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Abstract

We show the stabilization by a finite number of controllers of a fluid-structure interaction system where
the fluid is modeled by the Navier-Stokes system into a periodical canal and where the structure is an elastic
wall localized on top of the fluid domain. The elastic deformation of the structure follows a damped beam
equation. We also assume that the fluid can slip on its boundaries and we model this by using the Navier
slip boundary conditions. Our result states the local exponential stabilization around a stationary state of
strong solutions by using dynamical controllers in order to handle the compatibility conditions at initial
time. The proof is based on a change of variables to write the fluid-structure interaction system in a fixed
domain and on the stabilization of the linearization of the corresponding system around the stationary state.
One of the main difficulties consists in handling the nonlinear terms coming from the change of variables in
the boundary conditions.
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1 Introduction
We consider the stabilization of a fluid-structure interaction system coupling the Navier-Stokes equations with
a damped beam equation. Such a system has been introduced in [46] as a first model for the blood flow into
arteries. The corresponding system has been studied by many authors, see at the end of this section for some
references on the subject. In most of these works, the fluid is assumed to satisfy a no-slip boundary condition that
can be modeled by the Dirichlet boundary condition. Nevertheless several works in fluid-structure interaction
systems suggest to modify this hypothesis (see, for instance, [21, 22, 27, 28, 29, 30]). Here we assume that the
fluid can slip tangentially on its boundaries and that the fluid satisfies the Navier slip boundary conditions.
These conditions were introduced in [42] by Navier in 1823. Our aim here is to stabilize the corresponding fluid-
structure interaction system by using boundary controls localized on the boundary of fluid, on a non-moving
part.

To simplify the presentation, we assume that the fluid motion is bi-dimensional so that the elastic motion
at its boundary is one-dimensional. We also focus in a particular geometry where all the quantities are periodic
in the horizontal direction. We have considered that all the physical parameters are equal to 1 (viscosity and
density of the fluid, elasticity parameters of the plate, friction coefficients in the Navier slip boundary conditions,
etc.) More precisely, let us present the geometry of our problem: we assume L > 0 and we denote by I := R/LZ
the corresponding torus. Then, for any function η : I → (−1,∞) (that corresponds to an elastic deformation),
we define the corresponding fluid domain

Ωη := {(x1, x2) ∈ I × R : 0 < x2 < 1 + η(x1)} ,

whose boundary can be split into a fixed bottom and an upper deformable part, that is ∂Ωη = Γη ∪ Γb where

Γη := {(x1, x2) ∈ I × R : x2 = 1 + η(x1)} , Γb := I × {0}.

The equations of motion of the fluid-structure interaction system we consider write as follows:
∂tV + (V · ∇)V − divT(V, P ) = fS t > 0, x ∈ Ωη(t),

div V = 0 t > 0, x ∈ Ωη(t),

∂2t η + ∂4x1
η − ∂t∂

2
x1
η = H̃η(V, P ) + hS t > 0, x1 ∈ I,

(1.1)


[V − Ucont]ν = 0 t > 0, x ∈ Γb,

[2D(V )ν + (V − Ucont)]τ = 0 t > 0, x ∈ Γb,
[V − ∂tηe2]ν = 0 t > 0, x ∈ Γη(t),

[2D(V )ν + (V − ∂tηe2)]τ = 0 t > 0, x ∈ Γη(t),

(1.2)

η(0, ·) = η01 in I, ∂tη(0, ·) = η02 in I, V (0, ·) = V 0 in Ωη0 . (1.3)

In the above system, the Cauchy stress tensor T is given by

T(V, P ) = 2D(V )− PI2, D(V )i,j =
1

2

(
∂Vi
∂xj

+
∂Vj
∂xi

)
,

so that
divT(V, P ) = ∆V −∇P.

The force exerted by the fluid on the structure is

H̃η(V, P ) = −
√
1 + |∂x1η|2 (T(V, P )ν · e2) ,

where τ = τη and ν = νη are unit vectors for the tangent and exterior normal vectors on ∂Ω:

τη :=
1√

1 + |∂x1
η|2

[
1

∂x1
η

]
, νη :=

1√
1 + |∂x1

η|2

[
−∂x1

η
1

]
on Γη, (1.4)
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τ := −e1, ν := −e2 on Γb.

The equations in (1.2) correspond to the Navier slip boundary conditions and in order to write them, we have
used the normal and tangential components of a vector w ∈ R2:

wν := w · ν, wτ := w · τ on ∂Ωη.

The system (1.1)–(1.3) contains a boundary control Ucont localized on a non empty open subset Γcont of Γb.
Our aim is to write Ucont as a feedback control such that (V, η, ∂tη) converges for t → ∞ to a stationary state
(vS, ηS, 0), solution of the system

(
vS · ∇

)
vS − divT(vS, pS) = fS in ΩηS ,

div vS = 0 in ΩηS ,

∂4x1
ηS = H̃ηS(vS, pS) + hS in I,

vSν = 0 and
[
2D(vS)ν + vS

]
τ
= 0 on ∂ΩηS .

(1.5)

Here vS, pS, ηS, fS and hS are time independent functions. Note that in the above system, ν and τ stand for
the normal and the tangential vectors on ∂ΩηS , i.e: ν = νηS , τ = τηS on ∂ΩηS (see (1.4)) and can be different
from the normal and the tangential vectors in (1.2). If needed, we will make explicit this dependence by keeping
the indices.

To be more precise in our objective, our feedback control is finite-dimensional: we are going to show that
for a chosen exponential decay rate −σ < 0, there exist Nσ ∈ N and a family(

w(j)
)
j∈{1,...,Nσ}

⊂ L2(Γb)
2, suppw(j) ⊂ Γcont,

∫
Γb

w(j) · ν dx1 = 0 (j ∈ {1, . . . , Nσ}), (1.6)

and such that we can stabilize (1.1)–(1.3) with a control of the form

Ucont = Mu :=

Nσ∑
j=1

ujw
(j). (1.7)

Before stating our main result, let us point out some remarks and introduce some notation. First, if there
is no control in (1.1)–(1.3), the incompressibility condition and the boundary conditions imply

d

dt

∫
I
η(t, x1) dx1 = 0.

In particular, assuming that η01 ∈ L2
0(I), where

L2
0(I) :=

{
ξ ∈ L2(I) :

∫
I
ξ(x1) dx1 = 0

}
,

we deduce that η(t, ·) ∈ L2
0(I) for all t ⩾ 0. We denote by projL2

0
: L2(I) → L2

0(I) the orthogonal projection
and we set

Hη(V, P ) = −projL2
0

√
1 + |∂x1

η|2 (T(V, P )ν · e2) .

We also introduce the operators (A1,D(A1)) and (A2,D(A2)) on L2
0(I) defined by

D(A1) = H4(I) ∩ L2
0(I), A1η = ∂4x1

η, D(A2) = H2(I) ∩ L2
0(I), A2η = −∂2x1

η. (1.8)

Then we can replace the beam equation in (1.1) and in (1.5) by its projection on L2
0(I):

∂ttη +A1η +A2∂tη = Hη(V, P ) + projL2
0
hS, A1η

S = HηS(vS, pS) + projL2
0
hS.
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In that case, the pressures P and pS are determined up to a constant, and we can determine these constants by
using the projections of the beam equations on L2

0(I)⊥.
A standard difficulty in the study of fluid-structure interaction system comes from the fact that the fluid

velocity and pressure (V, P ) are written in a moving domain Ωη(t) and since we want to compare them with the
stationary state (vS, pS) written in ΩηS , we need to use a change of variables. We thus set

Ω := ΩηS , Γ := ΓηS ,

and we consider the following diffeomorphisms

X(t, ·) : Ω −→ Ωη(t),

[
y1
y2

]
7−→

 y1
1 + η(t, y1)

1 + ηS(y1)
y2

 , (1.9)

Y (t, ·) : Ωη(t) −→ Ω,

[
x1
x2

]
7−→

 x1
1 + ηS(x1)

1 + η(t, x1)
x2

 . (1.10)

Then, we can transform (V, P ) into

ṽ(t, y) := (Cof∇X(t, y))∗V (t,X(t, y)), p̃(t, y) := P (t,X(t, y)) (t ⩾ 0, y ∈ Ω). (1.11)

We also transform the initial condition for the fluid velocity:

ṽ0 := (Cof∇X0)∗ V 0 ◦X0, where X0 := X(0, ·).

Then, applying the change of variables on (1.1)–(1.3) (see Section 2.1 for the details and the definitions of the
operators a, b, D and N), we obtain a system of the form

(∇X)∂tṽ + (∇X)(∇ṽ)∂tY (X) + det(∇X)∂ta(X)ṽ

− div (Dṽ) + b∇p̃+N(ṽ) = (det∇X)fS(X) in (0,∞)× Ω, (1.12)

div ṽ = 0 in (0,∞)× Ω,

∂2t η + ∂4x1
η − ∂t∂

2
x1
η = −T ∗ (D(ṽ)|ΓνηS − p̃|ΓνηS

)
+ projL2

0
hS in (0,∞)× I, (1.13)

[ṽ − T ∂tη]ν = (Mu)ν on (0,∞)× ∂Ω,

D(ṽ)1,2 −
1 + ηS

1 + η
ṽ1 + (Mu)1 = 0 on (0,∞)× Γb,

D(ṽ)νηS · τη(X)

√
1 + |∂y1

ηS|2

1 + |∂y1
η|2

+ a(X)ṽ · τη(X)− ∂tηe2 · τη(X) = 0 on (0,∞)× Γ,

(1.14)

η(0, ·) = η01 in I, ∂tη(0, ·) = η02 in I, ṽ(0, ·) = ṽ0 in Ω. (1.15)

In order to write the boundary conditions, we have used the operator T ∈ L(L2
0(I), L2(∂Ω)2) defined by

(T ξ)(x) =
{

0 if x ∈ Γb,

ξ(x1)e2 if (x1, 1 + ηS(x1)) ∈ Γ.
(1.16)

