Amir K Goharshady
email: goharshady@cse.ust.hk

Hong Kong

S Hitarth

Fatemeh Mohammadi
email: fatemeh.mohammadi@kuleuven.be

Harshit J Motwani
email: motwani@ugent.be.

Algebro-geometric Algorithms for Template-based Synthesis of Polynomial Programs *

Keywords: program synthesis, sketching, syntax-guided synthesis 1

Template-based synthesis, also known as sketching, is a localized approach to program synthesis in which the programmer provides not only a specification, but also a high-level "sketch" of the program. The sketch is basically a partial program that models the general intuition of the programmer, while leaving the low-level details as unimplemented "holes". The role of the synthesis engine is then to fill in these holes such that the completed program satisfies the desired specification. In this work, we focus on template-based synthesis of polynomial imperative programs with real variables, i.e. imperative programs in which all expressions appearing in assignments, conditions and guards are polynomials over program variables. While this problem can be solved in a sound and complete manner by a reduction to the first-order theory of the reals, the resulting formulas will contain a quantifier alternation and are extremely hard for modern SMT solvers, even when considering toy programs with a handful of lines. Moreover, the classical algorithms for quantifier elimination are notoriously unscalable and not at all applicable to this use-case.

In contrast, our main contribution is an algorithm, based on several well-known theorems in polyhedral and real algebraic geometry, namely Putinar's Positivstellensatz, the Real Nullstellensatz, Handelman's Theorem and Farkas' Lemma, which sidesteps the quantifier elimination difficulty and reduces the problem directly to Quadratic Programming (QP). Alternatively, one can view our algorithm as an efficient way of eliminating quantifiers in the particular formulas that appear in the synthesis problem. The resulting QP instances can then be handled quite easily by SMT solvers. Notably, our reduction to QP is sound and semi-complete, i.e. it is complete if polynomials of a sufficiently high degree are used in the templates. Thus, we provide the first method for sketching-based synthesis of polynomial programs that does not sacrifice completeness, while being scalable enough to handle meaningful programs. Finally, we provide experimental results over a variety of examples from the literature.

1 @real: 𝑖, 𝑠, 𝑛; 2 @pre: 𝑛 ≥ 1; 3 𝑖 = 0; 4 𝑠 = 0; 5 @invariant: [{𝑖, 𝑠 }, 2] ≥ 0 ∧ [{𝑖, 𝑠 }, 2] ≥ 0 ∧ [{𝑖, 𝑛 }, 1] ≥ 0 6 while([{𝑖, 𝑛 }, 1]) 7 { 8 𝑖 = 𝑖 + 1; 9 𝑠 = [{𝑖, 𝑠 }, 1] ; 10 } 11 @post: (𝑛 -1) • 𝑛/2 ≤ 𝑠 ≤ 𝑛 • (𝑛 + 1)/2; together with one or more holes. The holes can appear both in the program itself or in the invariants and will be filled by polynomial expressions. The programmer can also provide a template for how each hole should be filled by specifying the program variables that can appear in the hole and the expected degree of the polynomial expression used for filling it.

Example 1.1. As a simple example, consider the program in Figure 1, in which we have three bounded real variables 𝑖, 𝑠, and 𝑛. The programmer has given us a sketch of the program, which includes the desired specification as a precondition and a postcondition. However, it also includes holes that should be filled by the synthesis engine. These holes are shown by dashed boxes. In this case, the programmer asks us to synthesize an invariant and a guard for the while loop, as well as an expression for the right-hand side of the assignment inside the while loop. Moreover, they have provided us with a template for each hole, specifying the variables that they expect would need to appear in that hole and the maximum degree of the polynomial that should be synthesized for filling the hole. For example, the while guard must be an affine (degree 1) polynomial over the variables 𝑖 and 𝑛. As we will soon see, given this partial program as input, our approach is able to synthesize the completed program in Figure 2, which sums up all the integers from 1 to ⌊𝑛⌋.

1 @real: 𝑖, 𝑠, 𝑛; 2 @pre: 𝑛 ≥ 1; 3 𝑖 = 0; 4 𝑠 = 0; 5 @invariant: 𝑠 ≥ 𝑖 • (𝑖 + 1)/2 ∧ 𝑠 ≤ 𝑖 • (𝑖 + 1)/2 ∧ 𝑖 ≤ 𝑛 6 while(𝑖 ≤ 𝑛 -1) 7 { 8 𝑖 = 𝑖 + 1; 9 𝑠 = 𝑠 + 𝑖; 10 } 11 @post: (𝑛 -1) • 𝑛/2 ≤ 𝑠 ≤ 𝑛 • (𝑛 + 1)/2; Motivation. There are several motivations for the setting we consider in this work. First, many families of realworld programs, such as cyber-physical systems, perform inherently polynomial computations that model physical phenomena. Second, since the previous sound and complete approach [START_REF] Srivastava | Template-based program verification and program synthesis[END_REF]] is only applicable to linear programs, the extension to polynomial programs is a natural next step. Finally, polynomial programs are well-studied in the programming languages and verification communities, but previous works often focus on comparatively limited problems, such as invariant generation. Our work can be seen as a significant generalization of these works to the problem of synthesis. See "related works" below for more details.

Decidability and Hardness. Note that the synthesis problem we consider here can be reduced, in polynomial time, to the decision problem of a formula in the first-order theory of the reals and is hence decidable. See Appendix A for more details. However, the resulting formula is quite long and has a quantifier alternation. Thus, it is beyond the reach of modern SMT solvers and quantifier elimination methods, even for toy programs with three lines of code. In the same section, we also show that the problem is (strongly) NP-hard, so no strictly PTIME algorithms can be expected unless P=NP. The NP-hardness holds even in the special case of linear/affine programs.

Our Contributions. In this work, we consider the problem of template-based synthesis over polynomial imperative programs with bounded real variables. Our contributions are as follows:

• Complexity: We prove that the problem is decidable. This is achieved by a reduction to the first-order theory of the reals. We also provide a reduction showing that our problem is (strongly) NP-hard. Note that, as mentioned above, decision procedures for the first-order theory of the reals are notoriously slow and cannot handle even toy programs in practice. Due to space restrictions, the complexity analysis is moved to Appendix A. • Practical Algorithm: We use classical theorems from polyhedral and real algebraic geometry, including Farkas' Lemma, Handelman's Theorem, Putinar's Positivstellensatz 1 , and the Real Nullstellensatz 2 to obtain a polynomialtime reduction to Quadratic Programming (QP). Since modern solvers, both SMT solvers and numerical ones, are quite efficient in handling real-world QP instances, this leads to a much more scalable approach to program synthesis in comparison to decision procedures for the first-order theory of the reals.

• Completeness: Crucially, we prove that our approach is not only sound but also semi-complete, i.e. it is complete as long as polynomials of sufficiently high degree are used in the templates. So, our approach achieves both soundness and completeness, while not suffering from the unscalability of quantifier elimination and decision procedures for the first-order theory of the reals.

• Experimental Results: We provide extensive experimental results, illustrating the efficiency of our approach and that it can successfully handle a variety of programs, including many benchmarks that were not solvable by previous state-of-the-art tools such as Sketch [START_REF] Solar-Lezama | Program synthesis by sketching[END_REF] and Rosette [START_REF] Bornholt | Finding code that explodes under symbolic evaluation[END_REF][START_REF] Torlak | A lightweight symbolic virtual machine for solver-aided host languages[END_REF].

• Invariants: In our setting, holes can appear not only in the program itself, but also in invariants. Our approach handles both types of holes identically. Hence, we get invariant generation for free. The immediate benefit is that we do not need a separate invariant generator in addition to our synthesis engine.

Novelty. The main novelty of our approach is that it can handle a wide family of programs, i.e. polynomial imperative programs, without sacrificing completeness. It is quite rare in program synthesis to achieve soundness, semi-completeness and practical efficiency at the same time. To the best of our knowledge, our method of relying on theorems in real algebraic geometry is also novel in program synthesis. Moreover, we combine these theorems in non-trivial ways and obtain new mathematical results, which are of independent interest.

Limitations. The main limitation of our approach is that it can only handle polynomial programs. This is to be expected, since we are using techniques from real algebraic geometry, which are highly dependent on having polynomial expressions/inequalities over real variables. Another limitation is that, although our approach is quite efficient in 1 Positivstellensatz is German for "positive locus theorem". Its plural form is Positivstellensätze. 2 Nullstellensatz is German for "zero locus theorem".

practice, its runtime is not polynomial in the size of the program or the number of variables. This is a natural consequence of our NP-hardness result and cannot be overcome unless P=NP.

Related Works. Several previous works use ideas that are similar in spirit to our approach:

• Template-based Synthesis: The work of [START_REF] Srivastava | Template-based program verification and program synthesis[END_REF] provides algorithms based on Farkas' Lemma for template-based synthesis of linear/affine programs. Since our work can handle polynomial programs of arbitrary degree, their results on linear/affine programs are subsumed by our approach. Moreover, while the use of Farkas' Lemma is shared among the two approaches, we also use theorems from real algebraic geometry, e.g. Handelman and Putinar, as well as non-trivial combinations of them, which are not considered in [START_REF] Srivastava | Template-based program verification and program synthesis[END_REF]. So, we have a different methodology and handle a wider family of programs. To the best of our knowledge, our algebro-geometric approach is novel in program synthesis. The works of [START_REF] Pan | Solving Program Sketches with Large Integer Values[END_REF] and [START_REF] Hu | Solving Program Sketches with Large Integer Values[END_REF] consider a sketching setting that is highly similar to ours with the notable difference that we use real variables and they focus on large integer variables. Their method is number-theoretic, based on the Chinese remainder theorem, and inherently depends on the integrality of the variables. As such, it is not applicable to our setting. Similarly, our method relies on algebro-geometric techniques that are only applicable to real variables. • Invariant Generation: There are algorithms for template-based automated generation of polynomial invariants over polynomial programs with real variables [Chatterjee et al. 2020b]. Note that this is also a special case of our setting, in which the holes are limited to appear only in the invariants. Since we allow holes in both the program itself and the invariants, our setting is strictly more general. Moreover, while they also used Positivstellensätze, they did not consider Nullstellensätze, and thus have a different mathematical basis. Sankaranarayanan, Sipma, and Manna [2004b] consider the same problem and solve it using Gröbner basis computations. In comparison with both of these approaches, we handle a more general setting and have a different methodology. There are also template-based approaches for generation of linear loop invariants [START_REF] Michael A Colón | Linear invariant generation using non-linear constraint solving[END_REF][START_REF] Liu | Location-by-Location Linear Invariant Generation with Farkas' Lemma[END_REF]Sankaranarayanan et al. 2004a]. This is an even narrower special case of our setting. Finally, [START_REF] Feng | Finding polynomial loop invariants for probabilistic programs[END_REF] considered invariant generation for probabilistic programs and used a different Positivstellensatz, i.e. that of Stengle, to obtain an automated algorithm. This setting is incomparable to ours due to the presence of probabilistic behavior but absence of holes in the program itself.

• Termination analysis: Template-based algorithms that utilize Farkas' Lemma or Positivstellensätze have also been considered in the context of termination and reachability analysis [START_REF] Agrawal | Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs[END_REF][START_REF] Asadi | Polynomial reachability witnesses via Stellensätze[END_REF][START_REF] Chatterjee | Termination analysis of probabilistic programs through Positivstellensatz's[END_REF][START_REF] Chatterjee | Non-polynomial Worst-Case Analysis of Recursive Programs[END_REF][START_REF] Chatterjee | Non-polynomial Worst-Case Analysis of Recursive Programs[END_REF][START_REF] Chatterjee | Computational Approaches for Stochastic Shortest Path on Succinct MDPs[END_REF]Chatterjee et al. , 2020a[START_REF] Chatterjee | Sound and Complete Certificates for Quantitative Termination Analysis of Probabilistic Programs[END_REF][START_REF] Huang | Modular verification for almost-sure termination of probabilistic programs[END_REF][START_REF] Neumann | On ranking function synthesis and termination for polynomial programs[END_REF][START_REF] Takisaka | Ranking and repulsing supermartingales for reachability in probabilistic programs[END_REF][START_REF] Wang | Quantitative analysis of assertion violations in probabilistic programs[END_REF][START_REF] Wang | Cost analysis of nondeterministic probabilistic programs[END_REF]. However, this is a very different and orthogonal problem and, while there are clear similarities in the approaches, it is not possible to directly or experimentally compare them. Conceptually, the works in termination analysis assume that strong-enough invariants are given as part of the input3 and then reduce the problem of finding an affine/polynomial ranking function, or its probabilistic counterparts, to Linear Programming (LP). This is in contrast to our setting where the reduction is to Quadratic Programming (QP) and a reduction to LP is impossible due to the strong NP-hardness.

In this work, we focus on imperative polynomial programs. Our programs can have real variables, conditionals and loops. Moreover, they include specifications as pre and post-conditions, as well as invariants for each loop, which are used to prove that the program satisfies the specification.

Variables and Valuations. We assume that our programs have a finite set V = {𝑣 1 , . . . , 𝑣 𝑘 } of real-valued variables. A valuation is a function 𝑣𝑎𝑙 : V → R that assigns a real value to each program variable.

Syntax. We consider programs that can be generated from the following grammar:

𝑃 := (Φ, 𝐶, Φ) 𝐶 := skip | 𝑣 ← Π | if (Φ) {𝐶 } else {𝐶 } | while (Φ, Φ) {𝐶 } | 𝐶; 𝐶 Φ := Π ≥ 0 | (Φ ∧ Φ) | ¬Φ 𝑣 ∈ V Π ∈ R[V]
Intuitively, a program 𝑃 consists of a pre-condition, a sequence 𝐶 of commands, and a post-condition. We have a special command skip that does not do anything. We also allow assignments, conditionals and while loops. The header of each loop should include both a guard and a loop invariant. Moreover, the right-hand-side of every assignment is a polynomial expression Π over program variables, and the guards, invariants and pre and post-conditions are boolean combinations Φ of polynomial inequalities over V. For simplicity, we often write the programs as in Figure 2 to make them more human-readable. We also use standard syntactic sugars, e.g. to allow other boolean operators.

Non-determinism. Note that, in order to simplify the presentation, we did not include non-determinism in the syntax of our programs. However, our transition systems have built-in support for non-determinism as discussed further below.

Polynomial Assertions. A polynomial assertion over a set 𝑉 of variables is a boolean combination of polynomial inequalities of the form 𝑝 ≥ 0 in which 𝑝 ∈ R[𝑉]. We assume, without loss of generality, that all polynomial assertions are in disjunctive normal form.

Polynomial Transition Systems. We define the semantics of our programs using transition systems. A polynomial transition system (PTS) is a tuple (V, L, ℓ 0 , 𝜃 0 , ℓ 𝑓 , 𝜃 𝑓 , T , I) that consists of:

• A finite set V of program variables,

• A finite set L of locations,

• An initial location ℓ 0 ∈ L,

• An initial polynomial assertion 𝜃 0 ,

• A final location 𝑙 𝑓 ∈ L,

• A final polynomial assertion 𝜃 𝑓 ,

• A finite set T of transitions. Each transition 𝜏 ∈ T is a tuple (ℓ, ℓ ′ , 𝜌 𝜏), where ℓ, ℓ ′ ∈ L are the pre and post locations, and 𝜌 𝜏 , called the transition relation, is a polynomial assertion over V∪V ′ , where V represents variables in the pre location and its primed version V ′ represents the variables in the post location, i.e. after taking the transition. Specifically, we have V ′ = {𝑣 ′ | 𝑣 ∈ V}; • An invariant I that maps some of the locations ℓ ∈ L to a polynomial assertion I(ℓ). Moreover, we have I(ℓ 0) = 𝜃 0 and I(ℓ 𝑓) = 𝜃 𝑓 . The set of locations for which an invariant is provided must be a cutset (see further below for a formal definition).

