ts−1(Tr(e−t∆X )− 1)dt,

where e−t∆X is the heat semi-group. The small time asymptotics of the heat kernel
is the main tool which allows to ”renormalize” the divergent behavior at t = 0 and
obtain the meromorphic continuation. In the literature, Polyakov’s string theory
[32, 13] has emphasized the role of determinants on Riemann surfaces. In particular,
the computation of ”partition functions” in perturbative string theory involves
formal sums over all genera of averages of determinants over the moduli space
which have proved since then to be divergent, see Wolpert [38]. Several authors
have provided [33, 6, 12] some ”explicit” formulas for regularized determinants for
various Laplace-like operators on Riemann surfaces. In small genus, it is possible
to compute accurately such determinants by reducing to certain sums over closed
geodesics which provide a fast convergence, see [31, 35].

In higher dimensions, determinants of Laplacians on differential forms are related
to the so-called analytic torsion which in turn is related to important topological
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2 F. NAUD

invariants by results of Cheeger and Müller [11, 27]. In particular the work of
Bergeron-Venkatesh [3] establishes exponential growth of the analytic torsion for
certain families of covers of arithmetic manifolds.

In the case of Riemann surfaces, if Γ is a co-compact arithmetic Fuchsian group
derived from a quaternion algebra, one can define ”congruence covers”

XP := Γ(P)\H2

of X = Γ\H2 by looking at prime ideals P in the ring of integers of the corre-
sponding number field. We denote by ‖P‖ the norm of ideals. Using the uniform
spectral gap of these surfaces proved by Sarnak and Xue in [34], together with the
fact that the injectivity radius goes to infinity as ‖P‖ → ∞, see in [18], one can
readily show (for example by using the arguments from [2] or as a direct application
of Theorem 3.1) that

lim
‖P‖→∞

log det∆XP

Vol(XP)
= E,

where E > 0 is some universal constant. Arithmetic surfaces being highly non-
generic, it is therefore natural to ask if this behavior is ”typical” among larger
families of surfaces whose volume (equivalently genus) goes to infinity.

1.2. Models of random surfaces. In this paper we will focus on behaviour of
determinants of the Laplacian in the large volume (equivalently large genus) regime,
using probabilistic tools. The first historical model of random compact Riemann
surfaces in the mathematics literature is perhaps the model of Brooks-Makover

[9] which is based on random 3-regular graphs as follows. Consider Gn a 3-regular
graph on 2n vertices, endowed with an orientation O. On the (finite) set of all
possible pairs (Gn,O), one can put a probability measure (which is not the uniform
measure) introduced first by Bollobás [4]. By glueing an ideal hyperbolic triangle
(whose vertices are at infinity in H2) according to (Gn,O), see [9] for the precise
recipe, one obtains a random finite area hyperbolic surface SO

n := SO(Gn,O) with
Vol(Sn) = 2πn. It is possible to show, see [8], that all surfaces in SO

n are actually
(non ramified) covers of the modular surface PSL2(Z)\H2.

One can then conformally compactify SO
n into a compact hyperbolic surface SC

n by
”cutting” the cusps and filling them with disks, see §3 in [9]. In §4, they also show
that there exists a constant C0 > 0 such that

Vol(SC
n ) ≥ C0n.

Most of the geometric properties of SO
n (and then SC

n , after a mild loss) can be read
off from the combinatorics of Gn.

Another more recent discrete model of random surface is the so-called random

cover model which has been studied and used recently in [25, 20, 28]. In what
follows, we fix a compact surface X = Γ\H2, ”the base surface”. Let φn : Γ → Sn
be a group homomorphism, where Sn is the symmetric group of permutations of
[n] := {1, . . . , n}. The discrete group Γ acts on H2 × [n] by

γ.(z, j) := (γ(z), φn(γ)(j)).

The resulting quotient Xn := Γ\H2 × [n] is then a finite cover of degree n of X ,
possibly not connected. By considering the (finite) space of all homomorphism
φn : Γ → Sn, endowed with the uniform probability measure, we obtain a notion
of random covering surfaces of degree n, Xn → X . Let us remark that we can also
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view (up to isometry) the random cover Xn as

Xn =

p
⊔

k=1

Γk\H2,

where each Γk is (a priori non-normal) subgroup of Γ given by

Γk = StabΓ(ik) = {γ ∈ Γ : φn(γ)(ik) = ik},
where i1, . . . , ik ∈ [n] are representatives of the orbits of Γ (acting on [n] via φn).
In general, the cover Xn is not connected, but it follows directly from [19] that the
probability that this cover is connected tends to 1 as n goes to infinity. In this
model, we have Vol(Xn) = nVol(X).

A smooth model of random hyperbolic surfaces, is given by the moduli space Mg

of closed hyperbolic surfaces with genus g. The moduli space Mg is the space of
hyperbolic metrics on a fixed smooth closed surface S with genus g, up to isometry.
It is often defined as the quotient

Mg = Tg/MCG,

where Tg is the Teichmüller space of hyperbolic metrics on a surface S of genus g
and

MCG = Diff(S)/Diff0(S)

is the group of isotopy classes of diffeomorphisms on S, aka the mapping class group.
We refer the reader for example to [10], chapter 6 for more details. A symplectic
form ωWP lives naturally on Tg and descends to the moduli space, endowing it
with a natural notion of volume, Weil-Petersson volume. The moduli space is a
non-compact finite dimensional orbifold, but as a consequence of Bers’ theorem it
has a finite volume with respect to this Weil-Petersson volume. We can therefore
normalize this measure and obtain a probability measure on Mg. Notice that in
this case if X ∈ Mg, Vol(X) = 4π(g−1) by Gauss-Bonnet. The calculation of Weil-
Petersson volumes of the moduli space by Mirzakhani [23] has made possible [24]
the large genus asymptotic analysis of various geometric and spectral quantities,
see for example [26, 40, 39] for recent works in that direction.

For all of the previous models, we will denote by P the associated probability
measure, which depends either on n or g which are both proportional to the volume.
We say that an event A is asymptoticaly almost sure (a.a.s.), or holds with high
probability, if P(A) tends to 1 as the volume of surfaces tends to infinity. The
expectation of any relevant random variable will also be denoted by E.

1.3. Main result.

Theorem 1.1. There exists a universal constant E > 0 such that for all the above
models of random surfaces, for all ǫ > 0, we have a.a.s as Vol(X) → +∞,

log det(∆X)

Vol(X)
∈ [E − ǫ, E + ǫ].

