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Abstract

We show the importance of using a thermodynamically consistent flux
discretization when describing drift-diffusion processes within light emit-
ting diode simulations. Using the classical Scharfetter-Gummel scheme
with Fermi-Dirac statistics is an example of such an inconsistent scheme.
In this case, for an (In,Ga)N multi quantum well device, the Fermi
levels show steep gradients on one side of the quantum wells which
are not to be expected. This result originates from neglecting diffusion
enhancement associated with Fermi-Dirac statistics in the numeri-
cal flux approximation. For a thermodynamically consistent scheme,
such as the SEDAN scheme, the spikes in the Fermi levels disap-
pear. We will show that thermodynamic inconsistency has far reaching
implications on the current-voltage curves and recombination rates.
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1 Introduction

In recent years drift-diffusion simulations have offered a numerically attainable
method for studying carrier dynamics in a wide variety of devices includ-
ing light-emitting diodes (LEDs) [1–3], transistors [4, 5] and solar cells [6, 7].
The physical interpretation of the model is quite straightforward: carriers in
a device tend to diffuse from regions of high carrier density to low, and have
drift motion due to an applied force such as an electric field in the device.
On the other hand, the numerical implementation of the model can carry pit-
falls which lead to an incorrect description of the device behaviour as we will
highlight below in detail.

The purpose of this publication is therefore to show the practical unphys-
ical implications of disobeying thermodynamic consistency. In the stationary
case, thermodynamic consistency for discretized drift-diffusion equations can
be defined by the demand that the zero bias solution coincides with the ther-
modynamic equilibrium. In the transient case, it is closely related to the fact
that, for boundary conditions compatible with the thermodynamic equilib-
rium, the solution converges to this equilibrium when time tends to infinity. It
is already known that disobeying this property causes non-physical dissipation
in the steady state, see [8]. However, the inconsistent discrete approximation
of the numerical fluxes has also more direct consequences for the quasi Fermi
potentials and is thus important for accurately describing the physics of a
device in the frame of drift-diffusion simulations. If one inconsistently numer-
ically approximates the numerical fluxes, the quasi Fermi level will show a
completely wrong behavior in for instance quantum well regions, which are at
the heart of modern light emitting diodes. This has a knock-on effect for the
description of the carrier densities and thus also recombination and current-
voltage (IV) curves, which we will illustrate with an (In,Ga)N quantum well
structure, a material system of strong interest for energy efficient solid state
lighting [9].

For the Boltzmann distribution, the classical Scharfetter-Gummel
scheme [10] presents such a thermodynamically consistent scheme. Strictly
monotonically increasing non-Boltzmann distribution functions lead to diffu-
sion enhancement. Various extensions of the Scharfetter-Gummel scheme have
been suggested to account for this effect, see [11–13]. Unfortunately, these
schemes are not thermodynamically consistent. In [14, 15] a thermodynami-
cally consistent generalization for Blakemore statistics (which is itself a special
case of [16]) is presented in the spirit of [10] by solving local Dirichlet prob-
lems. But this generalization requires solving local nonlinear equations during
assembly and the iterative solution of the coupled system. It is therefore
computationally prohibitively expensive. A computationally more affordable
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approach is presented in [17]. On the other hand, in [8] the author presents
another extension of the Scharfetter-Gummel scheme using a proper average
of the nonlinear diffusion guaranteeing thermodynamic consistency for a spe-
cific choice of the distribution function. An alternative interpretation of this
approach based on averaging the diffusion enhancement for a very general
class of statistical distribution functions was given in [18]. Finally, the SEDAN
scheme [19–21] includes the nonlinearity in the drift instead of the diffusion
part of the flux and thus also yields a thermodynamically consistent scheme.

The remainder of this paper is organized as follows: In Section 2, we
describe the bipolar drift-diffusion model for charge transport in semicon-
ductors. Its finite volume discretization including the flux discretizations is
described in Section 3. The formal definition of discrete thermodynamic con-
sistency is also presented in this section. We compare thermodynamically
consistent and inconsistent schemes in Section 4 by studying the distribution
of densities and quasi Fermi levels within an (In,Ga)N quantum well (QW)
system, which is embedded in a p-i-n junction. Finally, we conclude in Section
5.

