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Carbon isotope labeling method is a standard metabolic engineering tool for flux quantifi-10

cation in living cells. To cope with the high dimensionality of isotope labeling systems,11

diverse algorithms have been developed to reduce the number of variables or operations in12

metabolic flux analysis (MFA), but lacks generalizability to non-stationary metabolic con-13

ditions. In this study, we present a stochastic simulation algorithm (SSA) derived from the14

chemical master equation of the isotope labeling system. This algorithm allows to com-15

pute the time evolution of isotopomer concentrations in non-stationary conditions, with the16

valuable property that computational time does not scale with the number of isotopomers.17

The efficiency and limitations of the algorithm is benchmarked for the forward and in-18

verse problems of 13C-DMFA in the pentose phosphate pathways. Overall, SSA consti-19

tute an alternative class to deterministic approaches for metabolic flux analysis that is well20

adapted to comprehensive dataset including parallel labeling experiments, and whose lim-21

itations associated to the sampling size can be overcome by using Monte Carlo sampling22

approaches.23

Keywords: Metabolic flux analysis, Flux balance analysis, Metabolism, Metabolic net-24

work model, Stable-isotope tracers, Systems biology25
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1. INTRODUCTION26

Isotope tracing experiments have been developed to quantify fluxes in biochemical net-27

works (Stephanopoulos, 1999). A typical carbon-13 labeling experiment metabolizes a labeled28

substrate, such as [1- 13C]glucose, tracks the propagation of the label on metabolites by nuclear29

magnetic resonance (NMR) or mass spectrometry (MS) methods and estimates metabolic fluxes30

by various methods including 13C-MFA (Niedenführ, Wiechert, and Nöh, 2015; Allen and Young,31

2020; Antoniewicz, 2021). Despite its limitations, 13C-MFA remains the gold standard method32

in metabolic engineering for accurate and precise quantification of fluxes in living cells (Crown33

and Antoniewicz, 2013). Currently, the most efficient algorithms are all based on an advanced de-34

composition method using elementary metabolic units (EMUs) developed in 2007 by Antoniewicz35

et al (Antoniewicz, Kelleher, and Stephanopoulos, 2007). Nevertheless, one of the limitations of36

the classical metabolic flux analysis (MFA) method is the requirement of a metabolic isotopic37

steady state. Flux analysis methods that focus on estimating non-stationary metabolic fluxes are38

referred to as dynamic MFA (DMFA) (Leighty and Antoniewicz, 2011), or 13C dynamic MFA39

methods (13C-DMFA) methods (Antoniewicz, 2015a). Despite pioneering works (Antoniewicz40

et al., 2007; Wahl, Nöh, and Wiechert, 2008) initiated more than one decade ago, little progress41

has been made since (Antoniewicz, 2021). Current computational methods use a deterministic42

modeling framework by solving EMU balance rate equations where dynamic flux parameters are43

modeled with B-splines (Quek et al., 2020; Ohno et al., 2020). Computational tractability of such44

method depends on the EMU system size that can be very large due to the interplay of elaborated45

labeling protocols (Lewis et al., 2014; Antoniewicz, 2015b; Jacobson et al., 2019; Dong et al.,46

2019; Allen and Young, 2020) and complex bibi reactions (Selivanov et al., 2004).47

In this paper, we present a different class of method that simulates isotope propagation in non-48

stationary metabolic systems by a Stochastic Simulation Algorithm (SSA). We test the method49

in the metabolic subsystem comprising glycolytic and PPP pathways where complex carbon re-50

arrangements occur due to bibi reactions in the nonoxidative PPP and where 13C labeling have51

been extensively applied to infer metabolic flux (Kuehne et al., 2015; Bouzier-Sore and Bolaños,52

2015; Creek et al., 2015; Diaz-Moralli et al., 2016; Lee et al., 2019). The main idea is to53

represent the population of isotopomers of a chemical species by a sample of finite size, propor-54

tional to the species concentration, and to use the standard rules of stochastic chemical kinetics55

to propagate the marker. When a reaction occurs, the isotopomers associated to the reactants are56
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randomly selected in the corresponding samples, the rearrangement is performed, and the products57

are added to the corresponding samples (Figure 1) The algorithm somehow mimics the discrete58

and stochastic processes of enzymatic reactions as it occurs in cells, but remains restricted to a59

small sample of metabolite species for the sake of computational efficiency. At each time step, the60