The constant E is actually explicit, see §2. This result shows that exponential
growth of the determinant is typical when the genus goes to infinity. This low
dimensional result is consistent, in a much simpler setting, with the conjectures on
the exponential growth of the analytic torsion and the torsion homology for higher
dimensional hyperbolic manifolds, see for example the paper of Bergeron-Venkatesh
[3] and references herein.
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Remark that the above statement says that the random variable log det(∆X)
Vol(X) con-

verges in probability to the constant E. What about other modes of convergence?
It is possible to derive from Theorem 1.1 a convergence result for the expectation
of | log det(∆)|β , see section §5, Theorem 5.1: for both models of random covers
and Weil-Petersson, we show the existence of exponents β > 0 such that

lim
Vol(X)→∞

E

( | log det(∆X)|β
Vol(X)β

)

= Eβ .

The paper is organized as follows. In §2 we recall how one establishes an identity for
log det(∆X) which involves infinite sums over closed geodesics via the Heat trace
formula. In §3 we prove an abstract Theorem which guarantees the exponential
growth of determinants as long as a certain natural list of assumptions are satisfied.
These hypotheses turn out to be valid a.a.s. for the probabilistic models listed
above, and this is established in §4. In §5, we derive from Theorem 1.1 a convergence
result for the expectation, based on some moments estimates for the systole and
the smallest positive eigenvalue.

Acknowledgement. It is a pleasure to thank my colleague Bram Petri for several
discussions around this work.

2. Heat kernels and determinants

On the hyperbolic plane H2, the heat kernel pt(x, y) (see for example [10] chapter
7) has an explicit formula given by

pt(x, y) =

√
2e−t/4

(4πt)3/2

∫ ∞

d(x,y)

re−r2/4tdr
√

cosh r − coshd(x, y)
,

where d(x, y) denotes the hyperbolic distance in H
2. On the quotient X = Γ\H2,

we can recover the heat kernel by summing over the group i.e.

hXt (x, y) =
∑

γ∈Γ

pt(x, γy).

Convergence of the above series on any compact subset of H2 is garanteed by the
lattice counting bound

NΓ(x, y, T ) := #{γ ∈ Γ : d(γx, y) ≤ T } = O(eT ), (1)

which is standard and follows from a basic volume argument. The semi-group of
operators e−t∆X is then of trace class and one has the explicit ”heat trace formula”

Tr(e−t∆X ) =
∑

j

e−tλj = Vol(X)
e−t/4

(4πt)3/2

∫ ∞

0

re−r2/4t

sinh(r/2)
dr (2)

+
e−t/4

(4πt)1/2

∑

k≥1

∑

γ∈P

ℓ(γ)

2 sinh(kℓ(γ)/2)
e−(kℓ(γ))2/4t,

where P stands for the set of primitive conjugacy classes in Γ (i.e. oriented primitive
closed geodesics on X) and if γ ∈ P, ℓ(γ) is the length. For more details on the
calculation of this trace and more generally Selberg’s formula, see [16, 10]. Setting

SX(t) :=
e−t/4

(4πt)1/2

∑

k≥1

∑

γ∈P

ℓ(γ)

2 sinh(kℓ(γ)/2)
e−(kℓ(γ))2/4t,
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it is easy to see that |SX(t)−1| is exponentially small as t→ +∞. We also observe
that SX(t) is exponentially small as t→ 0. Writing (for Re(s) large)

ζ
(2)
X (s) :=

1

Γ(s)

∫ ∞

0

ts−1(SX(t)− 1)dt

=
1

Γ(s)

∫ 1

0

ts−1(SX(t)− 1)dt+
1

Γ(s)

∫ ∞

1

ts−1(SX(t)− 1)dt

=
−1

Γ(s+ 1)
+

1

Γ(s)

∫ 1

0

ts−1SX(t)dt+
1

Γ(s)

∫ ∞

1

ts−1(SX(t)− 1)dt,

we notice that the last two integrals make sense for all s ∈ C. Therefore ζ
(2)
X (s) has

an analytic extension to C and using elementary facts on the gamma function (in
particular it has a simple pole at s = 0 with residue 1), we have that

− d

ds

∣

∣

∣

∣

s=0

ζ
(2)
X (s) = −Γ′(1)−

∫ 1

0

SX(t)

t
dt−

∫ ∞

1

(SX(t)− 1)

t
dt.

On the other hand, setting for large Re(s)

ζ
(1)
X (s) := Vol(X)

1

4πΓ(s)

∫ ∞

0

ts−1 e−t/4

√
4πt3/2

∫ ∞

0

re−r2/4t

sinh(r/2)
drdt,

and using that 1

e−t/4

√
4πt3/2

∫ ∞

0

re−r2/4t

sinh(r/2)
dr = e−t/4

∫ +∞

−∞
x tanh(πx)e−(x2+1/4)tdx,

one can compute the Mellin transform to obtain (again for Re(s) large)

ζ
(1)
X (s) =

2Vol(X)

4π

∫ ∞

0

u tanh(πu)

(u2 + 1/4)s
du.

This function can be analytically continued to s = 0, see for example [6], Appendix
B, and the value can be actually computed as

− d

ds

∣

∣

∣

∣

s=0

ζ
(1)
X (s) =

Vol(X)

4π
(4ζ′(−1)− 1/2 + log(2π)) := Vol(X)E,

with ζ′(−1) = 1/12 − log(A) and A is the so-called Glaisher-Kinkelin constant,
which is for example defined by

A = lim
n→∞

∏n
k=1 k

k

e−n2/4nn2/2+n/2+1/12
.

We have E ≈ 0, 0538. Using in addition that Γ′(1) = −γ0, where

γ0 = lim
n→+∞

n
∑

k=1

1

k
− log(n),

is the Euler constant, we have obtained the celebrated identity

log det∆X = Vol(X)E + γ0 −
∫ 1

0

SX(t)

t
dt−

∫ ∞

1

(SX(t)− 1)

t
dt. (3)

This formula can be interpreted multiplicatively via Selberg zeta function at s = 1,
see [33, 6, 12].

