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GROMOV ELLIPTICITY OF CONES OVER PROJECTIVE
MANIFOLDS

S. KALIMAN AND M. ZAIDENBERG

Abstract. We find classes of projective manifolds that are elliptic in the sense of
Gromov and such that the affine cones over these manifolds also are elliptic off their
vertices. For example, the latter holds for any generalized flag manifold of dimension
n ≥ 3 successively blown up in a finite set of points and infinitesimally near points.
This also holds for any smooth projective rational surface. For the affine cones, the
Gromov ellipticity is a much weaker property than the flexibility. Nonetheless, it still
implies the infinite transitivity of the action of the endomorphism monoid on these
cones.
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Introduction

Let K be an algebraically closed field of characteristic zero and An resp. Pn be
the affine resp. projective n-space over K. All varieties and vector bundles in this
paper are algebraic. By spray resp. ellipticity we mean algebraic spray resp. algebraic
ellipticity. Let X be a smooth algebraic variety. Recall that a spray of rank r over X
is a triple (E, p, s) where p : E → X is a vector bundle of rank r with zero section Z
and s : E → X is a morphism such that s|Z = p|Z . A spray (E, p, s) is dominating

Key words and phrases. Gromov ellipticity, spray, projective variety, affine cone, flexible variety,
Ga-action.
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2 S. KALIMAN AND M. ZAIDENBERG

at x ∈ X if the restriction s|Ex : Ex → X to the fiber Ex = p−1(x) is dominant at
the origin 0x ∈ Z ∩ Ex of the vector space Ex. The constructive subset s(Ex) ⊂ X is
called the s-orbit of x. The variety X is elliptic if it admits a spray (E, p, s) which is
dominating at each point x ∈ X. The ellipticity is equivalent to the weaker properties
of local ellipticity and subellipticity, see [KZ23, Theorem 0.1]. One says thatX is locally
elliptic if for any x ∈ X there is a local spray (Ex, px, sx) defined in a neighborhood
of x and dominating at x such that sx takes values in X. The variety X is called
subelliptic if it admits a family of sprays (Ei, pi, si) defined on X which is dominating
at each point x ∈ X, that is,

TxX =
n∑
i=1

dsi(T0i,xEi,x) ∀x ∈ X.

The ellipticity implies many other useful properties; it is important in the Oka-
Grauert theory, see, e.g., [Gro89], [For17a] and [For23]. In particular, the semigroup
of endomorphisms End(X) of an elliptic variety X acts highly transitivity of X, see
Appendix A in Section 5.

In this paper we establish the ellipticity of affine cones over certain elliptic varieties,
see Theorems 3.4 and 4.1. Summarizing, we prove the following theorem. Recall that
a generalized affine cone Ŷ over a smooth projective variety X defined by an ample
Q-divisor D on X is the affine variety

Ŷ = Spec

(
∞⊕
n=0

H0 (X,OX(bnDc))

)
,

see, e.g., [KPZ13, Sec. 1.15]. In the case where D is a hyperplane section of X ⊂ Pn
the cone Ŷ is the usual affine cone over X.

Theorem 0.1. Let X ⊂ Pn be a smooth projective variety, Ŷ be a generalized affine
cone over X, and Y = Ŷ \ {v} where v is the vertex of Ŷ . Then Y is elliptic in the
following cases:

• X is a rational surface;
• X is obtained via a sequence of successive blowups of points starting from a
variety X0 of dimension n ≥ 3 which belongs to class A0 and verifies condition
(∗∗) of Proposition 3.1. The latter holds for any generalized flag variety X0 =
G/P of dimension n ≥ 3 where G is a reductive group and P is a parabolic
subgroup of G. In particular, this holds for X0 = Pn, n ≥ 3, the Grassmannians,
etc.

Recall that a variety X belongs to class A0 if X can be covered by open sets isomor-
phic to An. A smooth projective surface belongs to class A0 if and only if it is rational.
Any variety of class A0 is elliptic, see [For17a, Proposition 6.4.5] and [KZ23, Theorem
0.1].

