
HAL Id: hal-04012480
https://hal.science/hal-04012480

Preprint submitted on 2 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MULTI-STEP VARIANT OF THE PARAREAL
ALGORITHM: CONVERGENCE ANALYSIS AND

NUMERICS
Katia Ait-Ameur, Yvon Maday

To cite this version:
Katia Ait-Ameur, Yvon Maday. MULTI-STEP VARIANT OF THE PARAREAL ALGORITHM:
CONVERGENCE ANALYSIS AND NUMERICS. 2023. �hal-04012480�

https://hal.science/hal-04012480
https://hal.archives-ouvertes.fr

Mathematical Modelling and Numerical Analysis Will be set by the publisher

Modélisation Mathématique et Analyse Numérique

MULTI-STEP VARIANT OF THE PARAREAL ALGORITHM: CONVERGENCE

ANALYSIS AND NUMERICS ∗

Katia Ait-Ameur1 and Yvon Maday2

Abstract. In this paper, we consider the problem of accelerating the numerical simulation of time
dependent problems involving a multi-step time scheme by the parareal algorithm. The parareal
method is based on combining predictions made by a coarse and cheap propagator, with corrections
computed with two propagators: the previous coarse and a precise and expensive one used in a parallel
way over the time windows. A multi-step time scheme can potentially bring higher approximation
orders than plain one-step methods but the initialisation of each time window needs to be appropriately
chosen. Our main contribution is the design and analysis of an algorithm adapted to this type of
discretisation without being too much intrusive in the coarse or fine propagators. At convergence,
the parareal algorithm provides a solution that coincides with the solution of the fine solver. In
the classical version of parareal, the local initial condition of each time window is corrected at every
iteration. When the fine and/or coarse propagators is a multi-step time scheme, we need to choose a
consistent approximation of the solutions involved in the initialisation of the fine solver at each time
windows. Otherwise, the initialisation error will prevent the parareal algorithm to converge towards the
solution with fine solver’s accuracy. In this paper, we develop a variant of the algorithm that overcome
this obstacle. Thanks to this, the parareal algorithm is more coherent with the underlying time scheme
and we recover the properties of the original version. We show both theoretically and numerically that
the accuracy and convergence of the multi-step variant of parareal algorithm are preserved when we
choose carefully the initialisation of each time window.

Keywords and phrases: time domain decomposition, multi-step time scheme, parareal algorithm

∗ This work was supported by the ANR project CINE-PARA under grant ANR-15-CE23-0019 and from the European High
Performance Computing Joint Undertaking (EuroHPC JU) under the European Union’s Horizon 2020 research and innovation
program (grant agreement No 955701 - project TIME-X)
1 katia.ait-ameur@polytechnique.edu, CMAP, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau,

France
2 yvon.maday@sorbonne-universite.fr, Sorbonne Université, CNRS, Université Paris Cité, Laboratoire Jacques-Louis Lions
(LJLL), F-75005 Paris, France et Institut Universitaire de France.

© EDP Sciences, SMAI 1999

2

Résumé. Dans cet article, on propose une stratégie de parallélisation en temps pour réduire le temps
de résolution d’un système d’EDO discrétisé à l’aide d’un schéma en temps multi-pas. Cette stratégie
se base sur une méthode de décomposition de domaine en temps: l’algorithme pararéel. L’algorithme
pararéel combine des prédictions grossières et peu coûteuses avec des corrections calculées à l’aide
de deux propagateurs: le propagateur grossier et un propagateur précis et coûteux que l’on utilise
de manière parallèle sur des fenêtres en temps. Un schéma en temps multi-pas permet d’obtenir
une approximation d’ordre élevé, cependant, l’initialisation de la propagation en temps en chaque
fenêtre doit être définie avec rigueur. Autrement, l’erreur commise à l’initialisation sera propagée sur
l’intervalle de temps et empêchera l’algorithme pararéel de converger vers la solution avec la précision
souhaitée. Dans l’objectif d’aborder ce problème, nous présentons dans cet article une nouvelle variante
de la méthode pararéelle, adaptée à ce type de discrétisation et qui permet de conserver les mêmes
propriétés que la méthode originelle. Un effort particulier a été réalisé afin de construire une méthode
non intrusive dans les solveurs grossier et fin. Nous montrons à l’aide de résultats théoriques et
numériques que les propriétés de précision et de convergence de l’algorithme pararaéel multi-pas sont
préservées lorsque l’on initialise rigoureusement chaque fenêtre en temps.

2020 Mathematics Subject Classification. 65M12, 65N55, 65Y05, 65Y20,65L06.

The dates will be set by the publisher.

Introduction

Solving complex models with high accuracy and within a reasonable computing time has motivated the
search for numerical schemes that exploit efficiently parallel computing architectures. In this work, the model
consists of a Partial Differential Equation (PDE) set on a space time domain D. In this context, one of the
main ideas to parallelize a simulation is to break the problem into subproblems defined over subdomains of a
partition of D. The domain can potentially have higher dimensionality and be composed of additional variables
to space and time like velocity or even more specific variables for some problems. There exist algorithms with
very good scalability properties for the decomposition of the spatial variable (see [32] or [34] for an overview).
Time domain decomposition is more and more considered to complement this strategy when the speed up
performance stagnates despite remaining computing resources. This strategy of parallelization can be very
efficient especially for long time simulations where the final time T and characteristic time step δt are such that
T
δt is huge. Research on time parallel algorithms is currently very active and has by now a history of at least 50
years (back to at least [30]) during which several algorithms have been explored (see [18, 31] for an overview).
Four iterative algorithms have received significant attention, namely Parareal [27], PFASST [13], MGRIT [15]
and a specific form of Space-Time Multi-Grid (STMG) [22]. Other algorithms have been proposed, e.g. the
parallel implicit time-integrator PITA [17] which is very similar to Parareal, the diagonalization technique [29],
RIDC [7], ParaExp [19] or REXI [33].

Much work has been done on developing efficient time stepping methods. This work has resulted in very
efficient variable step and, in the case of linear multi-step methods, variable order adaptive methods. In
particular, the linear multi-step methods have been shown to be very efficient in a number of application
areas [3,26]. In contrast to one-step methods, where the numerical solution is obtained solely from the differential
equation and the initial value, the algorithm of multi-step time schemes consists of two parts: firstly, a starting
procedure which provides u1, · · · , un−1 (approximations to the exact solution at the points t0 + δt, · · · , t0 +
(n − 1)δt) and, secondly, a multi-step formula to obtain an approximation to the exact solution u(t0 + nδt).
This is then applied recursively, based on the numerical approximations of n successive steps, to compute
u(t0 +(n+1)δt). There are several possibilities for obtaining the missing starting values. In Adams methods [5],
they are actually computed using the Taylor series expansion of the exact solution. Another possibility is the
use of any one-step method, e.g., a Runge-Kutta method. Other multi-step formulas are based on the numerical

TITLE WILL BE SET BY THE PUBLISHER 3

differentiation of a given function and are known as backward differentiation formulas (or BDF- methods). These
methods are, since the work of [23], widely used for the integration of stiff differential equations. A general
theory of multi-step methods was started by the work of Dahlquist [8,9]. As the numerical solution of a multi-
step method does not depend only on the initial value problem but also on the choice of the starting values, the
definition of the local error is not as straightforward as for one-step methods. A challenge with parallel-in-time
methods has been developing strategies that accommodate these highly efficient adaptive methods.

In this work, we report our recent effort to adapt one particular time-parallel algorithm: the parareal in
time algorithm, to multi-step time schemes. The parareal method was first introduced in [27] and has been
well accepted by the community because it is easily applicable to a relatively large spectrum of problems (some
specific difficulties are nevertheless encountered on certain types of PDEs as reported in [11, 17] for hyperbolic
systems or [10] for hamiltonian problems). Some limitations persist for the classical version of the parareal
algorithm like the parallel efficiency that decreases with the final number of iterations K as 1/K. This limitation
is addressed in [28] that proposes an adaptive variant of the parareal method where the accuracy of the fine
solver is dynamically increasing accross the parareal iterations (see [6,24] for the coupling between space domain
decomposition methods and the parareal algorithm). Without entering into very specific details of the algorithm
at this stage, we can summarize the procedure by saying that we build iteratively a sequence to approximate
the exact solution of the problem by a predictor-corrector algorithm. At every iteration, predictions are made
by a solver which has to be as numerically inexpensive as possible since it is run on the full time interval. It
usually involves coarse physics and/or coarse solution. Corrections involve a solver with high-fidelity physics
and high accuracy (and thus expensive) solution which is propagated independently in parallel over small non
overlapping time subdomains. In the classical version of the parareal algorithm, the fine solver has a fixed
high accuracy across all iterations. It is set to the one that we would use to solve the dynamics at the desired
accuracy with a purely sequential solver. At each iteration, the local initial conditions are corrected for every
time windows until convergence. Multi-step time schemes require several previous steps to compute the solution
at a new point in time. When the fine and/or coarse propagators is a multi-step time scheme, we need to choose
a consistent approximation of the solutions at previous steps involved in the initialisation of the fine and/or
coarse solver at each time subdomains. Otherwise, the initialisation error will prevent the parareal algorithm
to converge towards the solution with the fine solver’s accuracy. This point was addressed in the context of
multigrid in time method in [14, 16]. Here, the authors adapt the MGRIT algorithm framework to the use
of multi-step time schemes, the BDF methods. In our work, we propose a variant of the parareal algorithm
that overcome this obstacle. Thanks to this, the parareal algorithm is more coherent with the underlying time
scheme and we recover the properties of the original version: consistency with the sequential fine solver and
same convergence rate.