We can check the adjoint of T satisfies for ζ ∈ L2(∂Ω)2,

(T ∗ζ)(x1) = projL2
0

√
1 + |∂x1

ηS(x1)|2ζ(x1, 1 + ηS(x1)) · e2 (x1 ∈ I). (1.17)

Now, (ṽ, p̃) and (vS, pS) are defined on the same spatial domain Ω and we can consider their differences:

v := ṽ − vS, p := p̃− pS, ξ = η − ηS, (1.18)
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and the differences of the initial conditions:

ξ01 := η01 − ηS, ξ02 := η02 , v0 := ṽ0 − vS. (1.19)

Then subtracting (1.5) to (1.12)–(1.15) yield the following system where we separate the linear part, that is the
operators L1, L2, L3, L4, and the nonlinear parts, that is F, G, and H (see Section 2.3): ∂tv −∇ · T(v, p) + (vS · ∇)v + (v · ∇)vS −∇ · L1(ξ) + L2(ξ) + L3(∂tξ) = F(v, p, ξ) in (0,∞)× Ω,

∇ · v = 0 in (0,∞)× Ω,
∂ttξ +A1ξ +A2∂tξ + T ∗(L1(ξ)ν) = −T ∗(T(v, p)ν) +H(v, ξ) in (0,∞)× I,

(1.20){
[v − T ∂tξ]ν = (Mu)ν on (0,∞)× ∂Ω,[

2D(v)ν + (v − T ∂tξ) + L1(ξ)ν + L4(ξ)
]
τ
= (Mu)τ +G(v, ξ) on (0,∞)× ∂Ω,

(1.21)

ξ(0, ·) = ξ01 in I, ∂tξ(0, ·) = ξ02 in I, v(0, ·) = v0 in Ω. (1.22)

Let us introduce some notation for the functional framework. For a Banach space X and σ > 0, we define
for p ∈ [1,+∞] the space

Lp
σ(X) := {f ∈ Lp(0,∞;X) : t 7→ eσtf(t) ∈ Lp(0,∞;X)}, ∥f∥Lp

σ(X) :=
∥∥t 7→ eσtf(t)

∥∥
Lp(0,∞;X)

. (1.23)

We define similarly Hs
σ(X) for s ∈ R. We also define

H :=
{
(v, ξ1, ξ2) ∈ [L2(Ω)]2 ×D(A

1/2
1 )× L2

0(I) : ∇ · v = 0 in Ω, [v − T ξ2]ν = 0 on ∂Ω
}
, (1.24)

V := H ∩
([
H1(Ω)

]2 ×D
(
A

3/4
1

)
×D

(
A

1/4
1

))
, (1.25)

with their canonical inner product.
In this article, we are interested by the stabilization of strong solutions. In this context, we are going to

consider initial conditions regular enough, in particular v0 ∈ H1(Ω)2 and this leads to compatibility conditions
between u and v0 that are not always satisfied for a general feedback control. This difficulty already appears
for the Navier-Stokes system without any structure, see [47] or [2]. In order to deal with this difficulty, we use
the strategy considered in [4] (see also [5]) by considering dynamical controllers. This means that u is obtained
as a solution of a differential equation and that the feedback operators act on this additional equation. More
precisely, we will show the existence of

R(1)
σ ∈ L(H,RNσ ), R(2)

σ ∈ L(RNσ ), (1.26)

such that (1.20)–(1.22) combined with

u′ = R(1)
σ (v, ξ, ∂tξ) +R(2)

σ u in (0,∞), u(0) = 0, (1.27)

is exponentially stable. This is the statement of the main result of this article.

Theorem 1.1. Assume

(vS, pS, ηS) ∈ [W 2,∞(Ω)]2 ×W 1,∞(Ω)/R×W 3,∞(I), 1 + ηS > 0, fS ∈ [W 3,∞(Ω)]2, (1.28)

such that the system (1.5) is verified. Then, there exist Nσ ∈ N∗, a family
(
w(j)

)
j∈{1,...,Nσ}

verifying (1.6),

R(1)
σ and R(2)

σ satisfying (1.26) and C0 > 0 such that if

(v0, ξ01 , ξ
0
2) ∈ V,

∥∥(v0, ξ01 , ξ02)∥∥V ⩽ C0, (1.29)

then there exists a unique strong solution

v ∈ L2
σ(H

2(Ω)) ∩H1
σ(L

2(Ω)), p ∈ L2
σ(H

1(Ω)/R), η ∈ L2
σ(D(A1)) ∩H2

σ(L
2
0(I)), u ∈ H1

σ(RNσ ),

of (1.20)–(1.22) together with (1.27). Moreover, there exists a constant C > 0 such that

∥(v(t), ξ(t), ∂tξ(t))∥V ⩽ Ce−σt
∥∥(v0, ξ01 , ξ02)∥∥V (t > 0) .
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Note that systems similar to (1.1)–(1.3) have already been studied by several authors: [18] and [17] (existence
of weak solutions), [11], [33], [24], [25], [37] and [16] (existence of strong solutions). Without the damping term
−∂t∂2x1

η, the existence of strong solutions is more difficult to achieve. It is obtained with an additional term of
inertia of rotation (−∂2t ∂2y1

η) in [25]. Without any additional term, the corresponding fluid-structure system is
studied in [7] and [8], where the existence and uniqueness of strong solutions is done by using Gevrey semigroups.
In the framework of weak solutions, there have been some works studying the existence of weak solutions for a
beam equation without dissipation (or a similar structure equation): [23], [54], etc. We can also mention some
works for different similar models: [9] (linear wave equation), [32, 31] (linear elastic Koiter shell), [39] (dynamic
pressure boundary conditions), [40, 41, 38] (nonlinear elastic Koiter shell models), [52] and [53] (nonlinear elastic
and thermoelastic plate equations), [35], [36] (compressible fluids), etc. There are only few works where the
no-slip boundary conditions are not assumed: [16] and [15] where the author uses boundary conditions involving
the pressure and [19] where we show the existence and the uniqueness of strong solutions for the same system as
here. Note also that in the case where the structures are rigid bodies, some works are dealing with the Navier
slip boundary conditions: [21], [13], [43], [45], etc.

In the context of control theory, there are few results for this kind of system: the first result of stabilization
was obtained in [48] for strong solutions and with a distributed control acting on the structure. Then in [6], the
authors show the boundary stabilization of weak solutions around a stationary state. Both previous results are
obtained with the no-slip boundary conditions. With respect to these previous works, we are considering here
the Navier boundary conditions and we are stabilizing strong solutions around a stationary state. As explained
above, one of the difficulties corresponds to the fact that for such a problem there are compatibility conditions
between the initial state and the boundary feedback control. We overcome this issue by using dynamical
controls. Another difficulty comes from the transformation of the Navier slip boundary conditions: we need to
estimate the nonlinear term G in H1/4

σ (L2(∂Ω)2) ∩ L2
σ(H

1/2(∂Ω)2). In the case of the Navier-Stokes system,
such a term can be estimated by using an adequate lifting. This is done for instance in [3] in order to deal
with nonlinear Neumann boundary conditions. Nevertheless with the method used in [3], one need that G in
H1/4+ε/2

σ (L2(∂Ω)2)∩L2
σ(H

1/2+ε(∂Ω)2) for ε > 0 arbitrary small. Here our nonlinear term does not satisfy this
assumption and we thus adapt a strategy proposed by [50], see Proposition 3.8 below.

The outline of the article is as follows: in the next section, we apply the change of variables on (1.1)–(1.3)
and obtain, after the separation between linear and nonlinear terms, a system of the form on (1.20)–(1.22). We
show in Section 3 that the corresponding linearized system is exponentially stabilizable with a finite number of
dynamical controllers. Then using this result and the estimates of the nonlinear terms obtained in Section 2,
we can prove Theorem 1.1 in Section 4.

2 Change of variables

2.1 Transformation of the system
We set

a = (Cof(∇Y ))∗, b = Cof(∇X), (2.1)

where Cof(M) stands for the cofactor matrix of the matrix M . We also define

[Dṽ]i,j =
∑
m,k

(
∂ai,k
∂xm

(X) +
∂am,k

∂xi
(X)

)
ṽkbm,j +

∑
m,k,l

(
ai,k(X)

∂Yl
∂xm

(X) + am,k(X)
∂Yl
∂xi

(X)

)
∂ṽk
∂yl

bm,j , (2.2)

and
[N(ṽ)]i =

∑
k,j,m

∂ai,k
∂xj

(X)
∂Xj

∂ym
ṽkṽm +

∑
k,l

ai,k(X)
∂ṽk
∂yl

ṽl. (2.3)

From (1.11), we can write

V (t, x) = a(t, x)ṽ(t, Y (t, x)), P (t, x) = p̃(t, Y (t, x)), (2.4)
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and after standard computations, we transform the terms appearing in (1.1)–(1.3):

(det∇X) ∂tV (X) = (∇X)∂tṽ + (∇X)(∇ṽ)∂tY (X) + det(∇X)∂ta(X)ṽ, (2.5)

(det∇X) (∆V ) (X) = div (Dṽ) , (det∇X)∇P (X) = b∇p̃, (det∇X) [(V · ∇)V ] (X) = N(ṽ), (2.6)

and
H̃η(V, P ) = −

√
1 + |∂y1

ηS|2D(ṽ)νηS · e2 + p̃.

Then, we can also transform the Navier slip boundary conditions (1.2) into the boundary conditions (1.14) and
we deduce that (ṽ, p̃, η) satisfies (1.12)–(1.15).

2.2 Linearization after the change of variables
Next we can consider the differences between the controlled state and the stationary state, that is we set (1.18)
and (1.19) and we are going to make the difference between (1.12)–(1.15) and (1.5). Our aim is to linearize the
corresponding system.