Synthesis of Polynomial Programs

The translation from programs to transition systems is straightforward. We can have one location ℓ ∈ L for each line of the program, and let ℓ 0 correspond to the initial line and ℓ 𝑓 to the end of the program. Similarly, 𝜃 0 serves as the pre-condition and 𝜃 𝑓 as the post-condition. Programs are more human-friendly and hence a nicer way to specify the input to the synthesis problem. In contrast, it is easier to define the algorithms using the more formal notion of PTS. As such, we will define our semantics based on a PTS instead of a program. Below, we fix a PTS (V, L, ℓ 0 , 𝜃 0 , ℓ 𝑓 , 𝜃 𝑓 , T , I).

Example 2.1. Figure 3 shows the PTS modeling the program of Figure 2. We have L = {3, 4, 6, 8, 9, 11} and each location corresponds to a line of code. The invariants are bracketed and shown in green. Note that our algorithm works with polynomial inequalities, so 𝑎 = 𝑏 is syntactic sugar for 𝑎 -𝑏 ≥ 0 ∧ 𝑏 -𝑎 ≥ 0.

Non-determinism. Our approach can also naturally handle non-determinism since we do not require the guards on the outgoing transitions from a location ℓ to be mutually exclusive. For example, we can consider the same transition system as in Figure 3 but change the guard of 𝜏 4 to 𝑖 ′ = 𝑖 ∧ 𝑠 ′ = 𝑠 ∧ 𝑛 ′ = 𝑛. Effectively, this is equivalent to a modified version of the program in Figure 2 in which the while loop at line 6 can non-deterministically break right before every iteration or proceed with the iteration as normal. This is because both 𝜏 4 and 𝜏 3 can be satisfied at the same time. Moreover, we can also handle non-deterministic assignments. Suppose we edit the program in Figure 2 such that line 8 assigns a non-deterministic value, e.g. one read from the input, to the variable 𝑖. This can be modeled in our transition system of Figure 3 by simply changing the guard of 𝜏 5 to 𝑠 ′ = 𝑠 ∧ 𝑛 ′ = 𝑛. Note that this new guard does not put any constraints on 𝑖 ′ , i.e. the value of 𝑖 after the transition. This is equivalent to letting the variable 𝑖 take any value (non-deterministically) after the transition. Similarly, if we only know that the value of 𝑖 is in a particular range, e.g. from -1 to 1, after this transition, we can add -1 ≤ 𝑖 ′ ≤ 1 to the guard.

Control Flow Graphs (CFGs). The control flow graph (CFG) of our PTS is a directed graph 𝐺 = (L, 𝐸) in which the locations serve as vertices and there is a directed edge from ℓ to ℓ ′ iff there is a transition 𝜏 ∈ T of the form 𝜏 = (ℓ, ℓ ′ , 𝜌 𝜏).

Cutsets, Cutpoints and Basic Paths. A subset C ⊆ L of vertices of the CFG 𝐺 is called a cutset if (1) ℓ 0 , ℓ 𝑓 ∈ C; and

(2) Every cycle in 𝐺, be it a simple cycle or not, intersects C.

Assuming we have fixed a cutset C, every location 𝑐 ∈ C is called a cutpoint. A basic path is a finite sequence of

transitions 𝜋 = ⟨𝜏 𝑖 ⟩ 𝑚 𝑖=1 = ⟨(ℓ 𝑖 , ℓ ′ 𝑖 , 𝜌 𝜏 𝑖) 𝑚 𝑖=1 ⟩ such that: • ℓ 𝑖 = ℓ ′
𝑖-1 for all 𝑖 > 1. • ℓ 1 and ℓ ′ 𝑚 are cutpoints, but no internal location ℓ 𝑖 with 1 < 𝑖 ≤ 𝑚 is a cutpoint. We define the transition relation 𝜌 𝜋 of the basic path 𝜋 as

𝜌 𝜏 𝑚 • 𝜌 𝜏 𝑚-1 • • • • • 𝜌 𝜏 1 .
Informally, 𝜌 𝜋 is the transition relation resulting from going through all the transitions of 𝜋 one-by-one and is hence equal to the sequential composition of 𝜌 𝜏 𝑖 's. If 𝜋 is the empty path, then we let 𝜌 𝜋 be the identity relation 𝑣 ∈V 𝑣 = 𝑣 ′ .

Example 2.2. In the PTS of Figure 3, the cutpoints shown in red form a cutset C = {3, 6, 11}. In this example, our non-empty basic paths are ⟨𝜏 1 , 𝜏 2 ⟩, ⟨𝜏 4 ⟩, and ⟨𝜏 3 , 𝜏 5 , 𝜏 6 ⟩.

Remark on Invariants. It is straightforward to see that it suffices to specify invariants in a cutset only and that the invariants can then be inductively expanded to every other line [START_REF] Michael A Colón | Linear invariant generation using non-linear constraint solving[END_REF]. Throughout this work, we assume that a cutset C is fixed and that the invariant I assigns a polynomial assertion I(ℓ) to every cutpoint ℓ ∈ C. This also fits our simple syntax above in which the invariant is only provided for the while loops and the start and end of the program (in the form of pre and post conditions). Nevertheless, our algorithmic approaches consider the PTS and can hence work with any arbitrary cutset C.

States. A state of the PTS is a pair 𝜎 = (ℓ, 𝑣𝑎𝑙) in which ℓ ∈ L is a location and 𝑣𝑎𝑙 : V → R is a valuation. Intuitively, a state specifies which line of the program we are in and what values are taken by our program variables.

Runs. A run of our PTS is a sequence 𝑅 = ⟨𝜎 𝑖 ⟩ 𝑚 𝑖=0 = ⟨(ℓ 𝑖 , 𝑣𝑎𝑙 𝑖)⟩ 𝑚 𝑖=0 of states such that: • 𝑣𝑎𝑙 0 |= 𝜃 0 , i.e. the run starts with the initial location ℓ 0 and an initial valuation that satisfies the precondition 𝜃 0 ;

• For every 𝑖 < 𝑚, there is a transition 𝜏 𝑖 ∈ T that goes from 𝜎 𝑖 to 𝜎 𝑖+1 . More formally:

-𝜏 𝑖 = (ℓ 𝑖 , ℓ 𝑖+1 , 𝜌 𝜏 𝑖); and

-(𝑣𝑎𝑙 𝑖 , 𝑣𝑎𝑙 ′ 𝑖+1) |= 𝜌 𝜏 𝑖 , i.e.
if we consider 𝑣𝑎𝑙 𝑖 as a valuation on V and 𝑣𝑎𝑙 𝑖+1 as a valuation on V ′ , then they jointly satisfy the transition condition 𝜌 𝜏 𝑖 .

Valid Runs. A run 𝑅 = ⟨𝜎 𝑖 ⟩ 𝑚 𝑖=0 = ⟨(ℓ 𝑖 , 𝑣𝑎𝑙 𝑖)⟩ 𝑚 𝑖=0 is called valid iff for every 𝑖 for which ℓ 𝑖 has an associated invariant I(ℓ 𝑖), we have 𝑣𝑎𝑙 𝑖 |= I(ℓ 𝑖). Intuitively, a run is valid if it always satisfies the invariant. Specifically, if ℓ 𝑚 = ℓ 𝑓 , then we must have 𝑣𝑎𝑙 𝑚 |= 𝜃 𝑓 in order for the run to be valid.

Valid Transition Systems. A transition system (PTS) is called valid iff its every run is valid.

Inductively Valid Transition System. A PTS is called inductively valid with respect to a cutset C, iff it satisfies the following conditions for all cutpoints ℓ, ℓ ′ ∈ C and valuations (𝑣𝑎𝑙, 𝑣𝑎𝑙 ′) over V ∪ V ′ :

• Initiation: For every basic path 𝜋 from ℓ 0 to ℓ, we have

𝑣𝑎𝑙 |= 𝜃 0 ∧ (𝑣𝑎𝑙, 𝑣𝑎𝑙 ′) |= 𝜌 𝜋 ⇒ 𝑣𝑎𝑙 ′ |= I(ℓ) ′ .
Here, I(ℓ) ′ is the same as I(ℓ), except that every program variable 𝑣 ∈ V is replaced with its primed version 𝑣 ′ . • Consecution: For every basic path 𝜋 from ℓ to ℓ ′ , we have

𝑣𝑎𝑙 |= I(ℓ) ∧ (𝑣𝑎𝑙, 𝑣𝑎𝑙 ′) |= 𝜌 𝜋 ⇒ 𝑣𝑎𝑙 ′ |= I(ℓ ′) ′ .
• Finalization: For every basic path 𝜋 from ℓ to ℓ 𝑓 , we have

𝑣𝑎𝑙 |= I(ℓ) ∧ (𝑣𝑎𝑙, 𝑣𝑎𝑙 ′) |= 𝜌 𝜋 ⇒ 𝑣𝑎𝑙 ′ |= 𝜃 ′ 𝑓 .
The intuition behind inductive validity is similar to that of inductive invariants [START_REF] Michael A Colón | Linear invariant generation using non-linear constraint solving[END_REF]]. Informally, a PTS is inductively valid if we can prove that it is valid by breaking each run into a sequence of basic paths and then show its validity by an inductive argument. It is straightforward to see that every inductively valid PTS is indeed valid [Chatterjee et al. 2020b;[START_REF] Michael A Colón | Linear invariant generation using non-linear constraint solving[END_REF]]. Moreover, the finalization and initiation conditions above can be considered as special cases of consecution. We are including them separately to emphasize the point that validity requires the PTS to satisfy its specification (as specified by pre and post-conditions).

Our goal is to synthesize a valid PTS, given a sketch that includes holes in it. To do this, we first define variants of our programs and transition systems which can also include holes.

Sketches of Polynomial Programs. In this work, we assume that the programmer provides a sketch of the implementation. The sketch is a partial program, i.e. a program with holes, which is generated using the following grammar:

𝑃 := (Φ, 𝐶, Φ) 𝐶 := skip | 𝑣 ← Π | 𝑣 ← 𝐻 | if (Φ) {𝐶 } else {𝐶 } | while (Φ, Φ) {𝐶 } | 𝐶; 𝐶 Φ := Π ≥ 0 | 𝐻 ≥ 0 | (Φ ∧ Φ) | ¬Φ 𝐻 := (V, 𝑑) 𝑣 ∈ V Π ∈ R[V] V ⊆ V 𝑑 ∈ N
The main difference between this grammar and the previous one is the introduction of a new non-terminal 𝐻 which models a hole. Note that holes can appear in assignments or as part of the assertions Φ, be it in guards of if/while or the invariants or even pre and post-conditions. For each hole, the programmer specifies a set V of variables which they expect might need to appear in filling the hole, as well as a maximum degree 𝑑 ∈ N, requiring that the hole should be filled by a polynomial of degree at most 𝑑. As an example, see the sketch in Figure 1 in which the holes are shown in boxes. As usual, we do not follow the grammar exactly in order to make the sketch more human-readable. For example, we wrote the invariant outside the while loop, instead of having it as the second parameter in the while header.

Template and Symbolic Polynomials and Assertions. Let V be our finite set of program variables and T a separate finite set of template variables. We define a symbolic polynomial over (V, T) as a polynomial over V whose every coefficient is itself a polynomial over T. More formally, every symbolic polynomial over

(V, T) is of the form 𝑝 ∈ (R[T]) [V].
We say a symbolic polynomial 𝑝 is a template if every coefficient of 𝑝, when considered as a polynomial over T, has degree 0 or 1. Symbolic (resp. template) polynomial assertions are simply defined as boolean combinations of symbolic (resp. template) polynomial inequalities. As mentioned before, our algorithms assume without loss of generality that all assertions are in disjunctive normal form.

Sketches of Polynomial Transition

Systems. A sketch of a polynomial transition system (SPTS) is tuple (V, T, L, ℓ 0 , 𝜃 0 , ℓ 𝑓 , 𝜃 𝑓 , T , I)
in which all parts serve the same purposes and are defined similarly as in a PTS. The only differences are:

• The assertions 𝜃 0 , 𝜃 𝑓 and invariants I(ℓ) are now template polynomials over (V, T).

• The transition relations 𝜌 𝜏 are now template polynomials over (V ∪ V ′ , T).

Moreover, we always assume T ∩ V = ∅.

Example 2.3. Figure 4 shows a sketch polynomial transition system (SPTS) corresponding to the sketch program of in which every coefficient is itself a polynomial over T. In this case, all coefficients are simply variables in T. Our goal is to find suitable concrete real values for each 𝑡 𝑖 such that the SPTS of Figure 4 becomes a valid PTS, e.g. that of Figure 3.

We now have all the needed ingredients to formalize our Template-Based Synthesis problem over Polynomial programs (TBSP):

TBSP. Given a sketch of a polynomial transition system Γ = (V, T, L, ℓ 0 , 𝜃 0 , ℓ 𝑓 , 𝜃 𝑓 , T , I), find a valuation 𝑣𝑎𝑙 T : T → R that assigns a real value to every template variable, such that Γ 𝑣𝑎𝑙 T becomes an inductively valid polynomial transition system. Here, Γ 𝑣𝑎𝑙 T is the PTS obtained by taking the sketch Γ and replacing every appearance of each template variable 𝑡 ∈ T by its corresponding value 𝑣𝑎𝑙 T (𝑡). Informally, our goal is to synthesize concrete values for each of the template variables so that the resulting program/PTS satisfies the programmer's desired specification.

Boundedness. For technical reasons which will become evident in Section 3.2, we assume that our program variables V have bounded values. More specifically, we consider a bound 𝑀 ∈ (0, ∞) and assume that no program variable ever takes a value larger than 𝑀 or smaller than -𝑀. We call this the boundedness assumption. The boundedness assumption is necessary for our completeness theorem (Theorem 3.21), but not for soundness. It is a merely theoretical assumption with no significant practical effect. In practice, we do not assume boundedness in our implementation in Section 4 and can successfully handle all the cases without this extra assumption.

OUR ALGORITHM FOR TBSP

In this section, we provide an automated, sound and semi-complete algorithm for the TBSP problem as defined in Section 2. We assume that the input to our algorithm is either a sketch polynomial transition system (SPTS) or a sketch of a polynomial program, containing holes. In the latter case, we would first process the input and translate it to an SPTS. We start by providing a high-level overview of our algorithm (Section 3.1) and an illustration over the example of Figure 1. Then, we present our mathematical toolkit, i.e. Farkas' Lemma, Handelman's Theorem, Putinar's Positivstellesatz and the Real Nullstellensatz in Section 3.2 and manipulate them to be usable for our application. We Synthesis of Polynomial Programs use this toolkit to fill in the details of our algorithm in Section 3.3. Finally, we provide soundness and semi-completeness theorems in Section 3.4.

