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Abstract 15 

Background: With the rapid development of deep learning technology, deep neural networks can effectively 
enhance the performance of computed tomography (CT) reconstructions. One kind of commonly used method to 
construct CT reconstruction networks is to unroll the conventional iterative reconstruction (IR) methods to 
convolutional neural networks (CNNs). However, most unrolling methods primarily unroll the fidelity term of 
IR methods to CNNs, without unrolling the prior terms. The prior terms are always directly replaced by neural 20 
networks. 
Purpose: In conventional IR methods, the prior terms play a vital role in improving the visual quality of 
reconstructed images. Unrolling the hand-crafted prior terms to CNNs may provide a more specialized unrolling 
approach to further improve the performance of CT reconstruction. In this work, a primal-dual network (PD-Net) 
was proposed by unrolling both the data fidelity term and the total variation (TV) prior term, which effectively 25 
preserves the image edges and textures in the reconstructed images. 
Methods: By further deriving the Chambolle–Pock (CP) algorithm instance for CT reconstruction, we 
discovered that the TV prior updates the reconstructed images with its divergences in each iteration of the 
solution process. Based on this discovery, CNNs were applied to yield the divergences of the feature maps for 
the reconstructed image generated in each iteration. Additionally, a loss function was applied to the predicted 30 
divergences of the reconstructed image to guarantee that the CNNs’ results were the divergences of the 
corresponding feature maps in the iteration. In this manner, the proposed CNNs seem to play the same roles in 
the PD-Net as the TV prior in the iterative reconstruction methods. Thus, the TV prior in the CP algorithm 
instance can be directly unrolled to CNNs. 
Results: The datasets from the Low-Dose CT Image and Projection Data and the Piglet dataset were employed 35 
to assess the effectiveness of our proposed PD-Net. Compared with conventional CT reconstruction methods, 
our proposed method effectively preserves the structural and textural information in reference to ground truth. 
Conclusions: The experimental results show that our proposed PD-Net framework is feasible for the 
implementation of CT reconstruction tasks. Owing to the promising results yielded by our proposed neural 
network, this study is intended to inspire further development of unrolling approaches by enabling the direct 40 
unrolling of hand-crafted prior terms to CNNs. 
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1. INTRODUCTION 45 

A major challenge in X-ray computed tomography (CT) science is solving the inverse problem of CT 
reconstruction, determining the visual quality of the reconstructed images. Many state-of-the-art methods have 
been proposed to solve this inverse problem and they can be divided into three categories: analytical methods, 
iterative reconstruction (IR) methods and artificial neural network methods. The filtered back-projection (FBP) 
algorithm1 is a classical analytical method that is widely used in real clinical applications owing to its high 50 
computational efficiency. However, reconstructed images may degrade dramatically with a small number of 
inputs or heavily polluted projections.2 

In IR methods, the cost function of the inverse problem generally involves data fidelity term and prior terms. 
The data fidelity term is employed to model the physical processes underlying the problem. The prior term 
captures prior domain knowledge (e.g. low-rank, sparsity, smoothness, and non-local self-similarity). Various 55 
elaborately designed prior terms have been investigated to model the statistical characteristics of sinogram data 
or reconstructed images, including total variation (TV),3-5 nonlocal patches,6 dictionary learning,7 sparsifying 
transform learning,8, 9 etc. Frequently, their prior terms are non-smooth, which remarkably increases the 
difficulty of solving the inverse problem. Based on the inverse problem’s prior terms, the prevailing approaches 
include adaptive steepest descent projection onto convex set algorithm,3 Chambolle–Pock (CP) algorithm,4 60 
alternating direction method of multipliers (ADMM),10 iterative shrinkage/thresholding algorithm (ISTA),11 and 
others. Compared with other analytical methods, IR methods yield more promising results for CT 
reconstruction. 

Recently, with the rapid development of deep-learning technologies, deep neural networks have further 
improved CT reconstruction performance.12 Thus, major efforts have been dedicated to reconstructing promising 65 
images from sinogram data, such as via unrolling approaches,13-19 model based approaches,20 domain transform 
approaches,21 and dual-domain approaches.22-26 The unrolling approach constructs CT reconstruction networks 
by unrolling IR methods. Despite the tremendous success achieved by the extant iterative algorithms used in 
signal processing, unrolling approaches achieve better performance than the original IR methods.27 By unrolling 
a simple gradient descent scheme, Chen et al.14 constructed a deep reconstruction network based on learned 70 
experts’ assessments for sparse-data CT reconstruction. This reconstruction network was further improved by 
utilizing a graph convolution to extract the features of the low-dimensional manifold for low-dose CT 
reconstruction.15 Using a similar unrolling strategy, Liu et al.16 reduced the computational and memory 
complexity of the deep reconstruction network using stochastic approximations of the data-consistency layers. 
Adler and Öktem13 constructed the Learned Primal-Dual reconstruction network which unfolded the CP 75 
algorithm to absorb its convergence guarantee.4 The ADMM approach was also unrolled into deep 
reconstruction networks, owing to its high computational efficiency.17, 18 Xiang et al.19 cast a fast ISTA into a 
deep reconstruction network in which the shrinkage/thresholding operator was replaced by a neural network. 
These state-of-the-art unrolling approaches exhibit good generalizability under different scanning conditions. 
Various unrolling approaches 13-19, 28-30 mainly unroll the fidelity term to convolutional neural networks (CNNs), 80 
without unrolling the prior terms. In unrolling approaches, the prior term is always replaced by a CNN. In 
conventional IR methods, the hand-crafted prior terms play an important role in solution efficiency and 
determine the image quality of CT reconstruction. Unrolling the hand-crafted prior term to a CNN may provide 

ACCEPTED MANUSCRIPT / CLEAN COPY



3 
 

a more tailor-made unrolling approach to improve the CT image quality. 
Owing to the potential to perform edge preservation in reconstructed images, the TV prior has received 85 

considerable attentions in the field of CT reconstruction.3, 4, 31 In this work, to further improve IR methods based 
on the TV prior, we proposed a primal-dual network (PD-Net), which unrolls both the data fidelity and TV prior 
terms of the cost function to the CNNs. Owing to the convergence guarantee, the CP algorithm effectively 
solves the inverse problem based on the TV prior.4 In this work, we provided a detailed derivation of the CP 
algorithm instance for CT reconstruction. After analyzing this derived instance, we discovered that the inclusion 90 
of the TV prior in the CP algorithm instance is to update the reconstructed images with its divergences in each 
iteration of the solution process. Based on this discovery, CNNs were applied to yield the divergences of the 
feature maps for the reconstructed image generated in each iteration. Additionally, a loss function was applied to 
the predicted divergences of the reconstruct image to ensure that the yielded results of the proposed CNNs are 
indeed the divergences of the corresponding feature maps in the iteration. In this manner, the proposed CNNs 95 
are founded to provide the same roles in the PD-Net as the TV prior in the IR methods. Thus, the TV prior in the 
CP algorithm instance can be directly unrolled to CNNs. Our PD-Net is constructed by unrolling both the data 
fidelity term and the TV prior in the CP algorithm instance. By doing so, the PD-Net effectively preserves the 
structural and textural information in the reconstruction results. The main contribution of our proposed PD-Net 
is a direct improvement to unrolling approaches by unrolling the TV prior in the IR methods to the CNNs. 100 

2. METHODS 

2.A. CP Algorithm Based on TV Prior 

By incorporating a data-fidelity term and a penalty or prior term in the cost function, model-based iterative 

reconstruction methods can effectively restore the desired images from sinogram data. The TV prior plays a 

vital role in CT reconstruction owing to its robust performance in preserving image edges and textures.3,4 Based 105 

on the TV prior, the cost function of the inverse problem for CT reconstruction is defined as: 

 
2

2 1

1min ( )
2u

Au g uλ − + ∂ 
 

,                              (1) 

where A  is the system matrix,  g  are the sinogram data, and u  is the reconstructed image obtained by 

solving this minimization problem. The first term is the data fidelity term, and the second is the TV prior. The 

regularization parameter λ  controls the balance of these two terms. The TV prior is the 1 -norm of the 110 

gradient-magnitude image, which is calculated by the operator ∂  (in Appendix). 