Let us set
θ :=

1 + η

1 + ηS
= 1 +

ξ

1 + ηS
. (2.7)

We have

∂y1θ =
∂y1

ξ

1 + ηS
− ∂y1

ηS

(1 + ηS)
2 ξ,

1

θ
= 1− ξ

1 + ηS + ξ
= 1− ξ

1 + ηS
+

ξ2

(1 + ηS) (1 + ηS + ξ)
, (2.8)

∂2y1
θ =

∂2y1
ξ

1 + ηS
− 2

∂y1
ηS

(1 + ηS)
2 ∂y1

ξ +

(
−

∂2y1
ηS

(1 + ηS)
2 + 2

(
∂y1η

S
)2

(1 + ηS)
3

)
ξ, (2.9)

∂tθ =
∂tξ

1 + ηS
, ∂t,y1

θ =
∂t,y1ξ

1 + ηS
− ∂y1η

S

(1 + ηS)
2 ∂tξ. (2.10)

We use the above computation to split the coefficients coming from the change of variables into a linear part
ℓ(i) and a nonlinear part ε(i) with respect to the variables ξ, v, and p. In these expressions, we have coefficients
of the form

cβ :=
yβ1

2

(
∂y1

ηS
)β2
(
∂2y1

ηS
)β3

(1 + ηS)
β4

(√
1 + |∂y1η

S|2
)β5

(
vSi1
)β6
(
vSi2
)β7

(
∂vSi3
∂yi4

)β8 (
fSi6
)β9

(
∂fSi7
∂yi8

)β10

βj ∈ N. (2.11)

We don’t need the exact expressions of the linear and nonlinear parts, so that we use the same notation cβ for
different values of β during the computation below. Note that with the regularity (1.28), cβ ∈W 1,∞(Ω).

We recall that X and Y are given by (1.9) and (1.10), a and b are given by (2.1). Then, we have

∇X =

[
1 0

y2∂y1
θ θ

]
, b =

[
θ −y2∂y1

θ
0 1

]
, ∇Y (X) =

[
1 0

−y2∂y1
θ/θ 1/θ

]
, a(X) =

[
1/θ 0

y2∂y1
θ/θ 1

]
,

so that

∇X = I2 + ℓ(1), b = I2 + ℓ(2), ∇Y (X) = I2 + ℓ(3) + ε(3), a(X) = I2 + ℓ(4) + ε(4), (2.12)

where the coefficients of the linear parts ℓ(1), ℓ(2), ℓ(3), ℓ(4) are of the form
ξ

1 + ηS
or ∂y1

θ, and where the

coefficients of the nonlinear parts ε(3), ε(4) are of the form

cβ
ξδ1 (∂y1

ξ)
δ2

(1 + ηS + ξ)
δ0
, δi ∈ N, δ1 + δ2 ⩾ 2. (2.13)
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We also obtain

(∂x1
a) (X) =

[
−∂y1

θ/θ2 0

y2

(
∂2y1

θ/θ − 2 (∂y1θ/θ)
2
)

0

]
, (∂x2a) (X) =

[
0 0

∂y1
θ/θ2 0

]
so that

∂ai,k
∂xm

(X) = ℓ
(5)
i,k,m + ε

(5)
i,k,m, (2.14)

where the coefficients of the linear parts ℓ(5) are of the form ∂y1
θ and y2∂

2
y1
θ and where coefficients of the

nonlinear parts ε(5) are of the form (2.13) or

cβ
ξ∂2y1

ξ

(1 + ηS + ξ)

We also have

∂tY (X) = −y2
∂tθ

θ
e2, ∂ta(X) =

[
−∂tθ/θ2 0

y2
(
∂t,y1

θ/θ − 2∂y1
θ∂tθ/θ

2
)

0

]
, det∇X = θ,

so that
∂tY (X) = ℓ(6) + ε(6), (det∇X) ∂ta(X) = ℓ(7) + ε(7), (2.15)

where
ℓ(6) := − y2

1 + ηS
∂tξe2, ε(6) := y2

ξ∂tξ

(1 + ηS) (1 + ηS + ξ)
e2,

where the coefficients of ℓ(7) are of the form ∂tθ and y2∂t,y1
θ and where the coefficients of ε(7) are of the form

cβ
ξ∂tξ

(1 + ηS + ξ)
, cβ

∂y1
ξ∂tξ

(1 + ηS + ξ)
.

From these first linearization, we can handle the terms appearing in (1.12). First, combining (2.5), (2.12)
and (2.15), we deduce

(det∇X) ∂tV (X) = ∂tv + ℓ(8) + ε(8), (2.16)

where ℓ(8) is a linear combination of terms of the form

cβ∂tξ, cβ∂t,y1ξ,

and where ε(8) is a linear combination of terms of the form

cβξ
δ1 (∂y1

ξ)
δ2 ∂tv |δ| ⩾ 1, cβ

ξδ1 (∂y1ξ)
δ2 (∂tξ)

δ3

1 + ηS + ξ

(
∂vi1
∂yi2

)δ4

|δ| ⩾ 2, δ3, δ4 ⩽ 1,

cβ
ξδ1 (∂y1

ξ)
δ2 (∂tξ)

δ3

1 + ηS + ξ
(vi1)

δ4 |δ| ⩾ 2, δ3, δ4 ⩽ 1, cβ∂t,y1ξvi1 , (2.17)

where ij ∈ {1, 2}.
From (2.2), (2.12), and (2.14),

Dṽ = 2D(vS) + ℓ(9) + 2D(v) + ε(9), (2.18)

where ℓ(9) is a linear combination of terms of the form cβξ, cβ∂y1ξ, cβ∂
2
y1
ξ, and where ε(9) is a linear combination

of terms of the form

cβ
ξδ1 (∂y1ξ)

δ2

(1 + ηS + ξ)
δ0

(
∂vi1
∂yi2

)δ3

|δ| ⩾ 2, δ3 ⩽ 1, cβ
ξδ1 (∂y1

ξ)
δ2
(
∂2y1

ξ
)δ3

(1 + ηS + ξ)
δ0

(vi1)
δ4 |δ| ⩾ 2, δ3, δ4 ⩽ 1, (2.19)
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where ij ∈ {1, 2}. We thus deduce from (2.6) that

(det∇X) (∆V ) (X) = div (Dṽ) = ∆vS + div ℓ(9) +∆v + div ε(9). (2.20)

From (2.6), (2.3), (2.12) and (2.14),

(det∇X) [(V · ∇)V ] (X) =
(
vS · ∇

)
vS + (v · ∇) vS +

(
vS · ∇

)
v + ℓ(10) + ε(10), (2.21)

where ℓ(10) is a linear combination of terms of the form cβξ, cβ∂y1
ξ, cβ∂2y1

ξ, and where ε(10) is a linear combi-
nation of terms of the form

cβ
ξδ1 (∂y1

ξ)
δ2
(
∂2y1

ξ
)δ3

(1 + ηS + ξ)
δ0

(vi1)
δ4 (vi2)

δ5 |δ| ⩾ 2, δ3, δ4, δ5 ⩽ 1,

cβ
ξδ1 (∂y1ξ)

δ2

(1 + ηS + ξ)
δ0

(vi1)
δ3

(
∂vi2
∂yi3

)δ4

|δ| ⩾ 2, δ3, δ4 ⩽ 1, (2.22)

where ij ∈ {1, 2}. Finally, from (2.6) and (2.12),

(det∇X)∇P (X) = ∇pS +∇p+ ℓ(11)(ξ, ∂y1
ξ) + ε(11)(ξ, ∂y1

ξ,∇p), (2.23)

where ℓ(11) is a linear combination of terms of the form

cβ

(
∂pS

∂yi

)
ξ, cβ

(
∂pS

∂yi

)
∂y1ξ, i = 1, 2,

and where ε(11) is a linear combination of terms of the form

cβξ
δ1 (∂y1ξ)

δ2 ∂p

∂yi
|δ| ⩾ 1, (2.24)

where i ∈ {1, 2}.
We recall that det∇X = θ where θ is defined by (2.7) so that

(det∇X)fS(X) = fS + θ
(
fS(X)− fS

)
+

ξ

1 + ηS
fS. (2.25)

Applying the Taylor-Lagrange theorem, for any y ∈ Ω,

fS(X(y)) = fS(y) +∇fS(y) · (X(y)− y) +

∫ 1

0

(1− s)∇2fS((1− s)y + sX(y)) (X(y)− y) · (X(y)− y) ds

and since
X(y)− y =

ξ(y1)

1 + ηS(y1)
y2e2,

we deduce that
(det∇X)fS(X) = fS + ℓ(12)(ξ) + ε(12)(ξ), (2.26)

where ℓ(12) is a linear combination of terms of the form cβξ, and where ε(12) is a linear combination of cβξ2 and
of

θ

∫ 1

0

(1− s)
∂2fS

∂y22

(
y +

sy2ξ(y1)

1 + ηS(y1)
e2

)
ds

(
y2ξ(y1)

1 + ηS(y1)

)2

. (2.27)

Assume that (v, p, ξ) are given by (2.4) and (1.18). Then, gathering (2.16), (2.20), (2.21), and (2.23), we
deduce

(det∇X)
(
∂tV + (V · ∇)V − divT(V, P )− fS

)
(X) = −∆vS +∇pS +

(
vS · ∇

)
vS − fS

+ ∂tv −∆v +∇p+ (v · ∇) vS +
(
vS · ∇

)
v + ℓ(8) − div ℓ(9) + ℓ(13) − div ε(9) + ε(13), (2.28)
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where ℓ(13) is a linear combination of terms of the form

c̃βξ, c̃β∂y1ξ, c̃β∂
2
y1
ξ, (2.29)

where c̃β = cβ or cβ
(
∂pS

∂yi

)
for some i = 1, 2 and where ε(13) is a linear combination of terms of the form (2.17),

(2.22), (2.24) and (2.27).
Let us now linearize the terms coming from the change of variables that appear on the boundary. We keep

the notation (2.11) but with y2 replaced by 0 on Γb and by 1+ηS on Γ. First on the bottom of the fluid domain,
we have from (1.14) and (2.18):

D(ṽ)1,2 −
1 + ηS

1 + η
ṽ1 + (Mu)1

= 2D(vS)1,2 − vS1 + 2D(v)1,2 − (v −Mu)1 + ℓ
(9)
1,2 + ℓ(14) + ε

(9)
1,2 + ε(14) = 0 on (0,∞)× Γb, (2.30)

where ℓ(14) is of the form cβξ and where ε(14) is a linear combination of terms of the form

cβ
ξδ1

(1 + ηS + ξ)
δ0

(v1)
δ2 |δ| ⩾ 2, δ2 ⩽ 1. (2.31)

On the top boundary of the fluid domain, that is on (0,∞)× Γ, we deduce from (1.4) that

τη(X) =
1√

1 + |∂y1
η|2

([
1

∂y1
ηS

]
+

[
0

∂y1ξ

])
=

√
1 + |∂y1

ηS|2
1 + |∂y1η|2

(
τηS +

∂y1
ξe2√

1 + |∂y1
ηS|2

)
. (2.32)

Moreover, we have √
1 + |∂y1η

S|2
1 + |∂y1

η|2
= 1 + ℓ(15) + ε(15), (2.33)

where ℓ(15) is of the form cβ∂y1
ξ and where ε(15) is a linear combination of terms of the form

cβ
(∂y1

ξ)
δ1

⟨∂y1η
S + ∂y1ξ⟩ (⟨∂y1η

S⟩+ ⟨∂y1η
S + ∂y1ξ⟩)

δ0
δ1 ⩾ 2,

where
⟨x⟩ :=

√
1 + x2 (x ∈ R).