We present in section 1 the variant of the parareal algorithm adapted to multi-step time schemes. This
method includes additional corrections at previous steps involved in the initialisation of the fine and/or coarse
solver at each time window. This choice has the benefit to be non intrusive into the code we seek to parallelise by
a time domain decomposition. In section 2, we discuss how the new paradigm can be generalised to multi-step
time schemes, not only two-step times schemes, used in the fine and/or the coarse solver. In the last section,
we illustrate the performance of the algorithm on numerical examples: the Brusselator and the Van der Pol
oscillator. We show that this variant allows the parareal algorithm to converge towards the solution with fine
solver’s accuracy.

1. A multi-step variant of the parareal algorithm

In this section, after introducing some preliminary notations in section 1.1, we formulate the new variant of
the parareal algorithm adapted to multi-step time schemes (section 1.2). We then present the hypothesis we
consider in this article and restrict ourselves to two-step time schemes for the convergence analysis (section 1.3).
We prove that the multi-step variant converges with a convergence rate similar to that of the classical parareal
algorithm.

4 TITLE WILL BE SET BY THE PUBLISHER

1.1. Setting and preliminary notations

Let U be a Banach space of functions defined over a domain Ω ⊂ Rd (d ≥ 1). Let

E : [0, T]× [0, T]× U→ U, (1)

be a propagator, that is, an operator such that, for any given time t ∈ [0, T], s ∈ [0, T − t] and any function
w ∈ U, E(t, s, w) takes w as an initial value at time t and propagates it at time t+s. We assume that E satisfies
the semi group property

E(r, t− r, w) = E(s, t− s, E(r, s− r, w)), ∀w ∈ U, ∀(r, s, t) ∈ [0, T]3, r < s < t. (2)

We further assume that E is implicitly defined through the solution u ∈ C1([0, T],U) of the time-dependent
problem {

u′(t) +A(t, u(t)) = 0, t ∈ [0, T],
u(0) ∈ U, (3)

where A is an operator from [0, T]×U into U with adequate regularity we shall detail latter. Then, given w ∈ U,
E(t, s, w) denotes the solution to (3) at time t + s with initial condition w at time t ≥ 0. Note that E could
also be associated to a discretized version of the evolution equation.

Since, in general, the problem (3) does not have an explicit solution, we seek to approximate the solution of
problem (3) at a given target accuracy η > 0 by a solver S. Given a time discretisation of the time interval
[0, T], we denote S the time propagator such that, for any given time t ∈ {t0, · · · , tN}, s ∈ {t0, · · · , tN − t} and
any function w ∈ U takes an initial value at time t and propagates it at time t+ s.

||E(t, s, w)− S(t, s, w)|| ≤ ηs(1 + ||w||), (4)

where || · || denotes the norm in U. Thus, S(t, s, w) approximates E(t, s, w) with an accuracy η.

1.2. Parareal algorithm with multi-step time schemes

We consider a given decomposition of the time interval [0, T] into N subdomains [Tn, Tn+1], n = 0, · · · , N−1.
Without loss of generality, we will take them of uniform size ∆T = T/N which means that Tn = n∆T for
n = 0, · · · , N . For a given target accuracy η > 0, the goal of the parareal algorithm is to accelerate the
computation of an approximation ũ(Tn) of u(Tn) such that:

max
1≤n≤N

||u(Tn)− ũ(Tn)|| ≤ η.

The classical way to compute such an approximation is to set ũ(Tn) = S(0, Tn, u(0)), 1 ≤ n ≤ N , where S is
some sequential solver in [0, T]. On the other hand, the strategy of the parareal algorithm follows the following
steps, using two propagation operators:

• G: computes a coarse approximation of u(Tn+1) with initial condition u(Tn) ' un. The coarse propa-
gation is sequential but has a low computational cost.

• F = S: computes a more accurate approximation of u(Tn+1) with initial condition u(Tn) ' un. The
action of F is distributed over N time windows and N processors solve over each interval [Tn, Tn+1] of
size ∆T instead of solving over [0, T].

The parareal algorithm consists in building iteratively a series (unk)k of approximations of u(Tn) for 0 ≤ n ≤ N
following the recursive formula:

un+1
0 = G(Tn,∆T, un0), 0 ≤ n ≤ N − 1,

un+1
k+1 = G(Tn,∆T, unk+1) + F (Tn,∆T, unk)

−G(Tn,∆T, unk), 0 ≤ n ≤ N − 1, k ≥ 0.

(5)

TITLE WILL BE SET BY THE PUBLISHER 5

For a given iteration k, N fine propagations of size ∆T are required, each of them over distinct intervals[
Tn, Tn+1

]
, each of them with independent initial conditions unk . Since they are independent from each other,

they can be computed over N parallel processors and the original computation over [0, T] is decomposed into
parallel computations over N subintervals of size ∆T .
The choice of the solver F determines the quality of the approximation and the computational cost of its
implementation. One can potentially bring higher approximation orders than plain one-step methods by using
a multi-step time discretisation method or Runge-Kutta time schemes [25]. Multi-step time schemes require
several previous steps to compute the solution at a new point in time. For a example with a two-step time
scheme, the computation of the solution un+1 at time Tn+1 depends on the solutions un and un−1 at times
Tn and Tn−1, respectively. At the initial step T 0, a common choice is to set un−1 = un. In the parareal
algorithm, we need to initialise the two-step time scheme for each time window

[
Tn, Tn+1

]
in a way to recover

the fine solution with the target accuracy η. A first option is to make a one-step time scheme iteration to
initialise the fine propagations in each time window

[
Tn, Tn+1

]
, as in [4], when the authors propose a consistent

approximation in the context of the simulation of molecular dynamics. The proposed method is based on
second-order approximations of the solution u(Tn − δt) at each time window allowing to initialise the two-step
time scheme, the Verlet integrator. The consistency of their algorithm is shown up to the second order. We
will see later in the numerical results that making an initialisation error for a multi-step fine solver will prevent
the parareal algorithm to obtain the approximation of the exact solution with the desired accuracy. In this
work, we propose a new variant of the parareal algorithm that takes into account a consistent approximation
of u(Tn − δt) and allows to recover a full consistency and accuracy according to multi-time schemes. In order
to define this new algorithm, we introduce a different notation for the fine time propagators that are based on
two-step time schemes:

F : [0, T]× [0, T]× U× U→ U, (6)

such that F (t, s, w1, w2) for any given time t ∈ [0, T], s ∈ [0, T − t] and any functions w1, w2 ∈ U takes two
initial values at times t and t− δt and propagates them at time t+ s, where δt is the time step of the two-step
time scheme F .

1.3. Convergence analysis of the multi-step parareal method

In what follows, we analyse the convergence rate of the multi-step variant of parareal algorithm when the
coarse solver is a one-step time scheme and the fine one is a two-step time scheme. The algorithm relies on the
use of a solvers G and F with the following properties involving the operators:

δG = E −G, δF = E − F.