Many kinds of optimization algorithms18 have been proposed to solve the minimization problem (1) and to 

obtain the desired images. The CP algorithm32 effectively achieves a robust primal-dual scheme solution owing 

to its convergence guarantee. For a given primal minimization, 

{ }min ( ) ( )
x

F Kx G x+ ,                                   (2) 115 

the dual maximization is expressed as: 

{ }* *max ( ) ( )T

y
F y G K y− − − ,                               (3) 
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where x  and y  are the vectors in spaces X  and Y , K  is a linear transform from X  to Y , the T  

superscript denotes matrix transposition, and F  and G  are two convex functions whose convex conjugations 

are *F  and *G , respectively. The conjugate of a convex function can be computed using the Legendre 120 

transform.4 In the solution process, the CP algorithm iteratively computes the primal minimization and dual 

maximization and achieves convergence when the duality gap between them is zero.4 Given convex functions 

F  and G , the primal minimization and the dual maximization can be analytically solved with the proximal 

mappings *[ ]prox Fσ  and [ ]prox Gτ , as discussed in Ref. [4]. For the convex function H , the proximal 

mapping is calculated by the following minimization: 125 

  
2

2[ ]( ) arg min ( )
2z

z z
prox H z H zσ σ′

 ′− ′= + 
  

.                       (4) 

The derivation of the proximal mappings *[ ]prox Fσ  and [ ]prox Gτ  is a key step for the CP algorithm to 

solve the minimization problem (1).  

As derived in Ref. [4] for the minimization problem (1) based on the TV prior, the convex functions F  and 

G  in the CP algorithm are: 130 

2

2 1

1( , ) ( )
2

F y z y g zλ= − + ,                           (5) 

( ) 0G x = ,                                           (6) 

where x u= , y Au= , and z u= ∂ . Terms 2

2

1
2

y g−  and 
1

( )zλ  in Equation (5) are both convex 

functions. Thus, the function ( , )F y z  is convex because the sum of two convex functions is also convex. The 

Algorithm. 1. Pseudocode for N  steps of the 2
2 -TV CP algorithm. The constant L  is the 

2 -norm of the 

matrix K , σ  and τ  are non-negative CP algorithm parameters. The vectors 
ip  and 

iq  are two temporary 

variables. Tdiv = −∂ . 

1: ( )
2

,L A= ∂ ; 1 / Lτ ← ; 1/ Lσ ← ; 1θ ← ; 0i ← ; 

2: initialize 
0u , 

0p  and 
0q  to zero values 

3: 
0 0u u←  

4: repeat 

5:  ( )1 ( ) / (1 )i i ip p Au gσ σ+ ← + − +  

6:  ( )1 ( ) / max ,i i i I i iq q u q uλ σ λ σ+ ← + ∂ + ∂1  

7:  
1 1 1( )T

i i i iu u A p div qτ τ+ + +← − +  

8:  
1 1 1( )i i i iu u u uθ+ + +← + −  

9:  1i i← +  

10: until i N≥  

ACCEPTED MANUSCRIPT / CLEAN COPY



5 
 

linear transforms K  are A  and ∂  for the two terms of ( , )F y z , respectively. The proximal mappings 135 
*[ ]prox Fσ and [ ]prox Gτ  can be analytically derived as:4 

*[ ]( , ) ,
1 max( , )I

y g zprox F y z
zσ

σ λ
σ λ

 −=   + 1
,                  (7) 

[ ]( )prox G x xτ = ,                                        (8) 

where I1  is an image with all pixels set to 1. The corresponding CP pseudocode is shown in Alg. 1. As derived 

from Equation (7), the role played by the TV prior plays in the CP algorithm is to update vector iu  with vector 140 

1( )idiv qτ + . 

2.B. PD-Net 

The learned reconstruction scheme based on the CP algorithm was well-investigated for CT reconstruction in 

Ref. [13]. The Learned Primal-Dual reconstruction13 replaces the proximal operators in the CP algorithm with 

neural networks whose parameters are learned from big data. However, this learned reconstruction model only 145 

focuses on the unfoldment of the data fidelity term in cost function (1) to CNNs without considering the prior 

term. It is well-known that good CT reconstruction performance can be achieved by incorporating an elaborately 

designed prior into the cost function of the inverse problem.14 In this work, to improve the performance of the 

learned reconstruction scheme, our PD-Net is constructed by unrolling both the data-fidelity term and the TV 

prior in minimization problem (1) to the CNNs. 150 

As shown in Alg. 1, there are three proximal operators for the vectors ip  (in the projection domain),  iq  

(in the image domain), and iu  (in the image domain), respectively. Because 0 =0p , the formula for the vector 

1ip +  in Line 5 of Alg. 1 can be rewritten as: 

Algorithm. 2. New pseudocode for N  steps of the 2
2 -TV CP algorithm.  

1: ( )
2

,L A= ∂ ; 1 / Lτ ← ; 1/ Lσ ← ; 1θ ← ; 0i ← ; 

2:  initialize 
0u , 

0p  and 
0d  to zero values 

3: 
0 0u u←  

4: repeat 

5:   
( )

( )1 1
0 1

i

i ki k
k

p Au gσ
σ+ − +

=

← −
+

  

6:   ( )
1

1
0

i ki

i ki
k

m
m k

d uλ σ

ξ

− +

+
=

=

← ∂ ⋅
∏

 

7:   
1 1 1

T
i i i iu u A p dτ τ+ + +← − +  

8:   
1 1 1( )i i i iu u u uθ+ + +← + −  

9:   1i i← +  

10: until i N≥  
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( )
( )1 1

0 1

i

i ki k
k

p Au gσ
σ+ − +

=

= −
+

 .                              (9) 

Thus, the vector 1ip +  represents the sum of the difference between the forward projection of image iu  and 155 

sinogram data g . As 0 =0q , the proximal operator for the vector 1iq +  in Line 6 of Alg. 1 can be reformulated 

as: 
1

1
0

i ki

i ki
k

m
m k

q uλ σ

ξ

− +

+
=

=

= ∂
∏

,                                   (10) 

where max( , )i I i iq uξ λ σ= + ∂1 . Obviously, vector 1iq +  represents the sum of the gradients of images iu . The 

corresponding formula 1( )idiv q +  in Alg. 1 can be redefined as: 160 

( )
1

1 1
0

( )
i ki

i i ki
k

m
m k

d div q uλ σ

ξ

− +

+ +
=

=

= = ∂ ⋅
∏

,                         (11) 

where the operator T∂⋅ = −∂ ∂  (in Appendix) represents the calculation of the divergences for an image. Thus, 

1id +  is the sum of the weighted divergences of images iu . Given parameters iξ , Alg. 1 can be rewritten as Alg. 