samples represent the population of the isotopomers of each variable from which one can compute61

mass isotopomer distribution for comparing with experimental data. The proposed algorithm is62

simple to implement, fast, visual, and above all its computation time depends very little on the63

chain length, which makes it an algorithm also adapted to parallel labeling (13C, 2H, 15N, 18O,64

etc).65

2. RESULTS66

2.1. Stochastic Simulation Algorithm (SSA)67

The propagation of labeled atoms through a biochemical network is here described by a sam-68

pling approach. The representation of the isotopomer distribution of each chemical species in the69

network is computed using a finite sample size proportional to its concentration. A user defined70

parameter Ω corresponds to a reference concentration. For example, a value of Ω = 1000 c/µM71

indicates that a concentration of 1 µM is represented by 1000 copies of the chemical species, each72

copy corresponding to a different isotopomer.73

The fluxes of chemical reactions are determined by mathematical functions that can be ei-74

ther linked to the species concentrations in the framework of chemical kinetics, or described by75

phenomenological functions depending on time, or by constant functions in the case of station-76

ary flux condition. The flux value determines the time interval between two occurrences of the77

corresponding chemical reactions. When one occurs, the reactants are taken randomly from the78

corresponding samples, the rearrangement of the atoms is done according to the reaction’s rule,79

and the products are added to the corresponding samples. In this way, the labeling propagates80

through the chemical reaction network; at a given date, the sample of each species is populated81

with different isotopomers and represents the isotopomer distribution.82

Such rules are formalized within the framework of the chemical master equation once two83

new tools are defined, the isotopomer index and addressing operators (sec. 3.1). Chemical master84

equation describes the temporal evolution of the isotopomer fraction. From the chemical master85
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FIG. 1. General principle of the stochastic simulation algorithm (left part) and example of one iteration

realization (right part). For each chemical species, the diversity of isotopomers is represented by a sample.

The time evolution consists in determining the next reaction from the flux values, and then performing the

reaction on reagents randomly selected in the corresponding samples. The products formed by internal

rearrangement are added to the corresponding samples. The sample population is thus updated before the

next reaction. The right side of the figure shows one iteration of the SSA where the next reaction to occur

is the one mediated by the transaldolase.

equation, one can derive both a deterministic simulation algorithm (DSA) (see Sec. 3.2) and a86

stochastic simulation algorithm (SSA) (see Sec. 3.3). The DSA is not an efficient algorithm since87

it has as many variables as possible isotopomer, it is a "brute force" algorithm serving here as a88

control for the SSA outputs.89

An example of stochastic simulation is given in Figure 2 and for the upper glycolytic pathway90

combined with the pentose phosphate pathway. To determine the fluxes, the mass action law is91

here used with unitary kinetic parameters (Table 1). At the initial time, the metabolic system is92

fed with labeled glucose (50% of [1-13 C]glucose and 50% of [2-13 C]glucose in (Kuehne et al.,93

2015)), and at the same time, is perturbed by a two-fold increase of the glucose intake rate. If94

Ω = 100 c/µM is used for SSA, the Figure 2 (and the corresponding video) only represents one95
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FIG. 2. Atom rearrangements in metabolic reactions. The upper glycolytic pathway supplemented by the

pentose phosphate pathway provides an example of isotope labeling network. For each chemical species

(G6P, F6P, FBP, DHAP, GAP 6PG, Ru5P, X5P, R5P, E4P, S7P) subsamples of the isotopomer samples are

displayed as a chain of unlabeled (open circle) and labeled carbons (close circle). The number of displayed

carbons chains is proportional to the species concentration. Mass isopotomer histogram is also displayed

(m+0 in black, m+1 in red, m+2 in green, and m+3 in blue). The Figure illustrates the configuration

50 s after the labeling introduction that also corresponds to the perturbation of the metabolic system. The

associated video provides a full dynamical picture.

element out of 20 from each sample, for the sake of visualization.96

The Figure 3 represents the evolution of the concentration and mass isotopomer obtained with97

the SSA (point) and the DSA (continuous line), thus depicting the accurate trends of isotopomer98

trajectories generated with SSA. The stochastic fluctuations of the mass isotopomers induced by99

the SSA are only due to the random selection of the reagents in the sample. The variance of these100

fluctuations is thus equal to the Ω profile and the mass isotopomer concentration. The determina-101

tion is thus all the more precise as the mass isotopomers are abundant. It is thus possible to reduce102

these fluctuations in two different ways, either by increasing the value of Ω, or by proceeding to a103
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FIG. 3. Concentration and mass isotopomer dynamics in nonstationary conditions. Stochastic trajectories

computed with SSA (dots) are compared with deterministic trajectories computed with DSA for control

