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DETERMINANTS OF LAPLACIANS ON RANDOM HYPERBOLIC SURFACES BY FR ÉD ÉRIC NAUD

For sequences (X j ) of random closed hyperbolic surfaces with volume Vol(X j ) tending to infinity, we prove that the regularized determinant of the Laplacian det(∆ X j ) satisfies for all ǫ > 0 and with high probability as

where E > 0 is a universal constant. This result holds for various models of random surfaces, including the Weil-Petersson model.

Introduction and results

1.1. On determinants. Let X = Γ\H 2 be a compact connected hyperbolic surface obtained as a quotient of the hyperbolic plane H 2 by a co-compact group of isometries. The hyperbolic Laplacian ∆ X has a pure point spectrum on L 2 (X) and it is denoted by 0 = λ 0 < λ 1 ≤ . . . λ j ≤ . . . . For all Re(s) large enough, we know by Weyl's law that the spectral zeta function

ζ X (s) = ∞ j=1 1 λ s j
is well defined and holomorphic. This zeta function ζ X (s) actually has a meromorphic extension to C and is analytic at s = 0. The regularized determinant is then usually defined by log det(∆ X ) := -ζ ′ X (0), which agrees with the formal computations. Practically, one performs the meromorphic continuation by noticing that for large Re(s) we have

ζ X (s) = 1 Γ(s) ∞ 0 t s-1 (Tr(e -t∆X ) -1)dt,
where e -t∆X is the heat semi-group. The small time asymptotics of the heat kernel is the main tool which allows to "renormalize" the divergent behavior at t = 0 and obtain the meromorphic continuation. In the literature, Polyakov's string theory [START_REF] Polyakov | Quantum geometry of bosonic strings[END_REF][START_REF] Hoker | The geometry of string perturbation theory[END_REF] has emphasized the role of determinants on Riemann surfaces. In particular, the computation of "partition functions" in perturbative string theory involves formal sums over all genera of averages of determinants over the moduli space which have proved since then to be divergent, see Wolpert [START_REF] Wolpert | Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces[END_REF]. Several authors have provided [START_REF] Sarnak | Determinants of Laplacians[END_REF][START_REF] Bolte | Determinants of Laplace-like operators on Riemann surfaces[END_REF][START_REF] Hoker | On determinants of Laplacians on Riemann surfaces[END_REF] some "explicit" formulas for regularized determinants for various Laplace-like operators on Riemann surfaces. In small genus, it is possible to compute accurately such determinants by reducing to certain sums over closed geodesics which provide a fast convergence, see [START_REF] Pollicott | A remarkable formula for the determinant of the Laplacian[END_REF][START_REF] Strohmaier | Computation of eigenvalues, spectral zeta functions and zetadeterminants on hyperbolic surfaces[END_REF].

In higher dimensions, determinants of Laplacians on differential forms are related to the so-called analytic torsion which in turn is related to important topological 1 invariants by results of Cheeger and Müller [START_REF] Cheeger | Analytic torsion and the heat equation[END_REF][START_REF] Müller | Analytic torsion and R-torsion of Riemannian manifolds[END_REF]. In particular the work of Bergeron-Venkatesh [START_REF] Bergeron | The asymptotic growth of torsion homology for arithmetic groups[END_REF] establishes exponential growth of the analytic torsion for certain families of covers of arithmetic manifolds.

In the case of Riemann surfaces, if Γ is a co-compact arithmetic Fuchsian group derived from a quaternion algebra, one can define "congruence covers" X P := Γ(P)\H 2 of X = Γ\H 2 by looking at prime ideals P in the ring of integers of the corresponding number field. We denote by P the norm of ideals. Using the uniform spectral gap of these surfaces proved by Sarnak and Xue in [START_REF] Sarnak | Bounds for multiplicities of automorphic representations[END_REF], together with the fact that the injectivity radius goes to infinity as P → ∞, see in [START_REF] Mikhail | Logarithmic growth of systole of arithmetic Riemann surfaces along congruence subgroups[END_REF], one can readily show (for example by using the arguments from [START_REF] Bergeron | The asymptotic growth of twisted torsion[END_REF] or as a direct application of Theorem 3.1) that lim

P →∞ log det ∆ X P Vol(X P ) = E,
where E > 0 is some universal constant. Arithmetic surfaces being highly nongeneric, it is therefore natural to ask if this behavior is "typical" among larger families of surfaces whose volume (equivalently genus) goes to infinity.

1.2. Models of random surfaces. In this paper we will focus on behaviour of determinants of the Laplacian in the large volume (equivalently large genus) regime, using probabilistic tools. The first historical model of random compact Riemann surfaces in the mathematics literature is perhaps the model of Brooks-Makover [START_REF] Brooks | Random construction of Riemann surfaces[END_REF] which is based on random 3-regular graphs as follows. Consider G n a 3-regular graph on 2n vertices, endowed with an orientation O. On the (finite) set of all possible pairs (G n , O), one can put a probability measure (which is not the uniform measure) introduced first by Bollobás [START_REF] Bollobás | Random graphs[END_REF]. By glueing an ideal hyperbolic triangle (whose vertices are at infinity in H 2 ) according to (G n , O), see [START_REF] Brooks | Random construction of Riemann surfaces[END_REF] for the precise recipe, one obtains a random finite area hyperbolic surface S O n := S O (G n , O) with Vol(S n ) = 2πn. It is possible to show, see [START_REF] Brooks | Belyi surfaces[END_REF], that all surfaces in S O n are actually (non ramified) covers of the modular surface PSL 2 (Z)\H 2 .

One can then conformally compactify S O

n into a compact hyperbolic surface S C n by "cutting" the cusps and filling them with disks, see §3 in [START_REF] Brooks | Random construction of Riemann surfaces[END_REF]. In §4, they also show that there exists a constant C 0 > 0 such that

Vol(S C n ) ≥ C 0 n.
Most of the geometric properties of S O n (and then S C n , after a mild loss) can be read off from the combinatorics of G n .