In the following, we assume the exact propagator E is such that E(t,−δt, y)) is defined for y ∈ U and for any
t ∈ [0, T].
Hypotheses (H): There exists εG, Cd, C > 0 such that for any functions x, y ∈ U and for any t ∈ [0, T] and
s ∈ [δt, T − t],

||E(t, s, x)−G(t, s, x)|| ≤ s(1 + ||x||)εG ⇔ ||δG(t, s, x)|| ≤ sεG(1 + ||x||), (7)

||G(t, s, x)−G(t, s, y)|| ≤ (1 + Cs)||x− y||, (8)

||F (t, s, x1, y1)− F (t, s, x2, y2)|| ≤ (1 + Cs) (||x1 − x2||+ ||y1 − y2||) , (9)

||δG(t, s, x)− δG(t, s, y)|| ≤ CdsεG||x− y||, (10)

|| (F (t, s, E(t,−δt, y1), y1)− E(t, s, y1))− (F (t, s, E(t,−δt, y2), y2)− E(t, s, y2)) || ≤ Csδt||y1 − y2||, (11)

||(F (t, s− δt, y1 − δ1, y1) − F (t, s− δt, y2 − δ2, y2))− (F (t, s, y1 − δ1, y1)− F (t, s, y2 − δ2, y2))||
≤ (1 + Cs)δt (||δ1 − δ2||+ ||y1 − y2||) ,

(12)

||F (t, s, E(t,−δt, y), y)− E(t, s, y)|| ≤ sεF (1 + ||y||). (13)

Note that the hypothesis (7)-(10) are the classical properties of numerical schemes related to stability and
accuracy. Hypotheses (8) and (9) are Lipschitz conditions and the quantity εG is a small constant which, in the

6 TITLE WILL BE SET BY THE PUBLISHER

case of the explicit Euler scheme, would be proportionnal to the time step size. Hypotheses (11) and (12) are
specific to two-step time schemes. There are two sources of error for two-step time schemes:

• the error from the discretisation of the time derivative, common to one-step time schemes.
• the error from the inconsistency between the two initial conditions x1 and y1 in F (t, s, x1, y1).

In hypothesis (11), there is no inconsistency between the two initial values since x1 is computed with the exact
propagator starting from y1. Hence, the only remaining errors are:

• the difference between y1 and y2.
• the error from the time propagation over a time window of size s.
• the error between the fine and the exact propagators that is proportionnal to the fine time step δt.

On the other hand, we assume hypothesis (12) holds for s ≥ ∆T , the time window size. This hypothesis includes
the inconsistency between the two initial values and is denoted δ1 and δ2. Hence, we describe here the errors
coming from:

• the inconsistency δi between the two initial values xi and yi of the fine solver.
• the difference between the principal initial values y1 and y2.
• the time propagation over time windows of size s.

Example 1.1. Here, we illustrate the validity of hypothesis (12) on a simple linear ODE.{
y′(t) = y(t), t ∈ [0, T],
y0a, y0b ∈ R given,

(14)

where y0a, y0b are the two seed values to initialise the time propagation with the second-order BDF method:

3

2
yn+1 − 2yn +

1

2
yn−1 = δtyn+1. (15)

The parameters involved in hypothesis (12) are: s, y1, y2, δ1 and δ2. In this example, we have:

y0a = (y1 − δ1)− (y2 − δ2), y0b = y1 − y2.

We solve the ODE (14) by the second-order BDF method (15). We obtain the expression of the numerical
solution yn for n = 0, · · · , Nf with Nf = T

δt :

yn = αrn1 + βrn2 ,

such that:

• r1 = 2+
√

1+2δt
3−2δt = 1 + δt+O(δt2),

• r2 = 2−
√

1+2δt
3−2δt = 1

3 −
δt
9 +O(δt2).

In (15), the term rn2 tends rapidly to zero when n goes to infinity. Thus we neglect its contribution.

• α = r2(δ1−δ2)+(1−r2)(y1−y2)
r1−r2 .

• β = (r1−1)(y1−y2)−r1(δ1−δ2)
r1−r2 .

In the linear case, we can write hypothesis (12), where the norm here is the absolute value:

||yN+1 − yN || ≤ (1 + Cs)δt||y0a − y0b||+ (1 + Cs)δt||y0b||,

TITLE WILL BE SET BY THE PUBLISHER 7

where: yN = F (0, s− δt, y0a, y0b), yN+1 = F (0, s, y0a, y0b) and (N + 1) is the number of fine time steps in a
time window of size s: N + 1 = s

δt = ∆T
δt . From the expression of yn in (15):

yN+1 − yN = αrN1 (r1 − 1) + βrN2 (r2 − 1).

Neglecting the term rN2 , we obtain:

yN+1 − yN =
r2

r1 − r2
(1 + ∆T)δt(δ1 − δ2) +

1− r2

r1 − r2
(1 + ∆T)δt(y1 − y2) +O(δt2).

Hence, the second-order BDF method verify hypothesis (12).

In the proof of convergence, we apply this hypothesis (12) for y1 = unk−1, the parareal solution at iteration
(k− 1) and time Tn, and y2 = u(Tn), the exact solution at time Tn, hence these two values are very close. On

the other hand, δ1 = unk−1 − u
n−1,Nf−1
k−1 , where un−1,Nf−1

k−1 is the parareal solution at iteration (k − 1) and time
Tn − δt, and δ2 = u(Tn)− u(Tn − δt), where u(Tn − δt) is the exact solution at time Tn − δt and s is equal to
the time window size ∆T .

We now detail our algorithm:

un+1
0 = G(Tn,∆T, un0), 0 ≤ n ≤ N − 1,

un,N
f−1

0 = un+1
0 , 0 ≤ n ≤ N − 1,

un+1
k+1 = G(Tn,∆T, unk+1) + F (Tn,∆T, un−1,Nf−1

k , unk)

−G(Tn,∆T, unk), 0 ≤ n ≤ N − 1, k ≥ 0,

un,N
f−1

k+1 = F (Tn,∆T − δt, un−1,Nf−1
k , unk) + un+1

k+1

−F (Tn,∆T, un−1,Nf−1
k , unk), 0 ≤ n ≤ N − 1, k ≥ 0.

(16)

At this point, several comments are in order. To derive a consistent approximation of u(Tn − δt), we use the

last fine trajectory at our disposal which is F (Tn−1,∆T, un−2,Nf−1
k , un−1

k). Its final value at Tn is:

F (Tn−1,∆T, un−2,Nf−1
k , un−1

k)(Tn) from which we compute unk+1 by the parareal correction. Hence, we translate
the solution:
F (Tn−1,∆T − δt, un−2,Nf−1

k , un−1
k)(Tn − δt) by the same correction:

unk+1−F (Tn−1,∆T, un−2,Nf−1
k , un−1

k) and obtain the so called consistent approximation un−1,Nf−1
k+1 to initialize

the fine propagation in [Tn, Tn+1].
An important feature of this algorithm is to preserve a well known property of the parareal algorithm:

unk = F (T 0, Tn − T 0, u0), for k ≥ n, n = 0, · · · , N. (17)

This comes from the term:
G(Tn,∆T, unk+1)−G(Tn,∆T, unk),

that is equal to zero when k ≥ n, n = 0, · · · , N .
In our case, the multi-step variant of the parareal algorithm verifies (17) and the additionnal correction of the
solution at time Tn − δt leads to:

un,N
f−1

k+1 = F (Tn,∆T − δt, un−1,Nf−1
k , unk) + un+1

k+1

−F (Tn,∆T, un−1,Nf−1
k , unk), 0 ≤ n ≤ N − 1, k ≥ 0,

= F (Tn,∆T − δt, un−1,Nf−1
k , unk) +G(Tn,∆T, unk+1)

−G(Tn,∆T, unk), 0 ≤ n ≤ N − 1, k ≥ 0.

8 TITLE WILL BE SET BY THE PUBLISHER

Hence, the multi-step parareal method satisfies the same property (17) at time Tn − δt:

un,N
f−1

k = F (T 0, Tn − δt− T 0, u0), for k ≥ n, n = 0, · · · , N. (18)

The convergence result of theorem 1.4 and its proof are helpful to understand the main mechanisms driving the
convergence of the algorithm and explaining its behavior. To present it, we introduce the shorthand notation
for the error norm:

Enk := unk − E(T 0, Tn − T 0, u0), k ≥ 0, 0 ≤ n ≤ N.

We introduce the following quantities:
α := CdεG∆T,
µ := C∆Tδt,
β := 1 + C∆T,
γG := ∆TεG max0≤n≤N (1 + ||u(Tn)||),
γF := ∆TεF max0≤n≤N (1 + ||u(Tn)||),

(19)

as shorthand notations for the proof of convergence. We denote ẽnk a perturbation of the error term ||Enk || made
by the multi-step parareal algorithm.