It is known that a variety of class A0 blown up along a smooth closed subvariety is
elliptic, see [LT17] and [KZ23]; cf. also [Gro89, Proposition 3.5E]. The same holds for
a smooth locally stably flexible variety, see [KKT18]. The following question arises.
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Question. Is it true that the ellipticity of affine cones Y over a smooth variety X sur-
vives the blowup of a smooth closed subvariety of X? Or, more specifically, whether the
curve-orbit property (∗), its enhanced version (∗∗) (see Definition 2.7 and Proposition
3.1) and their suitable analogs survive such blowups?

Generalizing an earlier result of Forstneriĉ [For17b] valid for complete elliptic vari-
eties, Kusakabe [Kus22] established that any smooth elliptic variety admits a surjective
morphism AdimY+1 → Y . This fact immediately implies the following corollary.

Corollary 0.2. Let Y be a smooth elliptic variety. Then the endomorphism monoid
End(Y ) acts highly transitively on Y , that is, for any k ≥ 1 and any two corteges of
distinct points (y1, . . . , yk) and (y′1, . . . , y

′
k) in Y there exists f ∈ End(Y ) such that

f(yi) = y′i.

This corollary can be applied in particular to generalized affine cones Y as in Theorem
0.1. Let us compare Theorem 0.1 with analogous facts concerning the flexibility of affine
cones. Recall that a (quasi)affine variety X of dimension n ≥ 2 is said to be flexible if
for any smooth point x ∈ X there exist n locally nilpotent derivations of the algebra
OX(X) whose vectors at x span the tangent space TxV , see [AFKKZ13]. Any smooth
flexible variety is elliptic. The flexibility of X implies that for any natural number m
the automorphism group Aut(X) acts m-transitively on the smooth locus of X, see
[AFKKZ13] in the affine case and [FKZ16] in the quasiaffine case.

Let X = Xd be a del Pezzo surface of degree d ≥ 3 anticanonically embedded in
Pd, and let Ŷ ⊂ Ad+1 be the affine cone over X. It is known that for d ≥ 4 the cone
Ŷ is flexible, see [Per13]; cf. also [MPS18, Section 4] and the survey article [CPPZ21]
for other examples of this kind. By contrast, if d ≤ 3 and Xd ↪→ Pn is a pluri-
anticanonical embedding, then the algebra O(Ŷ ) does not admit any nonzero locally
nilpotent derivation, see [CPW16] and also (for d = 1, 2) [KPZ11]. In these cases Ŷ is
not flexible. However, by Theorem 0.1 for any del Pezzo surfaceX = Xd, d ∈ {1, . . . , 9}
and any ample polarization D on X the smooth locus Y of the generalized affine cone Ŷ
over X corresponding to D is elliptic. As a corollary, the smooth quasiaffine threefold
Y admits a surjective morphism A4 → Y and the endomorphism monoid End(Y ) acts
highly transitively on Y , see Section 5.

The structure of the paper is as follows. In Section 1 we recall some general facts
about Gromov sprays. In particular, we need a version of the Gromov lemma on ex-
tension of sprays, see Proposition 1.1 and Appendix B (Section 6) for a proof. Besides,
we show that under certain conditions a spray admits a pullback via a blowup, see
Proposition 1.5. In Section 2 we notice first that the ellipticity of a projective variety
X is necessary for the ellipticity of the affine cone over X, see Proposition 2.1. We
do not know whether this condition alone is sufficient. However, the ellipticity of X
together with an additional condition called the curve-orbit property, see Definition 2.7
and Proposition 3.1, guarantees that the affine cone over X is elliptic, see Corollary
2.13. Theorem 0.1 is proven in Section 3 for varieties of dimension ≥ 3 and in Section 4
for surfaces, see Theorems 3.4 and 4.1, respectively. Using results of Forstneriĉ [For17b]
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and Kusakabe [Kus22], in Appendix A (Section 5) we deduce Corollary 0.2; see also
Proposition 5.1 and Corollary 5.4 for somewhat stronger results.

1. Preliminaries

In this section X is a smooth algebraic variety of positive dimension.
The following proposition is a version of the Gromov Localization Lemma adopted

to our setting; see [Gro89, 3.5.B] for a sketch of the proof, [For17a, Propositions 6.4.1–
6.4.2] for a rigorous proof for quasi-projective varieties and [LT17, Remark 3] for its
extension to the general case.