An Illustration and Overview of the Algorithm

Suppose that a sketch, i.e. a polynomial program with holes, is given as the input. As a running example, let us take Figure 1. Our algorithm fills in the holes using the following four steps:

Step 1: Creating Templates and Translation to SPTS. For each hole in the sketch, the algorithm generates a template polynomial in which it introduces new template variables. Concretely, let the hole be of the form 𝐻 = (V, 𝑑). This corresponds to a case in which the programmer desires the hole to be filled by a polynomial of degree at most 𝑑 over the set V ⊆ V. The algorithm first generates all monomials 𝑚 𝑖 of degree at most 𝑑 over V. It then creates a template polynomial that includes all of these monomials and is of the form 𝑝 𝐻 := 𝑖 𝑡 𝑖 •𝑚 𝑖 , in which each 𝑡 𝑖 is a newly generated template variable. It replaces the hole 𝐻 by the template polynomial 𝑝 𝐻 and then translates the program to an SPTS.

The translation from programs to transition systems is a standard procedure, i.e. a simple parsing exercise, and hence we skip it for brevity. At the end of this step, we have an SPTS Γ = (V, T, L, ℓ 0 , 𝜃 0 , ℓ 𝑓 , 𝜃 𝑓 , T , I).

Example 3.1. Consider the sketch of Figure 1. The first hole in the invariant of line 5 should be filled by a polynomial of degree at most 2 over the variables {𝑖, 𝑠}. Hence, the algorithm generates the following template for this hole:

𝑝 1 := 𝑡 0 + 𝑡 1 • 𝑖 + 𝑡 2 • 𝑠 + 𝑡 3 • 𝑖 2 + 𝑡 4 • 𝑖 • 𝑠 + 𝑡 5 • 𝑠 2 .
Note that all the 𝑡 𝑖 's are new template variables whose concrete values have to be synthesized later. It then establishes a similar template for the second hole in line 5:

𝑝 2 := 𝑡 6 + 𝑡 7 • 𝑖 + 𝑡 8 • 𝑠 + 𝑡 9 • 𝑖 2 + 𝑡 10 • 𝑖 • 𝑠 + 𝑡 11 • 𝑠 2 .
The third hole in line 5 and the hole in line 6 should be affine expressions over {𝑖, 𝑛}, so the algorithm generates:

𝑝 3 := 𝑡 12 + 𝑡 13 • 𝑖 + 𝑡 14 • 𝑛, 𝑝 4 := 𝑡 15 + 𝑡 16 • 𝑖 + 𝑡 17 • 𝑛.
Finally, the last hole (line 9) should be filled by an affine expression over {𝑖, 𝑠}. So, we have:

𝑝 5 := 𝑡 18 + 𝑡 19 • 𝑖 + 𝑡 20 • 𝑠.
The algorithm first replaces each 𝑖-th hole with its corresponding template polynomial 𝑝 𝑖 . It then translates the program to a transition system, leading to the SPTS of Figure 4.

Step 2: Generating Entailment Constraints. Recall that our goal is to synthesize concrete real values for the template variables 𝑡 𝑖 ∈ T such that our SPTS becomes an inductively valid PTS. As such, it should satisfy the initiation, consecution and finalization constraints defined in Section 2. In this step, the algorithm considers every possible basic path 𝜋 and symbolically computes its transition relation and its corresponding initiation/consecution/finalization constraint. Then, the algorithm translates the constraint into an equivalent system of constraints in the following standard form:

𝑓 1 ⊲⊳ 1 0 ∧ 𝑓 2 ⊲⊳ 2 0 ∧ . . . ∧ 𝑓 𝑟 ⊲⊳ 𝑟 0 ⇒ 𝑓 ⊲⊳ 0 (1)
in which 𝑓 and each 𝑓 𝑖 are symbolic polynomials over (V ∪ V ′ , T) and each operator ⊲⊳, ⊲⊳ 𝑖 is either ≥ or >.

Example 3.2. Consider the SPTS and cutset of Figure 4. As discussed in Example 2.2, the basic paths in this SPTS are

𝜋 1 = ⟨𝜏 1 , 𝜏 2 ⟩, 𝜋 2 = ⟨𝜏 4 ⟩,
and 𝜋 3 = ⟨𝜏 3 , 𝜏 5 , 𝜏 6 ⟩. The algorithm symbolically computes the transition relation of each basic path:

𝜌 𝜋 1 = 𝜌 𝜏 2 • 𝜌 𝜏 1 = 𝑛 ′ = 𝑛 ∧ 𝑖 ′ = 0 ∧ 𝑠 ′ = 0 𝜌 𝜋 2 = 𝜌 𝜏 4 = 𝑡 15 + 𝑡 16 • 𝑖 + 𝑡 17 • 𝑛 < 0 ∧ 𝑖 ′ = 𝑖 ∧ 𝑠 ′ = 𝑠 ∧ 𝑛 ′ = 𝑛 𝜌 𝜋 3 = 𝜌 𝜏 6 • 𝜌 𝜏 5 • 𝜌 𝜏 3 = 𝑡 15 + 𝑡 16 • 𝑖 + 𝑡 17 • 𝑛 ≥ 0 ∧ 𝑖 ′ = 𝑖 + 1 ∧ 𝑠 ′ = 𝑡 18 + 𝑡 19 • (𝑖 + 1) + 𝑡 20 • 𝑠 ∧ 𝑛 ′ = 𝑛
It then has to symbolically compute the inductive validity constraints. For 𝜋 1 , we have the following initiation constraint:

𝑣𝑎𝑙 |= 𝜃 0 ∧ (𝑣𝑎𝑙, 𝑣𝑎𝑙 ′) |= 𝜌 𝜋 1 ⇒ 𝑣𝑎𝑙 ′ |= I(6) ′ .
The algorithm symbolically computes and expands this constraint and obtains:

𝑛 ≥ 1 ∧ 𝑛 ′ = 𝑛 ∧ 𝑖 ′ = 0 ∧ 𝑠 ′ = 0 ⇒ 𝑡 0 + 𝑡 1 • 𝑖 ′ + 𝑡 2 • 𝑠 ′ + 𝑡 3 • 𝑖 ′2 + 𝑡 4 • 𝑖 ′ • 𝑠 ′ + 𝑡 5 • 𝑠 ′2 ≥ 0 ∧ 𝑡 6 + 𝑡 7 • 𝑖 ′ + 𝑡 8 • 𝑠 ′ + 𝑡 9 • 𝑖 ′2 + 𝑡 10 • 𝑖 ′ • 𝑠 ′ + 𝑡 11 • 𝑠 ′2 ≥ 0 ∧ 𝑡 12 + 𝑡 13 • 𝑖 ′ + 𝑡 14 • 𝑛 ′ ≥ 0
Note that this constraint should hold for any valuation of V ∪ V ′ . At this point, since we know 𝑛 ′ = 𝑛 and 𝑖 ′ = 𝑠 ′ = 0, we can further simplify the constraint to

𝑛 ≥ 1 ⇒ 𝑡 0 ≥ 0 ∧ 𝑡 6 ≥ 0 ∧ 𝑡 12 + 𝑡 14 • 𝑛 ≥ 0,
hence eliminating several variables and obtaining a much simpler but equivalent constraint. Our implementation in Section 4 applies such sound heuristics for simplifying the constraints. However, the constraint is still not in the standard form of (1) since there are several inequalities on the right-hand-side. The algorithm rewrites this constraint as the following equivalent set of constraints of the standard form (1):

𝑛 ≥ 1 ⇒ 𝑡 0 ≥ 0; 𝑛 ≥ 1 ⇒ 𝑡 6 ≥ 0; 𝑛 ≥ 1 ⇒ 𝑡 12 + 𝑡 14 • 𝑛 ≥ 0.
Let us now consider 𝜋 2 . We need to generate a finalization constraint in this case. The algorithm symbolically computes

I(6) ∧ 𝜌 𝜋 2 ⇒ 𝜃 ′ 𝑓
and then expands it and rewrites it as an equivalent set of standard constraints just as in the previous case. Finally, for 𝜋 3 , which starts and ends at the cutpoint 6, the algorithm writes a consecution constraint:

I(6) ∧ 𝜌 𝜋 3 ⇒ I(6) ′ .
As above, the constraint will be simplified and translated to an equivalent set of standard constraints.

Step 3: Eliminating Program Variables and Reduction to QP. We start by providing some intuition for this step.

Let V = {𝑣 1 , . . . , 𝑣 𝑚 } be our program variables and T = {𝑡 1 , . . . , 𝑡 𝑚 ′ } the template variables introduced in Step 1 above.

By the end of the previous step, we have a set of standard constraints of form (1). Let the constraints be 𝜅 1 , 𝜅 2 , . . . , 𝜅 𝑢 .

Our problem is now equivalent to finding concrete real values 𝑡 * 𝑖 ∈ R for each template variable 𝑡 𝑖 ∈ T such that the following formula is satisfied:

∀𝑣 1 , 𝑣 2 , . . . , 𝑣 𝑚 (𝜅 1 ∧ 𝜅 2 ∧ . . . ∧ 𝜅 𝑢) (2)
or more formally

∀𝑣𝑎𝑙 ∈ R V 𝑣𝑎𝑙 |= 𝑢 𝑗=1 𝜅 𝑗 𝑡 𝑖 ← 𝑡 * 𝑖 𝑚 ′ 𝑖=1 , (3)
where

𝜅 𝑗 𝑡 𝑖 ← 𝑡 * 𝑖 𝑚 ′
𝑖=1 is the formula 𝜅 𝑗 in which each 𝑡 𝑖 is replaced by 𝑡 * 𝑖 . This is not an easy problem in general (See Section A), but the fact that all 𝜅 𝑖 constraints are in the standard form of (1) can be exploited for a reduction to quadratic programming (QP). This step requires mathematical details that will be presented in Section 3.2. At this point, we consider a simple sound algorithm that captures the main intuition of this step and then fill in the details to make it semi-complete in Section 3.3.

Consider a standard constraint 𝜅 𝑖 of the following form:

𝑓 1 ≥ 0 ∧ 𝑓 2 ≥ 0 ∧ . . . ∧ 𝑓 𝑟 ≥ 0 ⇒ 𝑓 ≥ 0
As mentioned above, this constraint should hold over all valuations. So, intuitively, we would like to guarantee that whenever all polynomials 𝑓 1 , 𝑓 2 , . . . , 𝑓 𝑟 are non-negative, then so is 𝑓 . A simple sound solution is to try to write 𝑓 as a combination of the 𝑓 𝑖 's in the following form:

𝑓 = 𝜆 0 + 𝑟 𝑖=1 𝜆 𝑖 • 𝑓 𝑖 (4)
where each 𝜆 𝑖 is a new non-negative real variable. We write Λ as a shorthand for {𝜆 0 , . . . , 𝜆 𝑟 }. This is clearly sound, since whenever the 𝑓 𝑖 's are non-negative at a given valuation, then so is every combination of them with non-negative coefficients. Indeed, we can go one step further and let each 𝜆 𝑖 be an always-non-negative polynomial, instead of a real constant, and the exact same argument will go through. As we will see, this idea can lead to a semi-complete algorithm.

We can now present Step 3 of the algorithm. In this step, the algorithm considers each standard constraint 𝜅 𝑖 and symbolically computes the equation (4) for it. Note that both sides of (4) are symbolic polynomials over (V, T ∪ Λ). In particular, they are polynomials over V. However, two polynomials are equal if and only if they have equal coefficients for every monomial. Hence, the algorithm equates the corresponding coefficients on the left and right-hand sides of (4)

and rewrites it as a system of quadratic equalities over T ∪ Λ.

Example 3.3. Consider the standard constraint 𝑛 -1 ≥ 0 ⇒ 𝑡 12 + 𝑡 14 • 𝑛 ≥ 0 that was generated in Step 2 above (Example 3.2). The algorithm symbolically computes (4) and obtains

𝑡 12 + 𝑡 14 • 𝑛 = 𝜆 0 + 𝜆 1 • (𝑛 -1).
Since both sides of this equality are polynomials over 𝑛, in order for the equality to hold, they should have the same constant factor and the same coefficient for 𝑛, so the algorithm obtains the following constraints:

𝑡 12 = 𝜆 0 -𝜆 1 𝑡 14 = 𝜆 1 𝜆 0 , 𝜆 1 ≥ 0
This is a quadratic programming (QP) instance in which none of the program variables, e.g. 𝑛, appear. The algorithm translates other standard constraints to QP in a similar manner and combines them conjunctively.

Step 4: Constraint Solving. The algorithm passes the QP instance generated in the previous step to an SMT solver or a numerical solver. If the solver fails to find a solution, then the algorithm fails, too. Otherwise, the solver provides values for all 𝑡 𝑖 and 𝜆 𝑖 variables. The algorithm plugs the values found for 𝑡 𝑖 's back into the templates of Step 1, which successfully leads to an inductively valid PTS or equivalently to a valid synthesized program that satisfies the desired specification.

Example 3.4. Given the sketch of Figure 1 as input, the synthesized program of Figure 2 is obtained as one of the solutions of the QP instance in Step 4. However, the solution is not necessarily unique, and our algorithm might find a different solution based on the values found by the external solver.

Mathematical Toolkit

In Section 3.1 above, we provided an overview of our algorithm. However, the details of Step 3, i.e. the reduction to QP, were not presented since they depend on certain mathematical prerequisites. In this section, we provide the mathematical tools and theorems that are crucial for this step of the algorithm. We first recall some notation and classical definitions. Then, we present several theorems from polyhedral and real algebraic geometry. Finally, we obtain tailor-made versions of these theorems in a format that can be used in Step 3 of our algorithm above. We refer to [START_REF] Hartshorne | Algebraic geometry[END_REF] and Bochnak, Coste, and Roy [2013] for a more detailed treatment of these theorems.

Sums of Squares.

A polynomial ℎ ∈ R[𝑥 1 , . . . , 𝑥 𝑛] is a sum of squares (SOS) iff there exist 𝑘 ≥ 1 and polynomials

𝑔 1 , . . . , 𝑔 𝑘 ∈ R[𝑥 1 , . . . , 𝑥 𝑛] such that ℎ = 𝑘 𝑖=1 𝑔 2 𝑖 .
Infimum and Strong Positivity. Given a set 𝐴 ⊆ R, we say that 𝑙 ∈ R is a lower-bound for 𝐴 if 𝑙 ≤ 𝑎 for every 𝑎 ∈ 𝐴.

We denote the largest lower-bound of 𝐴 by inf 𝐴. In R, every lower-bounded set is guaranteed to have an infimum. We say 𝐴 is strongly positive if inf 𝐴 > 0.

Strong Positivity of Polynomials. Given a set 𝑋 ⊆ R 𝑛 and a polynomial 𝑔 ∈ R[𝑥 1 , . . . , 𝑥 𝑛], we say that 𝑔 is strongly positive over X if inf {𝑔(𝑥) | 𝑥 ∈ 𝑋 } > 0. We write this as 𝑋 |= 𝑔 ≫ 0. In other words, 𝑔 is strongly positive over 𝑋 iff there exists an 𝜖 > 0 such that for every 𝑥 ∈ 𝑋, we have 𝑔(𝑥) ≥ 𝜖.

Notation. Let Φ = {𝑔 1 ⊲⊳ 1 0, . . . , 𝑔 𝑘 ⊲⊳ 𝑘 0} be a set of polynomial inequalities where ⊲⊳ 𝑖 ∈ {≥, >} and 𝑔 𝑖 ∈ R[𝑥 1 , . . . , 𝑥 𝑛].