Another more recent discrete model of random surface is the so-called random cover model which has been studied and used recently in [START_REF] Mirzakhani | Lengths of closed geodesics on random surfaces of large genus[END_REF][START_REF] Magee | A random cover of a compact hyperbolic surface has relative spectral gap 3 16 -ǫ[END_REF][START_REF] Naud | Random covers of compact surfaces and smooth linear spectral statistics[END_REF]. In what follows, we fix a compact surface X = Γ\H 2 , "the base surface". Let φ n : Γ → S n be a group homomorphism, where S n is the symmetric group of permutations of [n] := {1, . . . , n}. The discrete group Γ acts on

H 2 × [n] by γ.(z, j) := (γ(z), φ n (γ)(j)).
The resulting quotient X n := Γ\H 2 × [n] is then a finite cover of degree n of X, possibly not connected. By considering the (finite) space of all homomorphism φ n : Γ → S n , endowed with the uniform probability measure, we obtain a notion of random covering surfaces of degree n, X n → X. Let us remark that we can also view (up to isometry) the random cover X n as

X n = p k=1 Γ k \H 2 ,
where each Γ k is (a priori non-normal) subgroup of Γ given by

Γ k = Stab Γ (i k ) = {γ ∈ Γ : φ n (γ)(i k ) = i k },
where i 1 , . . . , i k ∈ [n] are representatives of the orbits of Γ (acting on [n] via φ n ). In general, the cover X n is not connected, but it follows directly from [START_REF] Liebeck | Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks[END_REF] that the probability that this cover is connected tends to 1 as n goes to infinity. In this model, we have Vol(X n ) = nVol(X).

A smooth model of random hyperbolic surfaces, is given by the moduli space M g of closed hyperbolic surfaces with genus g. The moduli space M g is the space of hyperbolic metrics on a fixed smooth closed surface S with genus g, up to isometry. It is often defined as the quotient

M g = T g /M CG,
where T g is the Teichmüller space of hyperbolic metrics on a surface S of genus g and

M CG = Diff(S)/Diff 0 (S)
is the group of isotopy classes of diffeomorphisms on S, aka the mapping class group. We refer the reader for example to [START_REF] Buser | Geometry and spectra of compact Riemann surfaces[END_REF], chapter 6 for more details. A symplectic form ω W P lives naturally on T g and descends to the moduli space, endowing it with a natural notion of volume, Weil-Petersson volume. The moduli space is a non-compact finite dimensional orbifold, but as a consequence of Bers' theorem it has a finite volume with respect to this Weil-Petersson volume. We can therefore normalize this measure and obtain a probability measure on M g . Notice that in this case if X ∈ M g , Vol(X) = 4π(g -1) by Gauss-Bonnet. The calculation of Weil-Petersson volumes of the moduli space by Mirzakhani [START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF] has made possible [START_REF] Mirzakhani | Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus[END_REF] the large genus asymptotic analysis of various geometric and spectral quantities, see for example [START_REF] Monk | Benjamini-Schramm convergence and spectra of random hyperbolic surfaces of high genus[END_REF][START_REF] Wu | Random hyperbolic surfaces of large genus have first eigenvalues greater than 3 16 -ǫ[END_REF][START_REF] Wright | Towards optimal spectral gap in large genus[END_REF] for recent works in that direction.

For all of the previous models, we will denote by P the associated probability measure, which depends either on n or g which are both proportional to the volume. We say that an event A is asymptoticaly almost sure (a.a.s.), or holds with high probability, if P(A) tends to 1 as the volume of surfaces tends to infinity. The expectation of any relevant random variable will also be denoted by E.

1.3. Main result.

Theorem 1.1. There exists a universal constant E > 0 such that for all the above models of random surfaces, for all ǫ > 0, we have a.a.s as Vol(X) → +∞,

log det(∆ X ) Vol(X) ∈ [E -ǫ, E + ǫ].
The constant E is actually explicit, see §2. This result shows that exponential growth of the determinant is typical when the genus goes to infinity. This low dimensional result is consistent, in a much simpler setting, with the conjectures on the exponential growth of the analytic torsion and the torsion homology for higher dimensional hyperbolic manifolds, see for example the paper of Bergeron-Venkatesh [START_REF] Bergeron | The asymptotic growth of torsion homology for arithmetic groups[END_REF] and references herein.

Remark that the above statement says that the random variable log det(∆X )

Vol(X)

converges in probability to the constant E. What about other modes of convergence? It is possible to derive from Theorem 1.1 a convergence result for the expectation of | log det(∆)| β , see section §5, Theorem 5.1: for both models of random covers and Weil-Petersson, we show the existence of exponents β > 0 such that lim

Vol(X)→∞ E | log det(∆ X )| β Vol(X) β = E β .
The paper is organized as follows. In §2 we recall how one establishes an identity for log det(∆ X ) which involves infinite sums over closed geodesics via the Heat trace formula. In §3 we prove an abstract Theorem which guarantees the exponential growth of determinants as long as a certain natural list of assumptions are satisfied. These hypotheses turn out to be valid a.a.s. for the probabilistic models listed above, and this is established in §4. In §5, we derive from Theorem 1.1 a convergence result for the expectation, based on some moments estimates for the systole and the smallest positive eigenvalue.
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Heat kernels and determinants

On the hyperbolic plane H 2 , the heat kernel p t (x, y) (see for example [START_REF] Buser | Geometry and spectra of compact Riemann surfaces[END_REF] chapter 7) has an explicit formula given by

p t (x, y) = √ 2e -t/4 (4πt) 3/2 ∞ d(x,y) re -r 2 /4t dr cosh r -cosh d(x, y) ,
where d(x, y) denotes the hyperbolic distance in H 2 . On the quotient X = Γ\H 2 , we can recover the heat kernel by summing over the group i.e.

h X t (x, y) = γ∈Γ p t (x, γy).
Convergence of the above series on any compact subset of H 2 is garanteed by the lattice counting bound

N Γ (x, y, T ) := #{γ ∈ Γ : d(γx, y) ≤ T } = O(e T ), (1) 
which is standard and follows from a basic volume argument. The semi-group of operators e -t∆X is then of trace class and one has the explicit "heat trace formula"

Tr(e -t∆X ) = j e -tλj = Vol(X) e -t/4 (4πt) 3/2 ∞ 0 re -r 2 /4t sinh(r/2) dr (2) + e -t/4 (4πt) 1/2 k≥1 γ∈P ℓ(γ) 2 sinh(kℓ(γ)/2) e -(kℓ(γ)) 2 /4t
, where P stands for the set of primitive conjugacy classes in Γ (i.e. oriented primitive closed geodesics on X) and if γ ∈ P, ℓ(γ) is the length. For more details on the calculation of this trace and more generally Selberg's formula, see [START_REF] Hejhal | The Selberg trace formula for PSL[END_REF][START_REF] Buser | Geometry and spectra of compact Riemann surfaces[END_REF]. Setting

S X (t) := e -t/4 (4πt) 1/2 k≥1 γ∈P ℓ(γ) 2 sinh(kℓ(γ)/2) e -(kℓ(γ)) 2 /4t ,
it is easy to see that |S X (t) -1| is exponentially small as t → +∞. We also observe that S X (t) is exponentially small as t → 0. Writing (for Re(s) large)