Proposition 1.1. Let D be a reduced effective divisor on X and (E, p, s) be a spray
on U = X \ supp(D) with values in X such that p : E → X is a trivial bundle of rank
r ≥ 1. Then there exists a spray (Ẽ, p̃, s̃) on X whose restriction to U is isomorphic
to (E, p, s) and such that s̃|p̃−1(X\U) = p̃|p̃−1(X\U) and for each x ∈ U the s̃-orbit of x
coincides with the s-orbit of x.

For the reader’s convenience we provide a proof in Appendix B, see Section 6.
Recall the notions of a locally nilpotent vector field and of its replica, see [Fre06] and

[AFKKZ13].

Definition 1.2. Consider a regular vector field ν on a smooth affine varietyX = SpecA
and the associated derivation ∂ of the algebra A = OX(X). One says that ν and ∂
are locally nilpotent if for any a ∈ A one has ∂n(a) = 0 for some n = n(a) ∈ N. Any
Ga-action λ on X is the flow of a locally nilpotent vector field ν. One writes in this
case λ(t) = exp(tν). For any h ∈ Ker(∂) the vector field hν is also locally nilpotent.
The Ga-action λh(t) := exp(thν) is called a replica of λ. The points x ∈ h−1(0) are
fixed by the replica λh.

In the sequel we deal with sprays generated by Ga-actions.

Definition 1.3. Let U be an affine dense open subset inX. Assume that U is equipped
with an effective Ga-action Ga × U → U . The latter morphism defines a rank 1 spray
(L, p, s) on U which we call a Ga-spray, where p : L → U is a trivial line bundle. If
(L, p, s) is a Ga-spray on U associated with a Ga-action λ on U and λh is a replica of
λ, then the associated Ga-spray (L, p, sh) on U also will be called a replica of (L, p, s).

Definition 1.4. Let U = X\supp(D) whereD is an ample divisor onX and let (L, p, s)
be a Ga-spray on U . Due to Proposition 1.1 there exists a rank 1 spray (L̄, p̄, s̄) on X
whose restriction to U is isomorphic to (L, p, s) and such that s̄|p̄−1(X\U) = p̄|p̄−1(X\U).
We call (L̄, p̄, s̄) an extended Ga-spray. For a point x ∈ U the s-orbit Ox coincides
with the Ga-orbit of x, while the s-orbit of x ∈ X \ U is the singleton {x}. For any
one-dimensional Ga-orbit O in U the restriction of (L̄, p̄, s̄) to O is dominating.

It is known that under certain conditions dominating sprays can be lifted via blowups,
see [Gro89, 3.5E-E′′], [LT17] and [KKT18]. In the next proposition we provide a simple
version of such results adopted to our setup.
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Proposition 1.5. Let (E, p, s) be an extended Ga-spray on X, A ⊂ X be a smooth
subvariety of codimension at least 2 such that the s-orbit of any point x ∈ A is a
singleton, and σ : X̃ → X be the blowup of A in X. Then (E, p, s) can be lifted to an
extended Ga-spray (Ẽ, p̃, s̃) on X̃ where Ẽ = σ∗E. Letting σ̃ : Ẽ → E be the induced
homomorphism, s̃ : Ẽ → X̃ satisfies σ ◦ s̃ = s ◦ σ̃. In particular, σ sends the s̃-orbits to
s-orbits. Furthermore, if (E, p, s) is dominating when restricted to a one-dimensional
s-orbit O and Õ is a s̃-orbit in X̃ with σ(Õ) = O then (Ẽ, p̃, s̃) is dominating when
restricted to Õ.

Proof. Let U ⊂ X be the affine dense open subset carrying an effective Ga-action λ
such that (E, p, s) is extended from the associate Ga-spray on U , see Definition 1.3.
Since U is affine, D = X \ U is a divisor. The s-orbit of x ∈ U is a singleton if and
only if x is a fixed point of λ. By our assumption, each x ∈ A ∩ U is a fixed point
of λ. So, the ideal I(A ∩ U) is stable under λ. By the universal property of blowups,
see [Har04, Corollary II.7.15], λ admits a lift to a Ga-action λ̃ on Ũ = σ−1(U) making
the morphism σ|Ũ : Ũ → U equivariant. The associated Ga-spray s̃ on Ũ satisfies
σ ◦ s̃|Ũ = s◦ σ̃|Ũ . By Proposition 1.1 s̃ admits an extension to X̃ denoted still by s̃ such
that σ ◦ s̃ = s ◦ σ̃. The remaining assertions are easy consequences of the construction
and the latter equality. �

2. Ellipticity of cones

We introduce below the so called “curve-orbit” property (∗), see Definition 2.7. Using
this property we give a criterion of ellipticity of the affine cones over projective varieties
with the vertex removed.