2 without changing the final reconstruction results. As mentioned, the role played by TV prior in the CP 

algorithm instance is to update vector iu  with vector 1( )idiv q +  (i.e., vector 1id + ). Vector 1iu +  is calculated 165 

Output

Input

Iter 1 Iter i Iter N

5 32 32 1

(a)

(b)

7 32 32 5

6 32 32 5

6 32 32 5

5 32 32 1

g

pi
ui

pi+1

ui

di

pi+1

ui+1

di+1

ui+1

pi+1

pi+1

Backward projection
Forward projection
Copy
3×3 conv+BN+ReLU
1×1 conv

dN+1 dN+1

pθ
Γ

pθ
Φ

uθ
Θ

dθ
Λ

uθ
Ψ

dθ
Ω

10 32 32 11id +′

 
FIG. 1. Network architecture of (a) our proposed PD-Net and (b) the CNN qθ

Ω . 
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by 1 1( )i i iu u uθ+ ++ − . Thus, the inclusion of the TV prior in the cost function (1) is to update the vector 1iu +  

with its weighted divergences 1id +  in each iteration of the solution process. In this work, six kinds of CNNs 

were proposed to replace the proximal operators of the vectors ip , id , and iu , unrolling both the data fidelity 

term and the TV prior in minimization problem (1) to the CNNs.  

The proposed PD-Net is an unrolling approach. In this work, a fixed number 10N =  of iterations were 170 

unrolled to form the PD-Net for simplicity and better utility. For the deep-learning solution, multi-channel 

convolutions are employed to improve the feature extraction capabilities of neural networks. In each 

convolution layer, the effective information of a variable is usually represented by multi-channel feature maps. 

However, for the iteration algorithm, only a single vector of each variable is passed to the next iteration, such as 

1ip + , 1id + , and 1iu +  in Alg. 2. Thus, for conventional unrolling approaches, multi-channel feature maps must 175 

be reduced to a single feature map at the end of each iteration. This feature map reduction inevitably decreases 

the feature extraction capability of reconstruction networks. To address this drawback, we used a strategy 

similar to the Learned Primal-Dual13 and passed all feature maps to the next iteration. In this work, the number 

of feature maps that persist between iterations were set to 5pN = , 5dN = , and 5uN =  for ip , id  and iu , 

respectively. 180 

The architecture of the proposed PD-Net is shown in Fig. 1 and the corresponding pseudocode is displayed in 

Alg. 3. The CNN pθΓ  (the blue block in Fig. 1(a)) is employed to replace the operator in Line 5 of Alg. 2. The 

inputs of this CNN include sinogram data g , feature maps iu , and feature maps ip . The latter two kinds of 

feature maps are generated from the previous iteration. The output of this CNN is 1ip + , which is further 

Algorithm. 3. Pseudocode for the PD-Net.  
1: initialize 

0u , 
0p  and 

0d  to zero values 

2: repeat 
3: 

1 ( , , )pi i ip p Au gθ+ ← Γ ; 
1 ( )pi ip pθ+ ← Φ ; // The operator in the line 5 of Alg. 2. 

4: 
1 1( , )u

T
i i iu u A pθ+ +← Θ ; // The operator 

1
T

i iu A p +−  in the line 7 of Alg. 2. 

5: 
1 1 1( , )d

T
i i i id u d A pθ+ + +← − Λ ; // The operator in the line 6 of Alg. 2. 

6: 
1 1 1( , )ui i iu u dθ+ + +← Ψ ; // The operators in the lines 7 and 8 of Alg. 2. 

7: until i N≥  

8: output 
1Nu +
; 

1 1( )dN id d
θ+ +← Ω  
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reduced to vector 1ip +  by CNN pθΦ  (the light blue block in Fig. 1(a)). The operator 1
T

i iu A pτ +− , in Line 7 185 

of Alg. 2, is replaced by CNN uθΘ (the red block in Fig. 1(a)). Through CNN uθΘ , feature maps 1iu +  is 

generated by updating feature maps iu  with vector 1
T

iA p +  generated in the current iteration. The vectors 

+1iu  represent the feature maps of the reconstructed image +1iu  in the current iteration. Combined with vector 

1
T

iA p + , feature maps id  are applied to restore feature maps 1id +′  in CNN dθΛ  (the green block in Fig. 1(a)). 

Because feature maps id  are the divergences of feature maps iu , the restored feature maps 1id +′  are also the 190 

feature maps of the reconstructed image +1iu  in the current iteration. Compared with CNN uθΘ , CNN dθΛ  

utilizes the extra feature maps id  to yield feature maps 1id +′ . The outputs 1id +′  of CNN dθΛ  contain the more 

divergence information of the reconstructed image +1iu  than those of CNN uθΘ . Thus, the differences 1id +  of 

feature maps 1id +′  and 1iu +  can be employed to represent the divergences of feature maps 1iu +  for the 
reconstructed image +1iu  in the current iteration. Moreover, a loss function is applied to the predicted 195 
divergences of the reconstructed image (Fig. 1), to ensure that feature maps 1id +  are the divergences of feature 
maps 1iu + . The vector 1id +  in Line 6 of Alg. 2 can be calculated by subtracting feature maps 1id +′  from feature 

maps 1iu + . The operator for the sum of the terms 1
T

i iu A pτ +−  and 1idτ +  in Line 7 of Alg. 2 and the operator 

in Line 8 are implemented by CNN uθΨ  (the purple block in Fig. 1(a)), whose output 1iu +  is the 

reconstructed image of the current iteration. The outputs of the PD-Net are the reconstructed image 1Nu +  and 200 

its divergence 1Nd +  which is generated by CNN 
dθ

Ω  (Fig. 1(b)) with feature maps 1Nd +  after the N th 

iteration.  
In this work, there are 3 convolutions per CNN. The pixel size and number of channels of each convolution 

are shown in Fig. 1. All convolutions are followed by batch normalization (BN) and a rectified linear unit 

(ReLU), apart from the last ones in CNNs pθΦ , uθΨ , and 
dθ

Ω . The parameters of these six kinds of CNNs 205 

are pθ , pθ , dθ , dθ , uθ , and uθ , and their parameters contain parameters iξ  from Alg. 2. All these 

parameters are learned from big data. In this work, a ray-driven method and a pixel-driven method33 are 

employed to perform the forward projection iAu  and the back-projection 1
T

iA p + , respectively. There are two 

outputs 1Nu +  and 1Nq +  for the PD-Net. During training, the 2 -norm is utilized as the loss to minimize the 
differences between predicted images 1Nu +  and actual images û , and the differences between the predicted 210 

divergences 1Nd +  and the divergences d̂  calculated from actual images û . Therefore, the total loss of the 

PD-Net can be defined as: 
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22
1 12 2

ˆˆtotal N NL u u d dγ+ += − + − ,                             (12) 

where γ  is the weight parameter. In this work, this parameter is set to 0.5. 

As displayed in Fig. 1, six kinds of CNNs employed are closely combined in the PD-Net, which is trained in 215 
an end-to-end manner. In this work, after analytically deriving the CP algorithm instance, we discovered that the 
TV prior contributes mainly to updating the reconstructed images by its divergences in each iteration of the 
solution process. Based on this discovery, two CNNs are proposed to yield the divergences of feature maps iu  

for the reconstructed image in each iteration. Additionally, to guarantee that the yielded results of these two 
CNNs are the same as the divergences of feature maps +1iu  during the iteration, a loss function is applied to the 220 
predicted divergences of the reconstructed image. Hence, the two proposed CNNs can play the same role in the 
PD-Net as the TV prior in the IR methods. Thus, the TV prior in the CP algorithm instance can be unrolled to 
CNNs. In this work, by unrolling the TV prior to the CNNs, our PD-Net effectively preserves the structural and 
textural information in the reconstruction results. 

