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THE ERGODIC THEOREM

EMMANUEL LESIGNE

We give here a self-contained proof of the ergodic theorem for a measure preserving

action of the additive group of real numbers. There are two versions of this theorem : von

Neumann ergodic theorem gives a convergence in the mean ; Birkhoff ergodic theorem

gives a pointwise convergence. Nothing original here, but a direct access to a complete

proof which can be useful to non specialists of the subject.

1. Von Neumann ergodic theorem

Theorem. Let (Tt)t∈R be a one-parameter group of measure preserving transformations

of the finite measure space (X,m). For any p ∈ [1,+∞) and any F ∈ Lp(m),

(1) lim
S→+∞

1

S

∫ S

0

F (Ttx) dt

exists in Lp(m).

Remarks.

(i) A one-parameter group of measure transformations of (X,m) is a family (Tt)t∈R of

measurable maps from X into itself satisfying the four following properties :

T0 = idX , Tt ◦ Ts = Tt+s for all reals t and s,

the map (t, x) 7→ Tt(x) is measurable from R×X into X,

and, of course, for all measurable subset A of X and all t, m (Tt(A))) = m(A).

(This last property is equivalent to the fact that, for all t, the map F 7→ F ◦ Tt is

an isometry in any of the Lp(m) spaces.)

(ii) In the Hilbertian situation (p = 2), the limit (1) is the orthogonal projection of F

onto the subspace of invariant functions

I :=
{
F ∈ L2(m) | F ◦ Tt = F for all t

}
.

(In case when m is a probability, this projection is a conditional expectation.)

(iii) The m-almost everywhere existence of the limit (1) is true, but it is not a direct

consequence of the convergence in norm. The pointwise convergence theorem is
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known as Birkhoff ergodic theorem, and its proof is more subtle than the present

one. See Section 2.

First step of the proof.

We claim that the set of F ∈ Lp(m) such that the limit (1) exists in Lp(m) is closed in

Lp(m). Indeed, if F,G ∈ Lp(m) then, for all S > 0,∥∥∥∥ 1

S

∫ S

0

F (Ttx) dt− 1

S

∫ S

0

G (Ttx) dt

∥∥∥∥
Lp(m)

=

(∫
X

∣∣∣∣ 1S
∫ S

0

(F −G) (Ttx) dt

∣∣∣∣p dm(x)

)1/p

≤
(∫

X

(
1

S

∫ S

0

|F −G|p (Ttx) dt

)
dm(x)

)1/p

=

(
1

S

∫ S

0

(∫
X

|F −G|p (Ttx) dm(x)

)
dt

)1/p

=

(
1

S

∫ S

0

(∫
X

|F −G|p (x) dm(x)

)
dt

)1/p

= ‖F −G‖Lp(m),

and from this contraction property we deduce easily that, if F ∈ Lp(m) can be approxima-

ted by functions G such that 1
S

∫ S

0
G (Ttx) dt has the Cauchy property in Lp-norm when

S goes to infinity, then the same is true for 1
S

∫ S

0
F (Ttx) dt.

Second step of the proof : case p = 2.

Let us denote by I the space of square integrable invariant functions and by C the closed

linear subspace of L2(m) generated by the set of all functions of the form G ◦Tt−G with

G ∈ L∞(m) and t ∈ R. We claim that

L2(m) = I ⊕ C.

Indeed, on one hand, if F ∈ I, G ∈ L∞(m) and t ∈ R, then∫
F ·(G◦Tt−G) dm =

∫
F ·G◦Tt dm−

∫
F ·G dm =

∫
F ◦Tt ·G◦Tt dm−

∫
F ·G dm = 0,

so that I ⊂ C⊥,

and on the other hand, if F ∈ C⊥ then for any G ∈ L∞(m) and any t ∈ R,∫
(F ◦Tt−F ) ·G dm =

∫
F ◦Tt ·G dm−

∫
F ·G dm =

∫
F ·G◦T−t dm−

∫
F ·G dm

=

∫
F · (G ◦ T−t −G) dm = 0

which shows that F ◦Tt−F = 0, hence F ∈ I, so that C⊥ ⊂ I. We conclude that C⊥ = I,

which gives the claim.
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In order to prove the existence of (1) for all F ∈ L2(m) it is enough to consider the

case when F ∈ I and the case when F ∈ C. The first case is trivial and in the second case

we have F = G ◦ Ts −G and

1

S

∫ S

0

F (Ttx) dt =
1

S

(∫ S

0

G (Ts+tx) dt−
∫ S

0

G (Ttx) dt

)
=

1

S

(∫ S+s

s

G (Ttx) dt−
∫ S

0

G (Ttx) dt

)
=

1

S

(∫ S+s

S

G (Ttx) dt−
∫ s

0

G (Ttx) dt

)
,

which goes uniformly to zero when S goes to infinity if G is bounded.

