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Abstract

We show the importance of using a thermodynamically consistent
flux discretization when describing drift-diffusion processes within light
emitting diode simulations. Using the classical Scharfetter-Gummel
scheme with Fermi-Dirac statistics is an example of such an incon-
sistent scheme. In this case, for an (In,Ga)N multi quantum well
device, the Fermi levels show an unphysical hump within the quan-
tum well regions. This result originates from neglecting diffusion
enhancement associated with Fermi-Dirac statistics in the numeri-
cal flux approximation. For a thermodynamically consistent scheme,
such as the SEDAN scheme, the humps in the Fermi levels disap-
pear. We show that thermodynamic inconsistency has far reaching
implications on the current-voltage curves and recombination rates.
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1 Introduction

In recent years drift-diffusion simulations have offered a numerically attainable
method for studying carrier dynamics in a wide variety of devices includ-
ing light-emitting diodes (LEDs) [1-3], transistors [4, 5] and solar cells [6, 7].
The physical interpretation of the model is quite straightforward: carriers in
a device tend to diffuse from regions of high carrier density to low, and have
drift motion due to an applied force such as an electric field in the device.
On the other hand, the numerical implementation of the model can carry pit-
falls which lead to an incorrect description of the device behaviour as we will
highlight below in detail.

The purpose of this publication is therefore to show the practical unphys-
ical implications of disobeying thermodynamic consistency. In the stationary
case, thermodynamic consistency for discretized drift-diffusion equations can
be defined by the demand that the zero bias solution coincides with the ther-
modynamic equilibrium. In the transient case, it is closely related to the fact
that, for boundary conditions compatible with the thermodynamic equilib-
rium, the solution converges to this equilibrium when time tends to infinity. It
is already known that disobeying this property causes non-physical dissipation
in the steady state, see [8]. However, the inconsistent discrete approximation
of the numerical fluxes has also more direct consequences for the quasi Fermi
potentials and is thus important for accurately describing the physics of a
device in the frame of drift-diffusion simulations. If one inconsistently approx-
imates the fluxes the quasi Fermi level will show a completely wrong behavior
in for instance quantum well regions, which are at the heart of modern LEDs.
This has a knock-on effect for the description of the carrier densities and thus
also recombination and current-voltage (IV) curves, which we will illustrate
with an (In,Ga)N quantum well structure, a material system of strong interest
for energy efficient solid state lighting [9] and for which considerable effort has
been undertaken to develop advanced carrier transport models [10].

For the Boltzmann distribution, the classical Scharfetter-Gummel
scheme [18] presents such a thermodynamically consistent scheme. Strictly
monotonically increasing non-Boltzmann distribution functions lead to diffu-
ston enhancement. Various extensions of the Scharfetter-Gummel scheme have
been suggested to account for this effect, see [19-21]. Unfortunately, these
schemes are not thermodynamically consistent. In [22, 23] a thermodynami-
cally consistent generalization for Blakemore statistics (which is itself a special
case of [24]) is presented in the spirit of [18] by solving local Dirichlet prob-
lems. But this generalization requires solving local nonlinear equations during
assembly and the iterative solution of the coupled system. It is therefore
computationally prohibitively expensive. A computationally more affordable
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approach is presented in [25]. On the other hand, in [8] the author presents
another extension of the Scharfetter-Gummel scheme using a proper average
of the nonlinear diffusion guaranteeing thermodynamic consistency for a spe-
cific choice of the distribution function. An alternative interpretation of this
approach based on averaging the diffusion enhancement for a very general
class of statistical distribution functions was given in [26]. Finally, the SEDAN
scheme [27-29] includes the nonlinearity in the drift instead of the diffusion
part of the flux and thus also yields a thermodynamically consistent scheme.