2.C. Datasets 225 

The Low-Dose CT Image and Projection Data was employed to assess the effectiveness of our proposed 
PD-Net. The provided projection data were acquired from a helical trajectory but are not suitable for fan-beam 
CT reconstruction. In this work, we utilized a fan-beam geometry to simulated projection data in 2D CT 
scanning settings through the forward projection of the provided CT images. Chest CT images from 20 patients 
were selected, and we randomly chose 3,357 images from 18 patients for training and 100 images from the 230 
remaining two patients for testing. We performed the forward projections for the chosen images by equally 
sampling along the rotation angle direction. The linear detector has 768 bins with physical lengths of 1 mm. The 
distance is 1068.0 mm from the X-ray source to the detector arrays, and 595.0 mm from the X-ray source to the 
center of rotation. The datasets comprise simulated projection data and the corresponding chosen CT images. 
These simulated projection data are employed to reconstruct the 512×512-pixel CT images. The physical height 235 
and width of each pixel are both 0.5859 mm. The simulated projection data are the noise-free data y , without 

considering the noise introduced during acquisition. To model a realistic clinical environment, Poisson noise 
and electronic noise5 were added to the noise-free data y  by 

( )
0

2
0

ˆ ln
exp( ) (0, )

I
Poisson I Normal ε

=
− +

y
y

,                       (13) 

where 0I  is the number of X-ray photons employed to penetrate the object, and 2ε  denotes the variance used 240 

to simulate the electronic noise from the equipment measurement error. For the normal dose dataset, the 
projection data were generated under a 360-view scanning condition. The noise was added to the projection data 

with the parameters 6
0 10I =  and 2 10ε = .15 Under the 360-view scanning condition, we also simulated the 

low-dose datasets of different dose levels, namely 15%, 10% and 5%. To add noise of the different levels to the 

datasets, parameter 0I  was set to 51.5 10× , 510 , and 45 10× , respectively.15 The sparse dataset was simulated 245 

under the 120-view scanning condition. The noise was added to the projection data with 6
0 10I = . 
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To further investigate the ability of the proposed PD-Net, we also performed experiments on the Piglet 
dataset,34 which includes four different sub-datasets. We tested PD-Net on the sub-dataset of the normal dose 
CT, which contains 565 images for training and 190 images for testing. Using the same scanning conditions for 
the normal dose dataset simulated from the Low-Dose CT Image and Projection Data, we also generated a 250 
normal dose dataset from the Piglet dataset. 

2.D. Implementation Details 

The PD-Net model was implemented on the PyTorch deep learning toolbox.35 To learn the parameters of the 
PD-Net model from the dataset, the loss function (12) was optimized end-to-end using the Adam optimizer.36 
The initial learning rate was set to 410−  and was decreased by 20% after each epoch. The experiments were 255 
performed on a workstation computer platform with an Intel® Core™ i7-9700K CPU, 32 GB RAM, and an 
NVIDIA RTX 3090 GPU. 

 

FIG. 2. CT reconstruction results on normal dose data simulated from the Low-Dose CT Image and Projection Data. The display windows

are [-1050, 1950] HU, [-250, 450] HU, and [-320, 480] HU for images in the three rows, respectively. 

 

FIG. 3.  Zoomed parts from Fig. 2. 

Ground Truth TV DuDoTrans DIR-III     Learned Primal-Dual PD-Net 
(a1) (b1) (c1) (d1) (e1) (f1) 

 PSNR=33.4299    SSIM=0.8120 PSNR=35.7221    SSIM=0.8676 PSNR=36.0690    SSIM=0.8807 PSNR=35.0756    SSIM=0.8349 PSNR=38.7305    SSIM=0.9242
(a2) (b2) (c2) (d2) (e2) (f2) 

(a3) (b3) (c3) (d3) (e3) (f3) 
 PSNR=33.2809    SSIM=0.7911 PSNR=36.0507    SSIM=0.8826 PSNR=36.3379    SSIM=0.8910 PSNR=34.5386    SSIM=0.8019 PSNR=38.4062    SSIM=0.9258

 PSNR=31.5527    SSIM=0.7290 PSNR=33.2510    SSIM=0.8491 PSNR=33.7443    SSIM=0.8584 PSNR=34.5751    SSIM=0.8151 PSNR=37.3055    SSIM=0.8886

Ground Truth TV DuDoTrans DIR-III     Learned Primal-Dual PD-Net 
(a1) (b1) (c1) (d1) (e1) (f1) 

(a2) (b2) (c2) (d2) (e2) (f2) 

(a3) (b3) (c3) (d3) (e3) (f3) 
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Our proposed PD-Net was compared to several widely used reconstruction algorithms, including the FBP 
algorithm (Ram-Lak filter), TV algorithm,3 DuDoTrans,37 DIR-III,38 and Learned Primal-Dual.13 The 
Tomographic Iterative GPU-based Reconstruction (TIGRE) toolbox39 was employed to execute the TV 260 
algorithm. The training settings of DuDoTrans, DIR-III, and Learned Primal-Dual were based on Refs. [37], [38] 
and [13], respectively. The normalized mean square error (NMSE), peak signal-to-noise ratio (PSNR), and 

 

 
FIG. 4. Residual images of normal dose data reconstructions for the different methods in Fig. 2. The display window is [−10, 10] HU. 

TABLE I. Quantitative measures (average scores ± standard deviations) of the reconstructions on normal dose data simulated from the 

Low-Dose CT Image and Projection Data. 

Metrics TV DuDoTrans DIR-III Learned Primal-Dual PD-Net 

PSNR 32.5454±1.0149 34.9937±0.7886 35.1899±1.0018 34.5478±0.7318 37.7627±1.0817 
SSIM 0.7801±0.0356 0.8575±0.0169 0.8693±0.0178 0.8230±0.0175 0.9071±0.0182 
NMSE 0.0126±0.0015 0.0074±0.0018 0.0071±0.0020 0.0085±0.0027 0.0039±0.0008 

 

FIG. 5. CT reconstruction results on normal dose data simulated from the Piglet dataset. The display windows are [-1050, 1950] HU for 

images in the three rows. 

(a1) (b1) (c1) (d1) (e1)  

(a2) (b2) (c2) (d2) (e2)  

(a3) (b3) (c3) (d3) (e3)  

NMSE=0.0121 NMSE=0.0082 NMSE=0.0075 NMSE=0.0060 NMSE=0.0031  

NMSE=0.0103 NMSE=0.0055 NMSE=0.0051 NMSE=0.0077 NMSE=0.0032  

NMSE=0.0134 NMSE=0.0079 NMSE=0.0073 NMSE=0.0092 NMSE=0.0040  

TV DuDoTrans DIR-III     Learned Primal-Dual PD-Net 

Ground Truth TV DuDoTrans DIR-III     Learned Primal-Dual PD-Net 
(a1) (b1) (c1) (d1) (e1) (f1) 

 PSNR=25.9364    SSIM=0.8713 PSNR=35.6495    SSIM=0.9132 PSNR=36.3190    SSIM=0.9463 PSNR=36.2989    SSIM=0.9470 PSNR=41.0031    SSIM=0.9972
(a2) (b2) (c2) (d2) (e2) (f2) 

(a3) (b3) (c3) (d3) (e3) (f3) 
 PSNR=24.8979    SSIM=0.8871 PSNR=35.9139    SSIM=0.9087 PSNR=36.1999    SSIM=0.9267 PSNR=37.4991    SSIM=0.9592 PSNR=44.1137    SSIM=0.9935

 PSNR=25.1815    SSIM=0.9043 PSNR=34.3092    SSIM=0.9205 PSNR=36.4940    SSIM=0.9312 PSNR=38.3805    SSIM=0.9627 PSNR=43.7562    SSIM=0.9959
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structural similarity index measure (SSIM) 40 were employed to quantitatively evaluate the performance of our 
proposed PD-Net and the comparison models.  