Proposition 1.2 (Convergence of the error perturbation sequence). If the sequence {ẽnk}0≤n≤N,0≤k≤K verifies

the following recursive inequalities:


ẽn0 ≤ βẽn−1

0 + γ̃G,

ẽn1 ≤ βẽn−1
1 + α̃ẽn−1

0 + γ̃F ,

ẽnk ≤ βẽn−1
k + α̃ẽn−1

k−1 + C2δtẽn−2
k−2 ,

(20)

for some α̃, γ̃G, γ̃F , then the error perturbation ẽnk of the multi-step parareal scheme (16) is bounded by:

ẽn0 ≤ γ̃Ge
CTNe−C∆T , n ≥ 1,

ẽnk ≤ γ̃Gα̃
kfk
(
n
k+1

)
βn−k−1 + γ̃F α̃

k−1fk−1

(
n
k

)
βn−k, n ≥ k + 1, k ≥ 1.

(21)

Proof. The proof of Proposition 1.2 is given in Appendix A. �

In the context of fine propagators based on second-order multi-step time schemes, we assume that the operator
A, from system (3), and its derivatives ∂A

∂t , ∂A∂u are locally Lipschitz. For higher order multi-step time schemes,
additional assumptions have to be made on the regularity of operator A to satisfy the convergence theorem 1.4.

Lemma 1.3 (Behavior of the multi-step parareal errors). We denote En+1
k , En,N

f−1
k , δEn+1

k , the error terms
made by the multi-step parareal algorithm (16), defined by:


En+1
k = un+1

k − E(T 0, Tn+1 − T 0, u0),

En,N
f−1

k = un,N
f−1

k − E(T 0, Tn+1 − δt− T 0, u0),

δEn+1
k = En,N

f−1
k − En+1

k ,

(22)

TITLE WILL BE SET BY THE PUBLISHER 9

then the sequences {Enk }0≤n≤N,0≤k≤K ,
{
En,N

f−1
k

}
0≤n≤N,0≤k≤K

, {δEnk }0≤n≤N,0≤k≤K verify the following re-

currence relations:

||En+1
k || ≤ β||Enk ||+ (α+ µ+ Cδt+

Cδt2

2
)||Enk−1||+ C||δEnk−1||+ γF , (23)

||En,N
f−1

k || ≤ β||Enk ||+ (α+ µ+ 2Cδt+
Cδt2

2
)||Enk−1||+ C(1 + δt)||δEnk−1||+ 3γF , (24)

||δEn+1
k || ≤ Cδt||δEnk−1||+ Cδt||Enk−1||+ 2γF . (25)

Proof. If k = 0, using definition (16) for un0 , we have for 0 ≤ n ≤ N − 1,

En+1
0 = un+1

0 − E(T 0, Tn+1 − T 0, u0),

En+1
0 = G(Tn,∆T, un0)− E(Tn,∆T, u(Tn)),

||En+1
0 || ≤ ||G(Tn,∆T, un0)−G(Tn,∆T, u(Tn))||+ ||G(Tn,∆T, u(Tn))− E(Tn,∆T, u(Tn))||,

≤ (1 + C∆T)||En0 ||+ ∆TεG(1 + ||u(Tn)||),

≤ β||En0 ||+ γG,

where we have used (7) and (8) to derive the second to last inequality.

For k ≥ 1, starting from (16), we have

En+1
k = un+1

k − E(T 0, Tn+1 − T 0, u0),

= G(Tn,∆T, unk) + F (Tn,∆T, un−1,Nf−1
k−1 , unk−1)−G(Tn,∆T, unk−1)− E(Tn,∆T, u(Tn)).

In what follows, we add and substract the following quantities to En+1
k :

• G(Tn,∆T, u(Tn)) and E(Tn,∆T, unk−1),

• E(Tn,∆T, u(Tn)) and F (Tn,∆T, u(Tn)− δx, u(Tn)),

• F (Tn,∆T, unk−1 − δx, unk−1) and F (Tn,∆T, unk−1 − δ̂x, unk−1),

where:

δx = u(Tn)− u(Tn − δt), δ̃x = unk−1 − u
n−1,Nf−1
k−1 , δ̂x = unk−1 − E(Tn,−δt, unk−1).

En+1
k = G(Tn,∆T, unk)−G(Tn,∆T, u(Tn)) + δG(Tn,∆T, u(Tn))− δG(Tn,∆T, unk−1)

+ F (Tn,∆T,E(Tn,−δt, unk−1), unk−1)− E(Tn,∆T, unk−1)

− (F (Tn,∆T,E(Tn,−δt, u(Tn)), u(Tn))− E(Tn,∆T, u(Tn)))

+ F (Tn,∆T, unk−1 − δx, unk−1)− F (Tn,∆T, unk−1 − δ̂x, unk−1)

+ F (Tn,∆T, unk−1 − δ̃x, unk−1)− F (Tn,∆T, unk−1 − δx, unk−1)

+ F (Tn,∆T, u(Tn − δt), u(Tn))− E(Tn,∆T, u(Tn)).

Taking norms and using (8), (9), (10), (11), (13), we derive:

||En+1
k || ≤ (1 + C∆T)||Enk ||+ C∆TεG||Enk−1||+ C∆Tδt||Enk−1||+ C||δ̂x− δx||+ C||δx− δ̃x||

+ ∆TεF (1 + ||u(Tn)||).

10 TITLE WILL BE SET BY THE PUBLISHER

On the one hand, the term δx− δ̃x becomes:

δx− δ̃x = un−1,Nf−1
k−1 − u(Tn − δt)− (unk−1 − u(Tn)) = En,N

f−1
k − En+1

k = δEn+1
k .

On the other hand, we derive a bound for the term ||δx− δ̂x||:

||δx− δ̂x|| = ||u(Tn − δt)− E(Tn,−δt, unk−1)− (u(Tn)− unk−1)||.

Writing the Taylor expansions of u(Tn − δt) and E(Tn,−δt, unk−1) around Tn and unk−1 respectively, we obtain
formally:

u(Tn − δt)− u(Tn) = δtA(Tn, u(Tn)) +
δt2

2

(
∂A
∂t

+
∂A
∂u
A
)

(Tn, u(Tn)) +O(δt3),

E(Tn,−δt, unk−1)− unk−1 = δtA(Tn, unk−1) +
δt2

2

(
∂A
∂t

+
∂A
∂u
A
)(

Tn, unk−1

)
+O(δt3).

Since the operator A from system (3) and its derivatives ∂A
∂t , ∂A

∂u are locally Lipschitz:

||δx− δ̂x|| ≤
(
Cδt+

Cδt2

2

)
||Enk−1||+ Cδt3.

We recall: γF = ∆TεF max0≤n≤N (1+||u(Tn)||). Since, the fine solver is based on a two-step time then εF ≈ δt2.
Hence, we neglect in what follows the contribution Cδt3:

||En+1
k || ≤ β||Enk ||+ (α+ µ+ Cδt+

Cδt2

2
)||Enk−1||+ C||δEnk−1||+ γF .

Now, we derive an upper bound for the error term δEn+1
k .

δEn+1
k = En,N

f−1
k − En+1

k ,

δEn+1
k = un,N

f−1
k − E(T 0, Tn+1 − δt− T 0, u0)− un+1

k + E(T 0, Tn+1 − T 0, u0).

In what follows, we add and substract the following quantities to δEn+1
k :

F (Tn,∆T − δt, u(Tn)− δx, u(Tn)), F (Tn,∆T, u(Tn)− δx, u(Tn)). (26)

Using the definition of un,N
f−1

k in the multi-step parareal algorithm (16), we obtain:

δEn+1
k = F (Tn,∆T − δt, u(Tn)− δx, u(Tn))− E(Tn,∆T − δt, u(Tn))

− (F (Tn,∆T, u(Tn)− δx, u(Tn))− E(Tn,∆T, u(Tn)))

+ F (Tn,∆T − δt, unk−1 − δ̃x, unk−1)− F (Tn,∆T − δt, u(Tn)− δx, u(Tn))

−
(
F (Tn,∆T, unk−1 − δ̃x, unk−1)− F (Tn,∆T, u(Tn)− δx, u(Tn))

)
.

Taking norms and using (12), (13), we derive:

||δEn+1
k || ≤ 2∆TεF (1 + ||u(Tn)||) + Cδt||un−1,Nf−1

k−1 − u(Tn − δt)− (unk−1 − u(Tn))||
+ Cδt||unk−1 − u(Tn)||,

||δEn+1
k || ≤ Cδt||δEnk−1||+ Cδt||Enk−1||+ 2γF .

TITLE WILL BE SET BY THE PUBLISHER 11

Now, we derive an upper bound for the error term En,N
f−1

k .

En,N
f−1

k = un,N
f−1

k − E(T 0, Tn+1 − δt− T 0, u0),

= F (Tn,∆T − δt, un−1,Nf−1
k−1 , unk−1) + un+1

k − F (Tn,∆T, un−1,Nf−1
k−1 , unk−1)− E(Tn,∆T − δt, u(Tn)).