We define SAT(Φ) as the set of all real valuations 𝑣𝑎𝑙 over the variables {𝑥 1 , . . . , 𝑥 𝑛 } that satisfy Φ. More formally, SAT(Φ) = {𝑣𝑎𝑙 ∈ R 𝑛 | 𝑘 𝑖=1 𝑣𝑎𝑙 |= (𝑔 𝑖 ⊲⊳ 𝑖 0)}. Closure and Closed Sets. Given a set 𝑋 ⊆ R 𝑛 , we define 𝑋 to be the closure of 𝑋 with respect to the Euclidean topology of R 𝑛 . In other words, 𝑋 contains all the points in 𝑋 as well as all the points on its boundary, i.e. points that are limits of a sequence of points in 𝑋 . The set 𝑋 is called closed if 𝑋 = 𝑋 . For a set Φ of polynomial inequalities, we define Φ as the system of polynomial inequalities obtained from Φ by replacing every strict inequality with its non-strict counterpart.

Compactness. A set 𝑋 ⊆ R 𝑛 is called compact if and only if it is both closed and bounded. In other words, a bounded set is compact iff it contains all the points on its boundary. As we will see, some of the theorems in our mathematical toolkit below are only applicable to compact sets. Intuitively, in order to establish the positivity of a polynomial 𝑝, our algorithm attempts to write 𝑝 as a sum of square polynomials and a constant 𝜖 > 0. This approach is sound, since a sum of squares is always guaranteed to be non-negative. However, the completeness depends on several theorems that will be introduced below and only hold when assuming compactness, i.e. on an unbounded domain or a domain set 𝑋 that does not contain its boundary, it is possible to have a positive polynomial 𝑝 which can nonetheless not be written as a sum of squares.

We are now ready to present the main mathematical theorems that will be used in our work. Our presentation follows Section 2.6 of [START_REF] Goharshady | Parameterized and algebro-geometric advances in static program analysis[END_REF], which also contains proofs of corollaries that are not proven here. Theorem 3.5 (Farkas' Lemma [Farkas 1902]). Consider a set 𝑉 = {𝑥 1 , . . . , 𝑥 𝑟 } of real-valued variables and the following system Φ of equations over 𝑉 :

Φ :=              𝑎 1,0 + 𝑎 1,1 • 𝑥 1 + . . . + 𝑎 1,𝑟 • 𝑥 𝑟 ≥ 0 . . . 𝑎 𝑚,0 + 𝑎 𝑚,1 • 𝑥 1 + . . . + 𝑎 𝑚,𝑟 • 𝑥 𝑟 ≥ 0 .
When Φ is satisfiable, it entails a linear inequality

𝜓 := 𝑐 0 + 𝑐 1 • 𝑥 1 + • • • + 𝑐 𝑟 • 𝑥 𝑟 ≥ 0
if and only if 𝜓 can be written as non-negative linear combination of the inequalities in Φ and the trivial inequality 1 ≥ 0,

i.e. if there exist non-negative real numbers 𝑦 0 , . . . , 𝑦 𝑚 such that

𝑐 0 = 𝑦 0 + 𝑘 𝑖=1 𝑦 𝑖 • 𝑎 𝑖,0 ; 𝑐 1 = 𝑘 𝑖=1 𝑦 𝑖 • 𝑎 𝑖,1 ; . . . 𝑐 𝑟 = 𝑘 𝑖=1 𝑦 𝑖 • 𝑎 𝑖,𝑟 . Moreover, Φ is unsatisfiable if and only if -1 ≥ 0 can be derived as above. Example 3.6. Let Φ = [4 • 𝑥 1 -𝑥 2 ≥ 0, 𝑥 2 -3 • 𝑥 1 ≥ 0] and 𝜓 := 6•𝑥 1 -𝑥 2 ≥ 0.
We aim to establish whether Φ entails 𝜓 .

Using Farkas' Lemma, we introduce new non-negative variables 𝑦 1 and 𝑦 2 and let 6

•𝑥 1 -𝑥 2 = 𝑦 1 •(4•𝑥 1 -𝑥 2)+𝑦 2 •(𝑥 2 -3•𝑥 1).
Note that both sides of this equality are polynomials over 𝑥 1 and 𝑥 2 . Hence, they are equal iff their corresponding coefficients are equal. Equating the coefficient of 𝑥 1 we get 6 = 𝑦 1 • 4 -𝑦 2 • 3. Similarly, equating the coefficient of 𝑥 2 leads to -1 = -𝑦 1 + 𝑦 2 . Note that these are equalities over the 𝑦 𝑖 's only and the 𝑥 𝑖 's are no longer present. Passing these to a solver, we can find the solution 𝑦 1 = 3 and 𝑦 2 = 2. So, we have

𝜓 = 3 • Φ[1] + 2 • Φ[2].
Since 𝜓 is a linear combination with non-negative coefficients of the inequalities in Φ, we can be sure that Φ entails 𝜓 .

The importance of Farkas' Lemma for us is that if we have a standard constraint of form (1) and if the constraint includes only linear/affine inequalities, then we can use this lemma in Step 3 of our algorithm to reduce the standard constraint to QP, just as we did in Section 3.1. Moreover, Farkas' Lemma guarantees that this approach is not only sound but also complete. A corner case that we have to consider is when Φ is itself unsatisfiable and thus Φ ⇒ 𝜓 holds vacuously. Fortunately, Farkas' Lemma also provides a criterion for unsatisfiability. In practice, we work with the following corollary of Theorem 3.5 which can also handle strict inequalities.

Corollary 3.7. Consider a set 𝑉 = {𝑥 1 , . . . , 𝑥 𝑟 } of real-valued variables and the following system of equations over 𝑉 :

Φ :=              𝑎 1,0 + 𝑎 1,1 • 𝑥 1 + . . . + 𝑎 1,𝑟 • 𝑥 𝑟 ⊲⊳ 1 0 . . . 𝑎 𝑚,0 + 𝑎 𝑚,1 • 𝑥 1 + . . . + 𝑎 𝑚,𝑟 • 𝑥 𝑟 ⊲⊳ 𝑚 0
where ⊲⊳ 𝑖 ∈ {>, ≥} for all 1 ≤ 𝑖 ≤ 𝑚. When Φ is satisfiable, it entails a linear inequality

𝜓 := 𝑐 0 + 𝑐 1 • 𝑥 1 + • • • + 𝑐 𝑟 • 𝑥 𝑟 ⊲⊳ 0
with ⊲⊳∈ {>, ≥}, if and only if 𝜓 can be written as non-negative linear combination of inequalities in Φ and the trivial inequality 1 > 0. Note that if 𝜓 is strict, then at least one of the strict inequalities should appear with a non-zero coefficient in the linear combination. Moreover, Φ is unsatisfiable if and only if either -1 ≥ 0 or 0 > 0 can be derived as above.

Example 3.8. Consider Φ := [𝑥 > 0, -4 • 𝑥 ≥ 0]. To show that Φ is unsatisfiable, we let 𝜓 := 0 > 0 and try to obtain 𝜓 as a linear combination with non-negative coefficients of inequalities in Φ. The process is similar to Example 3.6 and

leads to 𝜓 = 4 • Φ[1] + Φ[2].
Since 𝜓 is clearly unsatisfiable and Φ entails 𝜓, then Φ is also unsatisfiable.

We now consider extensions of Farkas' Lemma which can help us handle non-linear standard constraints in Step 3.

The first extension is Handelman's theorem, which can be applied when the inequalities on the left hand side of (1) are linear/affine, but the right hand side is a polynomial of arbitrary degree. To present the theorem, we first need the concept of Φ's semi-group.

Semi-group generated by Φ. Consider a set 𝑉 = {𝑥 1 , . . . 𝑥 𝑟 } of real-valued variables and the following system of linear inequalities over 𝑉 :

Φ :=              𝑎 1,0 + 𝑎 1,1 • 𝑥 1 + . . . + 𝑎 1,𝑟 • 𝑥 𝑟 ⊲⊳ 1 0 . . . 𝑎 𝑚,0 + 𝑎 𝑚,1 • 𝑥 1 + . . . + 𝑎 𝑚,𝑟 • 𝑥 𝑟 ⊲⊳ 𝑚 0
where ⊲⊳ 𝑖 ∈ {>, ≥} for all 1 ≤ 𝑖 ≤ 𝑚. Let 𝑔 𝑖 be the left hand side of the 𝑖-th inequality, i.e. 𝑔 𝑖 (𝑥 1 , . . . , 𝑥 𝑟) := 𝑎 𝑖,0 + 𝑎 𝑖,1 • 𝑥 1 + . . . 𝑎 𝑖,𝑟 • 𝑥 𝑟 . The semi-group of Φ is defined as:

SG(Φ) := 𝑚 𝑖=1 𝑔 𝑘 𝑖 𝑖 | 𝑚 ∈ N ∧ ∀𝑖 𝑘 𝑖 ∈ N ∪ {0} .
In other words, this semi-group contains all polynomials that can be obtained as a multiplication of the 𝑔 𝑖 's. Note that 1 ∈ SG(Φ). We define SG 𝑑 (Φ) as the subset of polynomials in SG(Φ) of degree at most 𝑑.

Theorem 3.9 (Handelman's Theorem [START_REF] Handelman | Representing polynomials by positive linear functions on compact convex polyhedra[END_REF]). Consider a set 𝑉 = {𝑥 1 , . . . , 𝑥 𝑟 } of real-valued variables and the following system of equations over 𝑉 :

Φ :=              𝑎 1,0 + 𝑎 1,1 • 𝑥 1 + . . . + 𝑎 1,𝑟 • 𝑥 𝑟 ≥ 0 . . . 𝑎 𝑚,0 + 𝑎 𝑚,1 • 𝑥 1 + . . . + 𝑎 𝑚,𝑟 • 𝑥 𝑟 ≥ 0 .
If Φ is satisfiable, SAT(Φ) is compact, and Φ entails a polynomial inequality 𝑔(𝑥 1 , . . . , 𝑥 𝑟) > 0, then there exist non-negative real numbers 𝑦 1 , . . . 𝑦 𝑢 and polynomials ℎ 1 , . . . , ℎ 𝑢 ∈ SG(Φ) such that:

𝑔 = 𝑢 𝑖=1 𝑦 𝑖 • ℎ 𝑖 .
The intuition here is that if every inequality in Φ holds, then all the LHS expressions in Φ are non-negative and hence any multiplication ℎ 𝑖 of them is also non-negative. As in the case of Farkas' Lemma, Handelman's theorem shows that this approach is not only sound but also complete. We also need a variant that can handle strict inequalities in Φ.

Corollary 3.10. Consider a set 𝑉 = {𝑥 1 , . . . , 𝑥 𝑟 } of real-valued variables and the following system of equations over 𝑉 :

Φ :=              𝑎 1,0 + 𝑎 1,1 • 𝑥 1 + . . . + 𝑎 1,𝑟 • 𝑥 𝑟 ⊲⊳ 1 0 . . . 𝑎 𝑚,0 + 𝑎 𝑚,1 • 𝑥 1 + . . . + 𝑎 𝑚,𝑟 • 𝑥 𝑟 ⊲⊳ 𝑚 0
in which ⊲⊳ 𝑖 ∈ {>, ≥} for all 1 ≤ 𝑖 ≤ 𝑚. If Φ is satisfiable and SAT(Φ) is bounded, then Φ entails a strong polynomial inequality 𝑔 ≫ 0 if and only if there exist constants 𝑦 0 ∈ (0, ∞), and 𝑦 1 , . . . , 𝑦 𝑢 ∈ [0, ∞), and polynomials ℎ 1 , . . . , ℎ 𝑢 ∈ SG(Φ) such that:

𝑔 = 𝑦 0 + 𝑢 𝑖=1 𝑦 𝑖 • ℎ 𝑖 . Example 3.11. Let Φ := [𝑥 1 ≥ 0, 𝑥 2 > 0] and 𝜓 := 𝑥 2 1 + 2 • 𝑥 2 2 + 3 • 𝑥 1 • 𝑥 2 + 1 ≫ 0.
To establish that Φ entails 𝜓, we first generate SG 2 (Φ), which is obtained by considering all products of two or fewer elements from Φ. By a slight misuse of notation, we have). We now try to show that SG 2 (Φ) entails 𝜓 in an approach similar to Example 3.6. We introduce seven new variables 𝑦 0 , . . . , 𝑦 6 and write the equality

SG 2 (Φ) = 1 ≥ 0, 𝑥 1 ≥ 0, 𝑥 2 > 0, 𝑥 2 1 ≥ 0, 𝑥 1 • 𝑥 2 ≥ 0, 𝑥 2 2 > 0 . It is clear that Φ entails SG 2 (Φ
𝜓 = 𝑦 0 + 6 𝑖=1 𝑦 𝑖 • SG 2 (Φ) [𝑖].
Note that both sides of this inequality are polynomials over variables 𝑥 1 , 𝑥 2 . We equate the corresponding coefficients on both sides. For example, the coefficient of 𝑥 1 • 𝑥 2 is 0 on the LHS and 𝑦 5 on the RHS. So we must have 𝑦 5 = 0. We write similar equations over the 𝑦 𝑖 's for every other monomial and solve the resulting system, hence obtaining

𝜓 = 1 + SG 2 (Φ) [4] + 3 • SG 2 (Φ) [5] + 2 • SG 2 (Φ) [6].
Thus, 𝜓 is a linear combination with non-negative coefficients of SG 2 (Φ). Therefore, it is entailed by SG 2 (Φ) which is in turn entailed by Φ.

Corollary 3.10 above can handle a wider family of standard constraints than Corollary 3.7. However, it is also more expensive, since we now need to generate one new variable 𝑦 𝑖 for every polynomial in SG 𝑑 (Φ) instead of Φ itself.

Moreover, there is no bound 𝑑 in the theorem itself, so introducing 𝑑 would lead to semi-completeness instead of completeness, i.e. the approach would be complete only if a large enough value of 𝑑 is used. As such, in cases where both sides of (1) are linear, Corollary 3.7 is preferable. We now consider a more expressive theorem that can handle polynomials on boths sides of (1).

Theorem 3.12 (Putinar's Positivstellensatz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]). Given a finite collection of polynomials {𝑔, 𝑔 1 , . . . , 𝑔 𝑘 } ∈ R[𝑥 1 , . . . , 𝑥 𝑛], let Φ be the set of inequalities defined as

Φ : {𝑔 1 ≥ 0, . . . , 𝑔 𝑘 ≥ 0}.
If Φ entails the polynomial inequality 𝑔 > 0 and there exist some 𝑖 such that SAT(𝑔 𝑖 ≥ 0) is compact, then there exist polynomials ℎ 0 , . . . , ℎ 𝑘 ∈ R[𝑥 1 , . . . , 𝑥 𝑛] such that

𝑔 = ℎ 0 + 𝑚 𝑖=1 ℎ 𝑖 • 𝑔 𝑖
and every ℎ 𝑖 is a sum of squares. Moreover, Φ is unsatisfiable if and only if -1 > 0 can be obtained as above, i.e. with 𝑔 = -1.

The intuition behind this theorem is similar to Farkas' Lemma. To show that Φ entails 𝑔 > 0, we try to write 𝑔 as a combination of the polynomials in Φ. However, instead of using non-negative real numbers as the coefficients, we use sum-of-square polynomials ℎ 𝑖 . Since a sum-of-square polynomial is always non-negative, this approach is sound. The theorem above shows that it is also complete.

Example 3.13.