3. RESULTS 265 

3.A. Validation with Normal Dose Data 

To demonstrate the effectiveness of our proposed PD-Net, we performed a qualitative comparison on the 
normal dose data simulated from the Low-Dose CT Image and Projection Data. Figure 2 presents the 

 

FIG. 6. Zoomed parts from Fig. 5.  

 

 
FIG. 7. Residual images of normal dose data reconstructions for the different methods in Fig. 5. The display window is [−10, 10] HU. 

TABLE II. Quantitative measures of the reconstructions on normal dose data simulated from the Piglet dataset. 

Metrics TV DuDoTrans DIR-III Learned Primal-Dual PD-Net 

PSNR 26.0673±1.3502 35.3099±1.2407 35.9514±1.2205 38.3275±1.2774 44.8953±1.6320 
SSIM 0.8736±0.0327 0.9041±0.0239 0.9131±0.0187 0.9276±0.0190 0.9952±0.0020 
NMSE 0.0285±0.0060 0.0057±0.0094 0.0030±0.0012 0.0019±0.0014 0.0004±0.0002 

Ground Truth TV DuDoTrans DIR-III     Learned Primal-Dual PD-Net 

(a1) (b1) (c1) (d1) (e1) (f1) 

(a2) (b2) (c2) (d2) (e2) (f2) 

(a3) (b3) (c3) (d3) (e3) (f3) 

(a1) (b1) (c1) (d1) (e1)  

(a2) (b2) (c2) (d2) (e2)  

(a3) (b3) (c3) (d3) (e3)  

NMSE=0.0038 NMSE=0.0037 NMSE=0.0023 NMSE=0.0015 NMSE=0.0004  

NMSE=0.0033 NMSE=0.0024 NMSE=0.0022 NMSE=0.0016 NMSE=0.0003  

NMSE=0.0067 NMSE=0.0050 NMSE=0.0026 NMSE=0.0027 NMSE=0.0009  

TV DuDoTrans DIR-III Learned Primal-Dual PD-Net 
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reconstructed images of the proposed PD-Net and competing methods. Three reconstruction cases from the 
testing dataset are shown in the three rows. For a better evaluation of the visual quality of the reconstructed 270 
images in Fig. 2, the images over three regions of interest (ROIs) marked by the blue rectangles are zoomed-in 
and depicted in Fig. 3. The corresponding residual images of the reconstruction results are shown in Fig. 4. The 
TV algorithm’s reconstructed images were shown to be contaminated by the piecewise constant effect (Figs. 2(b) 
and 3(b)), and the images reconstructed by the DuDoTrans algorithm suffered from small streak artifacts (Figs. 
2(c) and 3(c)). As shown in Figs. 2(d) and 3(d), the DIR-III algorithm works well with noise suppression and 275 
artifact removal but blurs some local structural features. The Learned Primal-Dual algorithm improved the 
visual quality of the reconstructed images (Figs. 2(e) and 3(e)). However, some tiny structures were lost in the 
reconstruction results. In Figs. 2 and 3, the proposed PD-Net produced promising images in terms of texture 
preservation (Fig. 3(f)). Upon visual inspection, our proposed PD-Net achieves better reconstruction accuracy 
than those of the competing algorithms (Fig. 4). Table I lists the average scores and standard deviations of 280 
PSNR, SSIM, and NMSE for all testing phantom results. Our proposed PD-Net achieved the best numerical 
values among all competing methods. 

To further assess the ability of the proposed PD-Net, we performed a CT reconstruction using normal dose 
data simulated from the Piglet dataset. The reconstructed images of the different methods are shown in Fig. 5. 
Their performances are visually differentiated in Fig. 5 and over the three ROIs in Fig. 6. The corresponding 285 
residual images of the reconstruction results are displayed in Fig. 7. All reconstruction methods efficiently 
reconstruct tomography images from the projection data. Compared to the competing algorithms, PD-Net 
suppresses artifacts and maintains structural features better (Fig. 6), yielding the most similar reconstruction 
results to the ground truth (Fig. 7). According to human perceptual evaluations, our proposed PD-Net exhibits 
better visual quality with respect to authentic structural and textural information (Fig. 6). Consistent with the 290 
visual results, the proposed PD-Net achieved the highest PSNR and SSIM, and the lowest NMSE (Table II). It 
can be seen that our proposed PD-Net indisputably improved these three metrics.  

3.B. Validation with Low Dose Data 

To evaluate the performance of our proposed PD-Net for different dose levels, a dataset simulated with 10% 
doses was utilized for training and testing. The reconstructed images are shown in Figs. 8-10. Because the 295 
radiation dose was severely reduced, the reconstruction results of the TV algorithm were seriously degraded 
with the loss of textural and structural information (Figs. 8(b) and 9(b)). In Figs. 8 and 9, the DuDoTrans, 
DIR-III and the Learned Primal-Dual algorithms efficiently suppressed the noise in the reconstructed images. 
However, the DuDoTrans results were contaminated by strong artifacts (Figs. 9(c1)-(c3)). The DIR-III 
algorithm blurred some crucial structural information (Figs. 9(d1)-(d3)). Additionally, the Learned 300 
Primal-Dual’s results suffered from the loss of texture details (Figs. 9(e1)-(e3)). Our proposed algorithm 
exhibits better visual quality with respect to fine structural details, as shown in Figs. 9 and 10. For the low-dose 
data, the statistical quantitative results of the different reconstruction algorithms are shown in Table III. It is 
clear that our proposed PD-Net obtains better numerical values than all competing methods.  

3.C. Validation with Sparse Data 305 

To further demonstrate the effectiveness of our proposed PD-Net, we also performed a CT reconstruction 
using sparse data. The reconstructed images obtained under the scanning condition of 120 views are 
demonstrated in Fig. 11, and a quantitative analysis of ROIs is provided in Fig. 12. The difference images of the 
reconstruction results are displayed in Fig. 13. As observed in Figs. 11(b) and 12(b), there are severe streak 
artifacts in the images reconstructed by the TV algorithm. The DuDoTrans and DIR-III algorithms greatly 310 
suppressed the streak artifacts in the reconstruction results (Figs. 11 and 12). However, there are still some tiny 
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streak artifacts in the DuDoTrans results (Figs. 11(c1)-(c3)). Figures 12(d1)-(d3) clearly show that the 
reconstruction results of the DIR-III algorithm suffered from losing diagnostic information. The Learned 
Primal-Dual algorithm effectively recovered the desired images from the projection data, but they suffered from 
the loss of structural information and spatial resolution (Figs. 12(e1)-(e3)). Compared with the Learned 315 
Primal-Dual algorithm, our proposed PD-Net preserved more anatomical details, thereby yielding images of 
higher visual quality (Figs. 12(f1)-(f3)). Table IV lists the quantitative measures of the reconstructed images on 
sparse data. As shown in Table IV, the PD-Net scored the highest PSNR and SSIM, and the lowest NMSE. 

3.D. Network Design Evaluation 

In this section, we present an efficacy assessment of the combination chosen for the proposed PD-Net 320 
framework. The proposed PD-Net framework consists of six kinds of CNNs, as discussed in Section 2.B. 