In what follows, we add and substract the same quantities (26) to En,N
f−1

k as those for the term δEn+1
k .

En,N
f−1

k = un+1
k − E(Tn,∆T, u(Tn)) + F (Tn,∆T − δt, u(Tn)− δx, u(Tn))− E(Tn,∆T − δt, u(Tn))

− (F (Tn,∆T, u(Tn)− δx, u(Tn))− E(Tn,∆T, u(Tn)))

+ F (Tn,∆T − δt, unk−1 − δ̃x, unk−1)− F (Tn,∆T − δt, u(Tn)− δx, u(Tn))

−
(
F (Tn,∆T, unk−1 − δ̃x, unk−1)− F (Tn,∆T, u(Tn)− δx, u(Tn))

)
.

Taking norms and using (12), (13), we derive:

||En,N
f−1

k || ≤ β||Enk ||+ (C + Cδt)||δEnk−1||+ (α+ µ+ 2Cδt+
Cδt2

2
)||Enk−1||+ 3γF .

�

Theorem 1.4 (Convergence of the multi-step parareal algorithm). Let G, F and δG satisfy Hypotheses (7)–
(13). Let k ≥ 0 be any given positive integer. If the time step δt of the fine solver verifies:

δt ≤ ∆T 2ε2G, (27)

then the sequence (unk)n defined by the multi-step parareal scheme (16) satisfy:{
max0≤n≤N ||un0 − u(Tn)|| ≤ γ̃Ge

CTNe−C∆T , n ≥ 1,

max0≤n≤N ||unk − u(Tn)|| ≤ λ τ̃
k+1

k+1!

(
fk

2k+1
γ̃G
γG

(
α̃
α

)k
+ k+1

τ
fk−1

2k+1
γ̃F
γG

(
α̃
α

)k−1
)
, n ≥ k + 1, k ≥ 1,

(28)

where:

λ =
eCT max0≤n≤N (1 + ||u(Tn)||)

Cd
, τ̃ = 2τ = 2CdTe

−C∆T εG, fk =
(1 +

√
5)k+1 − (1−

√
5)k+1

2k+1
√

5
,

and α̃, γ̃G and γ̃F being given by:
α̃ = α+ 3µ+ 3Cδt+ Cδt2

2 ,

γ̃G = γG + Cδt+ 2C+3+2C2δt

β−1+α+3µ+Cδt+C δt2

2 +C2δt
γF ,

γ̃F =

(
2C+3+2C2δt

β−1+α+3µ+Cδt+C δt2

2 +C2δt
+ 3

)
γF + Cδt+ 2Cδt2.

(29)

Let us make a couple of remarks before giving the proof of the theorem. First, the convergence rate of the

multi-step parareal algorithm is similar to the one of the classical parareal algorithm with the factor τ̃k+1

k+1! , since

in the classical version the convergence rate is τk+1

k+1! . The remaining factors γ̃G
γG

,
(
α̃
α

)k
and γ̃F

γG
are close to 1 and

their contributions are negligible. α̃, γ̃G and γ̃F are perturbations of the coefficients α, γG and γF respectively,
such that:

γ̃G
γG

= 1 +O(∆TεG),
α̃

α
= 1 +O(∆TεG),

γ̃F
γG

= O(∆TεG).

The term fk is specific to the multi-step variant and tends to zero exponentially fast when k goes to infinity.

12 TITLE WILL BE SET BY THE PUBLISHER

Proof. The proof is in the spirit of existing results from the literature [20, 27, 28] with the use of generating
functions (39). We also refer to [21] for the convergence study of several parallel in time algorithms with
generating functions.
From Lemma 1.3, the error terms made by the multi-step parareal method (16) verify the inequalities (23), (24),

(25). Since the upper bound of the error term ||En,N
f−1

k || depends on the error terms ||En+1
k || and ||δEn+1

k ||
we focus on the inequalities (23)-(25). Hence, we can write by induction:

||Enk || ≤ β||En−1
k ||+ (α+ µ+ Cδt+ Cδt2

2)||En−1
k−1 ||+ C2δt

∑k
j=2(Cδt)j−2||En−jk−j ||+ C(Cδt)k−1||δEn−k0 ||

+
(

1 + 2C 1−(Cδt)k−1

1−(Cδt)

)
γF .

(30)

The governing term in the sum C2δt
∑k
j=2(Cδt)j−2||En−jk−j || is the term C2δt||En−2

k−2 ||. To ensure that it does

not dominate the term (α + µ + Cδt + Cδt2

2)||En−1
k−1 ||, we suppose that the fine time step verifies: δt ≤ ∆T 2ε2G

(see hypothesis (27)).

In what follows, we show that the residual terms δEn−k0 ,
(

1 + 2C 1−(Cδt)k−1

1−(Cδt)

)
γF and all the terms of the sum

for j ≥ 3 can be distributed over the terms: ẽnk , ẽn−1
k , ẽn−1

k−1 and ẽn−2
k−2 , where ẽnk is a perturbation of ||Enk ||.

Setting the error perturbation to:

ẽnk = ||Enk ||+ ||δEnk ||+ Cδt
(
||En−1

k−1 ||+ ||δE
n−1
k−1 ||

)
+

2C + 3 + 2C2δt

β − 1 + α+ 3µ+ Cδt+ Cδt2

2 + C2δt
γF . (31)

The error perturbation ẽnk satisfy the inequality (20). Since ||Enk || ≤ ẽnk , we derive the upper bound (21) for the
error term ||Enk || by applying Proposition 1.2 to the error perturbation ẽnk defined by (31).

||En0 || ≤ ẽn0 ≤ γ̃GeCTNe−C∆T , n ≥ 1,
||Ekk || = O(εF), k ≥ 1,
||Enk || ≤ ẽnk ≤ γ̃Gα̃kfk

(
n
k+1

)
βn−k−1 + γ̃F α̃

k−1fk−1

(
n
k

)
βn−k, n ≥ k + 1, k ≥ 1,

which ends the proof.
�

2. Advantages of the multi-step parareal algorithm

We proposed in the last section a new variant of the parareal algorithm with a consistent approximation of
the solution at time Tn−δt in a non intrusive way. The initialisation of the fine propagation in each time window
has to be appropriately chosen because an initialisation error would be propagated over the whole time interval
and would prevent the parareal algorithm to converge towards the target solution. Another option to treat this
issue is to use a one-step time scheme or a multi-stage Runge Kutta method to initialize the fine computation.
This option is intrusive since we have to implement new time schemes for the initialisation. Morevover, we will
see in section 3 that this strategy prevents the parareal to converge to the numerical solution with the target
accuracy since the first-order scheme error will dominate.

The multi-step parareal adds consistency with the fine scheme. This strategy can be extended to the case of
a general multi-step time scheme involving several fine time steps preceding the time Tn. The same correction

can be applied to the terms taking the form: un,N
f−i

k+1 , i = 1, · · · , I.

TITLE WILL BE SET BY THE PUBLISHER 13

We detail the algorithm for a multi-step time scheme involving more than one fine time step preceding time Tn.

un+1
0 = G(Tn,∆T, un0), 0 ≤ n ≤ N − 1,

un+1
k+1 = G(Tn,∆T, unk+1) + F (Tn,∆T, un−1,Nf−I

k , un−1,Nf−I+1
k , · · · , unk)

−G(Tn,∆T, unk), 0 ≤ n ≤ N − 1, k ≥ 0,

un,N
f−i

k+1 = F (Tn,∆T − iδt, un−1,Nf−I
k , un−1,Nf−I+1

k , · · · , unk) + un+1
k+1

−F (Tn,∆T, un−1,Nf−I
k , un−1,Nf−I+1

k , · · · , unk), i = 0, · · · , I, 0 ≤ n ≤ N − 1, k ≥ 0,

(32)

where we denote F (t, s, w1, w2, · · · , wI), the multi-step propagator such that, for any given time t ∈ [0, T],
s ∈ [0, T − t] and any function w1, · · · , wI ∈ U, F takes I initial values at times t − iδt, i = 0, · · · , I − 1 and
propagates it at time t+ s, where δt is the fine time step. We illustrate the good convegence properties in the
next section by applying the parareal algorithm to an ODE system solved by a coarse solver based on a one-step
time scheme and a fine solver based on a third-order BDF method.

When the coarse solver is a multi-step time scheme, there exists several options to initialise it on each time
window:

• If the coarse time step δT is equal to the size of the time window ∆T , there is no additional correction
in the parareal algorithm since the solution at every coarse time steps are updated.