From (2.32), (1.14), (2.12) and (2.18), on (0,∞)× Γ,√
1 + |∂y1η|2
1 + |∂y1

ηS|2

(
D(ṽ)νηS · τη(X)

√
1 + |∂y1η

S|2

1 + |∂y1
η|2

+ ṽ · Cof(∇Y (X))τη(X)− ∂tηe2 · τη(X)

)
=
[
2D(vS)νηS + vS

]
· τηS +

[
2D(v)νηS + (v − ∂tξe2)

]
· τηS + ℓ(9)νηS · τηS + ℓ(16) + ε(16) = 0, (2.34)

where ℓ(16) is a linear combination of terms of the form cβξ, cβ∂y1
ξ, and where ε(16) is a linear combination of

terms of the form cβ∂y1ξ∂tξ,

cβ

ξδ1 (∂y1ξ)
δ2

(
∂vi1
∂yi2

)δ3

(1 + ηS + ξ)
δ0 ⟨∂y1

ηS + ∂y1
ξ⟩δ−1 (⟨∂y1

ηS⟩+ ⟨∂y1
ηS + ∂y1

ξ⟩)δ−2
|δ| ⩾ 2, δ3 ⩽ 1, (2.35)
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and

cβ
ξδ1 (∂y1

ξ)
δ2
(
∂2y1

ξ
)δ3

(vi1)
δ4

(1 + ηS + ξ)
δ0 ⟨∂y1

ηS + ∂y1
ξ⟩δ−1 (⟨∂y1

ηS⟩+ ⟨∂y1
ηS + ∂y1

ξ⟩)δ−2
|δ| ⩾ 2, δ3, δ4 ⩽ 1. (2.36)

Finally, from (2.18)

−projL2
0

√
1 + |∂y1η

S|2D(ṽ)νηS · e2 = −T ∗
((

2D(vS) + ℓ(9) + 2D(v) + ε(9)
)
νηS

)
. (2.37)

2.3 Estimates on the linear and nonlinear parts
We now set

L1(ξ) := ℓ(9), L2(ξ) := ℓ(13), L3(∂tξ) := ℓ(8), L4(ξ) :=

{
ℓ
(9)
1,2 + ℓ(14) on Γb

ℓ
(9)
1,2 + ℓ(16) on Γ

, (2.38)

F := −div ε(9) + ε(13), H(v, ξ) := −T ∗
(
ε(9)νηS

)
, G(v, ξ) :=

{
ε
(9)
1,2 + ε(14) on (0,∞)× Γb

ε(16) on (0,∞)× Γ
. (2.39)

Then, from (2.28), (2.30), (2.34), (2.37), (1.5) and (1.12)–(1.15) we deduce that (v, p, ξ) satisfies a system of the
form (1.20)–(1.22).

Moreover, from the regularity hypothesis (1.28) and the definition (2.11) of cβ , we can check that

L1 ∈ L
(
D(A

1/2
1 ), L2(Ω)4

)
∩ L

(
D(A

3/4
1 ), H1(Ω)4

)
, (2.40)

L2 ∈ L
(
D(A

1/2
1 ), L2(Ω)2

)
, L3 ∈ L

(
D(A

1/2
2 ), L2(Ω)2

)
, (2.41)

L4 ∈ L
(
D(A

1/2
1 ), L2(∂Ω)2

)
∩ L

(
D(A

3/4
1 ), H1(∂Ω)2

)
. (2.42)

We also introduce the adjoint operators(
L1
)∗ ∈ L

(
L2(Ω)4,D(A

1/2
1 )

)
,
(
L2
)∗ ∈ L

(
L2(Ω)2,D(A

1/2
1 )

)
,
(
L4
)∗ ∈ L

(
L2(∂Ω)2,D(A

1/2
1 )

)
. (2.43)

For L3, we recall that it is a linear combination of terms of the form cβξ2 and cβ∂y1ξ2. Assume φ ∈ H1(Ω)2,
we can integrate by parts in y1:∫

Ω

∂y1
ξ2(y1)cβ(y1, y2) · φ(y1, y2) dy1 dy2 = −

∫
I
ξ2(y1)∂y1

(∫ 1+ηS(y1)

0

cβ(y1, y2) · φ(y1, y2) dy2

)
dy1,

and since

y1 7→ ∂y1

(∫ 1+ηS(y1)

0

cβ(y1, y2) · φ(y1, y2) dy2

)
is in L2

0(I), this allows us to define the adjoint of L3 as(
L3
)∗ ∈ L

(
H1(Ω)2, L2

0(I)
)
. (2.44)

Concerning the nonlinear terms, we define for R > 0 and σ > 0

BR,σ :=
{
(v, p, ξ) ∈

[
L2
σ(H

2(Ω)) ∩H1
σ(L

2(Ω))
]2 × L2

σ(H
1(Ω)/R)×

[
L2
σ(D(A1)) ∩H2

σ(L
2
0(I))

]
: ∥v∥L2

σ(H
2(Ω)2)∩H1

σ(L
2(Ω)2) + ∥∇p∥L2

σ(L
2(Ω)) + ∥ξ∥L2

σ(D(A1))∩H2
σ(L

2
0(I))

⩽ R
}
. (2.45)

In what follows, we set

∥(v, p, ξ)∥⋆ := ∥v∥L2
σ(H

2(Ω)2)∩H1
σ(L

2(Ω)2) + ∥∇p∥L2
σ(L

2(Ω)) + ∥ξ∥L2
σ(D(A1))∩H2

σ(L
2
0(I))

.

Then, we can show the following result
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Proposition 2.1. For R > 0 small enough, the functions F,G and H defined by (2.39) satisfy

F : BR,σ → L2
σ(L

2(Ω)2), G : BR,σ → L2
σ(H

1/2(∂Ω)2) ∩H1/4
σ (L2(∂Ω)2), H : BR,σ → L2

σ(L
2
0(I)). (2.46)

Moreover, for R ∈ (0, 1) small enough, there exists a constant C > 0 such that for any

(v, p, ξ) ,
(
v(1), p(1), ξ(1)

)
,
(
v(2), p(2), ξ(2)

)
∈ BR,σ, (2.47)

the triplet (F,G,H) satisfies
∥F (v, p, ξ)∥L2

σ(L
2(Ω)2) ⩽ CR2, (2.48)∥∥∥F(v(1), p(1), ξ(1))− F

(
v(2), p(2), ξ(2)

)∥∥∥
L2

σ(L
2(Ω)2)

⩽ CR
∥∥∥(v(1), p(1), ξ(1))− (v(2), p(2), ξ(2))∥∥∥

⋆
, (2.49)

∥G (v, p, ξ)∥
L2

σ(H
1/2(∂Ω)2)∩H

1/4
σ (L2(∂Ω)2)

⩽ CR2, (2.50)

∥∥∥G(v(1), p(1), ξ(1))−G
(
v(2), p(2), ξ(2)

)∥∥∥
L2

σ(H
1/2(∂Ω)2)∩H

1/4
σ (L2(∂Ω)2)

⩽ CR
∥∥∥(v(1), p(1), ξ(1))− (v(2), p(2), ξ(2))∥∥∥

⋆
, (2.51)

∥H (v, ξ)∥L2
σ(L

2(I)) ⩽ CR2, (2.52)∥∥∥H(v(1), ξ(1))−H
(
v(2), ξ(2)

)∥∥∥
L2

σ(L
2(I))

⩽ CR
∥∥∥(v(1), p(1), ξ(1))− (v(2), p(2), ξ(2))∥∥∥

⋆
. (2.53)

Proof. From (2.45), (2.47) and Sobolev embeddings, there exists a constant C > 0 such that

∥ξ∥L∞
σ (C2(I)) + ∥∂tξ∥L∞

σ (L∞(I)) +
∥∥∂3y1

ξ
∥∥
L2

σ(L
∞(I)) + ∥v∥L2

σ(L
∞(Ω)2)

⩽ C
(
∥v∥L2

σ(H
2(Ω)2)∩H1

σ(L
2(Ω)2) + ∥ξ∥L2

σ(D(A1))∩H2
σ(L

2
0(I))

)
, (2.54)

and the same relation for
(
v(1), p(1), ξ(1)

)
,
(
v(2), p(2), ξ(2)

)
. For R small enough, there exists a constant C > 0

such that ∥∥∥∥ 1

1 + ηS + ξ

∥∥∥∥
L∞(L∞(I))

⩽ C, (2.55)

and ∥∥∥∥ 1

1 + ηS + ξ(1)
− 1

1 + ηS + ξ(2)

∥∥∥∥
L∞

σ (L∞(I))
⩽ C

∥∥∥ξ(1) − ξ(2)
∥∥∥
L∞

σ (L∞(I))
. (2.56)

In particular, ∥∥∥∥∥ ξδ1 (∂y1ξ)
δ2

(1 + ηS + ξ)
δ0

∥∥∥∥∥
H1

σ(H
1(I))

⩽ CRδ1+δ2 ,

∥∥∥∥∥
(
ξ(1)
)δ1 (

∂y1
ξ(1)
)δ2(

1 + ηS + ξ(1)
)δ0 −

(
ξ(2)
)δ1 (

∂y1
ξ(2)
)δ2(

1 + ηS + ξ(2)
)δ0

∥∥∥∥∥
H1

σ(H
1(I))

⩽ CRδ1+δ2−1
∥∥∥ξ(1) − ξ(2)

∥∥∥
H1

σ(H
2(I))

.