However, we can also construct the Learned Primal-Dual by only utilizing CNNs pθΓ  and uθΘ  (Sup. 1 in the 

 

FIG. 8. CT reconstruction results on low-dose data. The display windows are [-1050, 1950] HU, [-250, 450] HU, and [-320, 480] HU for 

images in the three rows, respectively. 

 

FIG. 9. Zoomed parts from Fig. 8. 

Ground Truth TV DuDoTrans DIR-III     Learned Primal-Dual PD-Net 
(a1) (b1) (c1) (d1) (e1) (f1) 

 PSNR=26.8830    SSIM=0.5645 PSNR=34.1632    SSIM=0.8544 PSNR=35.1224    SSIM=0.8558 PSNR=35.2256    SSIM=0.8360 PSNR=36.4472    SSIM=0.8771
(a2) (b2) (c2) (d2) (e2) (f2) 

(a3) (b3) (c3) (d3) (e3) (f3) 
 PSNR=25.6619    SSIM=0.5374 PSNR=34.8002    SSIM=0.8601 PSNR=36.3142    SSIM=0.8733 PSNR=34.2041    SSIM=0.7918 PSNR=37.5335    SSIM=0.8938

 PSNR=24.1501    SSIM=0.4546 PSNR=33.5737    SSIM=0.8135 PSNR=34.7514    SSIM=0.8216 PSNR=32.6543    SSIM=0.7942 PSNR=34.3032    SSIM=0.8345

Ground Truth TV DuDoTrans DIR-III     Learned Primal-Dual PD-Net 
(a1) (b1) (c1) (d1) (e1) (f1) 

(a2) (b2) (c2) (d2) (e2) (f2) 

(a3) (b3) (c3) (d3) (e3) (f3) 
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supplementary file). We removed the BN and ReLU operators after each convolution and added a parametric 

ReLU (PReLU) after the first two convolutions. A feature map of the outputs of CNN pθΓ  was selected as 

output 1ip + , and that of the outputs of CNN uθΘ  was used as output 1iu + . Based on the Learned Primal-Dual, 325 

the Primal-Dual-ReLU was obtained by removing all PReLU operators and adding the BN and ReLU operators 

after each convolution (Sup. 2). To further improve the Primal-Dual-ReLU, the extra CNNs pθΦ  and uθΨ  

 

 
FIG. 10. Residual images of low-dose data reconstructions for the different methods in Fig. 8. The display window is [−10, 10] HU. 

TABLE III. Quantitative measures of the reconstructions on low-dose data. 

Metrics TV DuDoTrans DIR-III Learned Primal-Dual PD-Net 

PSNR 25.2906±1.4185 33.4349±1.0586 34.5303±0.9938 33.8402±1.0074 35.4082±1.1821 
SSIM 0.5299±0.0484 0.8293±0.0227 0.8393±0.0249 0.7951±0.0285 0.8590±1.1821 
NMSE 0.0673±0.1000 0.0105±0.0024 0.0082±0.0020 0.0097±0.0031 0.0067±0.0016 

 

FIG. 11. CT reconstruction results on sparse data. The display windows are [-1050, 1950] HU, [-250, 450] HU, and [-320, 480] HU for 

images in the three rows, respectively. 

(a1) (b1) (c1) (d1) (e1)  

(a2) (b2) (c2) (d2) (e2)  

(a3) (b3) (c3) (d3) (e3)  

NMSE=0.0663 NMSE=0.0103 NMSE=0.0087 NMSE=0.0094 NMSE=0.0064  

NMSE=0.0599 NMSE=0.0073 NMSE=0.0068 NMSE=0.0084 NMSE=0.0039  

NMSE=0.0606 NMSE=0.0113 NMSE=0.0091 NMSE=0.0089 NMSE=0.0067  

TV DuDoTrans DIR-III Learned Primal-Dual PD-Net 

Ground Truth TV DuDoTrans DIR-III     Learned Primal-Dual PD-Net 
(a1) (b1) (c1) (d1) (e1) (f1) 

 PSNR=28.9252    SSIM=0.7460 PSNR=33.3714    SSIM=0.8226 PSNR=33.8034    SSIM=0.8319 PSNR=33.1895    SSIM=0.7708 PSNR=36.1249    SSIM=0.8688
(a2) (b2) (c2) (d2) (e2) (f2) 

(a3) (b3) (c3) (d3) (e3) (f3) 
 PSNR=31.4721    SSIM=0.7613 PSNR=34.7437    SSIM=0.8560 PSNR=34.8843    SSIM=0.8586 PSNR=31.9000    SSIM=0.7991 PSNR=36.6463    SSIM=0.8865

 PSNR=28.9746    SSIM=0.7114 PSNR=31.4766    SSIM=0.8062 PSNR=33.7603    SSIM=0.8104 PSNR=35.0186    SSIM=0.8020 PSNR=36.7325    SSIM=0.8296
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were employed to construct the network architecture of the Primal-Dual-Fusion (Sup. 3). In these two kinds of 
CNNs, outputs 1ip +  and 1iu +  were obtained by extracting the effective information from the feature maps 

1ip +  and 1iu + , respectively. Our proposed PD-Net further improved the Primal-Dual-Fusion by unrolling the 330 

TV prior in the cost function via CNNs dθΛ  and 
dθ

Ω  (Fig. 1).  

The images in the first row of Fig. 14 present the reconstruction results of the different network designs on 
normal dose data. The images over the ROIs of the reconstruction results are zoomed-in and depicted in the 
second row of Fig. 14. The Learned Primal-Dual suffered from the loss of subtle structural information (Figs. 

 

FIG. 12. Zoomed parts from Fig. 11. 

 

 

FIG. 13. Residual images of sparse data reconstructions for the different methods in Fig. 11. The display window is [−10, 10] HU. 

TABLE IV. Quantitative measures of the reconstructions on sparse data. 

Metrics TV DuDoTrans DIR-III Learned Primal-Dual PD-Net 

PSNR 28.8094±1.4618 33.1754±0.9225 33.4723±0.7394 34.0128±0.8184 35.4554±1.0040 
SSIM 0.7241±0.0287 0.8114±0.0244 0.8201±0.0230 0.7937±0.0202 0.8498±0.0249 
NMSE 0.0316±0.0136 0.0113±0.0032 0.0104±0.0025 0.0092±0.0024 0.0066±0.0015 

Ground Truth TV DuDoTrans DIR-III Learned Primal-Dual PD-Net 
(a1) (b1) (c1) (d1) (e1) (f1) 

(a2) (b2) (c2) (d2) (e2) (f2) 

(a3) (b3) (c3) (d3) (e3) (f3) 

(a1) (b1) (c1) (d1) (e1)  

(a2) (b2) (c2) (d2) (e2)  

(a3) (b3) (c3) (d3) (e3)  

NMSE=0.0218 NMSE=0.0123 NMSE=0.0073 NMSE=0.0059 NMSE=0.0037  

NMSE=0.0157 NMSE=0.0074 NMSE=0.0070 NMSE=0.0071 NMSE=0.0048  

NMSE=0.0379 NMSE=0.0136 NMSE=0.0122 NMSE=0.0142 NMSE=0.0072  

TV DuDoTrans DIR-III     Learned Primal-Dual PD-Net 
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14(b1) and (b2)). The Primal-Dual-ReLU yielded reconstruction results with better subtle details than the 335 
Learned Primal-Dual (Figs. 14(c1) and (c2)). Compared with the Primal-Dual-ReLU, the Primal-Dual-Fusion 
further improved the reconstructed results by preserving more structural features (Figs. 14(d1) and (d2)). 
However, the Primal-Dual-Fusion also blurred some local textures. As shown in Fig. 14, the proposed PD-Net 
exhibited better visual quality and texture preservation than the other network designs. To quantitatively 
evaluate the statistical properties of images reconstructed by different network designs, we calculated the 340 
average scores and standard deviations of the PSNR, SSIM, and NMSE results for all testing phantom results. 
As shown in Table V, our proposed PD-Net scored the highest PSNR and SSIM, and the lowest NMSE. These 
promising reconstruction performances indicate the efficacy of the combination chosen for the proposed PD-Net 
framework. 