1for example one can use the identity

tanh(πx) =
1

π

∫
∞

0

sin(ux)

sinh(u/2)
du.
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3. An abstract deterministic statement

Theorem 1.1 actually follows from a more general deterministic result for sequences
of compact surfaces satisfying certain hypotheses denoted as (H). More precisely, if
(Xk) is a sequence of compact connected hyperbolic surfaces with Vol(Xk) → +∞,
let Pk denote the set of oriented primitive closed geodesics on Xk, and let ∆k be the
hyperbolic Laplacian on Xk. We also denote by ℓ0(Xk) the length of the shortest
closed geodesic on Xk. Let C < 0, η > 0, L > 0 and 0 < α < 1/2 be some
constants.

We say that the sequence (Xk) satisfies hypothesis H1(η) if for all k ∈ N we have
the following.

λ1(∆k) ≥ η.

We say that the sequence (Xk) satisfies hypothesis H2(C,L, α) if for all k ∈ N we
have the following bound on the number of closed geodesics:

NXk
(L) := #{(γ,m) ∈ Pk × N

∗ : mℓ(γ) ≤ L} ≤ CVol(Xk)
α.

We point out that exponential growth of Laplace determinants is established in
the litterature for families of covers for which a uniform spectral gap holds and
the injectivity radius of the manifolds goes to infinity, see for example [3] and [2].
Typical examples are congruence covers of arithmetic hyperbolic manifolds and
Laplacians twisted by a ”strongly acyclic” representation which ensures a uniform
spectral gap. In random models of surfaces, having the injectivity radius grow to
infinity is non typical and we establish the result under the weaker assumption of
small growth of the number of closed geodesics with bounded length.

Theorem 1.1 will follow from the following deterministic result.

Theorem 3.1. Fix some η > 0 and 0 < α < 1/2. Assume that (Xk) satisfies
H1(η) and H2(C0, α, L0) with L0 = 2arcsinh(1) for some C0 > 0. Then for all
ǫ > 0, there exists Lǫ > 0 such that if in addition (Xk) satisfies H2(Cǫ, Lǫ, α) for
some Cǫ > 0, then uniformly for all Vol(Xk) large,

log det(∆Xk
)

Vol(Xk)
∈ [E − ǫ, E + ǫ],

where E > 0 is the universal constant from above.

We warn the reader that the positive constants denoted by C1, C2, . . . , Cj below
depend only on C0, L0 > 0 . We will make clear when constants have some addi-
tional dependence by adding suitable brackets. Before we give a proof of Theorem
3.1, we will need some preliminary Lemmas which are needed to control uniformly
sums over closed geodesics.

Lemma 3.2. Under hypothesis H2(C0, α, L0), there exists c = c(C0, L0) > 0 such
that for all k,

ℓ0(Xk) ≥ cVol(Xk)
−α.

Proof. Let m0 be defined by

m0 := max{m ≥ 1 : mℓ0(Xk) ≤ L0}.
By definition of m0 we have

(m0 + 1)ℓ0(Xk) > L0,

while
m0 ≤ Nk(L0) ≤ C0Vol(Xk)

α.
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therefore

ℓ0(Xk) ≥
L0

C0Vol(Xk)α + 1
,

and the proof is done. �.

Lemma 3.3. Under hypothesis H2(C0, α, L0) where

L0 = 2arcsinh(1),

there exists C1 > 0 such that for all k and all T ≥ 0,

Nk(T ) := #{(γ,m) ∈ Pk × N
∗ : mℓ(γ) ≤ T } ≤ C1Vol(Xk)e

T .

Proof. A result of Buser ([10] Lemma 6.6.4) says that for any compact connected
hyperbolic surface of genus g, the number of oriented closed geodesics with length
≤ T which are not iterates of primitive closed geodesics of length ≤ 2arcsinh(1) is
bounded from above by

(g − 1)eT+6.

Therefore we have

Nk(T ) ≤
Vol(Xk)

4π
eT+6

+#{(γ,m) ∈ Pk × N
∗ : mℓ(γ) ≤ T and ℓ(γ) ≤ 2arcsinh(1)}.

Since we have

#{(γ,m) ∈ Pk × N
∗ : mℓ(γ) ≤ T and ℓ(γ) ≤ 2arcsinh(1)}

≤
∑

ℓ(γ)≤arcsinh(1)

T

ℓ(γ)

≤ T

ℓ0(Xk)
#{γ ∈ Pk : ℓ(γ) ≤ 2arcsinh(1)},

we can use Lemma 3.2 (with L0 = 2arcsinh(1)) to get

#{(γ,m) ∈ Pk × N
∗ : mℓ(γ) ≤ T and ℓ(γ) ≤ 2arcsinh(1)}

≤ Tc−1C0Vol(Xk)
2α ≤ Tc−1C0Vol(Xk),

and thus

Nk(T ) ≤ Vol(Xk)e
T

(

e6

4π
+ c−1C0Te

−T

)

≤ Vol(Xk)e
T

(

e6

4π
+ c−1C0e

−1

)

,

the proof is done. �

Lemma 3.4. Under hypothesis H1(η) and H2(C0, α, L0) where L0 is as above,
there exists C2 > 0 such that for all k and all t ≥ 1,

|SXk
(t)− 1| ≤ C2Vol(Xk)e

−η0t,

where η0 = min(η, 1/4).

Proof. In this proof we will use Vinogradov’s notation A ≪ B meaning that
A ≤ CB where C > 0 is a universal constant. By formula (2) we have

tr(e−t∆Xk )− 1 = Vol(X)
e−t/4

(4πt)3/2

∫ ∞

0

re−r2/4t

sinh(r/2)
dr + SXk

(t)− 1,

and therefore we get for t ≥ 1,

|SXk
(t)− 1| ≪ Vol(Xk)e

−t/4 +
∞
∑

j=1

e−tλj(Xk).
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On the other hand using the uniform spectral gap we have for all t ≥ 1,
∞
∑

j=1

e−tλj(Xk) ≤
∞
∑

j=1

e−(t−1)λj−λj ≤ e−(t−1)ηtr(e−∆Xk ).

Going back to formula (2) with t = 1, we have also

tr(e−∆Xk ) ≪ Vol(Xk) + SXk
(1),

and

SXk
(1) ≪

∑

m≥1

∑

γ∈Pk

ℓ(γ)

2 sinh(mℓ(γ)/2)
e−(mℓ(γ))2/4

≪
∫ ∞

0

u

2 sinh(u/2)
e−u2/4dNk(u).