ζ (2) X (s) := 1 Γ(s) ∞ 0 t s-1 (S X (t) -1)dt = 1 Γ(s) 1 0 t s-1 (S X (t) -1)dt + 1 Γ(s) ∞ 1 t s-1 (S X (t) -1)dt = -1 Γ(s + 1) + 1 Γ(s) 1 0 t s-1 S X (t)dt + 1 Γ(s) ∞ 1 t s-1 (S X (t) -1)dt,
we notice that the last two integrals make sense for all s ∈ C. Therefore ζ

(2) X (s) has an analytic extension to C and using elementary facts on the gamma function (in particular it has a simple pole at s = 0 with residue 1), we have that

- d ds s=0 ζ (2) 
X (s) = -Γ ′ (1) - 1 0 S X (t) t dt - ∞ 1 (S X (t) -1) t dt.
On the other hand, setting for large Re(s)

ζ (1) X (s) := Vol(X) 1 4πΓ(s) ∞ 0 t s-1 e -t/4 √ 4πt 3/2 ∞ 0 re -r 2 /4t sinh(r/2) drdt,
and using that 1

e -t/4 √ 4πt 3/2 ∞ 0 re -r 2 /4t sinh(r/2) dr = e -t/4 +∞ -∞
x tanh(πx)e -(x 2 +1/4)t dx, one can compute the Mellin transform to obtain (again for Re(s) large)

ζ (1) X (s) = 2Vol(X) 4π ∞ 0 u tanh(πu) (u 2 + 1/4) s du.
This function can be analytically continued to s = 0, see for example [START_REF] Bolte | Determinants of Laplace-like operators on Riemann surfaces[END_REF], Appendix B, and the value can be actually computed as

- d ds s=0 ζ (1) 
X (s) = Vol(X) 4π (4ζ ′ (-1) -1/2 + log(2π)) := Vol(X)E, with ζ ′ (-1) = 1/12 -log(A)
and A is the so-called Glaisher-Kinkelin constant, which is for example defined by

A = lim n→∞ n k=1 k k e -n 2 /4 n n 2 /2+n/2+1/12 .
We have E ≈ 0, 0538. Using in addition that Γ ′ (1) = -γ 0 , where

γ 0 = lim n→+∞ n k=1 1 k -log(n),
is the Euler constant, we have obtained the celebrated identity

log det ∆ X = Vol(X)E + γ 0 - 1 0 S X (t) t dt - ∞ 1 (S X (t) -1) t dt. (3) 
This formula can be interpreted multiplicatively via Selberg zeta function at s = 1, see [START_REF] Sarnak | Determinants of Laplacians[END_REF][START_REF] Bolte | Determinants of Laplace-like operators on Riemann surfaces[END_REF][START_REF] Hoker | On determinants of Laplacians on Riemann surfaces[END_REF].

1 for example one can use the identity

tanh(πx) = 1 π ∞ 0 sin(ux) sinh(u/2) du.
3. An abstract deterministic statement Theorem 1.1 actually follows from a more general deterministic result for sequences of compact surfaces satisfying certain hypotheses denoted as (H). More precisely, if (X k ) is a sequence of compact connected hyperbolic surfaces with Vol(X k ) → +∞, let P k denote the set of oriented primitive closed geodesics on X k , and let ∆ k be the hyperbolic Laplacian on X k . We also denote by ℓ 0 (X k ) the length of the shortest closed geodesic on X k . Let C < 0, η > 0, L > 0 and 0 < α < 1/2 be some constants.

We say that the sequence (X k ) satisfies hypothesis H 1 (η) if for all k ∈ N we have the following. λ 1 (∆ k ) ≥ η. We say that the sequence (X k ) satisfies hypothesis H 2 (C, L, α) if for all k ∈ N we have the following bound on the number of closed geodesics:

N X k (L) := #{(γ, m) ∈ P k × N * : mℓ(γ) ≤ L} ≤ CVol(X k ) α .
We point out that exponential growth of Laplace determinants is established in the litterature for families of covers for which a uniform spectral gap holds and the injectivity radius of the manifolds goes to infinity, see for example [START_REF] Bergeron | The asymptotic growth of torsion homology for arithmetic groups[END_REF] and [START_REF] Bergeron | The asymptotic growth of twisted torsion[END_REF]. Typical examples are congruence covers of arithmetic hyperbolic manifolds and Laplacians twisted by a "strongly acyclic" representation which ensures a uniform spectral gap. In random models of surfaces, having the injectivity radius grow to infinity is non typical and we establish the result under the weaker assumption of small growth of the number of closed geodesics with bounded length. Theorem 1.1 will follow from the following deterministic result. Theorem 3.1. Fix some η > 0 and 0 < α < 1/2. Assume that (X k ) satisfies H 1 (η) and H 2 (C 0 , α, L 0 ) with L 0 = 2arcsinh(1) for some C 0 > 0. Then for all ǫ > 0, there exists L ǫ > 0 such that if in addition (X k ) satisfies H 2 (C ǫ , L ǫ , α) for some C ǫ > 0, then uniformly for all Vol(X k ) large,

log det(∆ X k ) Vol(X k ) ∈ [E -ǫ, E + ǫ],
where E > 0 is the universal constant from above.

We warn the reader that the positive constants denoted by C 1 , C 2 , . . . , C j below depend only on C 0 , L 0 > 0 . We will make clear when constants have some additional dependence by adding suitable brackets. Before we give a proof of Theorem 3.1, we will need some preliminary Lemmas which are needed to control uniformly sums over closed geodesics.

Lemma 3.2. Under hypothesis H 2 (C 0 , α, L 0 ), there exists c = c(C 0 , L 0 ) > 0 such that for all k, ℓ 0 (X k ) ≥ cVol(X k ) -α .
Proof. Let m 0 be defined by

m 0 := max{m ≥ 1 : mℓ 0 (X k ) ≤ L 0 }.
By definition of m 0 we have

(m 0 + 1)ℓ 0 (X k ) > L 0 , while m 0 ≤ N k (L 0 ) ≤ C 0 Vol(X k ) α . therefore ℓ 0 (X k ) ≥ L 0 C 0 Vol(X k ) α + 1 ,
and the proof is done. .