The remainder of this paper is organized as follows: In Section 2, we
describe the bipolar drift-diffusion model for charge transport in semicon-
ductors. Its finite volume discretization including the flux discretizations is
described in Section 3. The formal definition of discrete thermodynamic con-
sistency is also presented in this section. We compare thermodynamically
consistent and inconsistent schemes in Section 4 by studying the distribution
of densities and quasi Fermi levels within an (In,Ga)N quantum well (QW)
system, which is embedded in a p-i-n junction. Finally, we conclude in Section
D.

2 Drift-diffusion equations and diffusion
enhancement

We briefly introduce a model based on nonlinear partial differential equations
which describes bipolar charge transport in a semiconductor. More details can
be found in [30]. The dependence of the carrier densities n and p on the chem-
ical potentials for electrons and holes n,, and 7, are described by a statistical
distribution function F as well as conduction and valence band densities of
states N, and N, via the state equations n = N.F(n,) and p = N, F(n,).

Typical choices for the distribution function are F(n) = exp(n), the so-called
co  pgl/2
fo eF—n41

the Fermi-Dirac integral of order 1/2 describing degenerate semiconductors.
The chemical potentials are related to the quasi-Fermi potentials of

electrons and holes ¢,, and ¢, via

Boltzmann approximation, or F(n) = Fys(n) = % dE, namely

M = (q(¢ — n) — Ec)/(kpT) and Np = (Q(Qﬁp =) + Ey)/(kpT).

Here ¢ denotes the elementary charge, 1 the electrostatic potential, kp the
Boltzmann constant, T' the temperature and E. and FE, the conduction and
valence band-edge energies. This model assumes that charge carriers behave
as if they are in a bulk material, described by a 3-D density of states. In
a slowly varying potential this is a valid description, however in a quan-
tum well system the abrupt interface requires a more advanced treatment.
To account for the quantum mechanical nature of electrons and holes one
option is to solve the Schrédinger equation for the confining potential energy
formed by V.., = E.. —qi. This is a numerically demanding approach, as the
Schrédinger equation is an eigenvalue problem which would need to be solved
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self-consistently coupled to Poisson and drift-diffusion equations. While such
a calculation is feasible in 1D, extending this to 2D or 3D structures
is numerically prohibitive. Therefore, in recent years significant efforts
have been undertaken to establish methods that account for quantum correc-
tions but are computationally cheaper [2, 31]. One of these approaches is based
on the so-called localization landscape theory (LLT), which allows to extract
a (non-local) effective potential. It has been shown that LLT provides a
good approximation of the single particle ground states, not only in
square wells but also triangular wells which are relevant for systems
with a polarization field — such as (In,Ga)N QWs [11]. The resulting
(effective) confining potentials, Egif), exhibit band edges that are softened and
approximate the finite extent of carrier wavefunctions®. In the framework of
LLT a linear system of equations is solved to determine the effective potential
without introducing extra free parameters [32]. Our implementation of this
method in conjunction with a drift-diffusion based carrier transport solver is
discussed in more detail in [3] and [10]. In [3] we have compared results of our
quantum corrected drift-diffusion model employing LLT with the results of
a commercially available software package utilizing a ‘standard’ Schrodinger-
Poisson solver. Our findings indicate that LLT can produce results in good
agreement with the fully coupled Schrodinger-Poisson-drift-diffusion solver,
highlighting that LLT captures quantum mechanical corrections sufficiently.
In recent years this method has been used to study transport behaviour of
numerous semi-conductor structures include LEDs [12-15], blocking layers [16]
and superlattices [17]; moreover, these methods have been used suc-
cessfully alongside experimental studies to gain insight into device
behaviour [14, 15].