Recall that blowing up an affine cone at its vertex yields a line bundle on the under-
lined projective variety. Removing the vertex of the cone results in removing the zero
section of the latter line bundle. This results in a locally trivial fiber bundle whose
general fiber is the punctured affine line A1

∗ = A1 \ {0}. In subsection 2.2 we deal more
generally with locally trivial A1

∗-fibrations. In subsection 2.3 we extend our results to
twisted A1

∗-fibrations which are not locally trivial. In subsection 2.4 we give several
examples of elliptic cones, including cones over flag varieties.

The following fact is stated in [Gro89, 3.5B′′]. For the reader’s convenience we give
an argument.

Proposition 2.1. Let % : Y → X be a locally trivial fiber bundle. If Y is elliptic then
X is elliptic too.

Proof. Let us show that X is locally elliptic. Let (Ê, p̂, ŝ) be a dominating spray on
Y . For a point x ∈ X choose a neighborhood U of x in X such that the restriction
Y |U → U is a trivial fiber bundle. Let ξ : U → Y be a section of Y |U → U , let
p : EU := ξ∗Ê → U be the induced vector bundle over U and ϕ : EU

∼=−→ Ê|ξ(U) be the
induced isomorphism. Letting s = %◦ ŝ◦ϕ : EU → X we obtain a local spray (EU , p, s)

on U with values in X. Indeed, let Ẑ be the zero section of p̂ : Ê → Y and ZU be the
zero section of p : EU → U . Since ŝ|Ẑ = p̂|Ẑ we have s|ZU

= p|ZU
.
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Let y = ξ(x) ∈ Û = %−1(U). Let 0y be the origin of the vector space Êy =

p̂−1(y). Since (Ê, p̂, ŝ) is dominating, dŝ|T0y Êy
: T0yÊy → TyY is surjective. This yields

a surjection

ds = d% ◦ dŝ ◦ dϕ|T0xEx : T0xEx
∼=−→ T0yÊy → TyY → TxX.

Thus, the spray (EU , p, s) is dominating at x. This shows that X is locally elliptic,
hence elliptic, see [KZ23, Theorem 0.1]. �

The natural question arises whether the converse implication holds. Clearly, the
product X × A1

∗ is not elliptic even if X is elliptic. However, we indicate below some
particular settings where the answer is affirmative.

2.1. Technical lemmas. In what follows X stands for a smooth algebraic variety,
% : F → X stands for a line bundle on X with zero section ZF , and Y = F \ZF (except
for Proposition 2.1). Thus, %|Y : Y → X is a locally trivial fiber bundle with fiber
A1
∗ = A1 \ {0}. In fact, any locally trivial fiber bundle Y → X with general fiber A1

∗
arises in this way.

In Lemmas 2.2–2.4 we work as well in the Z/2Z-equivariant setup in order to prepare
tools for dealing with twisted A1

∗-fibrations, see subsection 2.3. In the sequel µ2
∼= Z/2Z

stands for the group of square roots of unity.

Lemma 2.2. Let p : E → X be a vector bundle with zero section Z and τi : Fi → E,
i = 1, 2 be two line bundles on E. Assume that there exists an isomorphism ϕ0 : F1|Z →
F2|Z. Then ϕ0 extends to an isomorphism ϕ : F1 → F2.

Furthermore, suppose that X,E and Fi|Z are equipped with µ2-actions such that p, ϕ0

and τi|Z for i = 1, 2 are µ2-equivariant. Then there are µ2-actions on Fi such that ϕ
and τi for i = 1, 2 are µ2-equivariant.