We have similarly∥∥∥∥ 1

⟨∂y1
ηS + ∂y1

ξ⟩

∥∥∥∥
H1

σ(H
1(I))

⩽ C,

∥∥∥∥ 1

⟨∂y1
ηS⟩+ ⟨∂y1

ηS + ∂y1
ξ⟩

∥∥∥∥
H1

σ(H
1(I))

⩽ C,
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∥∥∥∥∥ 1〈
∂y1

ηS + ∂y1
ξ(1)
〉 − 1〈

∂y1
ηS + ∂y1

ξ(2)
〉∥∥∥∥∥

H1
σ(H

1(I))

⩽ C
∥∥∥ξ(1) − ξ(2)

∥∥∥
H1

σ(H
2(I))

,

∥∥∥∥ 1

⟨∂y1
ηS⟩+ ⟨∂y1

ηS + ∂y1
ξ(1)⟩

− 1

⟨∂y1
ηS⟩+ ⟨∂y1

ηS + ∂y1
ξ(2)⟩

∥∥∥∥
H1

σ(H
1(I))

⩽ C
∥∥∥ξ(1) − ξ(2)

∥∥∥
H1

σ(H
2(I))

.

The above relations allow us to estimate terms of the form (2.17), (2.22), (2.24) and (2.27) and the space
derivatives of terms of the form (2.19). We can thus deduce that F satisfies (2.48) and (2.49). Similarly, we can
obtain that H satisfies (2.52) and (2.53).

Finally, G is a linear combination of terms of the form (2.35) and (2.36). Note that with the above estimates

cβ
ξδ1 (∂y1

ξ)
δ2

(1 + ηS + ξ)
δ0 ⟨∂y1

ηS + ∂y1
ξ⟩δ−1 (⟨∂y1

ηS⟩+ ⟨∂y1
ηS + ∂y1

ξ⟩)δ−2
∈ H1

σ(H
1(∂Ω)),

and by using a trace theorem (see for instance [34, Theorem 2.1, p.9])

∂vi1
∂yi2

∈ L2
σ(H

1/2(∂Ω)) ∩H1/4
σ (L2(∂Ω)).

Now, using a standard result on the product in Sobolev spaces (see, for instance, [14, Lemma 6]), we deduce
that terms of the form (2.35) are in L2

σ(H
1/2(∂Ω)) ∩H1/4

σ (L2(∂Ω)). By a trace theorem (see [34, Theorem 2.1,
p.9]), we also have

vi1 ∈ L2
σ(H

3/2(∂Ω)) ∩H3/4
σ (L2(∂Ω)),

and
∂2y1

ξ ∈ L∞
σ (H1(I)) ∩H1/4

σ (H3/2(I)).

Using again the result on the product in Sobolev spaces (see, for instance, [14, Lemma 6]), we deduce that G
satisfies (2.50) and (2.51).

3 Stabilization of the linear system
We show in this section that the linear system corresponding to (1.20), (1.21), (1.22) where the nonlinearities
F,G,H are replaced by given function (f, g, h) (see (3.39), (3.40), (3.41) below) is stabilizable with dynamic
controllers.

3.1 Functional Framework

Let us consider m ∈ C2(∂Ω), suppm ⊂ Γcont,
∫
Γcont

m ds = 1 and let us set

MU := mU −
(∫

Γcont

mU · ν dx′
)
mν. (3.1)

We can check that M ∈ L(U , L2(∂Ω)), where U := L2(Γcont) and that we have the compatibility condition∫
∂Ω

(MU)ν ds = 0. (3.2)

We can thus consider the following system, where the control is U ∈ L2(0, T ;U): ∂tv −∇ · T(v, p) + (vS · ∇)v + (v · ∇)vS −∇ · L1(ξ) + L2(ξ) + L3(∂tξ) = f in (0,∞)× Ω,
∇ · v = 0 in (0,∞)× Ω,

∂ttξ +A1ξ +A2∂tξ + T ∗(L1(ξ)ν) = −T ∗(T(v, p)ν) + h in (0,∞)× I,
(3.3)
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{
[v − T ∂tξ]ν = (MU)ν on (0,∞)× ∂Ω,[

2D(v)ν + (v − T ∂tξ) + L1(ξ)ν + L4(ξ)
]
τ
= (MU)τ on (0,∞)× ∂Ω,

(3.4)

ξ(0, ·) = ξ01 in I, ∂tξ(0, ·) = ξ02 in I, v(0, ·) = v0 in Ω. (3.5)

We are going to write the above system as{
PW ′ = APW + BU + PF
PW (0) = PW 0 and (Id−P)W = (Id−P)EU, (3.6)

where

W =

 v
ξ
∂tξ

 , W 0 =

v0ξ01
ξ02

 , F =

f0
h

 . (3.7)

Such a decomposition into a dynamical system and a stationary system is standard for the controllability of
Stokes type systems and was introduced in [49]). We are going to show that A is the infinitesimal generator of
an analytic semigroup with compact resolvent and satisfies a Fattorini-Hautus test so that it is exponentially
stabilizable with a finite number of controls (see below for details). Then, we will be able to replace MU by
Mu as in (1.20), (1.21), (1.22).

First, we denote by P the orthogonal projection

P : [L2(Ω)]2 ×D(A
1/2
1 )× L2

0(I) −→ H,

where H is defined by (1.24). We then define the operator A : D(A) → H by

D(A) :=
{
(v, ξ1, ξ2) ∈

[
H2(Ω)2 ×D(A1)×D(A

1/2
1 )

]
∩H

such that
[
2D(v)ν + (v − T ξ2) + L1(ξ1)ν + L4(ξ1)

]
τ
= 0 on ∂Ω

}
, (3.8)

A

 vξ1
ξ2

 := P

∆v − (vS · ∇)v − (v · ∇)vS +∇ · L1(ξ1)− L2(ξ1)− L3(ξ2)
ξ2

−A1ξ1 −A2ξ2 − T ∗(L1(ξ1)ν)− T ∗(2D(v)ν)

 . (3.9)

We have the following result, similar to results obtained in [6, Section 3] and [19, Section 5]. We give a sketch
of the corresponding proof for completeness.

Theorem 3.1. The operator (D(A),A) defined by (3.8) and (3.9) has compact resolvent and is the infinitesimal
generator of an analytical semigroup on H. Moreover, its adjoint is given by

D(A∗) =
{
(φ, ζ1, ζ2) ∈

(
[H2(Ω)]3 ×D(A1)×D(A

1/2
1 )

)
∩H : [2D(φ)ν + (φ− T ζ2)]τ = 0 on ∂Ω

}
, (3.10)

A∗

φζ1
ζ2

 = P

 ∆φ+ (vS · ∇)φ−
(
∇vS

)∗
φ

−ζ2 −
(
L1
)∗

(∇φ)−
(
L2
)∗

(φ) +
(
L4
)∗

(φ− T ζ2)
A1ζ1 −A2ζ2 − T ∗ (2 (Dφ) ν)−

(
L3
)∗

(φ)

 . (3.11)

Moreover, for any α ∈ [0, 1]

D((λ0 Id−A)α) = [D(A),H]1−α, D((λ0 Id−A∗)α) = [D(A∗),H]1−α, (3.12)

where [·, ·]θ denotes the complex interpolation.
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Proof. First, if (v, ξ1, ξ2) ∈ D(A), then after some integrations by parts, we obtain〈
A

 vξ1
ξ2

 ,
 vξ1
ξ2

〉
H

= −
∫
Ω

2 |Dv|2 dy−
∫
Ω

(v · ∇) vS·v dy−
∫
Ω

L1(ξ1) : ∇v dy−
∫
Ω

L2(ξ1)·v dy−
∫
Ω

L3(ξ2)·v dy

−
∥∥∥A1/2

2 ξ2

∥∥∥2
L2(I)

−
∫
∂Ω

|(v − T ξ2)τ |
2
ds−

∫
∂Ω

L4(ξ1)τ (v − T ξ2)τ ds (3.13)

so that using Proposition 2.1 and the Korn inequality, we deduce that for λ > 0 large enough, A − λ Id is
dissipative. We can then show that for λ > 0 large enough, A− λ Id : D(A) → H is invertible by following the
proof of Proposition 5.1 in [19]. Consequently, there exists λ0 > 0 such that for λ ⩾ λ0, A−λ Id is m-dissipative
and (3.12) is a consequence of [12, Proposition 6.1, p.171].

The adjoint of A can be obtained by integration by parts: assume (v, ξ1, ξ2) ∈ D(A) and (φ, ζ1, ζ2) ∈ D(A∗).
Then〈

A

 vξ1
ξ2

 ,
φζ1
ζ2

〉
H

=

∫
Ω

v ·
(
∆φ+ (vS · ∇)φ−

(
∇vS

)∗
φ
)
dy +

∫
∂Ω

L4(ξ1) · (φ− T ζ2) ds

−
∫
Ω

L1(ξ1) : ∇φ dy −
∫
Ω

L2(ξ1) · φ dy −
∫
Ω

L3(ξ2) · φ dy

+
〈
A

1/2
1 ξ1,−A1/2

1 ζ2

〉
+ ⟨ξ2, A1ζ1 −A2ζ2 − T ∗ (2 (Dφ) ν)⟩ . (3.14)

Moreover, we can write the operator A∗ as A∗ = A0 +A1 with

D(A0) = D(A∗), A0

φζ1
ζ2

 := P

 ∆φ
−ζ2

A1ζ1 −A2ζ2 − T ∗ (2 (Dφ) ν)

 , (3.15)

D(A1) = V, A1

φζ1
ζ2

 := P

 (vS · ∇)φ−
(
∇vS

)∗
φ

−
(
L1
)∗

(∇φ)−
(
L2
)∗

(φ) +
(
L4
)∗

(φ− T ζ2)
−
(
L3
)∗

(φ)

 . (3.16)

We have shown in [19, Proposition 5.3] that A0 is the infinitesimal generator of an analytical semigroup on
H and that D

(
(λ0 Id−A0)

1/2
)
= V. Note that A1 is well-defined since L1, L2, L3 and L4 satisfy (2.43) and

(2.44). Then, using [44, Corollary 2.4, p.81], we deduce that A∗ and thus A are infinitesimal generators of
analytical semigroups on H.