We model a bipolar semiconductor device as a domain Q C R? where the
carrier transport in a self-consistent electrical field is described by a system of
partial differential equations. In the steady-state case this drift-diffusion sys-
tem consists of Poisson’s equation for 1) and continuity equations for electrons
and holes:

—V - (e0er V) = q(C+p—n), TeQ, (1)
~V-jn=—qR, V-j,=—qR, TeQ (2)
Here, €, is the relative permittivity, C'is the net doping profile, and R = R(n, p)

describes carrier recombination. Electron and hole current densities can be
expressed in terms of quasi-Fermi potentials by

Jn = —quanVen, Jp = —quppVep, (3)

or for any strictly monotonic Fermi-like distribution function F(n) in drift-
diffusion form

From here on within this work E.,, shall refer to the band edge values which are modified to
account for the effective potential, E. , = ngf,



Springer Nature 2021 BTEX template

Thermodynamic consistency in optoelectronic simulations 5

b= [era() 7o o (0= )]

and j, = —qu, [UTg(Niv)Vp +pV <¢ + EZU) }, (4)

where p, and u, denote the electron and hole mobilities, respectively, and
Ur = kpT/q is the thermal voltage. The factor g can be defined in terms of
densities, g(z) = x(F 1) (), for z € R. This factor is the so-called diffusion
enhancement appearing as a density-dependent modification factor in the gen-
eralized Einstein relation, see [33], leading in general to a non-linear diffusion
coefficient. For the Boltzmann distribution, F(n) = exp(n), we have g = 1 and
the current expressions (4) reduce to the usual ones with linear diffusion.

3 Finite volume space discretization

We discretize the domain €2 using the Voronoi box based finite volume method
introduced in [34], also known as “box method” due to [35]. It uses a simplical
boundary conforming Delaunay grid ([36]) which allows to obtain control vol-
umes surrounding each given collocation point xx by joining the circumcenters
of the simplices containing it, see [30] for details.

Let 0K denote the boundary of the control volume K, and |{| the mea-
sure of a geometrical object . For each control volume K, we integrate the
continuity equation (2) and apply Gauss’s theorem to the integral of the flux
divergence. Restricting our considerations to the electron transport equation,
we obtain

Oz/jn-nds—/quXZ Z /jn~nKLds—/qux

K K L neighbor of K 9KNOL K (5)

~ Y. 0K NOL|jn kL — q|K|R(nk, i),
L neighbor of K

where n is the internal unit normal to 0K and ng, is the internal unit normal
to the interface 0K NOL for each neighbor L of K. The values ng, px are the
numerical approximations of the densities n and p at the collocation points
Xg, and jp, k1, are approximations of the normal currents through 0K NJL. In
the same manner the discretization of the Poisson equation can be obtained.
A more detailed discussion of this method can be found in [30].

3.1 Discrete thermodynamic consistency

One property which holds on a continuous level to avoid unphysical state dissi-
pation is the preservation of thermodynamic equilibrium [30]. Mathematically,
this means that vanishing fluxes shall imply constant quasi Fermi potentials.
The classical discrete counterpart of this property is formulated as below (see
for example [26, 30]): a numerical flux j = jx, is said to be thermodynamically



Springer Nature 2021 BTEX template

6 Thermodynamic consistency in optoelectronic simulations
consistent if it satisfies an analogous discrete relation, i.e.
j=0 1implies dpxr =0, (6)

where 0ok = (pr, — ¢k )/Ur. Similarly, we define dni; = nr — nx and
6’(/JKL = (’lﬂL — ’(ﬂ[()/UT and 6EKL = (Ec,L — EQK)/((]UT). We point out that
the condition (6) holds in equilibrium. Here, we introduce a stronger notion of
thermodynamic consistency, which holds outside of equilibrium, namely

7 <0 implies dpxy >0 and j > 0 implies dpgr < 0. (7)

An important property of defining thermodynamical consistency like above is
that the sign of the numerical current is consistent with that of its continuous
counterpart (3). Thermodynamic consistency is also important, when coupling
the van Roosbroeck system to heat transport models [30]. We discuss now
different numerical fluxes that may be used within a Voronoi finite volume
framework.