2 Drift-diffusion equations and diffusion
enhancement

We briefly introduce a model based on nonlinear partial differential equations
which describes bipolar charge transport in a semiconductor. More details can
be found in [22]. The dependence of the carrier densities n and p on the chem-
ical potentials for electrons and holes ηn and ηp are described by a statistical
distribution function F as well as conduction and valence band densities of
states Nc and Nv via the state equations n = NcF(ηn) and p = NvF(ηp).
Typical choices for the distribution function are F(η) = exp(η), the so-called

Boltzmann approximation, or F(η) = F1/2(η) = 2√
π

∫∞
0

E1/2

eE−η+1
dE, namely

the Fermi-Dirac integral of order 1/2 describing degenerate semiconductors.
The chemical potentials are related to the quasi-Fermi potentials of

electrons and holes φn and φp via

ηn = (q(ψ − φn)− Ec)/(kBT ) and ηp = (q(φp − ψ) + Ev)/(kBT ).

Here q denotes the elementary charge, ψ the electrostatic potential, kB the
Boltzmann constant, T the temperature and Ec and Ev the conduction and
valence band-edge energies. We model a bipolar semiconductor device as a
domain Ω ⊂ Rd where the carrier transport in a self-consistent electrical field is
described by a system of partial differential equations. In the steady-state case
this drift-diffusion system consists of Poisson’s equation for ψ and continuity
equations for electrons and holes:

−∇ · (ε0εr∇ψ) = q(C + p− n), x⃗ ∈ Ω, (1)

−∇ · jn = −qR, ∇ · jp = −qR, x⃗ ∈ Ω. (2)



Springer Nature 2021 LATEX template

4 Thermodynamic consistency in light emitting diode simulations

xK xL

K
L

Fig. 1 Collocation points (black), simplices (grey lines) and control volumes (filled) in two

space dimensions. Note the right angle between the lines x⃗K x⃗L and ∂K ∩ ∂L, which allows
to approximate the normal current through the face boundary ∂K ∩ ∂L (green) by a finite

difference expression along the edge x⃗K x⃗L (red).

Here, εr is the relative permittivity, C is the net doping profile, andR = R(n, p)
describes the recombination. Electron and hole currents can be expressed in
terms of quasi-Fermi potentials by

jn = −qµnn∇φn, jp = −qµpp∇φp, (3)

or for any strictly monotonic Fermi-like distribution function F(η) in drift-
diffusion form

jn = qµn

[
UT g

( n

Nc

)
∇n− n∇

(
ψ − Ec

q

)]
,

and jp = −qµp

[
UT g

( p

Nv

)
∇p+ p∇

(
ψ +

Ev

q

)]
, (4)

where µn and µp denote the electron and hole mobilities, respectively, and
UT = kBT/q is the thermal voltage. The factor g can be defined in terms of
densities, g(x) = x(F−1)′(x), for x ∈ R. This factor is the so-called diffusion
enhancement appearing as a density-dependent modification factor in the gen-
eralized Einstein relation, see [23], leading in general to a non-linear diffusion
coefficient. For the Boltzmann distribution, F(η) = exp(η), we have g ≡ 1 and
the current expressions (4) reduce to the usual ones with linear diffusion.

3 Finite volume space discretization

We discretize the domain Ω using the Voronöı box based finite volume method
introduced in [24], also known as “box method” due to [25]. It uses a simplical
boundary conforming Delaunay grid ([26]) which allows to obtain control vol-
umes surrounding each given collocation point x⃗K by joining the circumcenters
of the simplices containing it, see Fig. 1.

Let ∂K denote the boundary of the control volume K, and |ξ| the mea-
sure of a geometrical object ξ. For each control volume K, we integrate the
continuity equation (2) and apply Gauss’s theorem to the integral of the flux
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divergence. Restricting our considerations to the electron transport equation,
we obtain

0 =

∫
∂K

jn · n⃗ds−
∫
K

qR dx⃗ =
∑

L neighbor of K

∫
∂K∩∂L

jn · n⃗KLds−
∫
K

qR dx⃗

≈
∑

L neighbor of K

|∂K ∩ ∂L|jn,KL − q|K|R(nK , pK),
(5)

where n⃗ is the internal unit normal to ∂K and n⃗KL is the internal unit normal
to the interface ∂K ∩∂L for each neighbor L of K. The values nK , pK are the
numerical approximations of the densities n and p at the collocation points
x⃗K , and jn,KL are approximations of the normal currents through ∂K ∩ ∂L,
see Fig. 1. In the same manner the discretization of the Poisson equation can
be obtained. A more detailed discussion of this method can be found in [22].