Before defining the control operator, let us state some useful lemmas:

Lemma 3.2. The operator (D(A),A) defined by (3.8) and (3.9) satisfies

D((λ0 Id−A)α) = D((λ0 Id−A∗)α) =
[
H2α(Ω)2 ×D

(
A

1/2+α/2
1

)
×D

(
A

α/2
1

)]
∩H

(α ∈ [0, 1/4) ∪ (1/4, 3/4)),

and for α ∈ (3/4, 1),

D((λ0 Id−A)α) =
{
(v, ξ1, ξ2) ∈

[
H2α(Ω)2 ×D

(
A

1/2+α/2
1

)
×D

(
A

α/2
1

)]
∩H

such that
[
2D(v)ν + (v − T ξ2) + L1(ξ1)ν + L4(ξ1)

]
τ
= 0 on ∂Ω

}
,

D((λ0 Id−A∗)α) =
{
(φ, ζ1, ζ2) ∈

[
H2α(Ω)2 ×D

(
A

1/2+α/2
1

)
×D

(
A

α/2
1

)]
∩H

such that [2D(φ)ν + (φ− T ζ2)]τ = 0 on ∂Ω
}
.
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Proof. We introduce the spaces

L2
ν(Ω) :=

{
f ∈ L2(Ω)2 : div f = 0, fν = 0

}
, H2

ν (Ω) :=
{
f ∈ H2(Ω)2 ∩ L2

ν(Ω) : [2(Df)ν + f ]τ = 0
}
.

It is shown in [51] that[
H2

ν (Ω), L
2
ν(Ω)

]
1−α

= L2
ν(Ω) ∩H2α(Ω)2 (α ∈ [0, 1/4) ∪ (1/4, 3/4)),[

H2
ν (Ω), L

2
ν(Ω)

]
1−α

=
{
f ∈ H2α(Ω)2 ∩ L2

ν(Ω) : [2(Df)ν + f ]τ = 0
}
. (α ∈ (3/4, 1)).

Then, we consider the operator E defined by E(ξ1, ξ2) := v̂ is the solution of
λ0v̂ −∇ · T(v̂, p̂)−∇ · L1(ξ1) = 0 in Ω,

div v̂ = 0 in Ω,
[v̂ − T ξ2]ν = 0 on ∂Ω,[

2D(v̂)ν + (v̂ − T ξ2) + L1(ξ1)ν + L4(ξ1)
]
τ

on ∂Ω.

(3.17)

If (ξ1, ξ2) ∈ D(A1) × D(A
1/2
1 ), then T ξ2 ∈ H2(∂Ω)2 and from Proposition 2.1, L1(ξ1) ∈ H1(Ω)4, L4(ξ1) ∈

H1/2(∂Ω)2. Thus, from [1] or [10], there exists a unique strong solution (v̂, p̂) ∈ H2(Ω)2 × H1(Ω)/R of the
above system and we deduce that E ∈ L

(
D(A1)×D(A

1/2
1 ), H2(Ω)2

)
. If (ξ1, ξ2) ∈ D(A

1/2
1 )×L2

0(I), then T ξ2 ∈
L2(∂Ω)2 and from Proposition 2.1, L1(ξ1) ∈ L2(Ω)4, L4(ξ1) ∈ L2(∂Ω)2. Therefore, there exists a unique solution
v̂ ∈ L2(Ω)2 of (3.17) by using the transposition method. We thus obtain E ∈ L

(
D(A

1/2
1 )× L2

0(I), L2(Ω)2
)
.

Now, we can see that (1.24) and (3.8) can be written as follows

H =
{
(v, ξ1, ξ2) ∈ L2(Ω)2 ×D(A

1/2
1 )× L2

0(I) : v −E(ξ1, ξ2) ∈ L2
ν(Ω)

}
,

D(A) =
{
(v, ξ1, ξ2) ∈ H2(Ω)2 ×D(A1)×D(A

1/2
1 ) v −E(ξ1, ξ2) ∈ H2

ν (Ω)
}
,

and from (3.12), we deduce that

D((λ0 Id−A)α) =
{
(v, ξ1, ξ2) ∈ H2α(Ω)2 ×D

(
A

1/2+α/2
1

)
×D

(
A

α/2
1

)
: v −E(ξ1, ξ2) ∈

[
H2

ν (Ω), L
2
ν(Ω)

]
1−α

}
,

which gives the result for D((λ0 Id−A)α). The proof for D((λ0 Id−A∗)α) is similar.

Lemma 3.3. The orthogonal projection

P : L2(Ω)2 ×D(A
1/2
1 )× L2

0(I) −→ H,

satisfies for α ∈ [0, 2]

P ∈ L
(
Hα(Ω)2 ×D

(
A

1/2+α/4
1

)
×D

(
A

α/4
1

))
. (3.18)

Proof. The proof is already done in [6] for α ∈ [0, 1]. Here our domain Ω is assumed to be more regular so that
we can obtain the result for α = 2 and proceed by interpolation to deduce the lemma. Assume

(v, ξ1, ξ2) ∈ H2(Ω)2 ×D (A1)×D
(
A

1/2
1

)
.

It is obtained in the proof of Proposition 3.2 in [6] that

P

 vξ1
ξ2

 =

 v −∇p
ξ1

ξ2 + T ∗(pν)

 ,
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where p is the solution of the Neumann problem{
∆p = div v in Ω,

∂p

∂ν
+ T T ∗(pν) · ν = (v − T ξ2) · ν on ∂Ω,

(3.19)

where we recall that (see (1.16) and (1.17)),

T T ∗(pν) · ν =


0 in Γb,

p(y1, 1 + ηS(y1))√
1 + |∂y1

ηS(y1)|2
if (y1, 1 + ηS(y1)) ∈ Γ.

Using standard results on the elliptic regularity of the Laplace equation with Robin equations (see, for instance,
[26, Theorem 2.5.1.1, p.128]) and that ∂Ω is C2,1, we deduce that p ∈ H3(Ω) and thus (3.18) for α = 2. This
concludes the proof of the result.

In order to define the operator B, we consider λ0 > 0 large enough such that λ0 ∈ ρ(A) and we consider the
solution EU := (vU , ξU1 , ξ

U
2 ) of the system

λ0v
U −∇ · T(vU , pU ) + (vS · ∇)vU + (vU · ∇)vS −∇ · L1(ξU1 ) + L2(ξU1 ) + L3(ξU2 ) = 0 in Ω,

div vU = 0 in Ω,

λ0ξ
U
1 = ξU2 in I,

λ0ξ
U
2 +A1ξ

U
1 +A2ξ

U
2 + T ∗(L1(ξU1 )ν) = −T ∗(T(vU , pU )ν) in I,

(3.20)

{ [
vU − T ξU2

]
ν
= (MU)ν on ∂Ω,[

2D(vU )ν + (vU − T ξU2 ) + L1(ξU1 )ν + L4(ξU2 )
]
τ
= (MU)τ on ∂Ω.

(3.21)

We have the following result on the above lifting

Lemma 3.4. The operator E defined above satisfies for s ∈
[
−1

2
,
3

2

]
E ∈ L

(
Hs(∂Ω), [Hs+1/2(Ω)]2 ×D(A

s/4+5/8
1 )×D(A

s/4+1/8
1 )

)
.

Proof. We prove the above result by interpolation: for s = 3/2, we note that if U ∈ H3/2(∂Ω)2, then MU
defined by (3.1) is in H3/2(∂Ω)2 and satisfies (3.2). As a consequence (see [1] or [10]), there exists a unique
strong solution (v̂, p̂) ∈ H2(Ω)2 ×H1(Ω)/R of

λ0v̂ −∇ · T(v̂, p̂) = 0 in Ω,
div v̂ = 0 in Ω,

[v̂]ν = (MU)ν on ∂Ω,
[2D(v̂)ν + v̂]τ = (MU)τ on ∂Ω.

Then, we consider the solution (v̂U , ξU1 , ξ
U
2 ) ∈ D(A) of

(λ0 Id−A)

v̂UξU1
ξU2

 := P

−(vS · ∇)v̂ − (v̂ · ∇)vS

0

−T ∗(2D(v̂U )ν)

 ∈ H.

Setting vU := v̂U + v̂ ∈ H2(Ω)2 we can check that (vU , ξU1 , ξ
U
2 ) is the solution of (3.20)–(3.21).

For s = −1/2, we define the solution by transposition: (vU , ξU1 , ξ
U
2 ) is the unique element of H such that for

any F ∈ H,〈vUξU1
ξU2

 , F〉
H

= −⟨U,M (T(φ, πφ)ν)⟩H−1/2(∂Ω),H1/2(∂Ω) , where

φζ1
ζ2

 = (λ0 Id−A∗)
−1
F, (3.22)

17



and where πφ ∈ H1(Ω) is such that ∇πφ
0

−T ∗(πφν)

 = (Id−P)

 ∆φ+ (vS · ∇)φ−
(
∇vS

)∗
φ

−ζ2 −
(
L1
)∗

(∇φ)−
(
L2
)∗

(φ) +
(
L4
)∗

(φ− T ζ2)
A1ζ1 −A2ζ2 − T ∗ (2 (Dφ) ν)−

(
L3
)∗

(φ)

 . (3.23)

Then, we can define the control operator B ∈ L
(
U , (D(A∗)

′) by

B := (λ0 Id−A)PE. (3.24)

Combining Theorem 3.1, Lemma 3.2, Lemma 3.3 and Lemma 3.4, we deduce the following result:

Proposition 3.5. For any ε ∈ (0, 1/4),

(λ0 Id−A)−1+εB ∈ L(U ,H).