3.2 The Scharfetter-Gummel scheme

First, we introduce the well known, classical Scharfetter-Gummel flux approx-
imation [18] given by

Jsg = Jo{B (YK — 0Ek) F(nr) — B(—0Ykr + 0Ekr) F(nk)}, (8)

U
where the constant jg is given by jo = qunNch—T for hxr = |k — @], and
KL

B is the Bernoulli function, B(z) = exp(ﬁ. It is important to point out that
Scharfetter and Gummel introduced this numerical flux only in the Boltzmann
regime, i.e. F = exp. In this case, the flux is thermodynamically consistent in
the sense of (6). However, once we leave the Boltzmann regime, i.e. F # exp,
and continue using (8) this numerical flux will no longer be thermodynamically

consistent.

3.3 SEDAN scheme

Next, we present the SEDAN scheme, which yields a thermodynamically con-
sistent approach also for state equations which do not necessarily rely on the
Boltzmann approximation. The earliest reference we could find for such a
excess chemical potential scheme is the source code of the SEDAN III simu-
lator [29], which explains the reason we use this name. A numerical analysis
focused comparison of this flux approximation is given in [28] and simulation
results are presented in [27]. The scheme is motivated by rearranging the drift
part to include the excess chemical potential, v** = In F(n) — n, yielding

Jsedan = Jo {B (Qkr)F(nr) — B(—Qkr) F(nk)} 9)
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Fig. 1 Conduction band edge (black) and quasi Fermi energy (red) at a bias of 3.3V (a)
when using Boltzmann statistics, (b) when incorrectly using the Scharfetter-Gummel (SG)
scheme with Fermi-Dirac (FD) statistics, and (c) when correctly using the SEDAN scheme
with Fermi-Dirac statistics.

with

f
Qrxr = 0Wkr —0Eky +vi" —vE = 6Ykr —0Ekr —dnkr +1n M (10)
F(nx)

Note that, using the definition of Qxr and the fact that e*B(z) = B(—z),
one can reformulate the SEDAN flux as

Jsedan = JoB (QKL) f(nL) (1 _ e&PKL) )

Therefore, it is easy to see that the SEDAN flux satisfies (7), since both
B(Qxkr) and F(n) are positive: it is a thermodynamicaly consistent numerical
flux.

Note that when applying Boltzmann statistics ¥** = 0 and the SEDAN
flux becomes equivalent to the Scharfetter-Gummel expression. Therefore, in
the next section, when displaying results using Boltzmann statistics, we only
show results from one numerical scheme.

4 Simulations

To illustrate the importance of using thermodynamically consistent flux
approximations, we study a simple (In,Ga)N multi QW (MQW) system. In
particular, we consider three QWs and the same set of parameters as in [3].
For large negative values of n (n < —2, which correspond roughly to densi-
ties below 14% of the effective density of states N, thus a low carrier density
regime in the conduction band of the wells) the Boltzmann approximation pro-
vides a good estimate of the Fermi-Dirac statistics. Therefore in certain cases
Scharfetter-Gummel scheme can offer a good description of the drift-diffusion
model (e.g. Ref. [37]).

On the other hand there are situations where Boltzmann statistics will not
suffice and the importance of using a thermodynamically consistent scheme
becomes apparent. Figure 1 (a) displays the conduction band edge and quasi
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Fermi energies of the MQW system when treated using Boltzmann statistics
at a bias of 3.3V. Applying the Scharfetter-Gummel scheme (8) to Fermi-Dirac
statistics for a bias of 3.3V leads to humps in the quasi Fermi energy within
each QW, see Figure 1 (b).

Recalling the condition (7), for thermodynamically consistent schemes, the
discrete gradient of the discrete quasi Fermi level should indicates the direction
of the discrete electron flow (as it is in the continuous case, according to (3)).
However in Figure 1 (b), one can see that, when the Scharfetter-Gummel
scheme is applied to Fermi-Dirac statistics, resulting in a thermodynamically
inconsistent scheme, the direction of electron flow is to the right outside the
QW regions (e.g. between -5 nm and 3 nm) but to the left inside the QW
regions (e.g. between 10 nm and 15 nm), which is not in accordance with (7).
Moreover, as there is no generation of carriers in the system this change in
direction of the electron flux is highly unphysical.