We can use Lemma 3.3 to bound Nk(u) as

Nk(u) ≤ C1Vol(Xk)e
u,

and a summation by parts shows that
∫ ∞

0

u

2 sinh(u/2)
e−u2/4dNk(u) = −

∫ ∞

0

Nk(u)
d

du

{

u

2 sinh(u/2)
e−u2/4

}

du

≪ C1Vol(Xk),

which ends the proof. �

We can now give a proof of Theorem 3.1. First notice that by formula (3), we have
∣

∣

∣

∣

log det(∆Xk
)

Vol(Xk)
− E

∣

∣

∣

∣

≤ O(Vol(Xk)
−1) +D

(1)
Xk

+D
(2)
Xk
,

where

D
(1)
Xk

=
1

Vol(Xk)

∫ ∞

1

|SXk
(t)− 1|
t

dt, D
(2)
Xk

=
1

Vol(Xk)

∫ 1

0

SXk
(t)

t
dt.

Let us fix ǫ > 0. We first investigate D
(1)
Xk

. Using H1(η) and H2(C0, α, L0), we can
use Lemma 3.4 and write

∫ ∞

1

|SXk
(t)− 1|
t

dt ≤
∫ R

1

SXk
(t)

t
dt+ log(R) + C2Vol(Xk)

∫ ∞

R

e−η0t

t
dt.

Fixing R = R(ǫ) so large that

C2

∫ ∞

R

e−η0t

t
dt ≤ ǫ,

we have

D
(1)
Xk

≤ 1

Vol(Xk)

∫ R

1

SXk
(t)

t
dt+

log(R)

Vol(Xk)
+ ǫ.

We now pick L1 >> 1 (to be adjusted later on) and write

∫ R

1

SXk
(t)

t
dt =

∫ R

1

SL1,−
Xk

(t)

t
dt+

∫ R

1

SL1,+
Xk

(t)

t
dt,

where

SL1,−
Xk

(t) =
e−t/4

(4πt)1/2

∑

mℓ(γ)≤L1

ℓ(γ)

2 sinh(mℓ(γ)/2)
e−(mℓ(γ))2/4t,

SL1,+
Xk

(t) =
e−t/4

(4πt)1/2

∑

mℓ(γ)>L1

ℓ(γ)

2 sinh(mℓ(γ)/2)
e−(mℓ(γ))2/4t.
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Clearly we have
∫ R

1

SL1,+
Xk

(t)

t
dt ≤ C3

∑

mℓ(γ)>L

ℓ(γ)

2 sinh(mℓ(γ)/2)
e−(mℓ(γ))2/4R,

for some universal constant C3 > 0. Using Lemma 3.3 and a summation by parts,
we deduce that

∫ R

1

SL1,+
Xk

(t)

t
dt ≤ C4Vol(Xk)

∫ ∞

L1

∣

∣

∣

∣

d

du

(

u

sinh(u/2)
e−u2/(4R)

)∣

∣

∣

∣

eudu.

we now take L1 = L1(ǫ) so large that

C4

∫ ∞

L1

∣

∣

∣

∣

d

du

(

u

sinh(u/2)
e−u2/(4R)

)∣

∣

∣

∣

eudu < ǫ.

We now observe that if H2(C,α, L1) holds, we have
∫ R

1

SL,−
Xk

(t)

t
dt =

∑

mℓ(γ)≤L

ℓ(γ)

2 sinh(mℓ(γ)/2)

∫ R

1

e−(mℓ(γ))2/4t e−t/4

√
4πt3/2

dt

≤ C5L1Nk(L1) ≤ C5CL1Vol(Xk)
α ≤ C6(L1, C)Vol(Xk)

α,

for some possibly large constant C6(L1, C) > 0. In a nutshell, we have obtained,
provided that H2(C,α, L1) is satisfied with L1 = L1(ǫ) taken large enough,

lim sup
Vol(Xk)→+∞

D
(1)
Xk

≤ 2ǫ.

We now turn our attention to D
(2)
Xk

, and this is where the control of the systole

ℓ0(Xk) will play a role. We first use the same idea as above by writing

D
(2)
Xk

=
1

Vol(Xk)

∫ 1

0

SXk
(t)

t
dt =

1

Vol(Xk)

∫ 1

0

SL2,−
Xk

(t)

t
dt+

1

Vol(Xk)

∫ 1

0

SL2,+
Xk

(t)

t
dt.

Writing for t > 0,

SL2,+
Xk

(t) ≤ C7t
−1/2

∑

mℓ(γ)>L2

ℓ(γ)

2 sinh(mℓ(γ)/2)
e−(mℓ(γ))2/4t,

where C7 > 0 is universal, we have by Fubini
∫ 1

0

SL2,+
Xk

(t)

t
dt ≤ C7

∑

mℓ(γ)>L2

ℓ(γ)

2 sinh(mℓ(γ)/2)
G(mℓ(γ)),

where for u > 0,

G(u) =

∫ 1

0

t−3/2e−u2/4tdt.

Notice that u 7→ G(u) is a decreasing function and by a change of variable we have
actually for all u > 0,

G(u) =
4

u

∫ ∞

u/2

e−x2

dx.

We have therefore the bound

G(u) =
4

u

∫ ∞

u/2

e−x2/2−x2/2dx ≤ 4

u
e−u2/8

∫ ∞

0

e−x2/2dx =
2
√
2π

u
e−u2/8.

As a consequence we get for L2 > 1
∫ 1

0

SL2,+
Xk

(t)

t
dt ≤ C8

∑

mℓ(γ)>L2

ℓ(γ)

2 sinh(mℓ(γ)/2)
e−(mℓ(γ))2/8,
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and by using Lemma 3.3 and a summation by parts, we can definitely fix L2 = L2(ǫ)
large enough so that

∫ 1

0

SL2,+
Xk

(t)

t
dt ≤ C8

∑

mℓ(γ)>L2

ℓ(γ)

2 sinh(mℓ(γ)/2)
e−(mℓ(γ))2/8 ≤ Vol(Xk)ǫ.

From the above bound on G(u) we also deduce
∫ 1

0

SL2,−
Xk

(t)

t
dt ≤ C9

ℓ0(Xk)

∑

mℓ(γ)≤L2

ℓ(γ)

2 sinh(mℓ(γ)/2)
.