Last step of the proof : any exponent p ∈ [1,+∞).

Let F be a bounded measurable function on X. The averages 1
S

∫ S

0
F (Ttx) dt stay uni-

formly bounded and are convergent in L2(m). We claim that these averages converge

also in Lp(m) and since bounded functions form a dense subspace of Lp(m) this claim

concludes the proof. The claim can be based on one of the following inequalities :

— if p ∈ [1, 2] and G ∈ L2(m), then

‖G‖Lp(m) ≤ (m(X))
1
p
− 1

2 ‖G‖L2(m);

— if p ≥ 2 and G ∈ L∞(m), then

‖G‖Lp(m) ≤ ‖G‖
1− 2

p

L∞(m) ‖G‖
2
p

L2(m).
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2. Birkhoff ergodic theorem

Theorem. Let (Tt)t∈R be a one-parameter group of measure preserving transformations

of the finite measure space (X,m). For any F ∈ L1(m),

(2) lim
S→+∞

1

S

∫ S

0

F (Ttx) dt exists for m-almost all x.

Remark. Thanks to Fubini theorem, for any F ∈ L1(m) and any S > 0, the expression∫ S

0
F (Ttx) dt makes sense for almost all x. In the following, we’ll define and manipulate

some maximal functions. The fact that they are well defined and measurable can be

established in details.

Lemma (A maximal inequality). Let F be a positive integrable function on X. For any

α > 0,

m

({
x ∈ X | sup

S>0

1

S

∫ S

0

F (Ttx) dt > α

})
≤ 6

α

∫
X

F (x) dm(x).

Proof of the theorem, knowing the lemma. We claim that the set of functions F satisfying

the conclusion of the theorem is closed in L1(m). This will conclude the proof of the

theorem since

— the result is true for the functions which are invariant under the flow (Tt) and for

the functions of the form G ◦ Ts −G with G bounded ;

— square integrable invariant functions and functions of the form G ◦ Ts −G (with G

bounded) generate a dense subspace of L2(m), hence of L1(m). (cf second step in

the proof of von Neumann ergodic theorem.)

So, let us prove the claim. Consider an integrable function F which can be approximated

in L1(m) by functions satisfying (2). Fix ε > 0 and G ∈ L1(m) such that∫
X

|F −G| dm ≤ ε and lim
S→+∞

1

S

∫ S

0

G (Ttx) dt exists almost everywhere.

Fix δ > 0. Using triangular inequality, we see that the set{
x ∈ X | lim sup

S,R→+∞

∣∣∣∣ 1S
∫ S

0

F (Ttx) dt− 1

R

∫ R

0

F (Ttx) dt

∣∣∣∣ > 3δ

}
is included in the union of the three following ones

E1 :=

{
x ∈ X | lim sup

S→+∞

∣∣∣∣ 1S
∫ S

0

F (Ttx) dt− 1

S

∫ S

0

G (Ttx) dt

∣∣∣∣ > δ

}
E2 :=

{
x ∈ X | lim sup

S,R→+∞

∣∣∣∣ 1S
∫ S

0

G (Ttx) dt− 1

R

∫ R

0

G (Ttx) dt

∣∣∣∣ > δ

}
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E3 :=

{
x ∈ X | lim sup

R→+∞

∣∣∣∣ 1

R

∫ R

0

F (Ttx) dt− 1

R

∫ R

0

G (Ttx) dt

∣∣∣∣ > δ

}
By hypothesis, the set E2 has zero m-measure. The sets E1 and E3 are the same and they

are included in the set

E :=

{
x ∈ X | sup

S

1

S

∫ S

0

|F −G| (Ttx) dt > δ

}
We can apply Lemma 2 and using the fact that ‖F −G‖1 ≤ ε we obtain

m(E) ≤ 6

δ
ε.

We conclude that

m

({
x ∈ X | lim sup

S,R→+∞

∣∣∣∣ 1S
∫ S

0

F (Ttx) dt− 1

R

∫ R

0

F (Ttx) dt

∣∣∣∣ > 3δ

})
≤ 6

δ
ε.

But ε is arbitrarily small hence the measure on the left hand side is zero. Taking the union

of these sets along a sequence of δ’s going to zero, we obtain that, for m-almost all x

lim sup
S,R→+∞

∣∣∣∣ 1S
∫ S

0

F (Ttx) dt− 1

R

∫ R

0

F (Ttx) dt

∣∣∣∣ = 0,

which gives the announced result, thanks to Cauchy’s criterion. �

Two auxiliary lemmas will be useful in order to prove Lemma 2.