Let Φ := [𝑔 1 ≥ 0, 𝑔 2 ≥ 0] where 𝑔 1 = 𝑥 -𝑦 and 𝑔 2 = 𝑥 2 -3 • 𝑦 2 . Moreover, let 𝑔 = 𝑥 4 + 𝑥 3 -2 • 𝑥 2 • 𝑦 2 -𝑥 2 • 𝑦 + 𝑥 2 -8 • 𝑥 • 𝑦 -3 • 𝑦 4 + 16 • 𝑦 2 + 1. Does Φ entail 𝑔 ≫ 0?
According to the theorem above, if it does, then 𝑔 can be written as

𝑔 = ℎ 0 + ℎ 1 • 𝑔 1 + ℎ 2 • 𝑔 2 in
which all ℎ 𝑖 's are sums of squares. We can verify that we have

𝑔 = 1 + (𝑥 -4 • 𝑦) 2 + 𝑥 2 • (𝑥 -𝑦) + (𝑥 2 + 𝑦 2) • (𝑥 2 -3 • 𝑦 2).
The parts shown in red are sums of squares ℎ 𝑖 . Hence, Φ entails 𝑔 ≫ 0. In practice, to obtain the ℎ 𝑖 's automatically, we first create a template for each of them and then enforce the constraint that ℎ 𝑖 should be a sum of squares. The details of this procedure are provided further below.

As in the cases of Farkas and Handelman, we need a variant of of Theorem 3.12 that can handle strict inequalities in Φ.

Corollary 3.14. Consider a finite collection of polynomials {𝑔, 𝑔 1 , . . . , 𝑔 𝑘 } ∈ R[𝑥 1 , . . . , 𝑥 𝑛] and let

Φ : {𝑔 1 ⊲⊳ 1 0, . . . , 𝑔 𝑘 ⊲⊳ 𝑘 0}
where ⊲⊳ 𝑖 ∈ {>, ≥} for all 1 ≤ 𝑖 ≤ 𝑘. Assume that there exist some 𝑖 such that SAT(𝑔 𝑖 ≥ 0) is compact or equivalently SAT(𝑔 𝑖 ⊲⊳ 𝑖 0) is bounded. If Φ is satisfiable, then it entails the strong polynomial inequality 𝑔 ≫ 0, iff there exists a constant 𝑦 0 ∈ (0, ∞) and polynomials ℎ 0 , . . . , ℎ 𝑘 ∈ R[𝑥 1 , . . . , 𝑥 𝑛] such that

𝑔 = 𝑦 0 + ℎ 0 + 𝑘 𝑖=1 ℎ 𝑖 • 𝑔 𝑖 ,
and every ℎ 𝑖 is a sum of squares.

Trying to use the corollary above for handling standard constraints of form (1) in Step 3 of our algorithm leads to two problems: (i) we also need a criterion for unsatisfiability of Φ to handle the cases where Φ ⇒ 𝜓 holds vacuously, and (ii) in our QP, we should somehow express the property that every ℎ 𝑖 is a sum of squares. We now show how each of these challenges can be handled. To handle (i), we need another classical theorem from real algebraic geometry.

Theorem 3.15 ([Bochnak et al. 2013, Corollary 4.1.8] the Real Nullstellensatz). Given polynomials 𝑔, 𝑔 1 , . . . , 𝑔 𝑘 ∈ R[𝑥 1 , . . . , 𝑥 𝑛], exactly one of the following two statements holds:

• There exists 𝑥 ∈ R 𝑛 , such that 𝑔 1 (𝑥) = • • • = 𝑔 𝑘 (𝑥) = 0, but 𝑔(𝑥) ≠ 0.
• There exists 𝛼 ∈ N ∪ {0} and polynomials ℎ 1 , . . . , ℎ

𝑘 ∈ R[𝑥 1 , . . . , 𝑥 𝑛] such that 𝑘 𝑖=1 ℎ 𝑖 • 𝑔 𝑖 -ℎ 0 = 𝑔 2•𝛼
and ℎ 0 is a sum of squares.

We now combine the Real Nullstellensatz with Putinar's Postivstellensatz to obtain a criterion for unsatisfiability of Φ. The role of the theorem below is to provide a similar criterion as the one used in Example 3.13 for checking whether Φ is unsatisfiable. However, it turns out we need to check two conditions (5) and (6) below instead of just one.

Synthesis of Polynomial Programs

Theorem 3.16. Consider a finite collection of polynomials {𝑔 1 , . . . , 𝑔 𝑘 } ∈ R[𝑥 1 , . . . , 𝑥 𝑛] and the following system of inequalities:

Φ : {𝑔 1 ⊲⊳ 1 0, . . . , 𝑔 𝑘 ⊲⊳ 𝑘 0}

where ⊲⊳ 𝑖 ∈ {>, ≥} for all 1 ≤ 𝑖 ≤ 𝑘. Φ is unsatisfiable if and only if at least one of the following statements holds:

• There exist a constant 𝑦 0 ∈ (0, ∞) and sum of square polynomials ℎ 0 , . . . , ℎ 𝑘 ∈ R[𝑥 1 , . . . , 𝑥 𝑛] such that

-1 = 𝑦 0 + ℎ 0 + 𝑘 𝑖=1 ℎ 𝑖 • 𝑔 𝑖 .
(5)

• There exist 𝛼 ∈ N ∪ {0} and ℎ 0 , ℎ 1 , . . . , ℎ 𝑘 ∈ R[𝑥 1 , . . . , 𝑥 𝑛 , 𝑤 1 , . . . , 𝑤 𝑘], such that for some 1 ≤ 𝑗 ≤ 𝑚 with ⊲⊳ 𝑗 ∈ {>}, we have

𝑤 4•𝛼 𝑗 = 𝑚 𝑖=1 ℎ 𝑖 • (𝑔 𝑖 -𝑤 2 𝑖) -ℎ 0 . (6
)
where ℎ 0 is a sum of squares in R[𝑥 1 , . . . , 𝑥 𝑛]. Note that 𝑤 1 , . . . , 𝑤 𝑘 are new variables.

Proof. First we show that if any of the two equalities (5) or (6) holds then Φ is unsatisfiable. Suppose Φ is satisfiable and pick 𝑣𝑎𝑙 ∈ SAT(Φ). Then, the RHS of (5) is positive at 𝑣𝑎𝑙, whereas the LHS is negative. So, (5

𝑔 2•𝛼 𝑗 = 𝑚 𝑖=1 ℎ 𝑖 • g𝑖 -ℎ 0 + ℎ ′ 𝑗 • g𝑗 (7)
Let us extend 𝑣𝑎𝑙, which is a valuation of {𝑣 1 , . . . , 𝑣 𝑛 } to a valuation 𝑣𝑎𝑙 ′ over {𝑣 1 , . . . , 𝑣 𝑛 , 𝑤 1 , . . . , 𝑤 𝑘 } such that 𝑣𝑎𝑙 ′ |= g𝑖 (𝑣 1 , . . . , 𝑣 𝑛 , 𝑤 1 , . . . , 𝑤 𝑘) = 0 for all 1 ≤ 𝑖 ≤ 𝑘. Note that such an extension is always possible. We get a contradiction by evaluating (7) on 𝑣𝑎𝑙 ′ as the LHS is positive, whereas the RHS is negative.

We now prove the other side. Suppose Φ is unsatisfiable. We have two possibilities: either Φ is also unsatisfiable or Φ is satisfiable. Suppose Φ is unsatisfiable, then using Theorem 3.12, Φ entails -2 > 0 and we can write -2 = ℎ 0 + 𝑘 𝑖=1 ℎ 𝑖 • 𝑔 𝑖 for sum of squares polynomials ℎ 0 , . . . , ℎ 𝑘 ∈ R[𝑥 1 , . . . , 𝑥 𝑛]. Therefore,

-1 = 1 + ℎ 0 + 𝑘 𝑖=1 ℎ 𝑖 • 𝑔 𝑖
which fits into (5). Now we are left with the case when Φ is satisfiable but Φ is unsatisfiable. We first reorder the inequalities in Φ such that the non-strict inequalities appear first in the order. Let 𝑗 be the smallest index for which Φ[1 . . . 𝑗], i.e. the set of first 𝑗 inequalities in Φ, is unsatisfiable. By definition, Φ[1 . . . 𝑗 -1] is satisfiable and hence

SAT(Φ[1 . . . 𝑗 -1]) = SAT(Φ[1 . . . 𝑗 -1]). We can rewrite Φ[1 . . . 𝑗] = Φ[1 . . . 𝑗 -1] ∧ (𝑔 𝑗 > 0). As Φ[1 . . . 𝑗] is unsatisfiable, we know that Φ[1 . . . 𝑗 -1] entails 𝑔 𝑗 ≤ 0. More precisely, this means SAT(Φ[1 . . . 𝑗 -1]) ⊆ SAT(𝑔 𝑗 ≤ 0).
On taking closures on both sides we get

SAT(Φ[1 . . . 𝑗 -1]) ⊆ SAT(𝑔 𝑗 ≤ 0). This implies that Φ[1, . . . 𝑗 -1] entails
𝑔 𝑗 ≤ 0 and hence Φ[1 . . . 𝑗] entails 𝑔 𝑗 = 0. As defined above, g𝑖 (𝑥 1 , . . . , 𝑥 𝑛 , 𝑤 1 , . . . , 𝑤 𝑘) = 𝑔 𝑖 (𝑥 1 , . . . , 𝑥 𝑛) -𝑤 2 𝑖 . Now, we will show that there is no valuation 𝑣𝑎𝑙 * over the variables {𝑥 1 , . . . , 𝑥 𝑛 , 𝑤 1 , . . . , 𝑤 𝑘 } such that for all 1 ≤ 𝑖 ≤ 𝑗, g𝑖 (𝑣𝑎𝑙 *) = 0 but 𝑔 𝑗 (𝑣𝑎𝑙 *) ≠ 0. Suppose there exist such a valuation 𝑣𝑎𝑙 * . Let us define 𝑣𝑎𝑙 to be the restriction of 𝑣𝑎𝑙 * to {𝑥 1 , . . . , 𝑥 𝑛 }. For each 1 ≤ 𝑖 ≤ 𝑗, we get 𝑔 𝑖 (𝑣𝑎𝑙) ≥ 0 as g𝑗 (𝑣𝑎𝑙 *) = 0. We also get 𝑔 𝑗 (𝑣𝑎𝑙) = 𝑔 𝑗 (𝑣𝑎𝑙 *) ≠ 0. Hence, we get a contradiction with the previous result that Φ[1 . . . 𝑗] entails 𝑔 𝑗 = 0. Applying the Real Nullstellensatz (Theorem 3.15) to g𝑖 's and 𝑔 𝑗 , we have

𝑔 2•𝛼 𝑗 = 𝑗 𝑖=1 h𝑖 • g𝑖 -ℎ 0
where 𝛼 is a non-negative integer and h𝑖 's and ℎ 0 are sums of sqaures in R[𝑥 1 , . . . , 𝑥 𝑛 , 𝑤 1 , . . . , 𝑤 𝑘]. Using the definition of 𝑔 𝑗 = g𝑗 +𝑤 2 𝑗 and the binomial theorem, we get

𝑔 2•𝛼 𝑗 = 𝑤 4•𝛼 𝑗 +ℎ ′ 𝑗 • g𝑗 for some ℎ ′ 𝑗 ∈ R[𝑥 1 , . . . , 𝑥 𝑛 , 𝑤 1 , . . . , 𝑤 𝑘]
. Therefore, we finally get the following expression:

𝑤 4•𝛼 𝑗 = 𝑗 𝑖=1 h𝑖 • (𝑔 𝑖 -𝑤 2 𝑖) -ℎ ′ 𝑗 • (𝑔 𝑗 -𝑤 2 𝑗) -ℎ 0
which fits into the format of (6), hence completing the proof. □

The theorem above provides us with a criterion for unsatisfiability of Φ. It can be applied exactly as in Example 3.13, except that we should try both cases, i.e. both Equation (5) and Equation (6). Informally, to show that Φ is unsatisfiable, we try to find a contradiction that is entailed by Φ. In Equation (5), the contradiction is simply 1 > 0. In Equation (6), the contradiction is based on the Nullstellensatz and is not very intuitive. However, our theorem above shows that we should only consider these two types of contradictions to have a sound and complete criterion for unsatisfiability.

Finally, in order to fill in the missing part from Example 3.13, we provide the needed theorems to check that a certain polynomial ℎ is a sum of squares.

Theorem 3.17 ([Blekherman et al. 2012, Theorem 3.39]). Let ì 𝑎 be the vector of all 𝑛+𝑑 𝑑 monomials of degree less than or equal to 𝑑 over the variables {𝑥 1 , . . . , 𝑥 𝑛 }. A polynomial 𝑝 ∈ R[𝑥 1 , . . . , 𝑥 𝑛] of degree 2 • 𝑑 is a sum of squares if and only if there exist a positive semidefinite matrix 𝑄 of order 𝑛+𝑑 𝑑 such that 𝑝 = 𝑎 𝑇 • 𝑄 • 𝑎.

Theorem 3.18 (Cholesky decomposition [Watkins 2004]). A symmetric square matrix 𝑄 is positive semidefinite if and only if it has a Cholesky decomposition of the form 𝑄 = 𝐿𝐿 𝑇 where 𝐿 is a lower-triangular matrix with non-negative diagonal entries.

Based on Theorems 3.17 and 3.18, a polynomial 𝑝 of degree 2 • 𝑑 is a sum of squares if and only if it can be written as 𝑝 = 𝑎 𝑇 • 𝐿 • 𝐿 𝑇 • 𝑎 such that diagonal entries of 𝐿 are non-negative. This representation provides us with a simple approach to generate a sum-of-squares polynomial of degree 2 • 𝑑 with symbolic coefficients and encoding them in QP.

We first generate a lower triangular matrix 𝐿 of order 𝑛+𝑑 𝑑 by creating one fresh variable for each entry in the lower triangle and adding the extra condition that the entries on the diagonal must be non-negative. Then, we symbolically compute 𝑎 𝑇 • 𝐿 • 𝐿 𝑇 • 𝑎.

Example 3.19. We can now uncover the magic behind how the ℎ 𝑖 polynomials were synthesized in Example 3.13. Suppose that we want ℎ 0 to be a sum-of-squares polynomial of degree 2. We first generate all monomials of degree at most 1 over our program variables 𝑥, 𝑦 and get 𝑎 = 1 𝑥 𝑦 𝑇 . Based on the theorems above, ℎ 0 must be of the form 𝑎 𝑇 • 𝐿 • 𝐿 𝑇 • 𝑎 for some lower-triangular matrix 𝐿. So, we must have

ℎ 0 = 1 𝑥 𝑦        𝑙 1 0 0 𝑙 2 𝑙 3 0 𝑙 4 𝑙 5 𝑙 6               𝑙 1 𝑙 2 𝑙 4 0 𝑙 3 𝑙 5 0 0 𝑙 6               1 𝑥 𝑦       
where all 𝑙 𝑖 's are new template variables and 𝑙 1 , 𝑙 3 , 𝑙 6 ≥ 0. Expanding this, we have

ℎ 0 = 𝑙 2 2 • 𝑥 2 + 𝑙 2 3 • 𝑥 2 + 2 • 𝑙 2 • 𝑙 4 • 𝑥 • 𝑦 + 2 • 𝑙 3 • 𝑙 5 • 𝑥 • 𝑦 + 2 • 𝑙 2 • 𝑙 1 • 𝑥 + 𝑙 2 4 • 𝑦 2 + 𝑙 2 5 • 𝑦 2 + 𝑙 2 6 • 𝑦 2 + 2 • 𝑙 4 • 𝑙 1 • 𝑦 + 𝑙 2 1 .
We use this template for ℎ 0 in all of our computations. We generate similar templates for other ℎ 𝑖 , too. This ensures that no matter what value is synthesized for the template variables 𝑙 𝑖 , every ℎ 𝑖 remains a sum of squares. The rest of the approach is exactly as in Farkas lemma (Example 3.6), i.e. we write the polynomial equality and then equate the coefficients of both sides, which now contain the new template variables 𝑙 𝑖 , and obtain a QP instance that is passed to an external solver.