By using Lemma 3.2 and H2(C,α, L2(ǫ)) we have again as above
∫ 1

0

SL2,−
Xk

(t)

t
dt ≤ C10(L2, C)Vol(Xk)

2α,

where C10(L2, C) > 0 is some (possibly very large) constant depending on L2, C.
We have therefore shown, that whenever (Xk) satisfies H2(C,α, L(ǫ)) for some
C > 0 and with L(ǫ) = max{L1, L2} we have

lim sup
Vol(Xk)→+∞

∣

∣

∣

∣

log det(∆Xk
)

Vol(Xk)
− E

∣

∣

∣

∣

≤ 3ǫ.

Theorem 3.1 is proved. �

4. Hypotheses H1 and H2 hold with high probability

Theorem 1.1 follows immediately from Theorem 3.1 if one can establish for all
models that there exists η > 0 and α > 0 with α < 1/2 such that H1(η) holds with
high probability as Vol(X) goes to infinity and for all L large, one can find C > 0
such that H2(C,α, L) also holds with high probability as Vol(X) goes to infinity.
Indeed we then have for all ǫ > 0, and all Vol(X) large enough

P

(

log det(∆X)

Vol(X)
∈ [E − ǫ, E + ǫ]

)

≥

P (X ∈ H1(η) ∩ H2(C0, α, L0) ∩ H2(C,α, L(ǫ))) ,

with
lim

Vol(X)→∞
P (X ∈ H1(η) ∩ H2(C0, α, L0) ∩ H2(C,α, L(ǫ))) = 1.

4.1. Random covers. First we recall that the cover Xn → X may not be con-
nected but we know from [19] that

lim
n→+∞

P(Xn connected) = 1.

We can therefore either restrict ourselves to connected surfaces Xn or modify the
definition of the regularized determinant by setting

ζXn
(s) =

1

Γ(s)

∫ ∞

0

ts−1(Tr(e−t∆X )− dn)dt,

where dn is the number of connected component of Xn and use the fact that dn = 1
with high probability.

It was recently shown in [20] that there exists a uniform spectral gap for random cov-
ersXn a.a.s. as n→ +∞. More precisely we have for all 0 < η < min{3/16, λ1(X)},

lim
n→+∞

P(λ1(Xn) ≥ η) = 1.

Therefore H1(η) holds a.a.s. provided η is taken small enough. On the other hand
property H2 is less obvious from the existing litterature and will require some
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explanations. We recall that given a random homomorphism φn : Γ → Sn, one can
define a unitary representation ρn of Γ by setting

ρn(γ)(f) := f ◦ φn(γ)−1,

where f ∈ L2([n]), and the representation space is L2([n]) ≃ Cn. The main interest
of this representation is the following fact, often called ”Venkov-Zograf induction
formula”. For all Re(s) > 1, one can define the Seberg zeta function of Xn by

ZXn
(s) :=

∏

m≥0

∏

γ∈PXn

(

1− e−(s+m)ℓ(γ)
)

.

One can also look at the twisted Selberg zeta function of the baseX = Γ\H2 defined
for Re(s) > 1 by

ZX,ρn
(s) :=

∏

m≥0

∏

γ∈PX

det
(

I − ρn(γ)e
−(s+m)ℓ(γ)

)

.

It turns out that we have for all s, ZXn
(s) = ZX,ρn

(s), see [37]. By computing
logarithmic derivatives we have for all Re(s) > 1,

Z ′
Xn

(s)

ZXn
(s)

=
∑

γ∈PXn

∑

q≥1

ℓ(γ)e−sqℓ(γ)

1− e−qℓ(γ)
=
∑

γ∈PX

∑

q≥1

ℓ(γ)tr(ρn(γ
q))e−sqℓ(γ)

1− e−qℓ(γ)
.

Let φ ∈ C∞
0 (R+) be a compactly supported smooth test function, and set

ψ(s) :=

∫ ∞

0

esxφ(x)dx.

One can check that ψ(s) is actually analytic on C and by Fourier inversion formula
we have for all A > 1,

1

2iπ

∫ A+i∞

A−i∞

Z ′
Xn

(s)

ZXn
(s)

ψ(s)ds =
∑

γ∈PXn

∑

q≥1

ℓ(γ)

1− e−qℓ(γ)
φ(qℓ(γ))

=
∑

γ∈PX

∑

q≥1

ℓ(γ)tr(ρn(γ
q))

1− e−qℓ(γ)
φ(qℓ(γ)).

See for example [17] §3 for more details on the derivation of this formula. By
carefully choosing the test function φ we deduce that for all L ∈ R+, we recover
the identity

∑

γ∈PXn

∑

q≥1
qℓ(γ)=L

ℓ(γ) =
∑

γ∈PX

∑

q≥1
qℓ(γ)=L

ℓ(γ)tr(ρn(γ
q)).

Notice that this formula can be proved directly by group theoretic arguments, see
for example in [15], in the proof of theorem 7.1. From this identity we deduce that
for all L > 0, we have

∑

γ∈PXn

∑

q≥1
qℓ(γ)≤L

ℓ(γ) =
∑

γ∈PX

∑

q≥1
qℓ(γ)≤L

ℓ(γ)tr(ρn(γ
q)).

In particular if we set

NXn
(L) := #{(γ,m) ∈ PXn

× N
∗ : mℓ(γ) ≤ L},

we have

ℓ0(X)NXn
(L) ≤ L

∑

γ∈PX

∑

q≥1
qℓ(γ)≤L

tr(ρn(γ
q)).

We point out that we have actually tr(ρn(γ
q)) = Fix(φn(γ

q)), where Fix(σ) de-
notes the number of fixed points of the permutation σ acting on [n]. From the
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combinatorial analysis of Magee-Puder [21, 20], we know that for all primitive
γ ∈ Γ and q ≥ 1, we have

lim
n→∞

E(Fix(φn(γ
q))) = d(q),

where d(q) stands for the number of divisors of q. This is enough to conclude that
for all L, we have

lim
n→∞

E(NXn
(L)) ≤ C(Γ, L),

where C(Γ, L) > 0 is some large constant. Applying Markov’s inequality, we get
that for all ε > 0 and L fixed,

lim
n→∞

P (NXn
(L) ≤ Vol(Xn)

ε) = 1.

As a conclusion, in the random cover model, H2(C,α, L) is satisfied a.a.s. for all
L large and all α > 0.