3.E. Robustness Analysis 345 
In clinical settings, scanning doses may vary based on the task at hand. Training multiple networks for 

different dose levels makes it clinically infeasible to apply most learning based algorithms.41-43 To verify the 
robustness of our proposed PD-Net, we utilized a model trained with 10% dose data to test the results at 
different dose levels: 15% and 5%. The chest reconstruction results are displayed in Fig. 15. The images in the 
first, third and fifth rows reflect the reconstructed images of the 5%, 10% and 15% dose cases, respectively. The 350 
images over ROIs are displayed in the second, fourth and sixth rows of Fig 15. It can be seen that the noise in 
the reconstructed images for FBP and TV algorithms dramatically increased alongside the reduction of scanning 
dose. As shown in Figs. 15(d1)-(d6), our proposed PD-Net effectively reduced noise and yielded images with 
more accurate anatomical details. The noise in the images reconstructed by our proposed PD-Net were reduced 
gradually with the increase of the radiation dose. The statistical quantitative results of the reconstructed images 355 
are shown in Table VI. The experimental results show that our proposed PD-Net can successfully reconstruct 
images from projection data with slightly different distributions. 

Additionally, a blind reader study was conducted as a visual assessment. Two experienced radiologists (J. Li 
with 17 years of experience, W. Du with 9 years of experience) were invited to independently score 10 groups of 
randomly selected CT images. Each group included images obtained by the different reconstruction algorithms 360 
mentioned in this paper and the ground-truth versions. The radiologists were blind to which image was from 
which reconstruction algorithm. All images were evaluated on noise reduction, sharpness, diagnostic acceptance 

 

 

 
FIG. 14. CT reconstruction results on normal dose data for different network architectures. The display window is [-250, 450] HU. 

TABLE V. Quantitative measures of the reconstructions for different network architectures. 

Metrics Learned Primal-Dual Primal-Dual-ReLU Primal-Dual-Fusion PD-Net 

PSNR 34.5478±0.7318 36.8346±1.0672 37.2678±1.0136 37.7627±1.0817 
SSIM 0.8230±0.0175 0.8976±0.0158 0.9010±0.0177 0.9071±0.0182 
NMSE 0.0085±0.0027 0.0048±0.0011 0.0041±0.0008 0.0039±0.0008 

Ground truth Learned Primal-Dual Primal-Dual-ReLU    Primal-Dual-Fusion PD-Net 
(a1) (b1) (c1) (d1) (e1) 

(a2) (b2) (c2) (d2) (e2)
PSNR=36.0844        SSIM=0.8559 PSNR=37.1948        SSIM=0.9094 PSNR=38.3972        SSIM=0.9157 PSNR=38.6456        SSIM=0.9220 
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and overall quality using a five-point scale (1 = “Unacceptable”, 2 = “Substandard”, 3 = “Acceptable”, 4 = 
“Above average”, and 5 = “Excellent”). The subjective criterion of diagnostic acceptance is applied to evaluate 
whether the image quality of the reconstruction results are acceptable for clinical diagnosis. The quality scores 365 
were reported as the average scores and standard deviations means. The quality scores of reconstructed images 
are shown in table VII. It can be seen that our proposed PD-Net achieved the highest scores. Here, the readers 
only examined the diagnozability in the reconstructed images and did not actually perform any 
detection/diagnosis on the reconstruction results. 

3.F. Parameter Experiments 370 

                                                          

 

 

 

 

 

 
FIG. 15. CT reconstruction results on normal dose data. The display window is [-250, 450] HU. 

TABLE VI. Quantitative measures of the reconstruction results for robustness analysis. 

Metrics 5% 10% 15% 

PSNR 34.3973±1.2255 35.4082±1.1821 35.7857±1.1969

SSIM 0.8425±0.0264 0.8590±1.1821 0.8662±0.0248

NMSE 0.0084±0.0020 0.0067±0.0016 0.0061±0.0013

Ground Truth FBP TV PD-Net 

 PSNR=14.6592       SSIM=0.2157 PSNR=23.6493       SSIM=0.4709 PSNR=34.7137       SSIM=0.8407

(a2) (b2) (c2) (d2) 

PSNR=14.7070       SSIM=0.2333 PSNR=26.2779       SSIM=0.5445 PSNR=35.5817       SSIM=0.8565

(b4) (c4) (d4) 

PSNR=16.1496       SSIM=0.2620 PSNR=27.7702       SSIM=0.5928 PSNR=35.9654       SSIM=0.8641

(b6) (c6) (d6) 

(b5) (c5) (d5) 

(a1) (b1) (c1) (d1) 

(b3) (c3) (d3) 

5% 

Dose Levels 

10% 

15% 
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The number of feature maps for ip , id , and iu  that persist between iterations directly affect the visual 

quality of the reconstructed images. In this work, we present the quantitative measures of the reconstructions 
with respect to the different feature map numbers. For these reconstruction results, the boxplots of the three 
selected metrics (i.e., PNSR, SSIM, and NMSE) are displayed in Fig. 16. The proposed PD-Net method 
achieves the poorest image quality metrics, when all feature map numbers are set to 1. However, these metrics 375 
are improved with an increase in the number feature maps. The improvement is limited, when the number is 
larger than 5. Thus, the feature maps passed between iterations were set to 5 in this work. 

The hyper-parameter λ  controls the tradeoff between the two per-pixel 2  losses in Equation (12). To find 

the optimal value of this hyper-parameter, we performed parameter experiments using normal dose data. Fig. 17 
displays the boxplots of PNSR, SSIM, and NMSE for the proposed PD-Net with weights of 0.1, 0.5, 1, 5 and 10. 380 
It can be seen that the proposed PD-Net method achieved the best image quality metrics, when λ  equals 0.5. 
Thus, we used this setting in this work. 

4. DISCUSSION 
When including the TV prior in the cost function of an inverse problem, the IR methods yield promising 

reconstructed images with critical feature preservation that is useful for diagnosis. In this work, to further 385 
improve upon these methods, we developed a PD-Net unrolling approach in which both the data-fidelity term 

TABLE VII. Visual assessment scores by two radiologist readers. 

Algorithms Ground truth TV DuDoTrans DIR-III 
Learned 

Primal-Dual 
PD-Net 

Noise Reduction - 2.90±0.8307 3.95±0.7703 4.00±0.7532 4.15±0.7263 4.55±0.5895
Sharpness - 3.25±0.6225 3.65±0.6427 3.70±0.6852 3.60±0.6633 4.05±0.5895

Diagnostic Acceptability - 3.55±0.4975 3.85±0.6825 3.90±0.6457 4.00±0.7746 4.50±05916
Overall Quality 4.60±0.4899 3.15±0.5723 4.10±0.5308 4.15±0.4729 4.20±0.4000 4.55±0.4975

   
 

 

 

 

TABLE VIII. Time costs of the different methods for training and testing on normal dose data. 