(1) Φ is satisfiable and entails 𝜓 : In this case, we apply Corollary 3.14. The algorithm generates template sum-ofsquares polynomials ℎ 0 , . . . , ℎ 𝑟 of degree 𝑑 and adds QP constraints that ensure each ℎ 𝑖 is a sum of squares (See the end of Section 3.2). It also generates a non-negative fresh variable 𝑦 0 . If 𝜓 is strict, the algorithm adds the constraint 𝑦 0 > 0. Finally, the algorithm symbolically computes

𝑓 = 𝑦 0 + ℎ 0 + 𝑟 𝑖=1 ℎ 𝑖 • 𝑓 𝑖 ;
and equates the corresponding coefficients in the LHS and RHS to obtain QP constraints.

(2) Φ is unsatisfiable due to the first condition of Theorem 3.16: This case is handled similary to case (1) above, except that we have -1

= 𝑦 0 + ℎ 0 + 𝑟 𝑖=1 ℎ 𝑖 • 𝑓 𝑖 .
(3) Φ is unsatisfiable due to the second condition of Theorem 3.16: The algorithm introduces 𝑟 new program variables 𝑤 1 , . . . , 𝑤 𝑟 . It then generates a sum-of-squares template polynomial ℎ over V and arbitrary template polynomials ℎ 1 , . . . , ℎ 𝑘 over V ∪ {𝑤 1 , . . . , 𝑤 𝑟 }. All ℎ 𝑖 's are degree-𝑑 templates. Finally, for every index 𝑗 that corresponds to a strict inequality, i.e. ⊲⊳ 𝑗 ∈ {>}, the algorithm symbolically computes

𝑤 𝑑 ′ 𝑗 = 𝑟 𝑖=1 ℎ 𝑖 • (𝑓 𝑖 -𝑤 2 𝑖) -ℎ 0 ,
in which 𝑑 ′ is the largest multiple of 4 that does not exceed 𝑑. Note that this is an equality between two polynomials over V ∪ {𝑤 1 , . . . , 𝑤 𝑟 }. As before, the algorithm equates the coefficients of corresponding monomials on both sides of the equality and reduces it to QP.

After the algorithm runs Step 3 as above, all standard constraints generated in Step 2 will be reduced to QP and can hence be passed to an external solver in Step 4, as illustrated in Section 3.1.

Degree bounds. We are using the same bound 𝑑 for the degree of the polynomials and templates in all cases above. This is not a requirement. One can fix different degree bounds for each case.

Handling Boundedness. To achieve completeness, we need the boundedness assumption, i.e. that for every variable 𝑣 ∈ V, we always have -𝑀 ≤ 𝑣 ≤ 𝑀. To model this in the algorithm, we can add the boundedness inequalities to the left-hand side of every standard constraint. Additionally, we can get a concrete value for 𝑀 as part of the input, or treat 𝑀 symbolically, i.e. as a template variable, and let the QP solver synthesize a value for it.

Soundness and Completeness

We now prove that our algorithm is sound and semi-complete for TBSP. The soundness result needs no extra assumptions and can be obtained directly. The completeness on the other hand relies on several assumptions: (i) boundedness, (ii) having chosen a large enough degree bound 𝑑, and (iii) having invariants and post-conditions that, when written in DNF form, consist only of strongly positive polynomial inequalities of the form 𝑔 ≫ 0.

Theorem 3.20 (Soundness). Given a sketch polynomial program or equivalently a sketch polynomial transition system (SPTS) of the form (V, T, L, ℓ 0 , 𝜃 0 , ℓ 𝑓 , 𝜃 𝑓 , T , I) together with a cutset C as input, every concrete polynomial transition system (PTS) synthesized by the algorithm above is inductively valid.

Proof. The standard constraints of form (1) generated in Step 2 are equivalent to the initiation, consecution and finalization constraints in the definition of inductive validity. The reduction from standard constraints to QP in Step 3 is also sound since, in every case, it either writes the RHS of the standard constraint as a combination of the LHS polynomials, hence proving that it holds, or otherwise proves that the LHS is unsatisfiable and thus the standard constraint holds vacuously. □ Theorem 3.21 (Semi-completeness). Consider a solvable sketch polynomial transition system (SPTS) of the form (V, T, L, ℓ 0 , 𝜃 0 , ℓ 𝑓 , 𝜃 𝑓 , T , I), together with a cutset C, that is given as input. Moreover, assume that:

(1) The boundedness assumption holds, i.e. there is a constant 𝑀 ∈ (0, ∞) such that for every 𝑣 ∈ V, we always have -𝑀 ≤ 𝑣 ≤ 𝑀.

(2) Every invariant I(ℓ) and post-condition 𝜃 𝑓 , when written in disjunctive normal form, contains only strongly positive polynomial inequalities of the form 𝑔 ≫ 0.

Then, there exists a constant degree bound 𝑑 ∈ N, for which the algorithm above is guaranteed to successfully synthesize an inductively valid polynomial transition system (PTS).

Proof. Since our instance is solvable, there is a valuation 𝑣𝑎𝑙 T for the template variables that yields an inductively valid PTS. We prove that for large enough 𝑑, the valuation 𝑣𝑎𝑙 T is obtained by one of the solutions of the QP instance solved in Step 4 of the algorithm. The proof is pretty straightforward since we just have to check that all steps of our algorithm are complete.

Step 2 is complete since it simply rewrites the inductive validity constraints as an equivalent set of standard constraints. For Step 3, we prove completeness of each case separately.

Step 3.(i) is complete due to Farkas' Lemma (Corollary 3.7). In Step 3.(ii), if Φ is unsatisfiable, then the algorithm is complete based on Corollary 3.7.

Otherwise, it is complete based on Corollary 3.10. However, since we are using a degree bound 𝑑 for the semi-group, the completeness only holds if the chosen 𝑑 is large enough. Moreover, Corollary 3.10 requires strong positivity of 𝑔, which corresponds to invariants and post-conditions in our use-case, and boundedness of SAT(Φ), which is a direct consequence of our boundedness assumption. Finally, Step 3.(iii) is complete due to Corollary 3.14 and Theorem 3.16.

These depend on 𝑑, strong positivity and boundedness in the exact same manner as in the case of Step 3.(ii). □

Limitations of Completeness. The main limitation in our completeness result is that it holds only if the degree bound 𝑑 chosen for the template polynomials is large enough. This is why we call it a semi-completeness theorem. In theory, it is possible to come up with adversarial instances in which the required degree is exponentially high [START_REF] Hoang | On the complexity of Putinar-Vasilescu's Positivstellensatz[END_REF]. In practice, we rarely, if ever, need to use a higher degree than that of the polynomials that are already part of the input SPTS. The second limitation is boundedness. This limitation cannot be lifted since both Handelman's Theorem and Putinar's Positivstellensatz assume compactness, which is equivalent to being closed and bounded in R 𝑛 . Nevertheless, it does not have a significant practical effect and the algorithm remains sound even without this assumption. It is also noteworthy that the treatment of the linear/affine case using Farkas' Lemma requires neither boundedness nor any specific value of 𝑑 and is always complete. Finally, strong positivity in the invariants and post-conditions is needed because Putinar's Positivstellensatz and Theorem 3.16 can only provide a sound and complete characterization of strongly positive polynomials over a bounded semi-algebraic set 𝑋 ⊆ 𝑅 𝑛 if we do not assume that 𝑋 itself is closed. In terms of the synthesis problem, this means that our algorithm is not guaranteed to be complete for inequalities of the form 𝑓 > 0 in the invariants/post-conditions for which the value of 𝑓 in the runs of the program can get arbitrarily close to 0. However, this limitation is also not significant in practice because (i) our soundness does not depend on it, and (ii) 𝑓 + 𝜖 ≫ 0 holds for any constant 𝜖 > 0. So, a small change (by any value 𝜖 > 0) in the invariants/postconditions leads to an instance over which our completeness holds.

IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we report on a prototype implementation of our algorithm and experimentally compare our tool with state-of-the-art synthesis frameworks Sketch [START_REF] Solar-Lezama | Program synthesis by sketching[END_REF][START_REF] Solar-Lezama | The sketching approach to program synthesis[END_REF] and Rosette [START_REF] Bornholt | Finding code that explodes under symbolic evaluation[END_REF][START_REF] Torlak | A lightweight symbolic virtual machine for solver-aided host languages[END_REF], as well as a naive reduction to SMT without using our Stellensatz-based quantifier elimination.

Implementation. We implemented our approach in Python and used SymPy [START_REF] Meurer | SymPy: symbolic computing in Python[END_REF] for symbolic computations. We also used the Z3 SMT solver [START_REF] De | Z3: An efficient SMT solver[END_REF] to handle the final QP instances. In all cases, we used quadratic templates for the holes and set the technical parameter (degree upper-bound) 𝑑 to 2.

Experimental Setting. All experimental results were obtained on an Intel i9-10980HK Processor (8 cores, 16 threads, 5.3 GHz, 16 MB Cache) with 32 GB of RAM running Microsoft Windows 10.

Heuristics. We used the following simple heuristics to speed up the solution of the QP instance by the SMT solver:

• Simplifying Standard Constraints: We apply the simplification procedure illustrated in Example 3.2. Specifically, it is often the case that for some 𝑣 1 , 𝑣 2 ∈ V ∪ V ′ , the standard constraint contains 𝑣 1 = 𝑣 2 on its left-hand side. In these cases, we merge 𝑣 1 and 𝑣 2 into a single variable. Similarly, if the left-hand side of a standard constraint has 𝑣 1 = 𝑐 for a real constant 𝑐, then we simply replace every occurrence of 𝑣 1 with 𝑐. • Strengthening the Constraints: Our algorithm introduces a large number of template variables, not only in Step 1, but also in Step 3, where each of the Stellensätze lead to the creation of new coefficient variables. For most real-world cases, the vast majority of the template variables should be set to 0 in solutions to the QP. However, their inclusion makes the QP much larger and more complicated and can even lead to the failure of other heuristics used by the SMT solver. Thus, we use a process which is intuitively the opposite of abstraction-refinement. We start with a strengthened version of our QP instance and repeatedly make it weaker, but never weaker than the original instance, until the SMT solver finds a solution. Specifically, we first add additional constraints of the form 𝑡 = 0 for every template variable 𝑡. This strengthens the constraints but makes the problem easier for the SMT solver, since it can solve a lower-dimensional QP. Additionally, it would very likely lead to an unsatisfiable QP. However, Z3 can then provide us with an unsatisfiability core, i.e. a minimal subset of QP constraints that are unsatisfiable. If the core does not include any of our 𝑡 = 0 constraints, then we know that the original QP is also unsatisfiable. Otherwise, we simply remove all the 𝑡 = 0 constraints in the core and repeat the same process.

Benchmarks. As benchmarks, we took all the programs from Rodríguez-Carbonell [2018], as well as some extensions of them which were provided in [START_REF] Humenberger | Invariant Generation for Multi-Path Loops with Polynomial Assignments[END_REF]. These are programs that are mostly polynomial and also need polynomial invariants to be verified. We added holes both in the programs themselves and the invariants. Additionally, we introduced new hand-crafted polynomial benchmarks, as follows:

• positivity: We are synthesizing an expression such that adding it to the given polynomial makes it positive for all possible inputs. • squarecomp: We are synthesizing a number such that adding it to the given polynomial makes it always positive.

• sliding: Consider the following Physics problem: An object is placed on an inclined plane of given length 𝑙. The inclination is given in terms of the sine and cosine of its angle. The coefficients of static and kinetic friction are also known. We want to find whether the body will slide and, if so, find the time it will take for it to reach the bottom of the plane.

A physics student can easily write a program template for solving this problem using the principles and equations from classical mechanics. For example, the student can use an if block to decide if the body will move or not.

Then, inside the block, they can use an equation of motion that holds for the various parameters involved in the problem. To find the time it takes to slide down, they can leave a program hole in the template.

• archimedes: A cuboid with dimensions (𝑙, 𝑏, ℎ) of density 𝜌 is placed in a fluid of density 𝜌 ′ . We want to determine whether the body will float, and if it floats, find the percentage of the volume of the body that will be outside the fluid. Experimental Results and Synthesized Programs. Our experimental results are summarized in Table 1 and Figure 5.

See Appendix B for the synthesized programs. Moreover, Appendices C-D contain programs synthesized by Sketch and Rosette. When it does not fail, the method of directly encoding the constraints as SMT and passing them to Z3 produces the same results as ours.

Discussion. The results in Table 1 show that our approach is not only semi-complete in theory, but also works well in practice and can handle benchmarks that were beyond the reach of previous state-of-the-art synthesis tools. The following points are noteworthy:

Sketch. Given that our setting considers real-valued variables and Sketch works with bounded integers or floats, it is neither sound nor complete for our problem. Sketch was able to handle only one of our programs. In every other case, it either reported failure or unsatisfiability or synthesized clearly incorrect results, i.e. all zeros. Sketch has several options for the encoding of floating-point values, i.e. AS_BIT, AS_FFIELD and AS_FIXPOINT. We tried all three options and AS_FIXPOINT always outperformed the rest. The other encodings often led to failure and did not produce a result.

Thus, the results we report for Sketch are using AS_FIXPOINT.

Rosette. Rosette has support for real variables and could handle some of our benchmarks, but not all. It timed out on almost all other benchmarks. In one case, it reported an "unknown internal error" and we could not avoid this error even by rewriting the benchmark in different forms. Notably, Rosette is highly efficient on instances that it can handle and it often beats every other tool's runtime. Thus, our main contribution is that we can handle a wider set of programs.

Direct SMT. With a direct encoding, i.e. not using our Stellensätze-based approach, Z3 is able to handle only simple linear or loop-free benchmarks. It times out on all benchmarks that include non-linear polynomial terms and a loop, even when given 12 hours per benchmark. Note that direct SMT is the only previous approach that provides completeness guarantees. In contrast, we can handle a much wider family of programs without sacrificing completeness. [START_REF] Humenberger | Invariant Generation for Multi-Path Loops with Polynomial Assignments[END_REF], and the last group are our own examples. Times are reported in seconds. We set a time limit of 12 hours per benchmark. F denotes failure, NS means the benchmark was not supported by the tool, WA stands for wrong answer, and TL/ML signify that the tool exceeded the time/memory limits. In each case, the fastest approach is shown in bold.

Simple Benchmarks. For a few benchmarks in Table 1, the baseline method of direct encoding to SMT outperforms our approach. These benchmarks are extremely simple or loop-free programs in which almost all template variables take a value of either 0 or 1 in the solution. Thus, these instances are quite similar to SAT and the SMT solver is able to find the solution efficiently using heuristics. Moreover, all these benchmarks are linear (degree 1) programs.

Unsupported Benchmarks. Our approach successfully handles all benchmarks that are syntactically supported, i.e. polynomial programs with real variables. However, some of the benchmarks are not polynomial, rely on higher-order invariants, or are inherently designed for integer variables. For example, dijkstra needs an invariant of the form (∃𝑘 𝑞 = 4 𝑘). We can neither support quantifiers in the invariants, nor a non-polynomial term such as 4 𝑘 . Similarly, lcm2 requires the use of the greatest common divisor function in some of the invariants. In some other cases, such as lcm1, the gcd function in the invariants was unnecessary and we could successfully solve the synthesis problem by removing it. Notably, our approach succeeds in every benchmark that is a polynomial program and supported by our syntax.