—

{\'IE 104 ¢ T T
O S —— E
103 £ E
< : :
>102 =
‘@ £ Boltzmann 7
8 101 E SG \\ Ef
> g SEDAN E
5 100 | | |

u -5 5 15 25

Position (nm)

Fig. 2 Numerical electron flux averaged over each atomic plane at a bias of 3.3V shown
for Boltzmann statisitcs (black), Fermi-Dirac statistics incorrectly using the Scharfetter-
Gummel (SG) flux discretization (red) and Fermi-Dirac statistics correctly using the SEDAN
flux discretization (blue).

These humps in the quasi Fermi level are not present if one uses the
Scharfetter-Gummel scheme with the Boltzmann approximation, which is a
thermodynamically consistent scheme (Figure 1 (a)). Similarly, using Fermi-
Dirac statistics with the SEDAN scheme does not exhibit the unphysical humps
in the Fermi level (Figure 1 (c)).

Another perspective to interpret thermodynamic inconsistency is to note
the incorrect interplay between quasi Fermi energies and local current fluxes.
We see in Figure 2 that the local numerical electron fluxes are positive
and decrease monotonically across the QW regions. This is true for all
three settings, that is, Boltzmann statistics in combination with the classi-
cal Scharfetter-Gummel scheme, as well as Fermi-Dirac statistics using both
consistent and inconsistent numerical schemes. By our definition of a ther-
modynamically consistent scheme (7), a positive local numerical flux should
imply a negative quasi Fermi potential discrete gradient. In fact, this is true
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(a) Boltzmann (b) SG (c) SEDAN
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Fig. 3 Electron density at a bias of 3.3V (a) when using Boltzmann statistics, (b) when
incorrectly using the Scharfetter-Gummel (SG) scheme with Fermi-Dirac statistics, and (c)
when correctly using the SEDAN scheme with Fermi-Dirac statistics.

for both consistent settings as one can see in Figure 1 (a) and (c). However,
for the inconsistent case the derivative of the quasi Fermi energies can become
positive inside the wells, Fig. 1 (b), also in disagreement of how the flux should
behave at the continuous level (see the relation between the flux and the quasi
Fermi potential (3)).

Previous studies of the numerical flux approximations have shown that a
thermodynamically inconsistent scheme can result in the incorrect sign of the
particle flux [26]. This is also reflected by the fact that (6) holds only for
consistent schemes, which guarantee the physically correct sign of the current
also far from equilibrium.

The physical reason of why an inconsistent scheme produces humps within
the QWs becomes apparent when looking at the corresponding densities at a
bias of 3.3V. The Fermi-Dirac function grows like a polynomial while the Boltz-
mann approximation grows for large densities exponentially, see for example
Figure 50.9 in [30]. This different behaviour leads to nonlinear diffusion, the
so-called diffusion enhancement, for non-Boltzmann statistics, see (4), or [26].
The Scharfetter-Gummel scheme neglects the diffusion enhancement assuming
only linear diffusion, which has a knock-on impact on the carrier density: the
densities calculated using Boltzmann statistics (Fig. 3 (a)) and using Fermi-
Dirac statistics with the Scharfetter-Gummel scheme (Fig. 3 (b)) are visibly
indistinguishable. However, in order to produce the same density between a
Boltzmann and Fermi-Dirac calculation, the quasi Fermi levels must differ.
This results in the unusual behaviour of the quasi Fermi level exhibited in
Figure 1 (b). Comparing these densities with the correctly calculated den-
sity using Fermi-Dirac statistics in combination with the thermodynamically
consistent SEDAN scheme (Figure 3 (¢)) we see that the choice of statistics
function will impact carrier density in the well, and more strongly in the barrier
regions at the here chosen example bias of 3.3V.