 TV DuDoTrans DIR-III Learned Primal-Dual PD-Net 

Train - 46 h 37 h 18 h 60 h 

Test 1963 s 0.2681 s 0.1647 s 0.1443 s 0.3715 s 

(a) (b) (c) (a) (b) (c)

FIG. 16. Comparison of indices for the proposed method of 

different feature map numbers. Comparison of boxplots of (a) 

PSNR, (b) SSIM and (c) NMSE for reconstruction results. 

FIG. 17. Comparison of indices for the proposed method with 

different weights. Comparison of boxplots of (a) PSNR, (b) 

SSIM and (c) NMSE for reconstruction results. 
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and the TV prior of the cost function were unrolled to the CNNs. By deriving the CP algorithm instance for CT 
reconstruction, we discovered that the main contribution of including the TV prior in IR methods is to update 
the reconstructed images by its weighted divergences in each iteration of the solution process. Based on this 
discovery, CNNs were proposed to yield the divergences of feature maps for the reconstructed image in each 390 
iteration. Additionally, we applied a loss function to the predicted divergences, ensuring that the yielded results 
of the proposed CNNs were indeed the divergences of feature maps for the reconstructed image generated in the 
iteration. In this manner, the proposed CNNs play the same roles in the PD-Net as the TV prior in the IR 
methods. Thus, the TV prior in the CP algorithm instance can be unrolled directly to the CNNs in the PD-Net. 
The experimental results (Figs. 2-13) show that our proposed PD-Net framework achieves robust and superior 395 
performances in texture preservation.  

Compared to the Learned primal-dual model,13 our proposed PD-Net improved the unrolling approaches by 
unrolling the TV prior in the IR methods to the CNNs. Moreover, the proposed CNNs in our PD-Net performed 
the same roles as the TV prior in the IR methods. The proposed PD-Net produced high-quality CT images with 
better anatomical feature preservations (Figs. 2-13) and great improvements in image quality metrics is shown 400 
in Tables I-IV. The experimental results clearly demonstrate that unfolding the TV prior in the IR methods to the 
CNNs further improves the feature extraction capability of the unrolling approaches. ISTA-Net 28 is an unrolling 
approach, which is constructed by appropriately unrolling the iterative algorithm. To improve reconstruction 
performance, ISTA-Net adopts a CNN to replace the hand-crafted sparsity regularizer. Without giving the 
analytical formula of sparsity transform, ISTA-Net cannot fully unroll the prior term. Compared with ISTA-Net, 405 
the proposed PD-Net was constructed by unrolling both the data-fidelity term and the prior term. The PD-Net 
affords a tailor-made unrolling approach with the unfoldment of the hand-crafted TV prior. 

Conventional IR methods adopt an iteration technique to solve the inverse problem. In each iteration, the TV 
prior contributes to updating the reconstructed images with its weighted divergences.44 However, the iteration 
technique may blur image edges, especially those of inconspicuous edges. On one hand, the noise in the images 410 
may lead to incorrect estimations of image divergences in each iterate. On the other hand, the inappropriate 
selection of divergence weights may also reduce the visual quality of the reconstruction results. To overcome 
these drawbacks, a loss function was applied to the predicted divergences to avoid the incorrect estimation of 
the image divergences in the PD-Net. Moreover, divergence weights were learned from big data, reducing the 
blur of reconstructed images. 415 

For conventional unrolling approaches, IR methods directly unroll to neural networks for CT reconstruction. 
In unrolling approaches,13-19 the number of feature maps that persist between the iterations is usually set to 1. 
However, the reduction of persistent feature maps between the iterations may decrease the feature extraction 
capability of CT reconstruction networks. As observed in Fig. 10, the image quality metrics were the poorest 
when the feature map number was set to 1. Thus, to improve the visual quality of the reconstructed images, 420 
more feature maps were employed to transmit effective feature information between the iterations. As discussed 
in Ref. [45], the increase in the persistent feature maps may also improve the convergence rate of the 
reconstruction networks in the unrolling approaches.  

The runtimes of the different reconstruction algorithms on normal dose data are shown in Table VIII. It can be 
seen that learning-based reconstruction algorithms take many hours for training. However, the testing time for a 425 
single image was dramatically reduced. When the model is trained, the three learning based approaches 
mentioned in this work will take far less execution time than is consumed by the TV algorithm, which facilitates 
clinical work flows. Owing to the calculations of CNN convolutions for image divergences, the computational 
time of our PD-Net was slightly longer than that of the Learned Primal-Dual algorithm. More effort is needed to 
reduce the computational time of the PD-Net to meet the requirements of clinical practice.  430 
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In this work, the projection data simulated from real CT images were employed for the experiments. Based on 
these simulated projection data, our proposed PD-Net yielded promising results with high image quality and 
quantitative metrics. However, the simulated projection data differed from the clinical CT data. In future 
research, we plan to further validate and assess the performance of our proposed PD-Net method on clinical data. 
The robustness analysis showed that the proposed PD-Net is capable of reconstructing images from projection 435 
data with slightly different distributions. However, the PD-Net may not work correctly with the increase of the 
data distribution changes at test time. Future work will also focus on the robustness analysis for the larger data 
distribution changes. 

5. CONCLUSIONS 
In this work, we have developed a PD-Net method for the unrolling approaches applied to CT reconstructions. 440 

To enhance the feature extraction capability of the unrolling approaches, the TV prior of the IR methods was 
unrolled to the CNNs in the PD-Net. The experimental results demonstrate that our proposed PD-Net framework 
is feasible for the implementation of CT reconstruction tasks. Compared with conventional primal-dual 
networks,13 our proposed PD-Net method effectively preserves the structural and textural information in 
reference to the ground truth. To further improve the unrolling approaches, future work will focus on the 445 
unfolding of the other sophisticated prior terms that are widely used in IR methods. 
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APPENDIX: THE FORMS OF THE SPATIAL GRADIENT AND THE SPATIAL 

DIVERGENCE 
  The explicit forms of the spatial gradient ∂  and the spatial divergence ∂ ⋅  in two dimensions are defined 

herein as follows. We use x I∈  to refer to an M N×  image and ,i jx  to represent the ( , )i j th pixel of x . To 460 

specify the linear transform ∂ , we introduce two gradient images c x I∂ ∈  and r x I∂ ∈ : 

1, ,
,

,

i j i j
c i j

i j

x x i M
x

x i M
+ − <

∂ =  − =
,                              (A.1) 

, 1 ,
,

,

i j i j
r i j

i j

x x j N
x

x j N
+ − <

∂ =  − =
.                              (A.2) 

Using these two definitions, the spatial gradient ∂  can be written as  
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c

r

x
x

x
∂ 

∂ =  ∂ 
.                                             (A.3) 465 

The operator div  is defined as T−∂ . With the Equation (A.3), the spatial divergence ∂ ⋅  becomes 
( ) ( ) Tx div x x∂ ⋅ = ∂ = −∂ ∂ ,                                                     

( ), 1, , , 1( ) ( )c i j c i j r i j r i jx x x x− −= ∂ − ∂ + ∂ − ∂ , [1, ]i M∈  and [1, ]j N∈ .          (A.4) 

The elements outside the image border are set to zero: 0, 0c jx∂ = , ,0 0c ix∂ = , 0, 0r jx∂ = , and ,0 0r ix∂ = .  

a) Author to whom correspondence should be addressed. Electronic mail: gzgtg@163.com (Z. Gui) and 470 
chenyang.list@seu.edu.cn (Y. Chen) 
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