Role of Heuristics. As mentioned above, we have implemented heuristics that help speed up the solution of our QP instances by Z3. Our heuristics are only applicable to Z3. It is thus natural to wonder (i) whether these heuristics have a tangible effect on the runtimes and, (ii) whether using different SMT solvers can potentially lead to even faster solution procedures. Thus, we tried running Z3 without these heuristics and also passed the same QP instances to other SMT solvers, namely cvc [START_REF] Barbosa | cvc5: A Versatile and Industrial-Strength SMT Solver[END_REF] and MathSAT [START_REF] Cimatti | The MathSAT5 SMT Solver[END_REF]]. The results are shown in Table 2. Without the heuristics, we observe that MathSAT is the most successful SMT solver for our QP instances. However, it still times out on some instances, i.e. cohendiv, wensley and sliding. Z3 can handle roughly half of the instances in the allocated time and cvc has the worst performance among the solvers, failing regularly. However, after adding our heuristics, Z3's performance is improved dramatically. Notably, our approach is faster than MathSAT both on larger programs and those with nested loops. As is common in program verification, no particular SMT solver beats all the others over all benchmarks. Hence, in practice, it is advisable to run all SMT solvers in parallel.

Conclusion.

In summary, by relying on theorems from polyhedral and real algebraic geometry, we provided the first approach for template-based synthesis of polynomial programs that is both applicable to non-trivial programs (non-linear programs with loops) and has completeness guarantees. Our approach reduces the synthesis problem to quadratic programming, for which SMT solvers are highly optimized. As such, our technique is relatively efficient in practice and often takes only a few seconds. In contrast, the only previous complete method cannot handle any of the benchmarks in 12 hours unless they are either linear or loop-free.

Fig. 1 .

 1 Fig. 1. An example polynomial program with holes.

Fig. 2 .

 2 Fig. 2. The synthesized (completed) version of the partial program in Figure 1.

Fig. 3 .

 3 Fig. 3. The Polynomial Transition System (PTS) Corresponding to the Program in Figure 2.

Figure 1 .

 1 Figure1. To obtain this SPTS, we introduced 21 new template variables T = {𝑡 0 , . . . , 𝑡 20 } and replaced each hole with a template polynomial that corresponds to the programmer's desire for that hole. Note that the invariant of location 6 and the transition relations for 𝜏 3 , 𝜏 4 and 𝜏 6 are now symbolic, i.e. they are polynomials over the program variables {𝑖, 𝑠, 𝑛}

) cannot hold. Now define g𝑖 (𝑥 1 , . . . , 𝑥 𝑛 , 𝑤 1 , . . . , 𝑤 𝑘) := 𝑔 𝑖 (𝑥 1 , . . . , 𝑥 𝑛) -𝑤 2 𝑖 . Using this definition, we can rewrite (6) as 𝑤 4.𝛼 𝑗 = 𝑚 𝑖=1 ℎ 𝑖 • g𝑖 -ℎ 0 . Moreover, 𝑔 2•𝛼 𝑗 = (g𝑗 + 𝑤 2 𝑗) 2•𝛼 . Expanding the right hand side using the binomial theorem, we get 𝑔 2•𝛼 𝑗 = 𝑤 4•𝛼 𝑗 + ℎ ′ 𝑗 • g𝑗 for some ℎ ′

𝑗 ∈ R[𝑥 1 , . . . , 𝑥 𝑛 , 𝑤 1 , . . . , 𝑤 𝑘]. Now, substituting 𝑤 4•𝛼 𝑗 (6), we get

 Comparison of the Runtimes Obtained by Our Approach, Sketch, Rosette and Direct SMT.

	TL	
	400	
	100	
	10	Ours Sketch Rosette Direct Z3
	1	
	0.1	
		positivity squarecomp polyapprox archimedes sliding readerswriters mesi berkeley petter moesi petter firefly illinois freire1 mannadivcube mannadivcarre mannadiv fermat2 sqrt lcm1 freire2 fermat1 z3sqrt cohendiv euclidex2 wensley cohencu dijsktra divbin euclidex1 euclidex3 hard lcm2 prod4br prodbin
		Fig. 5.

Table 1 .

 1 Our Experimental Results. The first group of benchmarks are from Rodríguez-Carbonell [2018], the second group are from

	Benchmark	Sketch	Rosette	Direct Z3	Our Approach
		Result	Time	Result	Time	Result	Time	Result	Time
	berkeley	NS	-	✓	0.11	✓	0.97	✓	1.74
	cohencu	F	778.04	TL	>43200	TL	>43200	✓	56.06
	cohendiv	WA	6.297	✓	0.11	✓	0.29	✓	26.11
	dijsktra	NS	-	UNSAT	0.16	NS	-	NS	-
	divbin	NS	-	UNSAT	0.72	NS	-	NS	-
	euclidex1	NS	-	ML	-	TL	>43200	NS	-
	euclidex2	TL	>43200	✓	0.34	TL	>43200	✓	29.68
	euclidex3	NS	-	ML	-	TL	>43200	NS	-
	fermat1	TL	>43200	✓	0.17	✓	117.14	✓	17.95
	fermat2	TL	>43200	TL	>43200	✓	0.31	✓	9.3
	firefly	NS	-	✓	0.13	✓	4.74	✓	2.66
	freire1	F	969.17	✓	0.15	TL	>43200	✓	3.61
	freire2	WA	0.46	TL	>43200	TL	>43200	✓	15.81
	hard	NS	-	UNSAT	0.84	NS	-	NS	-
	illinois	NS	-	✓	0.11	✓	0.81	✓	2.79
	lcm1	TL	>43200	TL	>43200	✓	87.29	✓	10.99
	lcm2	NS	-	ML	-	TL	>43200	NS	-
	mannadiv	F	0.408	✓	0.11	✓	0.18	✓	5.25
	mesi	NS	-	✓	0.18	✓	1.58	✓	1.59
	moesi	NS	-	✓	0.17	TL	>43200	✓	2.32
	petter	F	2.72	TL	>43200	✓	117.33	✓	1.84
	prod4br	✓	10.89	✓	0.48	✓	0.23	NS	-
	prodbin	✓	5.76	✓	0.25	✓	0.12	NS	-
	readerswriters	NS	-	✓	0.21	✓	0.34	✓	1.28
	sqrt	WA	0.36	✓	0.18	TL	>43200	✓	10.51
	wensley	WA	0.44	TL	>43200	TL	>43200	✓	52.75
	z3sqrt	WA	0.39	TL	>43200	TL	>43200	✓	20.53
	mannadivcarre	TL	>43200	✓	0.25	✓	316.5	✓	4.07
	mannadivcube	WA	0.33	TL	>43200	✓	92.9	✓	4.03
	petter	F	0.493	TL	>43200	✓	124.51	✓	2.51
	archimedes	UNSAT	0.33	✓	0.37	✓	0.25	✓	0.59
	polyapprox	WA	0.45	✓	0.12	✓	0.14	✓	0.24
	positivity	✓	0.3	TL	>43200	✓	0.09	✓	0.19
	sliding	F	0.47	F	< 0.01	✓	0.13	✓	0.62
	squarecomp	WA	0.29	✓	0.1	✓	0.09	✓	0.19

Table 2 .

 2 Comparison of SMT Solvers over the QP Instances arising from our Benchmarks. "Z3+H" denotes the performance of Z3 when also applying our heuristics.

	Benchmark		cvc		Z3	MathSAT	Z3+H
		Result	Time	Result	Time	Result	Time	Result	Time
	berkeley	✓	4.53	✓	26.97	✓	8.24	✓	0.26
	cohencu	TL	>43200	TL	>43200	✓	7.29	✓	20.92
	cohendiv	F	28.09	TL	>43200	TL	>43200	✓	5.1
	euclidex2	✓	10.09	TL	>43200	✓	4.09	✓	2.71
	fermat1	F	4.47	✓	1.92	✓	1.04	✓	3.24
	fermat2	F	2.1	✓	1.17	✓	0.45	✓	1.31
	firefly	F	34.61	TL	>43200	✓	25.31	✓	0.57
	freire1	TL	>43200	TL	>43200	✓	0.44	✓	1.31
	freire2	✓	1.91	TL	>43200	✓	7.29	✓	3.2
	illinois	F	60.91	TL	>43200	✓	46.57	✓	0.62
	lcm1	✓	3.38	TL	>43200	✓	2.36	✓	2.04
	mannadiv	F	7.49	TL	>43200	✓	0.35	✓	0.67
	mesi	✓	4.82	✓	144.86	✓	2.91	✓	0.27
	moesi	✓	27.44	TL	>43200	✓	31.15	✓	0.44
	petter	✓	0.17	✓	0.42	✓	0.05	✓	0.38
	readerswriters	F	7.71	TL	>43200	✓	6.76	✓	0.39
	sqrt	TL	>43200	TL	>43200	✓	3.85	✓	2.31
	wensley	TL	>43200	TL	>43200	TL	>43200	✓	9.27
	z3sqrt	✓	3.19	✓	2.73	✓	1.14	✓	5.54
	mannadivcarre	F	13.27	✓	6.66	✓	0.24	✓	0.55
	mannadivcube	✓	0.18	✓	0.38	✓	0.19	✓	0.83
	petter	✓	0.13	✓	0.23	✓	0.04	✓	0.39
	archimedes	F	0.15	✓	0.17	✓	0.08	✓	0.22
	polyapprox	F	0.18	✓	0.05	✓	0.03	✓	0.05
	positivity	✓	0.02	✓	0.03	✓	0.03	✓	0.03
	sliding	F	1.72	✓	0.32	TL	>43200	✓	0.22
	squarecomp	TL	>43200	✓	0.04	✓	0.04	✓	0.04

Such invariants can be generated by our approach or[Chatterjee et al. 2020b; Sankaranarayanan et al. 2004b].

The research was partially supported by the Hong Kong RGC ECS Project 26208122, the HKUST-Kaisa Grant HKJRI3A-055, the HKUST Startup Grant R9272, FWO Grants G0F5921N (Odysseus) and G023721N, the UiT Aurora project MASCOT, KU Leuven Grant iBOF/23/064, UGent Grant BOF21/DOC/182 and the Sofina-Boël Fellowship Program. Authors are ordered alphabetically.

Details of Step 3 of the Algorithm

We now have all the necessary ingredients to provide a variant of Step 3 of the algorithm that preserves completeness.

We assume a positive integer 𝑑 is given as part of the input. This 𝑑 serves as an upper-bound on the degrees of polynomials/templates that we use in Handelman's theorem (the semi-group) and the Stellensätze. Our approach is complete as long as a large enough 𝑑 is chosen.

Step 3: Eliminating Program Variables and Reduction to QP. Recall that at the end of Step 2, we have a finite set of standard constraints of form (1). In this step, the algorithm handles each standard constraint separately and reduces it to quadratic programming over template variables and newly-introduced variables, hence effectively eliminating the program variables and the quantification over them. Let 𝑓 1 ⊲⊳ 1 0 ∧ 𝑓 2 ⊲⊳ 2 0 ∧ . . . ∧ 𝑓 𝑟 ⊲⊳ 𝑟 0 ⇒ 𝑓 ⊲⊳ 0 be one of the standard constraints. The algorithm considers three cases: (i) if all the inequalities on both sides of the constraint are affine, then it applies Farkas' Lemma; (ii) if the LHS inequalities are affine but the RHS is a higher-degree polynomial, then the algorithm applies Handelman's theorem; and (iii) if the LHS contains higher-degree polynomials, the algorithm applies the Stellensätze and Theorem 3.16. Below, we define Φ : {𝑓 1 ⊲⊳ 1 0, 𝑓 2 ⊲⊳ 2 0, . . . , 𝑓 𝑟 ⊲⊳ 𝑟 0} and 𝜓 : 𝑓 ⊲⊳ 0.

Step 3.(i). Applying Farkas' Lemma. Assuming all the constraints in Φ and 𝜓 are affine, we can apply Corollary 3.7.

Based on this corollary, we have to consider three cases disjunctively:

(1) Φ is satisfiable and entails 𝜓 : The algorithm creates new template variables 𝑦 0 , . . . , 𝑦 𝑟 with the constraint 𝑦 𝑖 ≥ 0 for every 𝑖. It then symbolically computes 𝑓 = 𝑦 0 + 𝑟 𝑖=1 𝑦 𝑖 • 𝑓 𝑖 . The latter is a polynomial equality over V. So, the algorithm equates the coefficients of corresponding monomials on both sides, hence reducing this case to QP.

Additionally, if 𝜓 is a strict inequality, the algorithm adds the extra constraint ⊲⊳ 𝑖 ∈ {> } 𝑦 𝑖 > 0.

(2) Φ is unsatisfiable and -1 ≥ 0 can be obtained: This is similar to the previous case, except that -1 should be written as 𝑦 0 + 𝑟 𝑖=1 𝑦 𝑖 • 𝑓 𝑖 .

(3) Φ is unsatisfiable and 0 > 0 can be obtained: This is also similar to the last two cases. We have 0 = 𝑦 0 + 𝑟 𝑖=1 𝑦 𝑖 • 𝑓 𝑖 and ⊲⊳ 𝑖 ∈ {> } 𝑦 𝑖 > 0.

Note that the template variables 𝑦 are freshly generated in each case above. Also, we have to consider cases (2) and (3) because Φ is unsatisfiable in these cases and hence the constraint Φ ⇒ 𝜓 always holds vacuously.

Step 3.(ii). Applying Handelman's Theorem. Assuming all constraints in Φ are linear but 𝜓 is a higher-degree polynomial inequality, the algorithm applies Corollaries 3.7 and 3.10. Again, we have to consider the same three cases as in Step 3.(i):

(1) Φ is satisfiable and entails 𝜓 : We apply Corollary 3.10. The algorithm first symbolically computes SG 𝑑 (Φ) = {ℎ 1 , ℎ 2 , . . . , ℎ 𝑢 }. It then generates new template variables 𝑦 0 , 𝑦 1 , . . . , 𝑦 𝑢 and constrains them by setting 𝑦 0 , 𝑦 1 , 𝑦 2 , . . . , 𝑦 𝑢 ≥ 0. If 𝜓 is a strict inequality, it further adds the constraint 𝑦 0 > 0. It then symbolically computes the equality

As usual, this is an equality whose both sides are polynomials over V. So, the algorithm equates the coefficients of corresponding monomials on the LHS and RHS, which reduces this case to QP.

(2) Note that Φ consists of linear inequalities, so we can use Farkas' Lemma to check if Φ is unsatisfiable. As such, this step is the same as case (2) of Step 3.(i).

(3) This is the same as case (3) of Step 3.(i).

Step 3.(iii). Applying Stellensätze. If Φ includes polynomial inequalities of degree 2 or larger, then we have to apply Corollary 3.14 and Theorem 3.16. The algorithm considers three cases and combines them disjunctively:

A DECIDABILITY AND NP-HARDNESS

In this section, we study the decision variant of TBSP, in which we are given an SPTS of the form Γ = (V, T, L, ℓ 0 , 𝜃 0 , ℓ 𝑓 , 𝜃 𝑓 , T , I)

and should decide whether there exists a valuation 𝑣𝑎𝑙 T : T → R for the template variables under which Γ turns into an inductively valid PTS.