4.2. Brooks-Makover model. In the paper [9], they show (Theorem 2.2) that
there exist a constant C1 > 0 such that as n→ ∞,

P(λ1(S
C
n ) ≥ C1) → 1.

Notice that contrary to the model of random covers, the systole of SC
n can be

arbitrarily small, but we actually know that there exists C2 > 0 such that as
n→ +∞,

P(ℓ0(S
C
n ) ≥ C2) → 1.

In other words, property H1(η) is satisfied a.a.s. for some η > 0. On the other
hand, counting results for closed geodesics follow from the later work of Petri [29].
More precisely, one can derive from [29] the following fact.

Proposition 4.1. For all L > 0 fixed, we can find an integer NL and a finite set
of words

WL ⊂ {l, r}NL,

such that with high probability as n→ ∞,

Nn(L) := #{(γ,m) ∈ PSC
n
× N

∗ : mℓ(γ) ≤ L} ≤
∑

w∈WL

Zn,w,

where Zn,w are integer valued random variables. In addition each Zn,w converges in
the sense of moments (and hence in distribution) as n → ∞ to a Poisson variable
with expectation λw > 0.

By applying Markov inequality, one deduces readily that for all ε > 0 we have a.a.s.
∑

w∈WL

Zn,w ≤ nǫ ≤ CLVol(S
C
n )ε.

This is enough to conclude that for all ε > 0, with high probability as n → ∞, we
have

Nn(L) ≤ CVol(SC
n )ε,

and therefore property H2(C,α, L) holds for any choice of α > 0, just like in the
previous model.

Let us now give some details on the proof of Proposition 4.1. The first step is to
reduce the problem to a counting bound for SO

n . In [9] §3, they introduce the notion
of ”large cusps” condition for SO

n . This condition is satisfied a.a.s for SO
n as n→ ∞

by Theorem 2.1 in [9]. The main interest of this condition is Theorem 3.2 in [9],



13

see also Lemma 2.5 in [29], which allows to show that provided this ”large cusps”
condition is satisfied, one can bound

Nn(L) ≤ #{(γ,m) ∈ PS0
n
× N

∗ : mℓ(γ) ≤ 2L} =: NO
n (2L).

As explained in [9], §4, closed geodesics and their length in SO
n can be described

via the combinatorial data of (Gn,O): any closed geodesic in SO
n corresponds to a

word w ∈ {l, r}N , for some N > 0. To this word one can associate a matrix Mw in
SL2(N) via the rule

Mw =W1 . . .WN ,

where Wj = L if wj = l and Wj = R if wj = r, where

L =

(

1 1
0 1

)

, R =

(

1 0
1 1

)

.

The length ℓw of the corresponding geodesic on SO
n is then given by

tr(Mw) = 2 cosh(ℓw/2).

All we need to check is that fixing L implies finiteness of the corresponding set of
words (by bounding their word length). This is done in Lemma 3.1 in [30]. One
obtains therefore that L being fixed, there exists a finite subset WL ⊂ {l, r}NL for
some large NL > 0, such that for all n, all closed geodesics with length ≤ 2L on SO

n

are given by words w ∈WL. Proposition 4.1 now follows directly from Theorem B
in [29].

4.3. Weil-Petersson model. If f(X) is a well-defined function on moduli space
Mg, we will denote by

∫

Mg
f(X)dX the corresponding integral with respect to

Weil-Petersson volume. In the latter Vg will denote the Weil-Petersson volume of
Mg so that the expectation of f is given by

Eg(f) :=
1

Vg

∫

Mg

f(X)dX.

In [24], the following fact was proved. There exists η > 0 such that as g → +∞,
we have

P(λ1(X) ≥ η) → 1.

The constant η given by Mirzakhani follows from Cheeger’s inequality and an es-
timate a.a.s. of Cheeger’s isoperimetric constant. Recently it was shown indepen-
dently in [40, 39] that one can actually take η = 3/16− ǫ. This shows that H1(η)
holds with high probability as g → +∞ for some universal η > 0. In [24], see
Theorem 4.2 and the remark after, she proved that there exists a universal ǫ0 > 0
such that for all 0 < ǫ ≤ ǫ0, one has for all g large

P(ℓ0(X) ≤ ǫ) ≤ Cǫ2,

where C is uniform in g. In particular for all ε > 0, we get for all g large

P
(

ℓ0(X) ≥ Vol(X)−ε
)

≥ 1− O(Vol(X)−2ε).

On the other hand, in the paper [25], Mirzakhani and Petri showed that for all
L > 0 fixed, the random variable

N0
g (L) := #{γ ∈ PX : ℓ(γ) ≤ L}

converges in distribution as g → +∞ to a Poisson variable ZλL
with parameter

λL :=

∫ L

0

et + e−t − 2

2t
dt.

Moreover, we have also convergence of all moments with p ∈ N

lim
g→∞

E(
(

N0
g (L)

)p
) = E(Zp

λL
).
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An application of Markov’s inequality then shows that for all ε > 0, for all g large
enough

P(N0
g (L) ≤ Vol(X)ε) ≥ 1− CLVol(X)−ε.

To control the counting function

Ng(L) := #{(γ,m) ∈ PX × N
∗ : mℓ(γ) ≤ L},

we write

Ng(L) ≤
[L/ℓ0(X)]+1
∑

m=1

N0
g (L/m) ≤ N0

g (L)

(

1 +
L

ℓ0(X)

)

.

For all ε > 0, we have with high probability as g → +∞
Ng(L) ≤ Vol(X)ε + LVol(X)2ε = OL(Vol(X)2ε),

and thus for all L large, there exists CL > 0 such that H2(CL, α, L) holds with
high probability for all α > 0 on Mg as g → +∞.

5. Convergence results for moments of log det(∆X).

In this last section, we give the proof of the following fact.

Theorem 5.1. In the Weil-Petersson model, for all 0 < β < 1 we have

lim
g→∞

1

Vg(4π(g − 1))β

∫

Mg

|log det(∆X)|β dX = Eβ .

In the random cover model, Let χ0 = 1{Xn connected}. Then as n → +∞, for all
β > 0, we have

lim
n→∞

E

( | log det(∆Xn
)|β

Vol(Xn)β
χ0

)

= Eβ .

The proof for the Weil-Petersson model is a rather direct consequence of Theorem
1.1 and some estimates of Mirzakhani [23]. We first need an a priori estimate
for | log det(∆X)| which follows from similar ideas as in Theorem 3.1, without the
probabilistic input. We use Vinogradov’s notation ≪ where the implied constant
is universal.