Proof. The pullback yields an isomorphism Pic(E) ∼= p∗ Pic(X), see [Mag75, Theorem
5]. Hence, p∗(Fi|Z) ∼= Fi for i = 1, 2. Now the lemma follows. �

Due to the following lemma a spray on X admits a pullback to Y .

Lemma 2.3. Any spray (E, p, s) on X induces a spray (Ê, p̂, ŝ) on Y = F \ ZF such
that Ê fits in commutative diagrams

(1)
Ê

p̂−→ Y
↓%̂ ↓%|Y
E

p−→ X

and
Ê

ŝ−→ Y
↓%̂ ↓%|Y
E

s−→ X

Furthermore, suppose there are µ2-actions on X,E and F (and, therefore, on Y )
such that p, s and % : F → X are µ2-equivariant. Then there is a µ2-action on Ê such
that p̂ and ŝ are µ2-equivariant.

Proof. Consider the line bundles F1 = p∗F → E and F2 = s∗F → E induced from
% : F → X via morphisms p : E → X and s : E → X, respectively. They fit in



GROMOV ELLIPTICITY OF CONES 7

commutative diagrams

(2)
F1

p̂−→ F
↓ ↓ %
E

p−→ X

and
F2

ŝ−→ F
↓ ↓ %
E

s−→ X

Since s|Z = p|Z we have F1|Z = F2|Z ∼= F under a natural identification of Z and X.
By Lemma 2.2 there is an isomorphism ϕ : F1

∼=−→ F2 of the line bundles %̂1 : F1 → E
and %̂2 : F2 → E. Letting Zi be the zero section of Fi and Ŷi = Fi \ Zi we get two
isomorphic fiber bundles Ŷi → E, i = 1, 2 with general fiber A1

∗ = A1 \ {0}. Letting
Ê = Ŷ1 and composing the isomorphism ϕ|Ê : Ê

∼=−→ Ŷ2 with morphisms Ŷ2 → Y and
Ŷ2 → E from the second diagram in (2) yields (1). The vector bundle p̂ : Ê → Y in
the first diagram in (1) is induced from p : E → X via the morphism %|Y : Y → X. Let
Ẑ = %̂−1(Z) be the zero section of p̂ : Ê → Y . Since s|Z = p|Z we have ŝ|Ẑ = p̂|Ẑ . So
(Ê, p̂, ŝ) is a spray on Y .

For the second statement recall that the isomorphism ϕ : F1

∼=−→ F2 of Lemma 2.2 is
µ2-equivariant. Hence, also the above isomorphism ϕ|Ê : Ê

∼=−→ Ŷ2 is µ2-equivariant.
The induced morphisms p̂|F1 : F1 → F and ŝ : F2 → F in (2) are µ2-equivariant too
since so are p, s and % by our assumption. �

The next lemma guarantees the existence of pushforward sprays on quotients by
µ2-actions.

Lemma 2.4. Under the assumptions of Lemma 2.3 suppose in addition that the µ2-
action on X is free. Letting

X ′ = X/µ2, Y ′ = Y/µ2, E ′ = E/µ2 and Ê ′ = Ê/µ2

consider the induced morphisms

%′ : Y ′ → X ′, p′ : E ′ → X ′, s′ : E ′ → X ′, p̂′ : Ê ′ → Y ′ and ŝ′ : Ê ′ → Y ′.

Then %′ : Y ′ → X ′ is a smooth A1
∗-fibration. Suppose further that p′ : E ′ → Y ′ and

p̂′ : Ê ′ → Y ′ are vector bundles 1. Then (E ′, p′, s′) is a spray on X ′ and (Ê ′, p̂′, ŝ′) is a
spray on Y ′ such that %′ ◦ ŝ′ = s′ ◦ p̂′.

The proof is immediate and we leave it to the reader.
Next we show that a spray admits pullback to an unramified µ2-covering.

Lemma 2.5. Let (E, p, s) be a spray on X and τ : X̃ → X be an unramified Galois
covering with Galois group µ2. Let also p̃ : Ẽ → X̃ be the induced vector bundle on X̃.
Then there are a µ2-action on Ẽ and a spray (Ẽ, p̃, s̃) on X̃ such that both p̃ and s̃ are
µ2-equivariant and s ◦ τ̃ = τ ◦ s̃ where τ̃ : Ẽ → E = Ẽ/µ2 is the quotient morphism.