Because it influences the carrier density, thermodynamic inconsistency has
direct implications for the computed recombination rates as well as the current-
voltage (IV) curves. Next, we compare the recombination rates calculated
using Boltzmann statistics with those calculated while incorrectly using the
Scharfetter-Gummel scheme implementing Fermi-Dirac statistics.
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Fig. 4 (a) Difference in magnitude of the Shockley-Read-Hall (SRH, black), radiative (red)
and Auger (blue) recombination rates between Fermi-Dirac and Boltzmann statistics at a
bias of 3.3V, calculated as described in the main text. (b) Current density-voltage (IV) curves
using Boltzmann statistics (black, dashed), Fermi-Dirac statistics using the Scharfetter-
Gummel scheme (SG, red) and Fermi-Dirac statistics using the SEDAN scheme (black,
solid), shown on a log scale.

This is highlighted in Figure 4 (a), where the differences between Fermi-
Dirac and Boltzmann-like behaviour are shown for the three recombination
rates, calculated via

Alog(recomb.) = log(RFEPAN) _ Jog(REeltzmann)

where R is the recombination rate associated with the process ¢
(¢ € {Shockley-Read-Hall, Radiative, Auger}) calculated with the scheme s
(s € {Boltzmann, SEDAN}). From this figure it becomes clear that the Boltz-
mann behaviour overall underestimates the recombination across the multi
QW region of the device. In particular, the Auger recombination is underesti-
mated by up to two orders of magnitude at a bias of 3.3V. These differences
increase as the bias is increased (not shown). This can have consequences for
overall device behaviour such as the internal quantum efficiency and the IV
curves. The latter are shown in Figure 4 (b), where the decreased recombina-
tion current displayed in the Boltzmann and thermodynamically inconsistent
Fermi-Dirac scheme leads to an underestimate of the current density by close
to an order of magnitude at 3.6V.

The results highlighted above indicate that Fermi statistics implemented
using a thermodynamically inconsistent scheme will result in Boltzmann-like
behaviour in LED simulations — at least in terms of carrier and current den-
sities. If this is extended to laser simulations the consequences can be even
more dramatic, as the gain calculation depends on the difference between the
electron and hole quasi Fermi energies [38], expressed by the so-called Fermi
voltage. In this case the unphysical humps seen in Figure 1 (b) will lead to an
incorrect prediction of the transparency density.
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5 Conclusion

In this paper, we have shown the importance of using a thermodynamically
consistent flux discretization when describing drift-diffusion processes within
quantum well devices.

Using the classical Scharfetter-Gummel scheme with Fermi-Dirac statistics
is an example of such an inconsistent scheme. Here we studied an (In,Ga)N
multi quantum well structure as an example since it is a very important
material system for optoelectronic devices. In this case, the Fermi levels
show humps within the quantum wells resulting in an unphysical description
of the direction of the current, e.g. assuming the usual continuous expres-
sion. This is explained by the omission of diffusion enhancement from the
numerical current expression, that leads to a similar density distribution as
using Boltzmann statistics. This has a knock-on effect for recombination and
current-voltage behaviour, where using Fermi-Dirac statistics with a ther-
modynamically inconsistent scheme may incorrectly predict a Boltzmann-like
behaviour.

Contrarily, for a thermodynamically consistent scheme, such as the SEDAN
scheme, these unphysical humps in the Fermi levels disappear and accurate
current curves and recombination processes are predicted. Thus, thermody-
namically consistent schemes are essential to address open questions, such as
the efficiency drop in modern light emitting devices and to reliably guide their
design.

Funding: This paper was supported by the Leibniz competition 2022
(UVSimTec, K415/2021), Science Foundation Ireland (Nos.17/CDA /4789 and
12/RC/2276 P2) and Labex CEMPI (ANR-11-LABX-0007-01).
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