By using Buser’s counting bound [10], as in the proof of Lemma 3.3, we have the
following universal bound for the number of closed geodesics of a surface with genus
g:

NX(L) ≤ (g − 1)eL+6 +
L

ℓ0(X)
(3g − 3)

≪ Vol(X)eL
(

1 +
1

ℓ0(X)

)

, (4)

for some universal constant A1 > 0. We now prove an a priori upper bound for
| log det(∆X)|. Following ideas of Wolpert [38], it is convenient to write for all Re(s)
large,

ζX(s) =
∑

0<λj<1/4

λ−s
j +

1

Γ(s)

∫ ∞

0

ts−1



tr(e−t∆X )−
∑

0≤λj<1/4

e−tλj



 dt,

which can be rewritten as

ζX(s) =
∑

0<λj<1/4

λ−s
j +

∑

0≤λj<1/4

H(s, λj) + ζ
(1)
X (s)+
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1

Γ(s)

∫ ∞

1

ts−1



SX(t)−
∑

0≤λj<1/4

e−tλj



 dt+
1

Γ(s)

∫ 1

0

ts−1SX(t)dt,

where we have set for Re(s) large,

H(s, λ) :=
1

Γ(s)

∫ 1

0

ts−1e−λtdt.

By integration by parts and elementary properties of the Euler gamma function,
we then observe that for all λ ∈ [0, 1/4], s 7→ H(s, λ) has an analytic extension to
s = 0. Morevover, if we set

C(λ) := − d

ds

∣

∣

∣

∣

s=0

H(λ, s),

the there exists a universal constant A1 > 0 such that for all λ ∈ [0, 1/4],

|C(λ)| ≤ A1.

This formula leads to the identity

log det(∆X) =
∑

0<λj<1/4

log(λj) +
∑

0<λj<1/4

C(λj)−
d

ds

∣

∣

∣

∣

s=0

ζ
(1)
X (s)

−
∫ 1

0

SX(t)

t
dt−

∫ ∞

1

(SX(t)−∑0≤λj<1/4 e
−λjt)

t
dt.

By mimicking the proof of Lemma 3.4 and using the above counting bound, we
deduce that for all t ≥ 1,

∣

∣

∣

∣

∣

∣

SX(t)−
∑

0≤λj<1/4

e−tλj

∣

∣

∣

∣

∣

∣

≪ Vol(X)

(

1 +
1

ℓ0(X)

)

e−t/4.

By Fubini and the estimate on u 7→ G(u) we have also
∫ 1

0

SX(t)

t
dt≪

∑

m,γ

e−(mℓ(γ))2/8

mℓ(γ)
≪

∑

mℓ(γ)≤1

1

mℓ(γ)
+

∑

mℓ(γ)>1

e−(mℓ(γ))2/8

≪
∑

mℓ(γ)≤1

1

mℓ(γ)
+ Vol(X)

(

1 +
1

ℓ0(X)

)

.

By noticing that we have

∑

mℓ(γ)≤1

1

mℓ(γ)
≪ log ℓ−1

0 (X)

ℓ0(X)
N0

X(1),

where N0
X(L) is the counting function for primitive closed geodesics, we have ob-

tained the estimate:

| log det(∆X)| ≪ Vol(X)

(

1 + | log(λ∗(X))|+ 1

ℓ0(X)
+

)

+
log ℓ−1

0 (X)

ℓ0(X)
N0

X(1),

where we have set λ∗(X) = min{λ1(X), 1/4}, and we have used the rough bound
of Buser [10]:

#{λj < 1/4} ≤ 4g − 3 = 1 +
Vol(X)

π
.

This estimate of | log det(∆X)| is consistent with the fact that det(∆X) has expo-
nential growth when X approaches certain boundary points of the (compactified)
moduli space, a fact that was rigourously established by Wolpert in [38]. In partic-
ular the so-called ”bosonic Polyakov integral” involving the determinant over the
moduli space is indeed infinite, see [38].
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Using the inequality for all β > 0 and all aj > 0,




4
∑

j=1

aj





β

≤ 8β





4
∑

j=1

aβj



 ,

we end up with the estimate

| log det(∆X)|β
Vol(X)β

≪
(

1 + | log(λ∗(X))|β +
1

ℓ0(X)β
+Vol(X)−β

(

log ℓ−1
0 (X)

ℓ0(X)
N0

X(1)

)β
)

.

From Mirzakhani [23], Corollary 4.3, we know that
∫

Mg

1

ℓ0(X)
dX ≤ CVg,

where C > 0 is independent of g, from which we can deduce easily that for all
0 < α < 1, we have

∫

Mg

(

log(ℓ−1
0 (X))

ℓ0(X)

)α

dX ≤ CVg,

for some C > 0 uniform in g. We mention that the inverse of the systole is actually
square integrable on moduli space [1], however it is unclear from [1] how this L2

norm can depend on the genus. On the other hand, Cheeger’s inequality says that

λ1(X) ≥ h2X
4
,

where hX is the so-called Cheeger constant of X , which defined by an isoperimetric
constant, see for example in [10], chapter 8. Again By Mirzakhani [23], Theorem
4.8, we know that for all α < 2, we have

∫

Mg

1

(hX)α
dX ≤ CVg,

where C > 0 is again uniform with respect to g. In particular we deduce that for
all β > 0,

∫

Mg

| log(λ∗(X))|βdX ≤ CVg.

Assuming that β < 1, we choose p > 1 such that β < pβ < 1 and let q be such that
1/p+ 1/q = 1. By Hölder’s inequality we get

Eg

(

(

log ℓ−1
0 (X)

ℓ0(X)
N0

X(1)

)β
)

≤
[

Eg

(

(

log ℓ−1
0 (X)

ℓ0(X)

)βp
)]1/p

[

Eg

(

N0
X(1)βq

)]1/q
,

which by the convergence of moments in Mirzakhani-Petri [25] and the above re-
marks is uniformly bounded as g → +∞. We therefore have shown that for all
β < 1, there exists C > 0 independent of g such that

∫

Mg

| log det(∆X)|β
Vol(X)β

dX ≤ CVg. (5)

We now fix ǫ > 0, and 0 < β < 1. By Theorem 1.1, there exists a subset Ag(ǫ) ⊂
Mg, with P(Ag(ǫ)) → 1 as g → +∞, such that for all X ∈ Ag(ǫ),

(E − ǫ)β ≤ | log det(∆X)|β
Vol(X)β

≤ (E + ǫ)β .