Reduction to the First-order Theory of the Reals. Suppose V = {𝑣 1 , . . . , 𝑣 𝑚 } and T = {𝑡 1 , . . . , 𝑡 𝑚 ′ }. Recall that Step 2 of our algorithm is sound and complete and reduces all the constraints to the form shown in Equation (2). However, in the synthesis algorithm, we are looking for a valuation to the template variables T that ensures (2). Hence, in the decision variant, we are interested in deciding the following first-order formula over the reals:

It is well-known that the first-order theory of the reals is decidable and hence so is our problem. Specifically, one can apply Tarski's quantifier elimination method [START_REF] Tarski | A Decision Method for Elementary Algebra and Geometry[END_REF]] to (8). Note that while this proves decidability in theory, decision procedures and quantifier elimination on the first-order theory of the reals are notoriously unscalable and since (8) contains a quantifier alternation, it is practically beyond the reach of all modern solvers, even for toy programs.

NP-hardness. We prove our problem is strongly NP-hard, even for linear/affine transition systems, by providing a reduction from 3SAT. Consider a 3SAT instance 𝑚 𝑖=1 3 𝑗=1 𝑙 𝑖,𝑗 over the boolean variables {𝑥 1 , . . . , 𝑥 𝑛 }, i.e. each literal 𝑙 𝑖,𝑗 is either an 𝑥 𝑘 or a ¬𝑥 𝑘 . We define the expression 𝑒 (𝑙 𝑖,𝑗) as 𝑥 𝑘 if 𝑙 𝑖,𝑗 = 𝑥 𝑘 and 1 -𝑥 𝑘 if 𝑙 𝑖,𝑗 = ¬𝑥 𝑘 . To reduce this 3SAT instance to our problem, we let V = {𝑥 1 , . . . , 𝑥 𝑛 } and T = {𝑡 1 , . . . , 𝑡 𝑛 }. We then consider the sketch transition system corresponding to the following program:

Note that the template variables are appearing in the pre-condition. It is easy to see that the synthesis instance has a solution if and only if the 3SAT instance is satisfiable.

Quadratic Programming. In this work, we reduce our problem to an instance of quadratic programming (QP). It is well-known, and not surprising in view of the NP-hardness result above, that QP is also an NP-hard problem.

However, it is theoretically solvable in sub-exponential time [START_REF] Grigoriev | Solving Systems of Polynomial Inequalities in Subexponential Time[END_REF]. In practice, SMT solvers such as Z3 [START_REF] De | Z3: An efficient SMT solver[END_REF] and numerical solvers such as Gurobi [Gurobi Optimization 2022] are extremely well-optimized for solving QP instances and can handle large real-world instances with ease. This is also confirmed by our experimental results in Section 4.

Amir K. Goharshady, S. Hitarth, Fatemeh Mohammadi, and Harshit J. Motwani B PROGRAMS SYNTHESIZED BY OUR APPROACH @prog: berkeley @real: 𝑢𝑛𝑜𝑤𝑛𝑒𝑑, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒, 𝑛𝑜𝑛𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒, 𝑖𝑛𝑣𝑎𝑙𝑖𝑑, 𝑡𝑜𝑡𝑎𝑙; @pre(𝑖𝑛𝑣𝑎𝑙𝑖𝑑 ≥ 1);

@prog: cohencu @real: 𝑁 , 𝑛, 𝑥, 𝑦, 𝑧, 𝑠; @pre: 1 ≥ 0;

@prog:cohendiv @real: 𝑥, 𝑦, 𝑞, 𝑟, 𝑑𝑑; @pre: 𝑥 ≥ 0 ∧ 𝑦 ≥ 1;

@prog: euclidex2 @real 𝑎, 𝑏, 𝑝, 𝑞, 𝑟, 𝑠, 𝑥, 𝑦; @pre: 𝑥 ≥ 0 ∧ 𝑦 ≥ 0;

@prog: fermat1 @real 𝑁 , 𝑅, 𝑢, 𝑣, 𝑟 ; @pre: 𝑁 ≥ 1 ∧ (𝑅 -1) 2 ≤ 𝑁 -1 ∧ 𝑁 ≤ 𝑅 2 ;

Synthesis of Polynomial Programs @prog: firefly @real: 𝑑𝑖𝑟𝑡 𝑦, 𝑠ℎ𝑎𝑟𝑒𝑑, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒, 𝑖𝑛𝑣𝑎𝑙𝑖𝑑, 𝑡𝑜𝑡𝑎𝑙; @pre(𝑖𝑛𝑣𝑎𝑙𝑖𝑑 ≥ 1);

@prog: freire1 @real: 𝑎, 𝑥, 𝑟 ; @pre: 𝑎 ≥ 1;

Synthesis of Polynomial Programs @prog: illinois @real: 𝑑𝑖𝑟𝑡 𝑦, 𝑠ℎ𝑎𝑟𝑒𝑑, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒, 𝑖𝑛𝑣𝑎𝑙𝑖𝑑, 𝑡𝑜𝑡𝑎𝑙; @pre(𝑖𝑛𝑣𝑎𝑙𝑖𝑑 >= 1);

@prog: mesi @real: 𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑, 𝑠ℎ𝑎𝑟𝑒𝑑, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒, 𝑖𝑛𝑣𝑎𝑙𝑖𝑑, 𝑡𝑜𝑡𝑎𝑙; @pre(𝑖𝑛𝑣𝑎𝑙𝑖𝑑 ≥ 1);

Synthesis of Polynomial Programs

@prog: moesi @real: 𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑, 𝑠ℎ𝑎𝑟𝑒𝑑, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒, 𝑖𝑛𝑣𝑎𝑙𝑖𝑑, 𝑜𝑤𝑛𝑒𝑑, 𝑡𝑜𝑡𝑎𝑙; @pre(𝑖𝑛𝑣𝑎𝑙𝑖𝑑 ≥ 1 ∧ 𝑜𝑤𝑛𝑒𝑑 ≥ 1);

C PROGRAMS SYNTHESIZED BY SKETCH @prog: freire2 @real: 𝑎, 𝑥, 𝑠, 𝑟 ; @pre: 𝑎 ≥ 0; 𝑥 = 𝑎; 𝑟 = 1; s = 3.25;

@prog: z3sqrt @real: 𝑎, 𝑒𝑟𝑟, 𝑟, 𝑞, 𝑝;

@prog: PositivityEnforcement @real: 𝑥, 𝑛; @pre: 𝑥 ≤ 100;

@prog: SquareCompletion @real: 𝑥, 𝑛; @pre: 𝑥 ≤ 100; 𝑥 = 𝑛 2 -5 • 𝑛; 𝑛 = 6 ; 𝑥 = 𝑥 + 𝑛; @post: 𝑥 ≥ 0; @prog: PolynomialApproximation @real 𝑡, 𝑥, 𝑒, 𝑔 1 , 𝑔 2 , 𝑛; @macro 𝑓 1 = 𝑥 3 ; @macro 𝑓 2 = 𝑥 3 + 𝑥; @macro 𝑓 3 = 0 ; @pre: 1 ≥ 0;

𝑔 2 = 𝑓 3 -𝑓 2 ; 𝑛 = 𝑔 2 ; } @post: 𝑛 ≤ 𝑒; @prog: SlidingBody @real: 𝑚𝑜𝑣𝑒, 𝑒, 𝑡, 𝑔, 𝑛𝑢𝑠, 𝑛𝑢𝑘, 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑙; @pre: 𝑡 ≥ 0 ∧ 𝑛𝑢𝑠 ≥ 𝑛𝑢𝑘; 𝑔 = 9.8; 𝑛𝑢𝑘 = 0.2; 𝑛𝑢𝑠 = 0.3; 𝑠𝑖𝑛 = 0.5; 𝑐𝑜𝑠 = 0.86;

@prog: ArchimedesPrinciple @real: 𝑓 𝑙, 𝑚, 𝑙, 𝑏, ℎ, 𝜌, 𝑒, 𝑥; @pre: 𝑥 ≥ 0 ∧ 𝑚 ≥ 0;

@prog: cohendiv @real: 𝑥, 𝑦, 𝑞, 𝑟, 𝑑𝑑; @pre: 𝑥 ≥ 0 ∧ 𝑦 ≥ 1;

@prog: MannadivCarre @real 𝑛, 𝑦, 𝑥, 𝑡 ; @pre: 𝑛 ≥ 0;

@prog: MannadivCube @real 𝑛, 𝑦, 𝑥, 𝑡 ; @pre: 𝑛 ≥ 0;

Synthesis of Polynomial Programs @prog: wensley @real: 𝑃, 𝑄, 𝐸, 𝑎, 𝑏, 𝑑, 𝑦; @pre: 𝑄 ≥ 𝑃 ∧ 𝑃 ≥ 0 ∧ 𝐸 ≥ 0;

@prog: euclidex2 @real 𝑎, 𝑏, 𝑝, 𝑞, 𝑟, 𝑠, 𝑥, 𝑦; @pre: 𝑥 ≥ 0 ∧ 𝑦 ≥ 0;

@prog: lcm1 @real 𝑎, 𝑏, 𝑥, 𝑦, 𝑢, 𝑣; @pre: 𝑎 ≥ 0 ∧ 𝑏 ≥ 0;

Amir K. Goharshady, S. Hitarth, Fatemeh Mohammadi, and Harshit J. Motwani @prog: fermat2 @real 𝑁 , 𝑅, 𝑢, 𝑣, 𝑟 ; @pre:

@prog: Petter3 @real 𝑛, 𝑘, 𝑁 , 𝑠; @pre: 𝑁 ≥ 0;

@prog: petter @real 𝑛, 𝑘, 𝑁 , 𝑠; @pre: 𝑁 ≥ 0;

D PROGRAMS SYNTHESIZED BY ROSETTE @prog: freire2 @real: 𝑎, 𝑥, 𝑠, 𝑟 ; @pre: 𝑎 ≥ 0; 𝑥 = 𝑎; 𝑟 = 1; s = 3.25;

@prog: z3sqrt @real: 𝑎, 𝑒𝑟𝑟, 𝑟, 𝑞, 𝑝;

@prog: PositivityEnforcement @real: 𝑥, 𝑛; @pre: 𝑥 ≤ 100; 𝑥 = 𝑛 2 -5 • 𝑛; 𝑛 = Timed out ; 𝑥 = 𝑥 + 𝑛; @post: 𝑥 ≥ 0; @prog: SquareCompletion @real: 𝑥, 𝑛; @pre: 𝑥 ≤ 100; 𝑥 = 𝑛 2 -5 • 𝑛; 𝑛 = 6.25 ; 𝑥 = 𝑥 + 𝑛; @post: 𝑥 ≥ 0; @prog: PolynomialApproximation @real 𝑡, 𝑥, 𝑒, 𝑔 1 , 𝑔 2 , 𝑛; @macro 𝑓 1 = 𝑥 3 ; @macro 𝑓 2 = 𝑥 3 + 𝑥; @macro 𝑓 3 = 𝑥 3 -0.5 • 𝑥 2 -0.5 • 𝑥 + 0.5 ; @pre: 1 ≥ 0;

𝑔 2 = 𝑓 3 -𝑓 2 ; 𝑛 = 𝑔 2 ; } @post: 𝑛 ≤ 𝑒; @prog: SlidingBody @real: 𝑚𝑜𝑣𝑒, 𝑒, 𝑡, 𝑔, 𝑛𝑢𝑠, 𝑛𝑢𝑘, 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑙; @pre: 𝑡 ≥ 0 ∧ 𝑛𝑢𝑠 ≥ 𝑛𝑢𝑘; 𝑔 = 9.8; 𝑛𝑢𝑘 = 0.2;

@prog: ArchimedesPrinciple @real: 𝑓 𝑙, 𝑚, 𝑙, 𝑏, ℎ, 𝜌, 𝑒, 𝑥; @pre: 𝑥 ≥ 0 ∧ 𝑚 ≥ 0;

@prog: cohendiv @real: 𝑥, 𝑦, 𝑞, 𝑟, 𝑑𝑑; @pre: 𝑥 ≥ 0 ∧ 𝑦 ≥ 1;

@prog: MannadivCarre @real 𝑛, 𝑦, 𝑥, 𝑡 ; @pre: 𝑛 ≥ 0;

@prog: MannadivCube @real 𝑛, 𝑦, 𝑥, 𝑡 ; @pre: 𝑛 ≥ 0;

Amir K. Goharshady, S. Hitarth, Fatemeh Mohammadi, and Harshit J. Motwani @prog: wensley @real: 𝑃, 𝑄, 𝐸, 𝑎, 𝑏, 𝑑, 𝑦; @pre: 𝑄 ≥ 𝑃 ∧ 𝑃 ≥ 0 ∧ 𝐸 ≥ 0;

@prog: euclidex2 @real 𝑎, 𝑏, 𝑝, 𝑞, 𝑟, 𝑠, 𝑥, 𝑦; @pre: 𝑥 ≥ 0 ∧ 𝑦 ≥ 0;

@prog: lcm1 @real 𝑎, 𝑏, 𝑥, 𝑦, 𝑢, 𝑣; @pre: 𝑎 ≥ 0 ∧ 𝑏 ≥ 0;

@prog: fermat1 @real 𝑁 , 𝑅, 𝑢, 𝑣, 𝑟 ; @pre: 𝑁 ≥ 1 ∧ (𝑅 -1) 2 ≤ 𝑁 -1 ∧ 𝑁 ≤ 𝑅 2 ;

Synthesis of Polynomial Programs @prog: fermat2 @real 𝑁 , 𝑅, 𝑢, 𝑣, 𝑟 ; @pre: 𝑁 ≥ 1 ∧ (𝑅 -1) 2 ≤ 𝑁 -1 ∧ 𝑁 ≤ 𝑅 2 ;

@prog: Petter3 @real 𝑛, 𝑘, 𝑁 , 𝑠; @pre: 𝑁 ≥ 0;

@prog: petter @real 𝑛, 𝑘, 𝑁 , 𝑠; @pre: 𝑁 ≥ 0; 𝑠 = 0; 𝑛 = 0; @invariant: 𝑠 = 𝑛 6 ∧ 𝑛 ≤ 𝑁 + 1 while(𝑛 ≤ 𝑁) { 𝑠 = 𝑠 + Failed ; 𝑛 = 𝑛 + 1; } @post: 1 ≥ 0; Amir K. Goharshady, S. Hitarth, Fatemeh Mohammadi, and Harshit J. Motwani @prog: readerswriters @real 𝑐 1 , 𝑐 2 , 𝑘 0 , 𝑟, 𝑤, 𝑘; @pre:

@prog: illinois @real: 𝑑𝑖𝑟𝑡 𝑦, 𝑠ℎ𝑎𝑟𝑒𝑑, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒, 𝑖𝑛𝑣𝑎𝑙𝑖𝑑, 𝑡𝑜𝑡𝑎𝑙; @pre(𝑖𝑛𝑣𝑎𝑙𝑖𝑑 >= 1);

Synthesis of Polynomial Programs

@prog: mesi @real: 𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑, 𝑠ℎ𝑎𝑟𝑒𝑑, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒, 𝑖𝑛𝑣𝑎𝑙𝑖𝑑, 𝑡𝑜𝑡𝑎𝑙; @pre(𝑖𝑛𝑣𝑎𝑙𝑖𝑑 ≥ 1);

@prog: moesi @real: 𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑, 𝑠ℎ𝑎𝑟𝑒𝑑, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒, 𝑖𝑛𝑣𝑎𝑙𝑖𝑑, 𝑜𝑤𝑛𝑒𝑑, 𝑡𝑜𝑡𝑎𝑙; @pre(𝑖𝑛𝑣𝑎𝑙𝑖𝑑 ≥ 1 ∧ 𝑜𝑤𝑛𝑒𝑑 ≥ 1);