Moreover, the adjoint of B is given by

B∗

φζ1
ζ2

 = −M (T(φ, πφ)ν) , (3.25)

where πφ is given by (3.23).

Using the operator A and B defined by (3.8), (3.9) and (3.24), we can check that (3.3)–(3.5) writes as (3.6),
(3.7). Indeed, taking Φ := (φ, ζ1, ζ2) ∈ D(A∗) and multiplying the first equation of (3.3) by φ and the third
equation by ζ2, we obtain after some integrations by parts, that〈

d

dt
W,Φ

〉
H

= ⟨W,A∗Φ⟩H + ⟨U,B∗Φ⟩U + ⟨F,Φ⟩H .

Moreover, we have W − EU ∈ H so that (Id−P) (W − EU) = 0.

3.2 Stabilization of the linear system
We can now check that (A,B) satisfies the Fattorini-Hautus stabilization criterion (see, [4] and [5, Theorem
1.6]); it is stabilizable if the following condition hold

A∗

φζ1
ζ2

 = λ

φζ1
ζ2

 , B∗

φζ1
ζ2

 = 0 =⇒

φζ1
ζ2

 = 0. (3.26)

We thus consider (φ, ζ1, ζ2) ∈ [H2(Ω)]2 ×D(A1)×D(A
1/2
1 ) satisfying

λφ−∇ · T(φ, πφ)− (vS · ∇)φ+
(
∇vS

)∗
φ = 0 in Ω,

divφ = 0 in Ω,

λζ1 + ζ2 +
(
L1
)∗

(∇φ) +
(
L2
)∗

(φ)−
(
L4
)∗

(φ− T ζ2) = 0 in I,
λζ2 −A1ζ1 +A2ζ2 + T ∗ (T(φ, πφ)ν) +

(
L3
)∗

(φ) = 0 in I,

(3.27)

{
[φ− T ζ2]ν = 0 on ∂Ω,

[2D(φ)ν + (φ− T ζ2)]τ = 0 on ∂Ω, (3.28)

and
M (T(φ, πφ)ν) = 0. (3.29)
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We set
cφ :=

∫
Γcont

mT(φ, πφ)ν · ν dy1,

and we deduce from (3.1) that
T(φ, πφ + cφ)ν = 0 on suppm ⊂ Γb. (3.30)

Combining this with (3.28), this yields that φ = 0 on suppm. We can thus apply a classical unique continuation
result [20] for the Stokes system (see [5, Appendix A] for more details) and we deduce (φ, πφ) = 0 in Ω and
then (3.26) by using (3.27)–(3.28).

Applying [4, Proposition 17] or [5, Theorem 1.6], we can construct a feedback stabilization with finite
dimensional controllers. More precisely, for a finite family

(
w̃(j)

)
j=1,...,Nσ

⊂ U we define the operator

B : RNσ → D(A∗)′, u 7→
Nσ∑
j=1

ujBw̃(j). (3.31)

Then we deduce the following result from (3.26):

Proposition 3.6. For σ > 0, there exist Nσ ∈ N∗, a family
(
w̃(j)

)
j=1,...,Nσ

⊂ H3/2(Γb)
2 and operators

R(1)
σ ∈ L(H,RNσ ), R(2)

σ ∈ L(RNσ ) such that the operator

D (Aσ) :=
{
[v, ξ1, ξ2, u] ∈ H × RNσ : A[v, ξ1, ξ2] + Bu ∈ H

}
, Aσ :=

[
A B

R(1)
σ R(2)

σ

]
(3.32)

is the infinitesimal generator of an analytic and exponentially stable semigroup on H× RNσ of type lower that
−σ.

Proof. Since the proof is already done in [4] and in [5], we only recall briefly the main arguments for the
exponential stabilization. From (3.26) and from [5, Theorem 1.6], there exists a family

(
w̃(j)

)
j=1,...,Nσ

⊂

H3/2(Γb)
2 such that the system Z ′ = AZ + Bu is exponentially stabilizable with a decay rate of order −σ.

Moreover, we have (see [5, Theorem 1.6, item 3.]),

∀λ ∈ C, Reλ ⩾ −σ, ∀Φ ∈ Ker(λI −A∗),

 ⟨w̃(1),B∗Φ⟩U
...

⟨w̃(Nσ),B∗Φ⟩U

 = 0 =⇒ Φ = 0. (3.33)

Then, we can consider the operators

D (A♭) :=
{
[v, ξ1, ξ2, u] ∈ H × RNσ : A[v, ξ1, ξ2] + Bu ∈ H

}
, A♭ :=

[
A B
0 0

]
and B♭ :=

[
0
IN

]
. (3.34)

They corresponds to the control problem

Z ′ = AZ + Bu, u′ = u⋆, (3.35)

where u is now included in the state (Z, u) and the new control is u⋆. The Fattorini-Hautus criterion applied
on (A∗

♭ ,B
∗
♭ ) leads to the condition

∀λ ∈ C, Reλ ⩾ −σ, A∗Φ = λΦ, B∗Φ = 0 =⇒ Φ = 0. (3.36)

However, from (3.31)

B∗Φ =

 ⟨w̃(1),B∗Φ⟩U
...

⟨w̃(Nσ),B∗Φ⟩U

 ,
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so that (3.33) implies (3.36). Hence, using again [5, Theorem 1.6], we deduce the existence of R(1)
σ ∈ L(H,RNσ )

and R(2)
σ ∈ L(RNσ ) such that the control

u⋆ = R(1)
σ Z +R(2)

σ u

stabilizes exponentially the system (3.35) with a decay rate of order −σ.

We define
w(j) := Mw̃(j), (3.37)

that satisfies w(j) ∈ H3/2(∂Ω)2 with suppw(j) ∈ Γcont. The operator M is defined by (1.7) that is

M : RNσ → L2(∂Ω)2, u 7→
Nσ∑
j=1

ujMw̃(j). (3.38)

Using Proposition 3.6, we are going to show that the following linear system is exponentially stable:
∂tv −∇ · T(v, p) + (vS · ∇)v + (v · ∇)vS −∇ · L1(ξ) + L2(ξ) + L3(∂tξ) = f in (0,∞)× Ω,

∇ · v = 0 in (0,∞)× Ω,
∂ttξ +A1ξ +A2∂tξ + T ∗(L1(ξ)ν) = −T ∗(T(v, p)ν) + h in (0,∞)× I,

u′ = R(1)
σ (v, ξ, ∂tξ) +R(2)

σ u+ γ in (0,∞),

(3.39)

{
[v − T ∂tξ]ν = (Mu)ν on (0,∞)× ∂Ω,[

2D(v)ν + (v − T ∂tξ) + L1(ξ)ν + L4(ξ)
]
τ
= (Mu)τ + g on (0,∞)× ∂Ω,

(3.40)

ξ(0, ·) = ξ01 in I, ∂tξ(0, ·) = ξ02 in I, v(0, ·) = v0 in Ω, u(0) = 0. (3.41)

First we consider the case g = 0:

Proposition 3.7. Assume

[v0, ξ01 , ξ
0
2 ] ∈ V, g = 0, f ∈ L2

σ(L
2(Ω)2), h ∈ L2

σ(L
2
0(I)), γ ∈ L2

σ(RNσ ).

Then (3.39)–(3.41) admits a unique solution

v ∈ L2
σ

(
H2(Ω)2

)
∩H1

σ

(
L2(Ω)2

)
, ξ ∈ H2

σ

(
L2
0(I)

)
∩H1

σ

(
D(A

1/2
1 )

)
∩ L2

σ (D(A1)) , u ∈ H1
σ(RNσ ),

and there exists a constant C > 0 such that

∥v∥L2
σ(H

2(Ω)2)∩H1
σ(L

2(Ω)2) + ∥∇p∥L2
σ(L

2(Ω)2) + ∥ξ∥
H2

σ(L2
0(I))∩H1

σ

(
D(A

1/2
1 )

)
∩L2

σ(D(A1))
+ ∥u∥H1

σ(RNσ )

⩽ C
(∥∥[v0, ξ01 , ξ02 ]∥∥V + ∥f∥L2

σ(L
2(Ω)2) + ∥h∥L2

σ(L
2
0(I))

+ ∥γ∥L2
σ(RNσ )

)
. (3.42)

Proof. We deduce from (3.6) and (3.7) that (3.39)–(3.41) can be written as[
PW ′

u′

]
= Aσ

[
PW
u

]
+

[
PF
γ

]
,

[
PW
u

]
(0) =

[
W 0

0

]
, (3.43)

(Id−P)W = (Id−P)EMu. (3.44)

Using Proposition 3.6, we deduce that[
PW
u

]
∈ L2

σ

(
D(A)× RNσ

)
∩H1

σ

(
H× RNσ

)
.

We then deduce from Lemma 3.4 that

(Id−P)W ∈ H1
σ(H

2(Ω)2 ×D(A1)×D(A
1/2
1 )).
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Let us now handle the case

f = 0, h = 0, γ = 0, ξ01 = ξ02 = 0, v0 = 0, (3.45)

and
g ∈ H1/4

σ ([L2(∂Ω)]2) ∩ L2
σ([H

1/2(∂Ω)]2). (3.46)

To obtain the regularity of the solutions, we adapt the proof done in [50].