(solid lines), and corresponds to calculation presented in Figure 1 (same network, same condition). For

each chemical species, the upper plot displays the concentration in µM whereas the bottom plot displays

the mass isotopomers in percent (m+0 in black, m+1 in red, m+2 in green, and m+3 in blue, m+4 violet).

temporal smoothing of the stochastic evolution.104

2.2. SSA Computational Performance105

SSA computation time depends on both the number of chemical reactions and the execution106

time of each reaction. As an example, the computation cost necessary to simulate data of the107

Figure 2 corresponds to 224 463 reactions carried out in 62 ms for the SSA, and 2892 right-hand-108

side evaluation in 2100 ms for the DSA (advanced Runge-Kutta-Fehlberg method is used) using a109

Intel(R) Core(TM) i5-6300U CPU at 2.40GHz without parallelization. In the SSA, the number of110

chemical reaction occurrences can be approximated by the product T vΩN where N is the number111
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of chemical reactions in the network, v the typical flux values and T the time interval. The number112

of reactions does not depend on the number of isotopomer per species or, equivalently, on the chain113

length representing the chemical species. The time to perform a reaction depends only slightly on114

the chain length l thus almost not depend on the number of isotopomer. In our implementation,115

the computation time for one reaction varies as 1+ l/15; so when l goes from 6 to 18 (e.g., C6116

to C6H12), the computation time increase by less than 60% whereas the number of isotopomer is117

multiplied by 212 = 4096. This is why the SSA algorithm is well adapted to cross-labeling, e.g.118

hydrogen carbon, leading to longer chain lengths and thus to a higher combinatoriality.119

2.3. SSA in 13C-DMFA120

To further test the SSA, we implemented it in a 13C-DMFA procedure. A general scheme of121

the procedure is shown in Figure 4. A series of measurements concerning metabolite concentra-122

tions and mass isotopomer distributions (MID) with known associated experimental errors is the123

target of an optimization procedure. The aim is to fit these data with a kinetic model based on124

mass action laws used for Figure 2 (Table 1). The flux dynamics therefore depend on the kinetic125

parameters of the reaction laws. Instead of a kinetic model, we could also use the stochiometric126

model supplemented with parameterized time functions to describe the flux. The parameter space127

of the model is then explored to identify the sets of parameters consistent with the target exper-128

imental data, taking into account the existing uncertainties (see (Valderrama-Bahamóndez and129

Fröhlich, 2019) for a review of standard method). Once the exploration is completed, the dynam-130

ics of metabolic fluxes are computed for each selected parameter set, which can be represented as131

a confidence region for flux trajectories.132

Here, target datasets were generated for concentrations and mass isotopomers from the DSA133

at 2,5,10,20,30,40s in the same condition as in Figure 3. Then the SSA, with Ω = 200 here,134

is used to compute the fitness score from target dataset and kinetic parameter set. Two classes135

of experimental measurements are considered. In a first strategy, only the mass isotopomers m+136

0 . . .m+3 are targeted with an error of 5% (no data provided for the concentrations). In a second137

strategy, concentration data are also included and targeted with an error of 0.25 µM. These errors138

mimic typical experimental and measurement uncertainties. A parameter set is here kept and said139

to be consistent with target dataset for a chi-square per degree of freedom (i.e., fitness score)140

remains below unity. Here, a parameter sensitivity analysis computes the parameter ranges, one141
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FIG. 4. 13C-DMFA generic workflow using SSA. Metabolite concentration as well as mass isotopomer

distribution (MID) are the targets of parameter estimation procedure. Parameter sensitivity analysis provides

a list of points in the parameter space that accurately describes targets. The range of flux dynamics is then

computed from the parameter value distribution.

by one, to illustrate the procedure; the input flux is assumed to be known. For each strategy,142

the selected parameter sets are finally used to compute the dispersion of the reaction fluxes. As143

expected, the areas of flux trajectories comprise the exact solution and are reduced when adding144

concentration data (Figure 5).145

2.4. SSA in 13C-NMFA or 13C-MFA146

The stochastic simulation algorithm can also be used to study the propagation of labeling when147

the network fluxes are in equilibrium. This framework corresponds to 13C-NMFA if the transient148
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FIG. 5. Directional flux areas compatible with mass isotopomer targeting. The areas are filled with a color

code. Blue areas correspond fit strategy 1; red, to fit strategy 2. Solid black lines correspond to the exact

solution. v+/−
i correspond to the flux of reaction number i in Table 1 in the forward/barckward direction.