Lemma 3.3. Under hypothesis H 2 (C 0 , α, L 0 )
where

L 0 = 2arcsinh(1),
there exists C 1 > 0 such that for all k and all T ≥ 0,

N k (T ) := #{(γ, m) ∈ P k × N * : mℓ(γ) ≤ T } ≤ C 1 Vol(X k )e T .
Proof. A result of Buser ([10] Lemma 6.6.4) says that for any compact connected hyperbolic surface of genus g, the number of oriented closed geodesics with length ≤ T which are not iterates of primitive closed geodesics of length ≤ 2arcsinh( 1) is bounded from above by (g -1)e T +6 . Therefore we have 

N k (T ) ≤ Vol(X k ) 4π e T +6 +#{(γ, m) ∈ P k × N * : mℓ(γ) ≤ T and ℓ(γ) ≤ 2arcsinh(1)}. Since we have #{(γ, m) ∈ P k × N * : mℓ(γ) ≤ T and ℓ(γ) ≤ 2arcsinh(1)} ≤ ℓ(γ)≤arcsinh(1) T ℓ(γ) ≤ T ℓ 0 (X k ) #{γ ∈ P k : ℓ(γ) ≤ 2arcsinh ( 
≤ T c -1 C 0 Vol(X k ) 2α ≤ T c -1 C 0 Vol(X k ), and thus N k (T ) ≤ Vol(X k )e T e 6 4π + c -1 C 0 T e -T ≤ Vol(X k )e T e 6 4π + c -1 C 0 e -1 ,
the proof is done.

Lemma 3.4. Under hypothesis H 1 (η) and H 2 (C 0 , α, L 0 ) where L 0 is as above, there exists C 2 > 0 such that for all k and all t ≥ 1,

|S X k (t) -1| ≤ C 2 Vol(X k )e -η0t ,
where η 0 = min(η, 1/4).

Proof. In this proof we will use Vinogradov's notation A ≪ B meaning that A ≤ CB where C > 0 is a universal constant. By formula (2) we have

tr(e -t∆X k ) -1 = Vol(X) e -t/4 (4πt) 3/2 ∞ 0 re -r 2 /4t sinh(r/2) dr + S X k (t) -1,
and therefore we get for t ≥ 1,

|S X k (t) -1| ≪ Vol(X k )e -t/4 + ∞ j=1 e -tλj (X k ) .
On the other hand using the uniform spectral gap we have for all t ≥ 1,

∞ j=1 e -tλj (X k ) ≤ ∞ j=1
e -(t-1)λj -λj ≤ e -(t-1)η tr(e -∆X k ).

Going back to formula (2) with t = 1, we have also

tr(e -∆X k ) ≪ Vol(X k ) + S X k (1),
and

S X k (1) ≪ m≥1 γ∈P k ℓ(γ) 2 sinh(mℓ(γ)/2) e -(mℓ(γ)) 2 /4 ≪ ∞ 0 u 2 sinh(u/2) e -u 2 /4 dN k (u).
We can use Lemma 3.3 to bound N k (u) as

N k (u) ≤ C 1 Vol(X k )e u ,
and a summation by parts shows that

∞ 0 u 2 sinh(u/2) e -u 2 /4 dN k (u) = - ∞ 0 N k (u) d du u 2 sinh(u/2) e -u 2 /4 du ≪ C 1 Vol(X k ),
which ends the proof.

We can now give a proof of Theorem 3.1. First notice that by formula (3), we have

log det(∆ X k ) Vol(X k ) -E ≤ O(Vol(X k ) -1 ) + D (1) 
X k + D (2) 
X k , where D

X k = 1 Vol(X k ) ∞ 1 |S X k (t) -1| t dt, D (1) 
X k = 1 Vol(X k ) 1 0 S X k (t) t dt. (2) 
Let us fix ǫ > 0. We first investigate D

X k . Using H 1 (η) and H 2 (C 0 , α, L 0 ), we can use Lemma 3.4 and write

∞ 1 |S X k (t) -1| t dt ≤ R 1 S X k (t) t dt + log(R) + C 2 Vol(X k ) ∞ R e -η0t t dt. Fixing R = R(ǫ) so large that C 2 ∞ R e -η0t t dt ≤ ǫ,
we have

D (1) X k ≤ 1 Vol(X k ) R 1 S X k (t) t dt + log(R) Vol(X k ) + ǫ.
We now pick L 1 >> 1 (to be adjusted later on) and write

R 1 S X k (t) t dt = R 1 S L1,- X k (t) t dt + R 1 S L1,+ X k (t) t dt,
where

S L1,- X k (t) = e -t/4 (4πt) 1/2 mℓ(γ)≤L1 ℓ(γ) 2 sinh(mℓ(γ)/2) e -(mℓ(γ)) 2 /4t , S L1,+ X k (t) = e -t/4 (4πt) 1/2 mℓ(γ)>L1 ℓ(γ) 2 sinh(mℓ(γ)/2)
e -(mℓ(γ)) 2 /4t .

Clearly we have

R 1 S L1,+ X k (t) t dt ≤ C 3 mℓ(γ)>L ℓ(γ) 2 sinh(mℓ(γ)/2)
e -(mℓ(γ)) 2 /4R , for some universal constant C 3 > 0. Using Lemma 3.3 and a summation by parts, we deduce that

R 1 S L1,+ X k (t) t dt ≤ C 4 Vol(X k ) ∞ L1 d du u sinh(u/2)
e -u 2 /(4R) e u du.

we now take L 1 = L 1 (ǫ) so large that

C 4 ∞ L1 d du u sinh(u/2)
e -u 2 /(4R) e u du < ǫ.

We now observe that if H 2 (C, α, L 1 ) holds, we have

R 1 S L,- X k (t) t dt = mℓ(γ)≤L ℓ(γ) 2 sinh(mℓ(γ)/2) R 1 e -(mℓ(γ)) 2 /4t e -t/4 √ 4πt 3/2 dt ≤ C 5 L 1 N k (L 1 ) ≤ C 5 CL 1 Vol(X k ) α ≤ C 6 (L 1 , C)Vol(X k ) α , for some possibly large constant C 6 (L 1 , C) > 0. In a nutshell, we have obtained, provided that H 2 (C, α, L 1 ) is satisfied with L 1 = L 1 (ǫ) taken large enough, lim sup Vol(X k )→+∞ D (1) X k ≤ 2ǫ.
We now turn our attention to D

X k , and this is where the control of the systole ℓ 0 (X k ) will play a role. We first use the same idea as above by writing

D (2) X k = 1 Vol(X k ) 1 0 S X k (t) t dt = 1 Vol(X k ) 1 0 S L2,- X k (t) t dt+ 1 Vol(X k ) 1 0 S L2,+ X k (t) t dt.
Writing for t > 0,

S L2,+ X k (t) ≤ C 7 t -1/2 mℓ(γ)>L2 ℓ(γ) 2 sinh(mℓ(γ)/2)
e -(mℓ(γ)) 2 /4t , where C 7 > 0 is universal, we have by Fubini

1 0 S L2,+ X k (t) t dt ≤ C 7 mℓ(γ)>L2 ℓ(γ) 2 sinh(mℓ(γ)/2) G(mℓ(γ)),
where for u > 0,

G(u) = 1 0 t -3/2 e -u 2 /4t dt.
Notice that u → G(u) is a decreasing function and by a change of variable we have actually for all u > 0,

G(u) = 4 u ∞ u/2
e -x 2 dx.