3.1 Discrete thermodynamic consistency

One property which holds on a continuous level to avoid unphysical state dissi-
pation is the preservation of thermodynamic equilibrium [22]. Mathematically,
this means that vanishing fluxes shall imply constant quasi Fermi potentials.
The classical discrete counterpart of this property is formulated as below (see
for example [18, 22]): a numerical flux j = jKL is said to be thermodynamically
consistent if it satisfies an analogous discrete relation, i.e.

j = 0 implies δφKL = 0, (6)

where δφKL = (φL − φK)/UT . Similarly, we define δηKL = ηL − ηK and
δψKL = (ψL −ψK)/UT and δEKL = (Ec,L −Ec,K)/(qUT ). We point out that
the condition (6) holds in equilibrium. Here, we introduce a stronger notion of
thermodynamic consistency, which holds outside of equilibrium, namely

j ≤ 0 implies δφKL ≥ 0 and j ≥ 0 implies δφKL ≤ 0. (7)

An important property of defining thermodynamical consistency like above is
that the sign of the numerical current is consistent with that of its continuous
counterpart (3). Thermodynamic consistency is also important, when coupling
the van Roosbroeck system to heat transport models [22]. We discuss now
different numerical fluxes that may be used within a Voronöı finite volume
framework.

3.2 The Scharfetter-Gummel scheme

First, we introduce the well known, classical Scharfetter-Gummel flux approx-
imation [10] given by

jsg = j0 {B (δψKL − δEKL)F(ηL)−B (−δψKL + δEKL)F(ηK)} , (8)
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where the constant j0 is given by j0 = qµnNc
UT

hKL
for hKL = |x⃗K − x⃗L|, and

B is the Bernoulli function, B(x) = x
exp(x)−1 . It is important to point out that

Scharfetter and Gummel introduced this numerical flux only in the Boltzmann
regime, i.e. F = exp. In this case, the flux is thermodynamically consistent in
the sense of (6). However, once we leave the Boltzmann regime, i.e. F ≠ exp,
and continue using (8) this numerical flux will no longer be thermodynamically
consistent.

3.3 SEDAN scheme

Next, we present the SEDAN scheme, which yields a thermodynamically con-
sistent approach also for state equations which do not necessarily rely on the
Boltzmann approximation. The earliest reference we could find for such a
excess chemical potential scheme is the source code of the SEDAN III simu-
lator [21], which explains the reason we use this name. A numerical analysis
focused comparison of this flux approximation is given in [20] and simulation
results are presented in [19]. The scheme is motivated by rearranging the drift
part to include the excess chemical potential, νex = lnF(η)− η, yielding

jsedan = j0 {B (QKL)F(ηL)−B (−QKL)F(ηK)} (9)

with

QKL = δψKL − δEKL + νexL − νexK = δψKL − δEKL − δηKL + ln
F(ηL)

F(ηK)
. (10)

Note that, using the definition of QKL and the fact that exB(x) = B(−x),
one can reformulate the SEDAN flux as

jsedan = j0B (QKL)F(ηL)
(
1− eδφKL

)
.

Therefore, it is easy to see that the SEDAN flux satisfies (7), since both
B(QKL) and F(ηL) are positive: it is a thermodynamicaly consistent numerical
flux.

Note that when applying Boltzmann statistics νex = 0 and the SEDAN
flux becomes equivalent to the Scharfetter-Gummel expression. Therefore, in
the next section, when displaying results using Boltzmann statistics, we only
show results from one numerical scheme.

4 Simulations

To illustrate the importance of using thermodynamically consistent flux
approximations, we study a simple (In,Ga)N multi QW (MQW) system. In
particular, we consider three QWs and the same set of parameters as in [3].
For large negative values of η (η ≤ −2, which correspond roughly to densi-
ties below 14% of the effective density of states Nc, thus a low carrier density
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(a) Boltzmann (b) FD - SG (c) FD - SEDAN
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Fig. 2 Conduction band edge (black) and quasi Fermi energy (red) at a bias of 3.3V (a)
when using Boltzmann statistics, (b) when incorrectly using the Scharfetter-Gummel (SG)
scheme with Fermi-Dirac (FD) statistics, and (c) when correctly using the SEDAN scheme
with Fermi-Dirac statistics.

regime in the conduction band of the wells) the Boltzmann approximation pro-
vides a good estimate of the Fermi-Dirac statistics. Therefore in certain cases
Scharfetter-Gummel scheme can offer a good description of the drift-diffusion
model (e.g. Ref. [27]).