The corresponding reaction is also indicated on top of each panel.

is studied or to 13C-MFA if the steady state only is studied. For these two frameworks, the state149

of the art method uses an EMU decomposition and is implemented in several available software.150

Therefore, a comparison has been made between the results and computational times obtained with151

the new algorithm presented here on the one hand, and those of the INCA software, implementing152

an EMU decomposition Young (2014).153

Figure 7, which represents the MID dynamics of one of the variables (S7P) obtained with the154

two software packages, illustrates the consistency of the results. The calculation of the transient155

dynamics was conducted in two networks of different size; on the one hand, the one described by156

the reactions of Table 1 (13 species – 15 reactions) and on the other hand, an extended network con-157

taining Glycolysis, Pentose Phosphate Pathway, Entner-Doudoroff Pathway, Tricarboxylic Acid158
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FIG. 6. Comparison of the MIDs dynamics for the S7P variable calculated with the SSA (dots) and INCA

software (solid lines). The simulated network corresponds to the reactions listed in Table 1 with equilibrium

fluxes (13C-NMFA). The color code is indicated on the figure.

Cycle, Amphibolic Reactions, Acetic Acid Formation, and PDO Biosynthesis) sumerized in sup-159

plemetary Table 1 (31 species – 37 reactions). The calculation times for a 50 s integration are160

reproduced in Table 2 and show that the SSA used as an forward 13C-NMFA method is signif-161

icantly faster than the INCA software. The calculations were performed on the same computer162

(Intel(R) Core(TM) i7-10610U at 1.8 GHz) without parallelisation.163

To complete this comparative study, we implemented the SSA in a 13C-MFA method (only the164

steady state is targeted) to determine the reaction fluxes (Figure 7). The larger network (Table S1165

of the suplementary material) was used and the MID targets were generated with DSA to know the166

exact reaction fluxes. An 2.5% error was used in the fit procedure to mimic experimental errors.167

The SSA was coupled to an MCMC method to obtain the accuracy on the determination of the168

fluxes corresponding to this error. The INCA software was also used for the flux determination.169

The top panel represents the goodness of the fit (m+ 0, m+ 1 and m+ 2 were targeted for each170

variable) and the bottom one, the fluxes estimaton inferred from the MID targets and their assumed171

errors (2.5%). The fluxes distributions derived with MCMC overlap the exact values and INCA172

estimations.173
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Network 1 Network 2

species 13 31

reactions 15 37

SSA Comput. time 0.025 s 0.08 s

INCA Comput. time 0.5 s 0.5 s

TABLE I. Computational performance of SSA and INCA
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FIG. 7. 13C-MFA with SSA or INCA. A 13C-MFA test performed with SSA coupled to an MCMC method

and with INCA on generated MID targets and with a chosen absolute error of 2.5%. Distribution of target

fits for each variable (top panel) and estimation of net fluxes (bottom panel). The color code is indicated on

the figure.

3. THEORY174

3.1. Chemical master equation model for isotopic labeling networks175

In a network of (bio)chemical reactions, the temporal evolution of the state probabilities is de-176

scribed by the chemical master equation (CME) through a general formalism (Gillespie, 1992).177

Deterministic kinetic rate equations, on the one hand, can be derived from the first moments of the178

probability distribution and allow for a thorough analysis of the network dynamics by various ana-179

lytical techniques (Thompson and Stewart, 2002). The probabilistic features of the dynamics such180
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as bimodal distributions or coefficients of variation, on the other hand, can be investigated with181

stochastic implementation of the CME through well-established stochastic simulation algorithms182