We have therefore the bound

G(u) = 4 u ∞ u/2 e -x 2 /2-x 2 /2 dx ≤ 4 u e -u 2 /8 ∞ 0 e -x 2 /2 dx = 2 √ 2π u e -u 2 /8 .
As a consequence we get for L 2 > 1

1 0 S L2,+ X k (t) t dt ≤ C 8 mℓ(γ)>L2 ℓ(γ) 2 sinh(mℓ(γ)/2)
e -(mℓ(γ)) 2 /8 , and by using Lemma 3.3 and a summation by parts, we can definitely fix L 2 = L 2 (ǫ) large enough so that

1 0 S L2,+ X k (t) t dt ≤ C 8 mℓ(γ)>L2 ℓ(γ) 2 sinh(mℓ(γ)/2) e -(mℓ(γ)) 2 /8 ≤ Vol(X k )ǫ.
From the above bound on G(u) we also deduce

1 0 S L2,- X k (t) t dt ≤ C 9 ℓ 0 (X k ) mℓ(γ)≤L2 ℓ(γ) 2 sinh(mℓ(γ)/2)
.

By using Lemma 3.2 and H 2 (C, α, L 2 (ǫ)) we have again as above

1 0 S L2,- X k (t) t dt ≤ C 10 (L 2 , C)Vol(X k ) 2α ,
where C 10 (L 2 , C) > 0 is some (possibly very large) constant depending on L 2 , C.

We have therefore shown, that whenever (X k ) satisfies H 2 (C, α, L(ǫ)) for some C > 0 and with L(ǫ) = max{L 1 , L 2 } we have lim sup

Vol(X k )→+∞ log det(∆ X k ) Vol(X k ) -E ≤ 3ǫ.
Theorem 3.1 is proved.

4.

Hypotheses H 1 and H 2 hold with high probability Theorem 1.1 follows immediately from Theorem 3.1 if one can establish for all models that there exists η > 0 and α > 0 with α < 1/2 such that H 1 (η) holds with high probability as Vol(X) goes to infinity and for all L large, one can find C > 0 such that H 2 (C, α, L) also holds with high probability as Vol(X) goes to infinity. Indeed we then have for all ǫ > 0, and all Vol(X) large enough

P log det(∆ X ) Vol(X) ∈ [E -ǫ, E + ǫ] ≥ P (X ∈ H 1 (η) ∩ H 2 (C 0 , α, L 0 ) ∩ H 2 (C, α, L(ǫ))) , with lim Vol(X)→∞ P (X ∈ H 1 (η) ∩ H 2 (C 0 , α, L 0 ) ∩ H 2 (C, α, L(ǫ))) = 1.
4.1. Random covers. First we recall that the cover X n → X may not be connected but we know from [START_REF] Liebeck | Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks[END_REF] that

lim n→+∞ P(X n connected) = 1.
We can therefore either restrict ourselves to connected surfaces X n or modify the definition of the regularized determinant by setting

ζ Xn (s) = 1 Γ(s) ∞ 0 t s-1 (Tr(e -t∆X ) -d n )dt,
where d n is the number of connected component of X n and use the fact that d n = 1 with high probability.

It was recently shown in [START_REF] Magee | A random cover of a compact hyperbolic surface has relative spectral gap 3 16 -ǫ[END_REF] that there exists a uniform spectral gap for random covers X n a.a.s. as n → +∞. More precisely we have for all 0 < η < min{3/16, λ 1 (X)},

lim n→+∞ P(λ 1 (X n ) ≥ η) = 1.
Therefore H 1 (η) holds a.a.s. provided η is taken small enough. On the other hand property H 2 is less obvious from the existing litterature and will require some explanations. We recall that given a random homomorphism φ n : Γ → S n , one can define a unitary representation ρ n of Γ by setting

ρ n (γ)(f ) := f • φ n (γ) -1 ,
where f ∈ L 2 ([n]), and the representation space is L 2 ([n]) ≃ C n . The main interest of this representation is the following fact, often called "Venkov-Zograf induction formula". For all Re(s) > 1, one can define the Seberg zeta function of X n by

Z Xn (s) := m≥0 γ∈PX n 1 -e -(s+m)ℓ(γ) .
One can also look at the twisted Selberg zeta function of the base X = Γ\H 2 defined for Re(s) > 1 by

Z X,ρn (s) := m≥0 γ∈PX det I -ρ n (γ)e -(s+m)ℓ(γ) .
It turns out that we have for all s, Z Xn (s) = Z X,ρn (s), see [START_REF] Venkov | Spectral theory of automorphic functions and its applications[END_REF]. By computing logarithmic derivatives we have for all Re(s) > 1,

Z ′ Xn (s) Z Xn (s) = γ∈PX n q≥1 ℓ(γ)e -sqℓ(γ) 1 -e -qℓ(γ) = γ∈PX q≥1
ℓ(γ)tr(ρ n (γ q ))e -sqℓ(γ)

1 -e -qℓ(γ) .

Let φ ∈ C ∞ 0 (R + ) be a compactly supported smooth test function, and set

ψ(s) := ∞ 0 e sx φ(x)dx.
One can check that ψ(s) is actually analytic on C and by Fourier inversion formula we have for all A > 1,

1 2iπ A+i∞ A-i∞ Z ′ Xn (s) Z Xn (s) ψ(s)ds = γ∈PX n q≥1 ℓ(γ) 1 -e -qℓ(γ) φ(qℓ(γ)) = γ∈PX q≥1 ℓ(γ)tr(ρ n (γ q ))
1 -e -qℓ(γ) φ(qℓ(γ)).