On the other hand there are situations where Boltzmann statistics will
not suffice. At a bias of 3.3V the importance of using a thermodynamically
consistent scheme becomes apparent. The conduction band edge and quasi
Fermi energies of the system when treated using Boltzmann statistics is shown
in Fig. 2 (a). Applying the Scharfetter-Gummel scheme (8) to Fermi-Dirac
statistics for a bias of 3.3V leads to spikes in the Fermi energy on the right
side of each QW, see Figure 2 (b).

Recalling the condition (7), for thermodinamically consistent schemes, the
discrete gradient of the discrete quasi Fermi level should indicates the direction
of the discrete electron flow (as it is in the continuous case, according to (3)).
However on figure 2 (b), one can see that, when the Scharfetter-Gummel
scheme is applied to Fermi-Dirac statistics, resulting in a thermodynamically
inconsistent scheme, the direction of electron flow is to the right outside the
QW regions (e.g. between 6 nm and 9 nm) but to the left inside the QW
regions (e.g. between 2 nm and 5 nm), which is not in accordance with (7).
Moreover, as there is no generation of carriers in the system this change in
direction of the electron flux is highly unphysical.

These spikes in the quasi Fermi level are not present if one uses the
Scharfetter-Gummel scheme with the Boltzmann approximation, which is a
thermodynamically consistent scheme (Figure 2 (a)). Similarly, using Fermi-
Dirac statistics with the SEDAN scheme does not exhibit the unphysical spikes
in the Fermi level (Figure 2 (c)).

Another perspective to interpret thermodynamic inconsistency is to note
the incorrect interplay between quasi Fermi energies and local current fluxes.
We see in Fig. 3 that the local numerical electron fluxes are positive and
decrease monotonically across the QW regions. This is true for all three
settings, that is, Boltzmann statistics in combination with the classical
Scharfetter-Gummel scheme, as well as Fermi-Dirac statistics using both
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Fig. 3 Numerical electron flux averaged over each atomic plane at a bias of 3.3V shown
for Boltzmann statisitcs (black), Fermi-Dirac statistics incorrectly using the Scharfetter-
Gummel (SG) flux discretization (red) and Fermi-Dirac statistics correctly using the SEDAN
flux discretization (blue).
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Fig. 4 Electron density at a bias of 3.3V (a) when using Boltzmann statistics, (b) when
incorrectly using the Scharfetter-Gummel (SG) scheme with Fermi-Dirac statistics, and (c)
when correctly using the SEDAN scheme with Fermi-Dirac statistics.

consistent and inconsistent numerical schemes. By our definition of a ther-
modynamically consistent scheme (7), a positive local numerical flux should
imply a negative quasi Fermi potential discrete gradient. In fact, this is true
for both consistent settings as one can see in Fig. 2 (a) and (c). However, for
the inconsistent case the derivative of the quasi Fermi energies become posi-
tive near the right side of the wells, Fig. 2 (b), also in disagreement of how the
flux should behave at the continuous level (see the relation between the flux
and the quasi Fermi potential (3)).

Previous studies of the numerical flux approximations have shown that an
thermodynamically inconsistent scheme can result in the incorrect sign of the
particle flux [18]. This is also reflected by the fact that (6) holds only for
consistent schemes, which guarantee the physically correct sign of the current
also far from equilibrium.

The physical reason of why an inconsistent scheme produces spikes on
the right sides of the QWs becomes apparent when looking at the corre-
sponding densities at a bias of 3.3V. The Fermi-Dirac function grows like a
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Fig. 5 (a) Difference in magnitude of the Shockley-Read-Hall (SRH, black), radiative (red)
and Auger (blue) recombination rates between Fermi-Dirac and Boltzmann statistics at a
bias of 3.3V, calculated as described in the main text. (b) Current density-voltage (IV) curves
using Boltzmann statistics (black, dashed), Fermi-Dirac statistics using the Scharfetter-
Gummel scheme (SG, red) and Fermi-Dirac statistics using the SEDAN scheme (black,
solid), shown on a log scale.