(Gillespie, 1977, 2001).183

3.1.1. Isotopomer index and addressing operators184

A chemical reaction network such as the one depicted in Figure 2 is defined by K reactions185

between M chemical species whose concentrations are denoted by Sm with m∈ [1,M]. The labeling186

states of the species Sm is an ordered sequence (sm,1,sm,2, . . . ,sm,lm) of length denoted lm made187

of elements sm,i ∈ [0,q− 1]. The species Sm has therefore Lm = qlm different labeling states or188

positional isotopomer indexed by nm = ∑
lm
i=1 sm,i qi−1, also noted nm = (sm,1,sm,2, . . . ,sm,lm)q and189

called the isotopomer index. A similar approach restricted to q = 2 has already been introduced190

to describe isotopomer distribution vectors (Schmidt et al., 1997). In the case 13C-labeling, each191

carbon may be in two different states (i.e., q = 2) and the sequence (0,0,1,0,0,0,0) for S7P192

indicates that 13C label is in third carbon position and corresponds to the labeling state number 4,193

the S7P species has therefore 27 different labeling states.194

If the permutation rule is known, one can define addressing operators that compute the iso-

topomer index of the products from the isotopomer index of the reactants, and vice versa for each

reaction of the network. The addressing operator forms an alternative to atom mapping matrices

defined by Zupke et al. (Zupke and Stephanopoulos, 1994). In the case of the reaction mediated

by transaldolase (reaction number 11 in Table 1), the addressing operators

σF6P(nS7P,nGAP) =(sa,1,sa,2,sa,3,sb,1,sb,2,sb,3)q (1)

σE4P(nS7P,nGAP) =(sa,4,sa,5,sa,6,sa,7)q, (2)

compute the product index from reactant index nS7P = (sa,1, . . . ,sa,7)q and nGAP = (sb,1,sb,2,sb,3)q.

In the same manner,

σS7P(nF6P,nE4P) =(sc,1,sc,2,sc,3,sd,1,sd,2,sd,3,sd,4)q (3)

σGAP(nF6P,nE4P) =(sc,4,sc,5,sc,6)q (4)

compute the reactant index from product index nF6P = (sc,1, . . . ,sc,6)q and nE4P = (sd,1, . . . ,sd,4)q.195

Therefore, in the context of a 13C labeling (q = 2), the reaction between a doubly labeled S7P196

(1000100) and a simply labeled GAP (001) – i.e. nS7P = 17 and nGAP = 4 – produces an F6P197

(100001) and an E4P (0100) – i.e. nF6P = 33 and nE4P = 2.198
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3.1.2. Chemical master equation description199

The chemical master equation (CME) is a general and accurate formalism to describe the200

stochastic dynamics in (bio)chemical reaction networks (Gillespie, 2000). This formalism can201

be easily extended to also describe the stochastic dynamics of labeling states of chemical species.202

With above notations for isotopomer index and addressing operators, the probabilistic dynamics in203

isotope labeling network can naturally be described in the CME framework. The chemical species204

with the largest number of isotopomers determines the size N of the state space (N = 27 in the ex-205

ample used in Figure 2). The state of the whole system is therefore described by a M×N integer206

matrix ω: ωm,n indicating the number of mth species in the nth labeling state. The total number of207

the mth species is noted ΩSm = ∑n ωm,n where Ω is a volume (involved as a scaling factor) and Sm208

is a concentration. The probability that the internal sequence of the mth species corresponds to the209

nth isotopomer is denoted ρm,n = ωm,n /ΩSm. The formalism of the CME describes the temporal210

evolution of the probability of the system to be in the state ω , noted Pω(t).211

The chemical reactions that define the network are characterized by both a concentration-212

dependent flux of reagents vk with k ∈ [0,K] and a permutation rule between the position of labeled213

atoms of reactants and products. Reactions are distinguished depending on their input, output, or214

internal position in the network. For instance, the network depicted in Figure 2 has one input reac-215

tion, 3 output reactions and 11 internal reactions. As seen latter on, input reactions always require216

a particular consideration since the reactant is not modified. For keeping notations simple, we217

restrict to Bi Bi reactions of the type A+B→C+D where A,B,C,D are either chemical species218

or empty sets. In this case, the CME reads,219

d
dt

Pω(t) =
Kn

∑
k=1

Ω vk (S) ∑
n,n′

[
E+

ak,nE
+
bk,n′

E−ck,σck (n,n
′)E
−
dk,σdk (n,n

′)−1
]

ρak,n ρbk,n′Pω(t) (5)

+
Kn+Ki

∑
k=Kn+1

Ω vk (S) ∑
n

Ick,n(t)
[
E−ck,n−1

]
Pω(t)