See for example [START_REF] Jakobson | On the critical line of convex co-compact hyperbolic surfaces[END_REF] §3 for more details on the derivation of this formula. By carefully choosing the test function φ we deduce that for all L ∈ R + , we recover the identity

γ∈PX n q≥1 qℓ(γ)=L ℓ(γ) = γ∈PX q≥1 qℓ(γ)=L ℓ(γ)tr(ρ n (γ q )).
Notice that this formula can be proved directly by group theoretic arguments, see for example in [START_REF] Fedosova | Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy[END_REF], in the proof of theorem 7.1. From this identity we deduce that for all L > 0, we have

γ∈PX n q≥1 qℓ(γ)≤L ℓ(γ) = γ∈PX q≥1 qℓ(γ)≤L ℓ(γ)tr(ρ n (γ q )).
In particular if we set

N Xn (L) := #{(γ, m) ∈ P Xn × N * : mℓ(γ) ≤ L}, we have ℓ 0 (X)N Xn (L) ≤ L γ∈PX q≥1 qℓ(γ)≤L tr(ρ n (γ q )).
We point out that we have actually tr(ρ n (γ q )) = F ix(φ n (γ q )), where F ix(σ) denotes the number of fixed points of the permutation σ acting on [n]. From the combinatorial analysis of Magee-Puder [START_REF] Magee | The asymptotic statistics of random covering surfaces[END_REF][START_REF] Magee | A random cover of a compact hyperbolic surface has relative spectral gap 3 16 -ǫ[END_REF], we know that for all primitive γ ∈ Γ and q ≥ 1, we have

lim n→∞ E(F ix(φ n (γ q ))) = d(q),
where d(q) stands for the number of divisors of q. This is enough to conclude that for all L, we have lim

n→∞ E(N Xn (L)) ≤ C(Γ, L),
where C(Γ, L) > 0 is some large constant. Applying Markov's inequality, we get that for all ε > 0 and L fixed,

lim n→∞ P (N Xn (L) ≤ Vol(X n ) ε ) = 1.
As a conclusion, in the random cover model, H 2 (C, α, L) is satisfied a.a.s. for all L large and all α > 0.

4.2. Brooks-Makover model. In the paper [START_REF] Brooks | Random construction of Riemann surfaces[END_REF], they show (Theorem 2.2) that there exist a constant C 1 > 0 such that as n → ∞,

P(λ 1 (S C n ) ≥ C 1 ) → 1.
Notice that contrary to the model of random covers, the systole of S C n can be arbitrarily small, but we actually know that there exists C 2 > 0 such that as n → +∞,

P(ℓ 0 (S C n ) ≥ C 2 ) → 1.
In other words, property H 1 (η) is satisfied a.a.s. for some η > 0. On the other hand, counting results for closed geodesics follow from the later work of Petri [START_REF] Petri | Random regular graphs and the systole of a random surface[END_REF]. More precisely, one can derive from [START_REF] Petri | Random regular graphs and the systole of a random surface[END_REF] the following fact. Proposition 4.1. For all L > 0 fixed, we can find an integer N L and a finite set of words W L ⊂ {l, r} NL , such that with high probability as n → ∞,

N n (L) := #{(γ, m) ∈ P S C n × N * : mℓ(γ) ≤ L} ≤ w∈WL Z n,w ,
where Z n,w are integer valued random variables. In addition each Z n,w converges in the sense of moments (and hence in distribution) as n → ∞ to a Poisson variable with expectation λ w > 0.

By applying Markov inequality, one deduces readily that for all ε > 0 we have a.a.s.

w∈WL Z n,w ≤ n ǫ ≤ C L Vol(S C n ) ε .
This is enough to conclude that for all ε > 0, with high probability as n → ∞, we have N n (L) ≤ CVol(S C n ) ε , and therefore property H 2 (C, α, L) holds for any choice of α > 0, just like in the previous model.

Let us now give some details on the proof of Proposition 4.1. The first step is to reduce the problem to a counting bound for S O n . In [START_REF] Brooks | Random construction of Riemann surfaces[END_REF] §3, they introduce the notion of "large cusps" condition for S O n . This condition is satisfied a.a.s for S O n as n → ∞ by Theorem 2.1 in [START_REF] Brooks | Random construction of Riemann surfaces[END_REF]. The main interest of this condition is Theorem 3.2 in [START_REF] Brooks | Random construction of Riemann surfaces[END_REF], see also Lemma 2.5 in [START_REF] Petri | Random regular graphs and the systole of a random surface[END_REF], which allows to show that provided this "large cusps" condition is satisfied, one can bound

N n (L) ≤ #{(γ, m) ∈ P S 0 n × N * : mℓ(γ) ≤ 2L} =: N O n (2L).
As explained in [START_REF] Brooks | Random construction of Riemann surfaces[END_REF], §4, closed geodesics and their length in S O n can be described via the combinatorial data of (G n , O): any closed geodesic in S O n corresponds to a word w ∈ {l, r} N , for some N > 0. To this word one can associate a matrix M w in SL 2 (N) via the rule M w = W 1 . . . W N , where W j = L if w j = l and W j = R if w j = r, where

L = 1 1 0 1 , R = 1 0 1 1 .
The length ℓ w of the corresponding geodesic on S O n is then given by tr(M w ) = 2 cosh(ℓ w /2).

All we need to check is that fixing L implies finiteness of the corresponding set of words (by bounding their word length). This is done in Lemma 3.1 in [START_REF] Petri | Graphs of large girth and surfaces of large systole[END_REF]. One obtains therefore that L being fixed, there exists a finite subset W L ⊂ {l, r} NL for some large N L > 0, such that for all n, all closed geodesics with length ≤ 2L on S O n are given by words w ∈ W L . Proposition 4.1 now follows directly from Theorem B in [START_REF] Petri | Random regular graphs and the systole of a random surface[END_REF].

4.3.

Weil-Petersson model. If f (X) is a well-defined function on moduli space M g , we will denote by Mg f (X)dX the corresponding integral with respect to Weil-Petersson volume. In the latter V g will denote the Weil-Petersson volume of M g so that the expectation of f is given by

E g (f ) := 1 V g Mg f (X)dX.
In [START_REF] Mirzakhani | Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus[END_REF], the following fact was proved. There exists η > 0 such that as g → +∞, we have P(λ 1 (X) ≥ η) → 1. The constant η given by Mirzakhani follows from Cheeger's inequality and an estimate a.a.s. of Cheeger's isoperimetric constant. Recently it was shown independently in [START_REF] Wu | Random hyperbolic surfaces of large genus have first eigenvalues greater than 3 16 -ǫ[END_REF][START_REF] Wright | Towards optimal spectral gap in large genus[END_REF] that one can actually take η = 3/16 -ǫ. This shows that H 1 (η) holds with high probability as g → +∞ for some universal η > 0. In [START_REF] Mirzakhani | Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus[END_REF], see Theorem 4.2 and the remark after, she proved that there exists a universal ǫ 0 > 0 such that for all 0 < ǫ ≤ ǫ 0 , one has for all g large