• If δT < ∆T , there are intermediate coarse time iterations in each time window. In [4], the initialisation
of the coarse solver is addressed and the authors propose a parareal-type correction at time Tn − δT :

u
n+1−Ncint
k+1 = G(Tn,∆T − δT, un−N

c
int

k+1 , unk+1) + F (Tn,∆T − δT, un−1,Nf−1
k , unk)

− G(Tn,∆T − δT, un−N
c
int

k , unk), N c
int = δT

δt 0 ≤ n ≤ N − 1, k ≥ 0.
(33)

We illustrate the behavior of the multi-step parareal algorithm with specific initialisations in the next section
in the case of a second and third order time integration method.

3. Numerical tests

We apply our multi-step parareal algorithm to two stiff ODEs, the Brusselator system and the Van der Pol
oscillator. Our results illustrate that our approach improves the convergence properties with respect to the
classical parareal algorithm. We also show that the generalisation of this approach to third-order time schemes
holds and the convergence properties derived in Theorem (1.4) are preserved. Finally, we address the question
of the parallel efficiency of multi-step parareal. In the last section, we apply the adaptive parareal algorithm
(see [28]) where the accuracy of the fine solver is increased accross the iterations.

3.1. Numerical convergence results

3.1.1. The Brusselator system

We consider the Brusselator system where the unknows vector is given by u =

(
x
y

)
:

{
x′ = A+ x2y − (B + 1)x,
y′ = Bx− x2y,

with initial condition x(0) = 0 and y(0) = 1. This is a stiff ODE that models a chain of chemical reactions.
It was already studied in previous works on the parareal algorithm, [20, 28]. The system has a fixed point at
x = A and y = B

A which becomes unstable when B > 1+A2 and leads to oscillations. We place ourselves in this
oscillatory regime by setting A = 1 and B = 3. The dynamics present large velocity variations in some time

14 TITLE WILL BE SET BY THE PUBLISHER

sub-intervals, making the use of high order time schemes particularly desirable for an appropriate treatment of
the transient. The coarse solver is a Backward Euler method with a coarse time step:

∆T = 0.1,

which corresponds to 180 time windows since T = 18. The fine solver is a second-order BDF method with a fine
time step δt = 10−4 (respecting hypothesis (27)). In figure 1, the fine solver is based on a two-step time scheme
where the computation of the solution un,j+1 at time Tn + (j + 1)δt depends on the solutions un,j and un,j−1

at times Tn + jδt and Tn + (j − 1)δt, respectively. We use the multi-step variant of parareal (16) to initialise
the fine solver in each time window, starting from the parareal iteration k ≥ 2. At the parareal iteration k = 1,
we use a Backward Euler method to initialise the fine solver since we did not use the fine propagator yet.

In this section, we analyse the evolution of two different errors accross the parareal iterations:

• the error between the fine solution computed in a sequential way and the parareal solution in L∞(0, T)
norm,

max
1≤n≤N

||unk − F (T 0, Tn − T 0, u0)||, (34)

• the error between the exact solution and the parareal solution in L∞(0, T) norm

max
1≤n≤N

||unk − u(Tn)||. (35)

In all the figures of this section, we plot the evolution of errors (35-34) in the two following cases:

• Without a multi-step adaptation (red curve): the error between the parareal solution where the Back-
ward Euler method is used at each iteration for the initialisation of the fine solver and the fine solution
computed in a sequential way for (34) (the exact solution for (35)), on one hand,

• With a multi-step adaptation (blue curve): the error between the solution given by the multi-step
parareal algorithm and the fine solution computed in a sequential way for (34) (the exact solution for
(35)), on the other hand.

In figure 1, we see that without the multi-step adaptation the error (34) stagnates around 10−6 without recover-
ing the fine solution at the machine precision, even after 180 iterations. On the other hand, using the multi-step
parareal algorithm, the error continues to decrease until reaching the machine precision. Moreover, in the right
figure, we see that the only way to recover the correct approximation of the exact solution is to use a multi-step
adaptation, otherwise, without adaptation, the parareal algorithm will not reach the target accuracy. This
result shows that making an initialisation error for a multi-step fine solver will prevent the parareal algorithm
to obtain the approximation of the exact solution with the desired accuracy.

The convergence properties are illustrated in figure 1 on a fine solver based on the second-order BDF method
with time step δt = 10−4.

In figure 2, we apply the extension of the multi-step parareal algorithm (32) to three-step time schemes by
giving a consistent approximation of the solutions u(Tn − δt) and u(Tn − 2δt). We illustrate the convergence
properties of this strategy by applying it on a fine solver based on the third-order BDF method with time steps
δt = 10−4 (see figure 2). We observe the same behavior of the errors (35-34): without a multi-step adaptation,
the fine propagation is initialised by two Backward Euler iterations and does not allow to recover the target
approximation of the exact solution while the multi-step parareal converges to the exact solution with the
desired accuracy.

3.1.2. The Van der Pol oscillator

We next consider the Van der Pol oscillator{
x′ = y,

y′ = µ(1− x2)y − x,

TITLE WILL BE SET BY THE PUBLISHER 15

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 5 10 15 20 25 30

R
el
a
ti
ve

er
ro
r
in

L
∞

n
o
rm

Number of iterations

Brusselator system

without multi-step adaptation
with multi-step adaptation

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30

R
el
a
ti
ve

er
ro
r
in

L
∞

n
o
rm

Number of iterations

Brusselator system

without multi-step adaptation
with multi-step adaptation

Figure 1. Convergence of the multi-step parareal for the second-order BDF method, δt = 10−4

(left: error (34), right: error (35))

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 5 10 15 20 25 30

R
el
a
ti
ve

er
ro
r
in

L
∞

n
or
m

Number of iterations

Brusselator system

without multi-step adaptation
with multi-step adaptation

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 5 10 15 20 25 30

R
el
a
ti
ve

er
ro
r
in

L
∞

n
or
m

Number of iterations

Brusselator system

without multi-step adaptation
with multi-step adaptation

Figure 2. Convergence of the multi-step parareal for the third-order BDF method, δt = 10−4

(left: error (34), right: error (35))

with initial condition x(0) = 2 and y(0) = 0. When µ = 0, this equation is a simple nonstiff harmonic oscillator.
When µ > 0, the system has a limit cycle and becomes stiffer and stiffer as its value is increased. For our tests,
we set µ = 4 which is a relatively stiff case.

16 TITLE WILL BE SET BY THE PUBLISHER

The coarse solver is an explicit Runge Kutta method of order 3 with an adaptive time stepping (see [12]).
The time window size is ∆T = 0.1 which corresponds to 200 time windows since T = 20. The fine solver
is a third-order BDF method with a fine time step δt = 10−4 (respecting hypothesis (27)). In figure 3, the
fine solver is based on a three-step time scheme. We apply the extension of the multi-step parareal algorithm
(32) to three-step time schemes by giving a consistent approximation of the solutions u(Tn−δt) and u(Tn−2δt).

Likewise, we analyse the evolution of the errors (34) and (35) accross the parareal iterations. In Figure 3,
we see that without the multi-step adaptation the error (34) stagnates around 10−5 without recovering the fine
solution at the machine precision, even after 200 iterations. On the other hand, using the multi-step parareal
algorithm, the error continues to decrease until reaching the machine precision. Moreover, in the right figure, we
see that the only way to recover the correct approximation of the exact solution is to use a multi-step adaptation,
otherwise, without adaptation, the parareal algorithm will not reach the target accuracy. This result shows
that making an initialisation error for a multi-step fine solver will prevent the parareal algorithm to obtain the
approximation of the exact solution with the desired accuracy.

The convergence properties are illustrated in figure 3 on a fine solver based on the third-order BDF method
with time step δt = 10−4.