The integers ak,bk,ck,dk correspond to the indices of the species A,B,C,D of the kth reaction of220

type A+B→ C +D, the integer being null in the case of an empty set. The writing uses scale221

operators E±m,n (Van Kampen, 1992) :222

E±m,n ρm1,n1 ρm2,n2 Pω(t) =
[

ρm1,n1±
δm,m1δn,n1

ΩSm1

][
ρm2,n2±

δm,m2δn,n2

ΩSm2

]
Pω±Em,n(t) (6)
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where Em,n is a matrix of the canonical base (only the element at the intersection of row m and223

column n is non-zero and is unity), and δi, j the Kronecker symbol (unity if indexes are equal,224

zero either). The Kn first reactions concern internal and output reactions whereas the remaining225

KI concerns input reactions ( /0→ C). In this later case, Ick,n is the fixed probability to have an226

isotopomer n of the input species ck.227

3.2. Derived Deterministic Simulation Algorithm (DSA)228

The CME (Eq. 5) can be approximated in the large size limit Ω→ ∞ by deterministic rate

equation dynamics. The probability of each internal sequence is denoted by ρm,n such that Sm,n =

Sm ρm,n describes the concentration of nth-isotopomer of the mth species. The time evolution of

isotopomer concentrations is governed by the distribution rules specific to each reaction and is

formalized mathematically by a permutation of the concatenated internal sequence between the

reagents and the products. The deterministic system evolves according to the ordinary differential

equations,

d
dt

Sm,n =
K

∑
k=1

Nm,k vk(S) Φ
k
m,n(ρ) , (7)

where N denotes the stoichiometry matrix, vk k ∈ [0,K] the concentration-dependent flux of229

reagents, and Φk
m,n(ρ) the flux fraction describing the permutation rules of chemical reaction sat-230

isfying ∑n Φk
m,n(ρ) = 1. Algorithm to simulate Eq. 7 with standard Runge-Kutta-Fehlberg method231

of order 5 with adaptive step is called Deterministic Simulation Algorithm (DSA).232

Let us first consider the internal reactions restricted to Bi Bi reactions of the form A+B→

C+D. The reaction is characterized by the reordering of atom position defining addressing oper-

ations of the products according to the indices of the reagents. The operator σA(nc,nd) gives the

isotopomer index of the A species that produce C and D of isotopomer index nc and nd , respec-

tively. In that case, the reaction index k is omitted and the flux fraction reads,

Φa,na(ρ) =ρa,na (8)

Φb,nb(ρ) =ρb,nb (9)

Φc,nc(ρ) =
Ld−1

∑
nd=0

ρa,σA(nc,nd) ρb,σB(nc,nd) (10)

Φd,nd(ρ) =
Lc−1

∑
nc=0

ρa,σA(nc,nd) ρb,σB(nc,nd) (11)
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where Lc and Ld are the number of isotopomers of C and D species. If B is an empty set then233

ρb,x = 1, and if D is an empty set Eq. (11) is useless. If the reaction is an output reaction, then234

C and D are empty sets, Φa,na(ρ) and Φb,nb(ρ) are computed with the same rules as internal235

reactions. As mentioned, the input reactions must be treated separately since the reactants are not236

variables but parameters. We consider here input reactions of simple form /0→C and we note In237

the probability of synthesis of the species C in the state n, thus Φc,nc(ρ) = In in this case.238

Alternatively, the dynamical system (Eq. 7) can also be written as

d
dt

Sm =
K

∑
k=1

Nm,k vk(S) m ∈ [0,M] (12)

Sm
d
dt

ρm,n =
K

∑
k=1

Nm,k vk(S)
(

Φ
k
m,n(ρ)−ρm,n

)
(13)

The first equation describes the time evolution of species concentrations while the second equation239

describes the time evolution of the fraction of different isotopomers. This additional equation high-240

lights the key role of the concentrations Sm in the timescale of changes in isotopomer distribution:241

higher concentration values lead to slower evolution of isotopomer distributions.242

The permutation rules defined in Φ may be easily extended to more complex reactions. In the243

framework developed here, they only depend on the permutation relations and not on the mathe-244

matical forms of concentration-dependent flux, because we assume that the internal modification245

does not impact the reaction rate. If the construction rules are simple to establish and to implement246

in a numerical code, the computation time of the flux vector of the dynamic system (the right-hand247

side term of Eq. 7) increases significantly with the length of the sequences and the number of248

isotopomers, because of the many summations of terms. Moreover, this implementation computes249

the evolution of all possible isotopomers while the experimental labeling used nowadays gener-250

ates only a small subset of the possible isotopomers (Metallo, Walther, and Stephanopoulos, 2009).251