P(ℓ 0 (X) ≤ ǫ) ≤ Cǫ 2 ,
where C is uniform in g. In particular for all ε > 0, we get for all g large

P ℓ 0 (X) ≥ Vol(X) -ε ≥ 1 -O(Vol(X) -2ε ).
On the other hand, in the paper [START_REF] Mirzakhani | Lengths of closed geodesics on random surfaces of large genus[END_REF], Mirzakhani and Petri showed that for all L > 0 fixed, the random variable N 0 g (L) := #{γ ∈ P X : ℓ(γ) ≤ L} converges in distribution as g → +∞ to a Poisson variable Z λL with parameter

λ L := L 0 e t + e -t -2 2t dt.
Moreover, we have also convergence of all moments with p ∈ N

lim g→∞ E( N 0 g (L) p ) = E(Z p λL ).
An application of Markov's inequality then shows that for all ε > 0, for all g large enough P(N 0 g (L) ≤ Vol(X) ε ) ≥ 1 -C L Vol(X) -ε . To control the counting function

N g (L) := #{(γ, m) ∈ P X × N * : mℓ(γ) ≤ L}, we write N g (L) ≤ [L/ℓ0(X)]+1 m=1 N 0 g (L/m) ≤ N 0 g (L) 1 + L ℓ 0 (X)
.

For all ε > 0, we have with high probability as g → +∞

N g (L) ≤ Vol(X) ε + LVol(X) 2ε = O L (Vol(X) 2ε ),
and thus for all L large, there exists C L > 0 such that H 2 (C L , α, L) holds with high probability for all α > 0 on M g as g → +∞.

5. Convergence results for moments of log det(∆ X ).

In this last section, we give the proof of the following fact.

Theorem 5.1. In the Weil-Petersson model, for all 0 < β < 1 we have

lim g→∞ 1 V g (4π(g -1)) β Mg |log det(∆ X )| β dX = E β .
In the random cover model, Let χ 0 = 1 {Xn connected} . Then as n → +∞, for all β > 0, we have

lim n→∞ E | log det(∆ Xn )| β Vol(X n ) β χ 0 = E β .
The proof for the Weil-Petersson model is a rather direct consequence of Theorem 1.1 and some estimates of Mirzakhani [START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF]. We first need an a priori estimate for | log det(∆ X )| which follows from similar ideas as in Theorem 3.1, without the probabilistic input. We use Vinogradov's notation ≪ where the implied constant is universal.

By using Buser's counting bound [START_REF] Buser | Geometry and spectra of compact Riemann surfaces[END_REF], as in the proof of Lemma 3.3, we have the following universal bound for the number of closed geodesics of a surface with genus g:

N X (L) ≤ (g -1)e L+6 + L ℓ 0 (X) (3g -3) ≪ Vol(X)e L 1 + 1 ℓ 0 (X) , (4) 
for some universal constant A 1 > 0. We now prove an a priori upper bound for | log det(∆ X )|. Following ideas of Wolpert [START_REF] Wolpert | Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces[END_REF], it is convenient to write for all Re(s) large,

ζ X (s) = 0<λj <1/4 λ -s j + 1 Γ(s) ∞ 0 t s-1   tr(e -t∆X ) - 0≤λj <1/4 e -tλj   dt,
which can be rewritten as

ζ X (s) = 0<λj <1/4 λ -s j + 0≤λj <1/4 H(s, λ j ) + ζ (1) 
X (s)+ 1 Γ(s) ∞ 1 t s-1   S X (t) - 0≤λj <1/4 e -tλj   dt + 1 Γ(s) 1 0 t s-1 S X (t)dt,
where we have set for Re(s) large,

H(s, λ) := 1 Γ(s) 1 0 t s-1 e -λt dt.
By integration by parts and elementary properties of the Euler gamma function, we then observe that for all λ ∈ [0, 1/4], s → H(s, λ) has an analytic extension to s = 0. Morevover, if we set

C(λ) := - d ds s=0 H(λ, s),
the there exists a universal constant A 1 > 0 such that for all λ ∈ [0, 1/4],

|C(λ)| ≤ A 1 .
This formula leads to the identity

log det(∆ X ) = 0<λj <1/4 log(λ j ) + 0<λj <1/4 C(λ j ) - d ds s=0 ζ (1) 
X (s)

- 1 0 S X (t) t dt - ∞ 1 (S X (t) -0≤λj <1/4 e -λj t ) t dt.
By mimicking the proof of Lemma 3.4 and using the above counting bound, we deduce that for all t ≥ 1,

S X (t) - 0≤λj <1/4 e -tλj ≪ Vol(X) 1 + 1 ℓ 0 (X) e -t/4 .
By Fubini and the estimate on u → G(u) we have also

1 0 S X (t) t dt ≪ m,γ e -(mℓ(γ)) 2 /8 mℓ(γ) ≪ mℓ(γ)≤1 1 mℓ(γ) + mℓ(γ)>1 e -(mℓ(γ)) 2 /8 ≪ mℓ(γ)≤1 1 mℓ(γ) + Vol(X) 1 + 1 ℓ 0 (X)
.

By noticing that we have

mℓ(γ)≤1 1 mℓ(γ) ≪ log ℓ -1 0 (X) ℓ 0 (X) N 0 X (1),
where N 0 X (L) is the counting function for primitive closed geodesics, we have obtained the estimate:

| log det(∆ X )| ≪ Vol(X) 1 + | log(λ * (X))| + 1 ℓ 0 (X) + + log ℓ -1 0 (X) ℓ 0 (X) N 0 X (1),
where we have set λ * (X) = min{λ 1 (X), 1/4}, and we have used the rough bound of Buser [START_REF] Buser | Geometry and spectra of compact Riemann surfaces[END_REF]:

#{λ j < 1/4} ≤ 4g -3 = 1 + Vol(X) π .
This estimate of | log det(∆ X )| is consistent with the fact that det(∆ X ) has exponential growth when X approaches certain boundary points of the (compactified) moduli space, a fact that was rigourously established by Wolpert in [START_REF] Wolpert | Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces[END_REF]. In particular the so-called "bosonic Polyakov integral" involving the determinant over the moduli space is indeed infinite, see [START_REF] Wolpert | Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces[END_REF].