Therefore we have

1

Vg

∫

Mg

| log det(∆X)|β
Vol(X)β

dX ≤ (E + ǫ)β +
1

Vg

∫

Ag(ǫ)c

| log det(∆X)|β
Vol(X)β

dX,
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while

(E − ǫ)βP(Ag(ǫ)) ≤
1

Vg

∫

Mg

| log det(∆X)|β
Vol(X)β

dX.

We now apply Hölder’s inequality and estimate (5). Since 0 < β < 1, let q > 1 be
chosen such that 0 < qβ < 1 and let 0 < p < ∞ be such that 1/p + 1/q = 1, we
have

1

Vg

∫

Ag(ǫ)c

| log det(∆X)|β
Vol(X)β

dX ≤ (P(Ag(ǫ)
c))

1/p

(

1

Vg

∫

Mg

| log det(∆X)|qβ
Vol(X)qβ

dX

)1/q

≤ C (P(Ag(ǫ)
c)

1/p
.

Since limg→+∞ P(Ag(ǫ)
c) = 0, we definitely have for all g large enough

(E − ǫ)β − ǫ ≤ 1

Vg

∫

Mg

| log det(∆X)|β
Vol(X)β

dX ≤ (E + ǫ)β + ǫ,

and the proof is done for the Weil-Petterson case. We now deal with the random
cover case. We recall that we have χ0 = 1{Xn connected}. In this model, the systole
is bounded uniformly from below, so the a priori bound for log det(∆Xn

) whenever
Xn is connected, is actually

| log det(∆Xn
)|β

Vol(Xn)β
≤ A

(

1 + | log(λ∗(X))|β
)

,

for some constant A > 0 independent of n. Using the same arguments as above
based on Hölder’s inequality, the result follows directly from the next fact.

Proposition 5.2. Assume that Xn is connected, then we have for all n large,

λ1(Xn) ≥
CΓ

n3/2
,

where CΓ depends only on the base surface X = Γ\H2. Consequently for all expo-
nent β with 0 < β,

E
(

| log(λ∗(X))|βχ0

)

≤ C,

where C > 0 is uniform with respect to n.

We first need to prove a deterministic lower bound on λ1(Xn), provided that Xn is
connected. By the induction formula, we know that the spectrum of ∆Xn

coincides,
with multiplicity, with the spectrum of ∆ρn

, which is the Laplacian on the base
surface twisted by the unitary representation ρn of Γ defined previously. If Xn is
connected, then

λ1(Xn) = min{λ1(X), λ0(∆ρ0
n
)},

where ρ0n is the representation given by

ρ0n(γ)U := Uφ−1
n (γ),

where U ∈ V 0
n := {U ∈ Cn :

∑n
j=1 U(j) = 0} and Uφ−1

n (γ)(j) = U(φ−1
n (γ)(j)).

Notice that ρ0n is just the orthogonal to the trivial representation in ρn. Let us fix
a system of generators of Γ, denoted by S. A result of Sunada [36] then says that
there exists CS depending only on X and S such that

λ0(∆ρ0
n
) ≥ CS inf

U∈V 0
n

‖U‖=1

max
γ∈S

‖ρ0n(γ)U − U‖.

Let us take U ∈ V 0
n such that ‖U‖ = 1. We therefore have

1 = ‖U‖2 ≤ nmax
j

(Re(U(j))2 + Im(U(j))2),
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and we can assume without loss of generality that we have Re(U(j0)) ≥ 1√
2n

for

some j0 ∈ [n]. Because we have in addition
∑

j

Re(U(j)) = 0,

there exists also j1 ∈ [n] such that Re(U(j1)) ≤ 0. If Xn is connected, then Γ acts
transitively on [n] via φn and there exists γ0 ∈ Γ such that φn(γ0)

−1(j0) = j1. A
simple induction argument shows that we can choose γ0 with word length (with
respect to S) less than n− 1. We now have

1√
2n

≤ |Re(U(j0))− Re(U(j1))| ≤ ‖ρ0n(γ0)U − U‖.

Writing

γ0 = g1g2 . . . gm,

with gj ∈ S and m ≤ n− 1, we have therefore

‖ρ0n(γ0)U − U‖ ≤
m
∑

j=1

‖ρ0n(gj)U − U‖ ≤ (n− 1)max
g∈S

‖ρ0n(g)U − U‖,

which yields

max
g∈S

‖ρ0n(g)U − U‖ ≥ 1

(n− 1)
√
2n
.

The first claim of the proposition is proved. Alternatively, one can use directly
a result of Brooks [7] which relates λ1(Xn) to the Cheeger constants of Schreier
graphs of the covers (with a choice of generators of Γ) to obtain a similar lower
bound λ1(Xn) ≥ CΓn

−2 which is slightly worse but good enough for our purpose.

From the proof of the uniform spectral gap in [20] one can directly derive that for
all r > 0, for all ǫ > 0, as n→ ∞,

P(λ1(Xn) ≤ r) ≤ Cǫ

n4
√

(1/4−r)−1−ǫ
.

From that we deduce that for all α < 1 we can find rα > 0 such that

P(λ1(Xn) ≤ rα) ≤
Cα

nα
.

We now fix any β > 0 and fix some 0 < α < 1, we can use the fact that we have
(by the lower bound on λ∗(X))

| log(λ∗(X))|β = O((log(n))β),

where the implied constant is uniform with respect to n. We therefore get as
n→ ∞,

E(| log(λ∗(X))|βχ0) ≤ | log(rα)|β(1 +O(n−α)) +O
(

n−α| log(n)|β
)

= O(1)

and the proof is done. We conclude with some comments.

• It would be interesting to know if a similar type of result can be proved for
the Brooks-Makover model, in particular can one show that

E

(

1

ℓ0(SC
n )

)

is finite and uniformly bounded with respect to n ? This will require an
effective version of the compactification procedure, see the paper of Man-
goubi [22].
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• It is likely that our results can be extended to finite area surfaces, see Efrat
[14] for the definition and properties of determinants in this context, or
even geometrically finite surfaces where a notion of determinant also holds,
see [5].
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