polynomial while the Boltzmann approximation grows for large densities expo-
nentially, see for example Figure 50.9 in [22]. This different behaviour leads
to nonlinear diffusion, the so-called diffusion enhancement, for non-Boltzmann
statistics, see (4), or [18]. The Scharfetter-Gummel scheme neglects the dif-
fusion enhancement assuming only linear diffusion, which has a knock-on
impact on the carrier density: the densities calculated using Boltzmann statis-
tics (Fig. 4 (a)) and using Fermi-Dirac statistics with the Scharfetter-Gummel
scheme (Fig. 4 (b)) are visibly indistinguishable. However, in order to produce
the same density between a Boltzmann and Fermi-Dirac calculation, the quasi
Fermi levels must differ. This results in the unusual behaviour of the quasi
Fermi level exhibited in Figure 2 (b). Comparing these densities with the cor-
rectly calculated density using Fermi-Dirac statistics in combination with the
thermodynamically consistent SEDAN scheme (Figure 4 (c)) we see that the
choice of statistics function will impact carrier density in both the well and
the barrier regions at the here chosen example bias of 3.3V.

Because it influences the carrier density, thermodynamic inconsistency has
direct implications for the computed recombination rates as well as the current-
voltage (IV) curves. Next, we compare the recombination rates calculated
using Boltzmann statistics with those calculated while incorrectly using the
Scharfetter-Gummel scheme implementing Fermi-Dirac statistics.

This is highlighted in Figure 5 (a), where the differences between Fermi-
Dirac and Boltzmann-like behaviour are shown for the three recombination
rates, calculated via

∆ log(recomb.) = log(RSEDAN
i )− log(RBoltzmann

i ) ,
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where Rs
i is the recombination rate associated with the process i

(i ∈ {Shockley–Read–Hall, Radiative, Auger}) calculated with the scheme
s (s ∈ {Boltzmann, SEDAN}). From this figure it becomes clear that the
Boltzmann behaviour overall underestimates the recombination. In particu-
lar, near the right-most QW the recombination rates differ by approximately
two orders of magnitude. These differences increase as the bias is increased
(not shown). This can have consequences for overall device behaviour such
as the internal quantum efficiency and the I-V curves. The latter are shown
in Figure 5 (b), where the decreased recombination current displayed in the
Boltzmann and thermodynamically inconsistent Fermi-Dirac scheme leads to
an underestimate of the current density by an order of magnitude at 3.5V.

The results highlighted above indicate that Fermi statistics implemented
using a thermodynamically inconsistent scheme will result in Boltzmann-like
behaviour in LED simulations – at least in terms of carrier and current den-
sities. If this is extended to laser simulations the consequences can be even
more dramatic, as the gain calculation depends on the difference between the
electron and hole quasi Fermi energies [28], expressed by the so-called Fermi
voltage. In this case the unphysical spikes seen in Fig. 2 (b) will lead to an
incorrect prediction of the transparency density.

5 Conclusion

In this paper, we have shown the importance of using a thermodynamically
consistent flux discretization when describing drift-diffusion processes within
quantum well devices.

Using the classical Scharfetter-Gummel scheme with Fermi-Dirac statistics
is an example of such an inconsistent scheme. Here we studied an (In,Ga)N
multi quantum well structure as an example since it is a very important
material system for optoelectronic devices. In this case, the Fermi levels show
steep gradients on one side of the quantum wells resulting in an unphysical
description of the direction of the current, e.g. assuming the usual continuous
expression. This is explained by the omission of diffusion enhancement from
the numerical current expression, that leads to a similar density distribution
as using Boltzmann statistics. This has a knock-on effect for recombination
and current-voltage behaviour, where using Fermi-Dirac statistics with a ther-
modynamically inconsistent scheme may incorrectly predict a Boltzmann-like
behaviour.

Contrarily, for a thermodynamically consistent scheme, such as the SEDAN
scheme, these unphysical spikes in the Fermi levels disappear and accurate
current curves and recombination processes are predicted. Thus, thermody-
namically consistent schemes are essential to address open questions, such as
the efficiency drop in modern light emitting devices and to reliably guide their
design.
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[1] Römer F, Witzigmann B (2018) Signature of the ideality factor in III-
nitride multi quantum well light emitting diodes. Opt Quant Electron
50(11):1-10

[2] Li CK, Piccardo M, Lu LS, Mayboroda S, Marinelli L, Peretti J, Speck
J, Weisbuch C, Filoche M, Wu YR (2017) Localization landscape theory
of disorder in semiconductors. III. Application to carrier transport and
recombination in light emitting diodes. Phys Rev B 95(04):144206

[3] O’Donovan M, Farrell P, Moatti J, Streckenbach T, Koprucki T, Schulz
S (2022) Impact of random alloy fluctuations on the carrier distribution
in multi-color (In,Ga)N/GaN quantum well systems. arXiv:2209.11657
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