F. NAUD and we can assume without loss of generality that we have Re(U (j 0 )) ≥ 1 √ 2n for some j 0 ∈ [n]. Because we have in addition j Re(U (j)) = 0, there exists also j 1 ∈ [n] such that Re(U (j 1 )) ≤ 0. If X n is connected, then Γ acts transitively on [n] via φ n and there exists γ 0 ∈ Γ such that φ n (γ 0 ) -1 (j 0 ) = j 1 . A simple induction argument shows that we can choose γ 0 with word length (with respect to S) less than n -1. We now have The first claim of the proposition is proved. Alternatively, one can use directly a result of Brooks [START_REF] Brooks | The spectral geometry of a tower of coverings[END_REF] which relates λ 1 (X n ) to the Cheeger constants of Schreier graphs of the covers (with a choice of generators of Γ) to obtain a similar lower bound λ 1 (X n ) ≥ C Γ n -2 which is slightly worse but good enough for our purpose.

From the proof of the uniform spectral gap in [START_REF] Magee | A random cover of a compact hyperbolic surface has relative spectral gap 3 16 -ǫ[END_REF] one can directly derive that for all r > 0, for all ǫ > 0, as n → ∞, P(λ 1 (X n ) ≤ r) ≤ C ǫ n 4 √

(1/4-r)-1-ǫ

.

From that we deduce that for all α < 1 we can find r α > 0 such that P(λ 1 (X n ) ≤ r α ) ≤ C α n α . We now fix any β > 0 and fix some 0 < α < 1, we can use the fact that we have (by the lower bound on λ * (X))

| log(λ * (X))| β = O((log(n)) β ),
where the implied constant is uniform with respect to n. We therefore get as n → ∞,

E(| log(λ * (X))| β χ 0 ) ≤ | log(r α )| β (1 + O(n -α )) + O n -α | log(n)| β = O(1)
and the proof is done. We conclude with some comments.

• It would be interesting to know if a similar type of result can be proved for the Brooks-Makover model, in particular can one show that E 1 ℓ 0 (S C n ) is finite and uniformly bounded with respect to n ? This will require an effective version of the compactification procedure, see the paper of Mangoubi [START_REF] Mangoubi | Conformal extension of metrics of negative curvature[END_REF].

• It is likely that our results can be extended to finite area surfaces, see Efrat [START_REF] Efrat | Determinants of Laplacians on surfaces of finite volume[END_REF] for the definition and properties of determinants in this context, or even geometrically finite surfaces where a notion of determinant also holds, see [START_REF] Borthwick | Determinants of Laplacians and isopolar metrics on surfaces of infinite area[END_REF].

  1)}, we can use Lemma 3.2 (with L 0 = 2arcsinh(1)) to get #{(γ, m) ∈ P k × N * : mℓ(γ) ≤ T and ℓ(γ) ≤ 2arcsinh(1)}

  U (j 0 )) -Re(U (j 1 ))| ≤ ρ 0 n (γ 0 )U -U . Writing γ 0 = g 1 g 2 . . . g m ,with g j ∈ S and m ≤ n -1, we have thereforeρ 0 n (γ 0 )U -U ≤ m j=1 ρ 0 n (g j )U -U ≤ (n -1) max g∈S ρ 0 n (g)U -U ,

F. NAUD

Using the inequality for all β > 0 and all a j > 0, 

β .

From Mirzakhani [START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF], Corollary 4.3, we know that Mg

where C > 0 is independent of g, from which we can deduce easily that for all 0 < α < 1, we have

for some C > 0 uniform in g. We mention that the inverse of the systole is actually square integrable on moduli space [START_REF] Arana | Square-integrability of the Mirzakhani function and statistics of simple closed geodesics on hyperbolic surfaces[END_REF], however it is unclear from [START_REF] Arana | Square-integrability of the Mirzakhani function and statistics of simple closed geodesics on hyperbolic surfaces[END_REF] how this L 2 norm can depend on the genus. On the other hand, Cheeger's inequality says that

where h X is the so-called Cheeger constant of X, which defined by an isoperimetric constant, see for example in [START_REF] Buser | Geometry and spectra of compact Riemann surfaces[END_REF], chapter 8. Again By Mirzakhani [START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF], Theorem 4.8, we know that for all α < 2, we have

where C > 0 is again uniform with respect to g. In particular we deduce that for all β > 0,

Assuming that β < 1, we choose p > 1 such that β < pβ < 1 and let q be such that 1/p + 1/q = 1. By Hölder's inequality we get

which by the convergence of moments in Mirzakhani-Petri [START_REF] Mirzakhani | Lengths of closed geodesics on random surfaces of large genus[END_REF] and the above remarks is uniformly bounded as g → +∞. We therefore have shown that for all β < 1, there exists C > 0 independent of g such that

We now fix ǫ > 0, and 0 < β < 1. By Theorem 1.1, there exists a subset A g (ǫ) ⊂ M g , with P(A g (ǫ)) → 1 as g → +∞, such that for all X ∈ A g (ǫ),

Therefore we have 1

We now apply Hölder's inequality and estimate [START_REF] Borthwick | Determinants of Laplacians and isopolar metrics on surfaces of infinite area[END_REF]. Since 0 < β < 1, let q > 1 be chosen such that 0 < qβ < 1 and let 0 < p < ∞ be such that 1/p + 1/q = 1, we have

Since lim g→+∞ P(A g (ǫ) c ) = 0, we definitely have for all g large enough

and the proof is done for the Weil-Petterson case. We now deal with the random cover case. We recall that we have χ 0 = 1 {Xn connected} . In this model, the systole is bounded uniformly from below, so the a priori bound for log det(∆ Xn ) whenever X n is connected, is actually

for some constant A > 0 independent of n. Using the same arguments as above based on Hölder's inequality, the result follows directly from the next fact.

Proposition 5.2. Assume that X n is connected, then we have for all n large,

, where C Γ depends only on the base surface X = Γ\H 2 . Consequently for all exponent β with 0 < β, E | log(λ * (X))| β χ 0 ≤ C, where C > 0 is uniform with respect to n.

We first need to prove a deterministic lower bound on λ 1 (X n ), provided that X n is connected. By the induction formula, we know that the spectrum of ∆ Xn coincides, with multiplicity, with the spectrum of ∆ ρn , which is the Laplacian on the base surface twisted by the unitary representation ρ n of Γ defined previously.

n is just the orthogonal to the trivial representation in ρ n . Let us fix a system of generators of Γ, denoted by S. A result of Sunada [START_REF] Sunada | Unitary representations of fundamental groups and the spectrum of twisted Laplacians[END_REF] then says that there exists C S depending only on X and S such that

Let us take U ∈ V 0 n such that U = 1. We therefore have 1 = U 2 ≤ n max j (Re(U (j)) 2 + Im(U (j)) 2 ),