Lemma (Vitali’s covering lemma). Let I1, I2, . . . , In be a finite family of finite length open

intervals on the real line. There exists a subfamily Ij1 , Ij2 , . . . , Ijm of two by two disjoints

intervals such that
n⋃

k=1

Ik ⊂
m⋃
`=1

3Ij` .

(Notation : if I = (a− r, a+ r) then 3I := (a− 3r, a+ 3r))

This is a very useful result, but not difficult to prove : exercise or

https :\\en.wikipedia.org\wiki\Vitali-covering-lemma .

Lemma (Hardy-Littlewood maximal inequality). We denote by λ the Lebesgue measure

on R. For any positive measurable function f on R and any α > 0, we have

λ

({
t ∈ R | sup

r>0

1

r

∫ r

−r
f(t+ s) ds > α

})
≤ 6

α

∫
R
f(s) ds.

Proof of the HL-maximal inequality. Let K be a compact subset of

(3)

{
t ∈ R | sup

r>0

1

r

∫ r

−r
f(t+ s) ds > α

}
.
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For any t ∈ K, there exists r(t) > 0 such that

1

r(t)

∫ r(t)

−r(t)
f(t+ s) ds > α.

From the covering of K by open intervals (t− r(t), t + r(t)), with t ∈ K, we can extract

a finite covering (tk − r(tk), tk + r(tk)), 1 ≤ k ≤ n. Vitali covering lemma tels us now

that we can select a subfamily (tj` − r(tj`), tj` + r(tj`)), 1 ≤ ` ≤ m of two by two disjoints

intervals such that

K ⊂
m⋃
`=1

(tj` − 3r(tj`), tj` + 3r(tj`)).

Remind that, for any t ∈ K

r(t) <
1

α

∫ t+r(t)

t−r(t)
f(s) ds.

So we have

λ(K) ≤
m∑
`=1

6r(tj`) < 6
m∑
`=1

1

α

∫ tj`+r(tj` )

tj`−r(tj` )
f(s) ds ≤ 6

α

∫
R
f(s) ds.

(The last inequality uses the fact that the intervals are disjoints.)

Thanks to inner regularity of the Lebesgue measure, this upper bound uniform on all

compact sets included in the set (3) gives the announced result. �

Proof of the maximal inequality. Hardy-Littlewood maximal inequality concerns the ac-

tion of R on itself by translation. In order to obtain the maximal inequality for the action

of R on the measure space (X,m) we shall apply Hardy-Littlewood on each trajectory

of the flow and integrate the result on X. This technic is known as Calderon transfer

principle.

The function F is positive and measurable. We fix α > 0, S > 0 and R > 0, we apply

Lemma 2 to the function t 7→ F (Ttx) 1[0,S+R](t) and obtain, for a given x,

λ

({
t ∈ R | sup

r>0

1

r

∫ r

−r
F (Tt+sx) 1[0,S+R](t+ s) ds > α

})
≤ 6

α

∫ S+R

0

F (Ttx) dt.

A fortiori, we have

λ

({
t ∈ [0, S] | sup

0<r≤R

1

r

∫ r

0

F (Tt+sx) 1[0,S+R](t+ s) ds > α

})
≤ 6

α

∫ S+R

0

F (Ttx) dt,

but if t ≤ S and s ≤ r ≤ R then t+ s ≤ S +R, so that we have in fact

λ

({
t ∈ [0, S] | sup

0<r≤R

1

r

∫ r

0

F (Tt+sx) ds > α

})
≤ 6

α

∫ S+R

0

F (Ttx) dt.
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If we integrate on X each term of this inequality, use Fubini theorem and the invariance

of the measure m by the flow (Tt), we obtain

S ·m
({

x ∈ X | sup
0<r≤R

1

r

∫ r

0

F (Tsx) ds > α

})
≤ (S +R) · 6

α

∫
X

F (x) dm(x).

Now, we let S go to infinity and we have

m

({
x ∈ X | sup

0<r≤R

1

r

∫ r

0

F (Tsx) ds > α

})
≤ 6

α

∫
X

F (x) dm(x).

When R increases along a sequence going to infinity, we have a uniform upper bound for

the measures of an increasing sequences of set. This upper bound applies to the measure

of the union of these sets. This gives the announced result

m

({
x ∈ X | sup

0<r

1

r

∫ r

0

F (Tsx) ds > α

})
≤ 6

α

∫
X

F (x) dm(x).

�
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