Proposition 3.8. Assume (3.45), (3.46). Then (3.39)–(3.41) admits a unique solution

v ∈ L2
σ

(
H2(Ω)2

)
∩H1

σ

(
L2(Ω)2

)
, p ∈ L2

σ

(
H1(Ω)/R

)
,

ξ ∈ H2
σ

(
L2
0(I)

)
∩H1

σ

(
D(A

1/2
1 )

)
∩ L2

σ (D(A1)) , u ∈ H1
σ(RNσ ),

and there exists a constant C > 0 such that

∥v∥L2
σ(H

2(Ω)2)∩H1
σ(L

2(Ω)2) + ∥∇p∥L2
σ(L

2(Ω)2) + ∥ξ∥
H2

σ(L2
0(I))∩H1

σ

(
D(A

1/2
1 )

)
∩L2

σ(D(A1))
+ ∥u∥H1

σ(RNσ )

⩽ C ∥g∥
H

1/4
σ ([L2(∂Ω)]2)∩L2

σ([H
1/2(∂Ω)]2)

. (3.47)

Proof. By using a change of variable g 7→ eσtg, it is sufficient to show the proposition in the case σ = 0. Assume
(3.45) and let us construct by density the linear mapping

g 7→ (v, ξ, u) ,

from H1/4(L2(∂Ω)2) ∩ L2(H1/2(∂Ω)2) into[
L2
(
H2(Ω)2

)
∩H1

(
L2(Ω)2

)]
×
[
H2
(
L2
0(I)

)
∩H1

(
D(A

1/2
1 )

)
∩ L2 (D(A1))

]
×H1(RNσ ).

More precisely, we first assume g ∈ C∞(R;H1/2(∂Ω)2) with compact support in R+. In that case, for λ > 0,
from [10] and [1], there exists a unique solution

(vg, pg) ∈ C∞(R;H2(Ω)2 ×H1(Ω)/R),

of 
λvg −∇ · T(vg, pg) = 0 in (0,∞)× Ω,

∇ · vg = 0 in (0,∞)× Ω,
[vg]ν = 0 on (0,∞)× ∂Ω,

[2D(vg)ν + vg]τ = g on (0,∞)× ∂Ω,

(3.48)

and there exists a constant C > 0 such that

∥(vg, pg)∥L2(H2(Ω)2×H1(Ω)/R) ⩽ C ∥g∥L2(H1/2(∂Ω)) .

Using this lifting in (3.39)–(3.41) and applying Proposition 3.7, we deduce that (3.39)–(3.41) admits a unique
solution with

(v, ξ, u) ∈ C∞ (R+;H
2(Ω)2 ×D(A1)× RNσ

)
.

Let us estimate this solution. In order to do that, we differentiate (3.39)–(3.41) with respect to time:
∂2t v −∇ · T(∂tv, ∂tp) + (vS · ∇)∂tv + (∂tv · ∇)vS −∇ · L1(∂tξ) + L2(∂tξ) + L3(∂2t ξ) = 0 in (0,∞)× Ω,

div ∂tv = 0 in (0,∞)× Ω,
∂3t ξ +A1∂tξ +A2∂

2
t ξ + T ∗(L1(∂tξ)ν) = −T ∗(T(∂tv, ∂tp)ν) in (0,∞)× I,

u′′ = R(1)
σ (∂tv, ∂tξ, ∂

2
t ξ) +R(2)

σ u′ in (0,∞),
(3.49)
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{ [
∂tv − T ∂2t ξ

]
ν
= (Mu′)ν on (0,∞)× ∂Ω,[

2D(∂tv)ν + (∂tv − T ∂2t ξ) + L1(∂tξ)ν + L4(∂tξ)
]
τ
= (Mu′)τ + ∂tg on (0,∞)× ∂Ω,

(3.50)

∂tξ(0, ·) = 0 in I, ∂2t ξ(0, ·) = 0 in I, ∂tv(0, ·) = 0 in Ω, u′(0) = 0. (3.51)

Let us consider
(Ψ, d) ∈ C∞ (R;H× RNσ

)
,

with compact support in R+. There exists T > 0 such that supp (Ψ, d) ⊂ [0, T ] and we consider the unique
solution

(Φ, µ) ∈ L2
(
(−∞, T ]; (D(A∗)× RNσ

)
∩H1

(
(−∞, T ];H× RNσ

)
, (3.52)

of [
−∂tΦ
−µ′

]
= A∗

σ

[
Φ
µ

]
+

[
Ψ
d

]
,

[
Φ
µ

]
(T ) = 0, (3.53)

where Aσ is defined by (3.32). Setting

Φ =

φζ1
ζ2

 , Ψ =

ψκ1
κ2

 , (
R(1)

σ

)∗
µ =

R(3)
σ µ

R(4)
σ µ

R(5)
σ µ

 ,
the system (3.53) can be written as

−∂tφ−∇ · T(φ, πφ)− (vS · ∇)φ+
(
∇vS

)∗
φ−R(3)

σ µ = ψ in (−∞, T )× Ω,
divφ = 0 in (−∞, T )× Ω,

−∂tζ1 + ζ2 +
(
L1
)∗

(∇φ) +
(
L2
)∗

(φ)−
(
L4
)∗

(φ− T ζ2)−R(4)
σ µ = κ1 in (−∞, T )× I,

−∂tζ2 −A1ζ1 +A2ζ2 + T ∗ (T(φ, πφ)ν) +
(
L3
)∗

(φ)−R(5)
σ µ = κ2 in (−∞, T )× I,

−µ′ = B∗(φ, ζ1, ζ2) +
(
R(2)

σ

)∗
µ+ d in (−∞, T ),

(3.54)

{
[φ− T ζ2]ν = 0 on (−∞, T )× ∂Ω,

[2D(φ)ν + (φ− T ζ2)]τ = 0 on (−∞, T )× ∂Ω,
(3.55)

ζ1(T, ·) = 0 in I, ζ2(T, ·) = 0 in I, φ(T, ·) = 0 in Ω, µ(T ) = 0. (3.56)

Note that from (3.25), (3.31) and (3.38)

B∗(φ, ζ1, ζ2) · u = −
∫
∂Ω

Mu · T(φ, πφ)ν ds.

Let us multiply the first equation of (3.49) by φ and integrate in [0, T ]. After several integrations by parts and
using the above relation, (3.49)–(3.51) and (3.54)–(3.56), we obtain∫ T

0

〈[
∂tv, ∂tξ, ∂

2
t ξ, u

′] , [Ψ, d]〉H×RNσ
=

∫ T

0

∫
∂Ω

(∂tg) [φ− T ζ2]τ ds dt. (3.57)

From (3.52), we have
[φ− T ζ2]τ ∈ H3/4(−∞, T ;L2(∂Ω)).

and cancels at t = T . We can thus extend it by 0 as a function in H3/4(R;L2(∂Ω)) and we deduce the existence
of a constant C > 0 such that∣∣∣∣∣

∫ T

0

∫
∂Ω

(∂tg) [φ− T ζ2]τ ds dt

∣∣∣∣∣ ⩽ C ∥g∥H1/4(R;L2(∂Ω)) ∥[φ− T ζ2]τ∥H3/4(R;L2(∂Ω))

⩽ C ∥g∥H1/4(R+;L2(∂Ω)) ∥(Ψ, d)∥L2(R+;H×RNσ ) .
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The above estimate and (3.57) imply that∥∥[∂tv, ∂tξ, ∂2t ξ, u′]∥∥L2(H×RNσ )
⩽ C ∥g∥H1/4(R+;L2(∂Ω)) . (3.58)

We deduce similarly that
∥[v, ξ, ∂tξ, u]∥L2(H×RNσ ) ⩽ C ∥g∥H1/4(R+;L2(∂Ω)) . (3.59)

Using the lifting (vg, pg) defined by (3.48) and some similar lifting for Mu in (3.39)–(3.41) and Theorem 3.1, we
deduce that

∥[v, ξ, ∂tξ, u]∥L2
(
H2(Ω)2×D(A1)×D(A

1/2
1 )×RNσ

) ⩽ C
(
∥[v, ξ, ∂tξ, u]∥H1(H×RNσ ) + ∥g∥L2(H1/2(∂Ω))

)
.

Combining this result with (3.58) and (3.59), we deduce the result for g ∈ C∞(R;H1/2(∂Ω)2) with compact
support in R+. Then, by a density argument we conclude the proof of the proposition.

4 Proof of the main result
We are now in a position to prove Theorem 1.1. We consider Nσ ∈ N∗, the family

(
w(j)

)
j∈{1,...,Nσ}

and the

operators
R(1)

σ ∈ L(H,RNσ ), R(2)
σ ∈ L(RNσ )

from Proposition 3.6 and (3.37). Then, we assume (v0, ξ01 , ξ
0
2) ∈ V and we define

R :=
∥∥(v0, ξ01 , ξ02)∥∥V ,

and we consider

BR :=
{
(f, g, h) ∈ L2

σ(L
2(Ω)2)×

[
H1/4

σ ([L2(∂Ω)]2) ∩ L2
σ([H

1/2(∂Ω)]2)
]
× L2

σ(L
2
0(I)),

∥f∥L2
σ(L

2(Ω)2) + ∥g∥
H

1/4
σ ([L2(∂Ω)]2)∩L2

σ([H
1/2(∂Ω)]2)

+ ∥h∥L2
σ(L

2
0(I))

⩽ R
}
.

If (f, g, h) ∈ BR, then from Proposition 3.7 and Proposition 3.8, (3.39)–(3.41) admits a unique solution

v ∈ L2
σ

(
H2(Ω)2

)
∩H1

σ

(
L2(Ω)2

)
, ξ ∈ H2

σ

(
L2
0(I)

)
∩H1

σ

(
D(A

1/2
1 )

)
∩ L2

σ (D(A1)) , u ∈ H1
σ(RNσ ),

and there exists a constant C > 0 such that

∥v∥L2
σ(H

2(Ω)2)∩H1
σ(L

2(Ω)2) + ∥∇p∥L2
σ(L

2(Ω)2) + ∥ξ∥
H2

σ(L2
0(I))∩H1

σ

(
D(A

1/2
1 )

)
∩L2

σ(D(A1))
+ ∥u∥H1

σ(RNσ ) ⩽ CR. (4.1)

Applying Proposition 2.1, for R > 0 small enough, the triplet (F(v, p, ξ),G(v, ξ),H(v, ξ)) is well-defined and
satisfies (2.48)–(2.53). In particular, for R > 0 possibly smaller, the mapping

Z : BR → BR,
(f, g, h) 7→ (F(v, p, ξ),G(v, ξ),H(v, ξ)) ,

is well-defined and is a strict contraction. From the Banach fixed point argument, we deduce that if R > 0 small
enough, (1.20)–(1.22) admits a strong solution. This concludes the proof of the main result of this article.
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