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 5 10 15 20 25 30

R
el
at
iv
e
er
ro
r
in

L
∞

n
or
m

Number of iterations

Van der Pol oscillator

without multi-step adaptation
with multi-step adaptation

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30

R
el
at
iv
e
er
ro
r
in

L
∞

n
or
m

Number of iterations

Van der Pol oscillator

without multi-step adaptation
with multi-step adaptation

Figure 3. Convergence of the multi-step parareal for the third-order BDF method, δt = 10−4

(left: error (34), right: error (35))

3.2. Parallel efficiency

We address in this section the question of the speed up performance for the multi-step parareal algorithm.
The only additional operations in the multi-step variant compared to the classical parareal are the corrections

of solutions involved in the initialisation of the fine solver in each time window (update of un,N
f−1

k+1 in (16) for
example). Hence, we consider that the computational cost of the multi-step variant is the same as the one of
the classical parareal. In [28], the authors propose a new method, the adaptive parareal algorithm, where the
accuracy of the fine solver is increased across the iterations. This new point of view improves the speed up
performance of the parareal method. In this section, we seek to improve the parallel efficiency of the multi-step

TITLE WILL BE SET BY THE PUBLISHER 17

parareal method by increasing the accuracy of the fine solver at each iteration. We first recall the parallel
efficiency for the classical parareal (CP) and the adaptive parareal (AP) to obtain a solution with accuracy η
and a propagation over [0, T]:

effCP (η, [0, T]) ∼ 1
K(η) ,

effAP (η, [0, T]) ∼ 1

1+ε
1/α
G

, under the hypothesis of Proposition 3.1 in [28],

where K(η) is the number of parareal iterations to obtain the approximation of the exact solution with the
target accuracy η and α, the order of the fine time scheme. To apply this approach on the multi-step variant,
we need to carefully initialise each time window. If the fine scheme is the second-order BDF method, the
computation of un+1 depends on un and un−1 and with the adaptive paradigm we have:

tn − tn−1 6= tn+1 − tn.

Hence, we initialise the fine solver with one variable step-size BDF method.

We apply this strategy to the Brusselator system with the Backward Euler method as a coarse solver (∆T = 0.1)
and the second-order BDF method as a fine solver with the sequence of time steps indicated in table 1.

Multi-step parareal Adaptive parareal

Iteration Time step Error Time step Error

k = 1 10−4 5× 10−2 10−2 5× 10−2

k = 2 10−4 9× 10−3 5× 10−3 2× 10−2

k = 3 10−4 10−3 10−3 3× 10−3

k = 4 10−4 9× 10−5 5× 10−4 3× 10−4

k = 5 10−4 7× 10−6 4× 10−4 2× 10−5

k = 6 10−4 4× 10−7 2.5× 10−4 3× 10−6

k = 7 10−4 3.8× 10−8 2× 10−4 3× 10−7

k = 8 10−4 2× 10−8 10−4 2.9× 10−8

Table 1. Convergence of adaptive parareal and multi-step parareal with a target accuracy η = 10−5

The multi-step parareal algorithm with adaptivity converges to the exact solution with an accuracy obtained
by a sequential fine solution with time step δt = 10−3 after 8 iterations such as the multi-step method without
adaptivity (see table 1). With the sequence of fine time steps used in the adaptive parareal method, convergence
is reached with the same number of iterations as the multi-step variant. The adaptive algorithm allows to obtain
better speed-up performance compared to the nonadaptive version since the fine solver (δt = 10−3) is used only
one time instead of 8 times in the multi-step variant. In table 2, we give the speed-up and the efficiency of the

Speed-up Multi-step parareal Adaptive parareal
With cost G 10.9 23.7

Without cost G 12.5 32.2

Efficiency Multi-step parareal Adaptive parareal
With cost G 10.9% 23.7%

Without cost G 12.5% 32.2%

Table 2. Speed up and efficiency with T = 18, δt = 10−3 and N = 180

18 TITLE WILL BE SET BY THE PUBLISHER

adaptive and multi-step parareal algorithms applied to the Brusselator system. The speed-up is defined as the
ratio:

S(η, [0, T]) :=
Tseq(η, [0, T])

Tpar(η, [0, T])
,

between the cost to run a sequential fine solver achieving a target accuracy η with the cost to run a parareal
algorithm providing at the end the same target accuracy η. The parallel efficiency of the method is then defined
as the ratio of the above speed up with the number of processors which gives a target of 1 to any parallel solver:

eff(η, [0, T]) :=
S(η, [0, T])

N
.

To compare the speed-up of the multi-step and adaptive parareal algorithms, we use the number of fine and
coarse propagations involved in the numerical solution and the computational cost of the coarse and fine prop-
agations (communication delays have not been taken into account). For example, in table 1, the cost of the
multi-step parareal algorithm is equal to the cost of 9 coarse propagations over [0, T] plus 8 fine propagations
over [Tn, Tn+1] with a fine time step δt = 10−3. In [28], the authors show that the main element affecting
the performance of the adaptive parareal method is no longer the cost of the fine solver but the cost of the
coarse solver. Hence, we compare the speed-up and efficiency when we count or do not count the cost of the
coarse solver in table 2. Obviously, when we do not count the cost of the coarse solver, the performance of both
algorithms improves.

4. Conclusion

We have built a new variant of the parareal algorithm allowing to overcome the issue of initialising the fine
and the coarse solvers when they are based on a multi-step time scheme [1, 2]. The convergence properties of
the multi-step parareal are very close to that of the classical parareal algorithm in the case of two-step time
schemes. An extension of our approach to generic multi-step time schemes is proposed and validated numerically
on a three-step time scheme. In addition, the accuracy of the multi-step parareal algorithm is illustrated on
the numerical solution of stiff ODEs such as the Brusselator system and the Van der Pol oscillator. Finally,
we address the question of the parallel efficiency of our strategy by coupling it with the adaptive parareal
algorithm proposed in [28]. The new adaptive formulation of the parareal algorithm opens the door to improve
significantly the parallel efficiency of the method provided that the cost of the coarse solver is moderate.

Appendix A. Proof of Proposition 1.2

The sequence (ẽnk)n≥0,k≥0 is defined recursively as follows. For k = 0:

ẽn0 =

{
0 , if n = 0,

βẽn−1
0 + γ̃G , if n ≥ 1.

(36)

For k = 1:

ẽn1 =

{
0 , if n = 0, 1,

βẽn−1
1 + α̃ẽn−1

0 + γ̃F , if n ≥ 2.
(37)

For k ≥ 2:

ẽnk =

{
0 , if n = 0, 1, 2,

βẽn−1
k + α̃ẽn−1

k−1 + C2δtẽn−2
k−2 , if n ≥ 3.

(38)

We analyse the behavior of (ẽnk) to derive a bound for the sequence. For this, we consider the generating
function:

ρ̃k(ξ) =
∑
n≥0

ẽnkξ
n.

TITLE WILL BE SET BY THE PUBLISHER 19

From (36), (37) and (38) we get:
ρ̃0(ξ) = γ̃Gξ

(1−βξ)(1−ξ) ,

ρ̃1(ξ) = α̃ξ
1−βξ ρ̃0(ξ) + γ̃F ξ

(1−βξ)(1−ξ) ,

ρ̃k(ξ) = α̃ξ
1−βξ ρ̃k−1(ξ) + C2δtξ2

1−βξ ρ̃k−2(ξ), k ≥ 2.

(39)

From which we derive, for k ≥ 1:

ρ̃k(ξ) = γ̃Gα̃
k ξk+1

(1− ξ)

[k/2]∑
j=0

(C2δt)j

α̃2j

(
k − j
j

)
1

(1− βξ)k+1−j +γ̃F α̃
k−1 ξk

(1− ξ)

[k−1/2]∑
j=0

(C2δt)j

α̃2j

(
k − 1− j

j

)
1

(1− βξ)k−j
.

(40)
For k = 0, we have:

ρ̃0(ξ) = γ̃Gξ

∑
p≥0

ξp

∑
p≥0

βpξp

 = γ̃G
∑
p≥0

(
p∑
l=0

βl

)
ξp+1.

By a change of variable p = n− 1, we obtain:

ẽn0 = γ̃G

(
n−1∑
l=0

βl

)
≤ γ̃GeCTNe−C∆T , n ≥ 1.

For k ≥ 1, using the binomial expansion in (40):

1

(1− βξ)k+1−j =
∑
p≥0

(
k − j + p

p

)
βpξp,

and by a change of variable, we obtain:∑
n≥0

ẽnkξ
n = γ̃Gα̃

k
∑

n≥k+1

Kn−k−1ξ
n + γ̃F α̃

k−1
∑
n≥k

K ′n−kξ
n.

Identifying the term ξk in the expansion yields to:

ẽkk = γ̃F α̃
k−1K ′0.

This gives an upper bound for the error terms ẽkk, k ≥ 1. We do not use this estimate since the parareal
algorithm ensures unk = F (T 0, Tn − T 0, u0) for k ≥ n, which yields:

||Ekk || = O(εF), k ≥ 1.

In what follows, we identify the terms ξn for n ≥ k + 1 in the expansion:

ẽnk = γ̃Gα̃
kKn−k−1 + γ̃F α̃

k−1K ′n−k.

We now compute the terms

Kp =

p∑
l=0

[k/2]∑
j=0

(C2δt)j

(α+ 3µ+ Cδt)2j

(
k − j
j

)(
k − j + l

l

)
βl,

20 TITLE WILL BE SET BY THE PUBLISHER

and

K ′p =

p∑
l=0

[k−1/2]∑
j=0

(C2δt)j

α̃2j

(
k − 1− j

j

)(
k − 1− j + l

l

)
βl.