The deterministic system therefore requires a large number of unnecessary calculations even with252

an optimized implementation. It nevertheless serves as a useful benchmark to check the relative253

accuracy and efficiency of other methods.254

3.3. Derived Stochastic Simulation Algorithm (SSA)255

The CME is in fact a continuous-time approximation of discrete time stochastic processes.256

Stochastic algorithms are often used to simulate the molecular dynamics in chemical reaction257
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networks and capture the statistical and temporal features of fluctuations. In the case of the above258

CME (Eq. 5), time evolution of isotopomer distribution can also be simulated by a stochastic259

Monte-Carlo algorithm based on the next reaction methods (Gibson and Bruck, 2000), here called260

Stochastic Simulation Algorithm (SSA). Each chemical species is represented by a finite sample261

of isotopomers (Figure 2) where the sampling size is proportional to the concentration of the262

corresponding chemical species.263

The sample size of the variable m is ΩSm where Ω is a volume. The occurrence of a chem-264

ical reaction is determined by the standard next reaction methods that we have adapted, SSA is265

summarized as:266

Init: Compute the reaction time for all reactions267

τk =
1

Ω vk (S)
(14)

Step 1: Find the smallest reaction time τk′ = min(τk) and do reaction k′ by randomly picking the268

reagents from their samples and synthesizing the products following the permutation rule of269

the reaction;270

Step 2: Increment time t by τk′ and compute a next time for reaction k;271

Step 3: Adjust the set of reaction times to account for sample size variation induced by reaction k′272

τk←
vk,old

vk,new
(τk− t)+ t

and iterate to Step 1273

In this sequential process, each stochastic occurrence of a chemical reaction induces discrete274

changes in the number of species and of isotopomers associated to each chemical species, which275

results in stochastic fluctuations of both species concentrations and isotopomer distribution.276

Contrary to the common use of stochastic simulation algorithms for chemical reaction net-277

works, the Ω value does not have to represent the real number of molecules for a reference con-278

centration because the algorithm considers mainly the propagation of marked atoms and not the279

stochastic fluctuations of the chemical reactions linked to the finite number of copies. In the con-280

text of metabolic networks, fluctuation of the reaction times τk are indeed rarely relevant. Because281

of the high copy number of metabolites, numerous reactions occur and fluctuations of the reaction282

times τk do not induce much concentration fluctuations. If, however, one wished to decline this283
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algorithm to study the stochastic fluctuation of the chemical reactions, it would be enough to use284

the relation τk =
1

Ω vk(S)
log
(

1
Uk

)
with independent uniform random deviates Uk in [0,1] for the285

reaction time computations. In the latter case, a realistic estimate for the Ω parameter value must286

be used.287

4. METHODS288

4.1. Code availability and computer simulation289

Both methods, SSA and DSA, were implemented with the same highest level of optimization,290

using low-level bit-manipulation tools to implement addressing operators in a Fortran code (com-291

piled with gfortran and optimization flag “-O3”). Simulations were run on a standard laptop with292

an Intel(R) Core(TM) i5-6300U CPU at 2.40GHz. No paralellization were used. The fortran code293

is available in github294

https://github.com/Qthommen/Stochastic-method-for-isotope-labeling-systems.295

git296

4.2. Goodness of Fit297

The chi-square per degree of freedom χ2
ν = 1

n−p ∑
n
i=1

(yi−y∗i )
2

σ2
i

is used a goodness of fit criterion.298

n is the number of targets; p, the number of parameters; yi et y∗i the computations and tagets; σ2
i299

the variance. The fit is accepted χ2
ν < 1.300

4.3. Metabolic Network301

Table 1 lists the chemical reactions and carbon rearrangements of the upper part of the increased302

glycolysis of the pentose phosphate pathway (Figure 2). To illustrate the dynamics of the propa-303

gation of the labeled carbons and for the sake of simplicity, the reaction rate used corresponds to304

the mass action law with a kinetic parameter of unit value.305
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5. DISCUSSION306