Using:
(
k−j+l
l

)
≤
(
k+l
l

)
for j = 0, · · · , [k−1

2] and: C2δt
(α+3µ+Cδt)2 ≤ 1, from hypothesis (27): δt ≤ ∆T 2ε2G. We

have:

Kp ≤
p∑
l=0

(
k + l

l

)
βl

[k/2]∑
j=0

(
k − j
j

)
≤ fk

(
k + 1 + p

p

)
βp,

K ′p ≤
p∑
l=0

(
k − 1 + l

l

)
βl

[k−1/2]∑
j=0

(
k − 1− j

j

)
≤ fk−1

(
k + p

p

)
βp,

where fk is the general term of the Fibonacci sequence defined by f0 = f1 = 1 and fk+1 = fk + fk−1, k ≥ 1:

fk =

[k/2]∑
j=0

(
k − j
j

)
=

(1 +
√

5)k+1 − (1−
√

5)k+1

2k+1
√

5
.

Hence, we derive the bound:

ẽn0 ≤ γ̃Ge
CTNe−C∆T , n ≥ 1,

ẽnk ≤ γ̃Gα̃
kfk
(
n
k+1

)
βn−k−1 + γ̃F α̃

k−1fk−1

(
n
k

)
βn−k, n ≥ k + 1, k ≥ 1,

(41)

which ends the proof of Proposition 1.2 .

References

[1] K. Ait-Ameur, Y. Maday, and M. Tajchman, Multi-step variant of the parareal algorithm, in Domain Decomposition

Methods in Science and Engineering XXV, R. Haynes, S. MacLachlan, X.-C. Cai, L. Halpern, H. H. Kim, A. Klawonn, and

O. Widlund, eds., Cham, 2020, Springer International Publishing, pp. 393–400.
[2] , Time-parallel algorithm for two phase flows simulation, in Numerical Simulation in Physics and Engineering: Trends

and Applications; Lecture Notes of the XVIII ‘Jacques-Louis Lions’ Spanish-French School, D. Greiner, M. Asensio, and

R. Montenegro, eds., 2021, pp. 169–178.
[3] J. Astic, A. Bihain, and M. Jerosolimski, The mixed Adams-BDF variable step size algorithm to simulate transient and

long term phenomena in power systems, IEEE Transactions on Power Systems, 9 (1994), pp. 929–935.

[4] C. Audouze, M. Massot, and S. Volz, Symplectic multi-time step parareal algorithms applied to molecular dynamics.
https://hal.science/hal-00358459, 2009.

[5] F. Bashforth and J. C. Adams, Theories of Capillary Action, Cambridge Univ. Press, Cambridge, 1883.
[6] D. Q. Bui, C. Japhet, Y. Maday, and P. Omnes, Coupling parareal with optimized schwarz waveform relaxation for parabolic

problems, SIAM Journal on Numerical Analysis, 60 (2022), pp. 913–939.

[7] A. J. Christlieb, C. B. Macdonald, and B. W. Ong, Parallel high-order integrators, SIAM Journal on Scientific Computing,
32 (2010), pp. 818–835.

[8] G. Dahlquist, Convergence and stability in the numerical integration of ordinary differential equations, Mathematica Scan-

dinavica, 4 (1956), pp. 33–53.
[9] , Stability and error bounds in the numerical integration of ordinary differential equations, Trans. of the Royal Inst. of

Techn., Nr.130 (1959), p. 87.
[10] X. Dai, C. Le Bris, F. Legoll, and Y. Maday, Symmetric parareal algorithms for hamiltonian systems, ESAIM: Mathe-

matical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 47 (2013), pp. 717–742.
[11] X. Dai and Y. Maday, Stable parareal in time method for first- and second-order hyperbolic systems, SIAM Journal on

Scientific Computing, 35 (2013), pp. A52–A78.
[12] J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, Journal of Computational and Applied

Mathematics, 6 (1980), pp. 19–26.

https://hal.science/hal-00358459

TITLE WILL BE SET BY THE PUBLISHER 21

[13] M. Emmett and M. L. Minion, Toward an Efficient Parallel in Time Method for Partial Differential Equations, Communi-
cations in Applied Mathematics and Computational Science, 7 (2012), pp. 105–132.

[14] R. Falgout, S. Friedhoff, T. Kolev, S. MacLachlan, J. Schroder, and S. Vandewalle, Multigrid methods with

space–time concurrency, Computing and Visualization in Science, 18 (2017), pp. 1–21.
[15] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel time integration with

multigrid, SIAM Journal on Scientific Computing, 36 (2014), pp. C635–C661.

[16] R. D. Falgout, M. Lecouvez, and C. S. Woodward, A parallel-in-time algorithm for variable step multistep methods,
Journal of Computational Science, 37 (2019), p. 101029.

[17] C. Farhat and M. Chandesris, Time-decomposed parallel time-integrators: Theory and feasibility studies for fluid, structure,

and fluid-structure applications, International Journal for Numerical Methods in Engineering, 58 (2003), pp. 1397 – 1434.
[18] M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time Domain Decomposition Methods,

T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, eds., Cham, 2015, Springer International Publishing, pp. 69–113.

[19] M. J. Gander and S. Güttel, PARAEXP: A Parallel Integrator for Linear Initial-Value Problems, SIAM Journal on Scientific
Computing, 35 (2013), pp. C123–C142.

[20] M. J. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm, in Domain Decomposition Methods
in Science and Engineering XVII, U. Langer, M. Discacciati, D. E. Keyes, O. B. Widlund, and W. Zulehner, eds., Berlin,

Heidelberg, 2008, Springer Berlin Heidelberg, pp. 45–56.

[21] M. J. Gander, T. Lunet, D. Ruprecht, and R. Speck, A unified analysis framework for iterative parallel-in-time algorithms.
http://arxiv.org/abs/2203.16069v1, 2022.

[22] M. J. Gander and M. Neumüller, Analysis of a new space-time parallel multigrid algorithm for parabolic problems, SIAM

Journal on Scientific Computing, 38 (2016), pp. A2173–A2208.
[23] C. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Upper Saddle River, 1971.

[24] R. Guetat, Méthode de parallélisation en temps: Application aux méthodes de décomposition de domaine, PhD thesis, Paris

VI, 2012. https://www.theses.fr/2011PA066629.
[25] E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I Nonstiff problems, Springer, Berlin,

second ed., 2000.

[26] H. Jiménez-Pérez and J. Laskar, A time-parallel algorithm for almost integrable Hamiltonian systems, (2011). https:

//arxiv.org/abs/1106.3694.

[27] J.-L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un schéma en temps pararéel, Comptes Rendus de l’Académie

des Sciences - Series I - Mathematics, 332 (2001), pp. 661–668.
[28] Y. Maday and O. Mula, An adaptive parareal algorithm, Journal of Computational and Applied Mathematics, 377 (2020),

p. 112915.
[29] Y. Maday and E. M. Rønquist, Parallelization in time through tensor-product space-time solvers, Comptes Rendus Mathe-

matique, 346 (2008), pp. 113–118.

[30] J. Nievergelt, Parallel methods for integrating ordinary differential equations, Commun. ACM, 7 (1964), pp. 731–733.
[31] B. W. Ong and J. B. Schroder, Applications of time parallelization, Computing and Visualization in Science, 23 (2020).

[32] A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations, Von Karman institute for

fluid dynamics, 1996.
[33] M. Schreiber, P. S. Peixoto, T. Haut, and B. Wingate, Beyond spatial scalability limitations with a massively parallel

method for linear oscillatory problems, The International Journal of High Performance Computing Applications, 32 (2018),

pp. 913–933.
[34] A. Toselli and O. Widlund, Domain decomposition methods: algorithms and theory, vol. Springer Series in Computational

Mathematics, Springer Berlin, Heidelberg, 2005.

http://arxiv.org/abs/2203.16069v1
https://www.theses.fr/2011PA066629
https://arxiv.org/abs/1106.3694
https://arxiv.org/abs/1106.3694

	Introduction
	1. A multi-step variant of the parareal algorithm
	1.1. Setting and preliminary notations
	1.2. Parareal algorithm with multi-step time schemes
	1.3. Convergence analysis of the multi-step parareal method

	2. Advantages of the multi-step parareal algorithm
	3. Numerical tests
	3.1. Numerical convergence results
	3.2. Parallel efficiency

	4. Conclusion
	Appendix A. Proof of Proposition 1.2
	References