In this study, we propose a stochastic algorithm to emulate the propagation of labeled atoms in a307

nonstationary metabolic system. This algorithm derives from the chemical master equation which308

is the most comprehensive framework for describing chemical reaction network dynamics. The309

efficiency of the algorithm has been applied to 13C-DMFA of the illustrative case of the pentose310

phosphate pathways for which 13C-labeling and concentration time series data has been synthe-311

sized. One of the main computational advantages of the proposed method lies in the very weak312

dependence of the computation time on the length of the marking chain and thus the number of iso-313

topomer. Deterministic methods exhibit by construction a number of variables and a computation314

time that both rapidly increase with the combinatoriality associated to the power-law dependence315

with the chain length. SSA is therefore well adapted to the study of parallel labeling, combining for316

instance carbon and hydrogen labeling (Lewis et al., 2014; Antoniewicz, 2015b; Jacobson et al.,317

2019; Dong et al., 2019). Moreover, a simulation that mimics the stochastic and discrete nature318

of metabolic reaction processes provides a more accurate and comprehensive picture relating the319

propagation of labeling with the dynamics of isotopomer and metabolite concentrations. Finally,320

this rigorous and straightforward method requires no tinkering or approximations depending on the321

resolution of the experimental measurements or the nature of the metabolic process, as it calcu-322

lates all isotopomers at no additional cost and natively handles both stationary and non-stationary323

conditions. In other words, the SSA method can be used interchangeably or simultaneously for324

13C-MFA (Hurbain et al., 2022), 13C-NMFA or 13C-DMFA. Because problem-dependent re-325

duction or solving techniques are not used, the implementation does not require any particular326

software and can simply be done in any programming language, as it is the case for chemical327

kinetics modeling (see Code availability).328

Estimation of metabolic flux dynamics from 13C labeling and metabolomics data can be done329

either by inverse kinetic model modeling (Wahl, Nöh, and Wiechert, 2008; Baxter et al., 2007) or330

by considering flux function (Antoniewicz et al., 2007; Leighty and Antoniewicz, 2011; Schu-331

macher and Wahl, 2015; Quek et al., 2020). The preference of latter methods have been moti-332

vated by the lack of information about intracellular enzyme kinetics, but also the computational333

cost of deterministic simulation of kinetic models comprising isotopomer variables. Thanks to334

the computational efficiency of SSA for simulating isotopomer dynamics, inverse kinetic mod-335

eling integrating 13C labeling data become an achievable goal. However, SSA can still be used336
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with flux function as well, for instance with constant function in case of stationary metabolic337

condition (e.g., 13C-MFA and 13C-NMFA) (Hurbain et al., 2022). To summarize, a SSA-based338

13C-DMFA method would require (1) defining a stoichiometry model, (2) defining kinetic laws or339

flux functions, (3) using an optimization method to estimate the parameters of reaction laws or flux340

functions, (4) using a Monte-Carlo method to evaluate the distribution of such parameters, (5) ad-341

just iteratively the model (stoichiometry or kinetic structure) to optimize tradeoff between a good342

fit and a narrow parameter distributions. The last step corresponds to the well-known problem of343

model selection (Mangan et al., 2017). It is, however, to keep in mind that overparametrization is344

not a issue as long as one focuses on the estimation of flux trajectories. If, on the other hand, the345

13C-DMFA is used for dynamic control purposes (Hartline et al., 2021), the parameterization of346

flux functions will be of great importance, and it will be necessary to model the chemical kinetics347

as precisely as possible.348

The only delicate issue associated to this method is associated to the appropriate choice of the349

sample size Ω. Ω must be large enough to ensure that the level of fluctuations in isotopomer350

concentration are below the experimental uncertainties. At the same time, computational time351

scales linearly with Ω motivating to keep its value as low as possible. The parameter Ω thus needs352

to be adjusted to a typical value (typically 100−1000) to optimize the tradeoff between simulation353

uncertainties (below experimental uncertainties) and computational efficiency. For such system354

size, the residual fluctuations of isotopomer concentration leads to a narrow distribution of error355

score for a same parameter set, which is not an issue when using Monte Carlo sampling algorithm356

used for metabolic flux analysis (Theorell et al., 2017; Valderrama-Bahamóndez and Fröhlich,357

2019; Heinonen et al., 2019; Theorell and Nöh, 2020). For a given value Ω, a temporal averaging358

procedure may be added to narrow the distribution of mass isotopomer concentrations for given359

Ω, allowing to use lower Ω values. Another limitation relates to the high number of reactions360

which depends on the absolute value of directional fluxes, not of net fluxes. This limitation can be361

largely compensated by the property that the number of operations (e.g., computational time) does362

not depend on isotopomer number per metabolites.363
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