Proof. The µ2-action on X̃ generates a µ2-action on X̃×E trivial on the second factor.
Recall that

Ẽ = X̃ ×X E = {(x̃, e) ∈ X̃ × E | τ(x̃) = p(e)}.
1A priori, these are vector bundles locally trivial in étale topology.
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Clearly, the natural projection p̃ : Ẽ → X̃ is µ2-equivariant. Let s′ = s ◦ τ̃ : Ẽ → X
and

E ′ = X̃ ×X Ẽ = {(x̃, ẽ) ∈ X̃ × Ẽ | τ(x̃) = s′(ẽ)}.
Since τ(x̃) = τ(x̃′) if and only if x̃′ = λ.x̃ for some λ ∈ µ2, while s′ is constant on the
µ2-orbits in Ẽ we see that E ′ is an unramified double cover of Ẽ. Letting Z̃ be the zero
section of Ẽ consider an isomorphism ϕ = p̃|Z̃ : Z̃

'−→ X̃. Notice that the preimage Z ′

of Z̃ in E ′ consists of two irreducible components

Z ′1 = {(ϕ(z), z)| z ∈ Z̃} and Z ′2 = {(λ.ϕ(z), z)| z ∈ Z̃}
where λ ∈ µ2 is an element of order 2. Notice also that p̃ : Ẽ → X̃ ' Z̃ induces a
surjective morphism E ′ → Z ′. Hence, E ′ consists of two irreducible components E ′i,
i = 1, 2 where E ′i contains Z ′i. Taking the component E ′1 which contains Z ′1 as the
graph of s̃ we get a lift s̃ : Ẽ → X̃. A natural lift to E ′ of the µ2-action interchanges
E ′1 and E ′2. By construction, τ ◦ s̃ = s ◦ τ̃ . In particular,

τ ◦ s̃(λ.ẽ) = s ◦ τ̃(λ.ẽ) = s(e) where e = τ̃(ẽ) = τ̃(λ.ẽ).

Thus, τ ◦ s̃(λ.ẽ) = s(e) = τ ◦ s̃(ẽ). That is, s̃(λ.ẽ) coincides with either λ.s̃(ẽ) or
s̃(ẽ). Since for ẽ ∈ Z̃ ' Z ′1 we have the former, by continuity s̃(λ.ẽ) = λ.s̃(ẽ) for each
ẽ ∈ Ẽ ' E ′1. This concludes the proof. �

2.2. Sprays on untwisted A1
∗-fibrations. Let % : Y → X be a locally trivial A1

∗-
fibration. Our aim is to give a criterion as to when the total space Y is elliptic.
Proposition 2.1 contains a necessary condition for this, whereas Proposition 2.6 and
Corollary 2.9 provide sufficient conditions.

Proposition 2.6. Given a locally trivial A1
∗-fibration % : Y → X over an elliptic variety

X let (E, p, s) be a spray on X and (Ê, p̂, ŝ) be the induces spray on Y , see Lemma
2.3. Given points x ∈ X and y ∈ %−1(x) let (Êi, p̂i, ŝi), i = 1, 2 be rank 1 sprays on
Y such that the images Oi = %(Ôi) in X of the ŝi-orbits Ôi of y are smooth curves.
Suppose that

(i) (E, p, s) is dominating at x, and
(ii) TyÔ1 6= TyÔ2, while TxO1 = TxO2, that is, O1 and O2 are tangent at x.

Then the family of sprays {(Ê, p̂, ŝ), (Ê1, p̂1, ŝ1), (Ê2, p̂2, ŝ2)} is dominating at y ∈ Y .

Proof. If Ôy ⊂ Ê is the ŝ-orbit of y then %(Ôy) coincides with the s-orbit Ox, see the
second diagram in (1). By (i) (E, p, s) is dominating at x, hence d%(TyÔy) = TxX

and so, codimTyY TyÔy = 1. On the other hand, (ii) implies that TyÔ1 + TyÔ2 ⊂ TyY

contains a nonzero vector v such that d%(v) = 0, that is, v 6∈ TyÔy. Thus, TyY =

span(TyÔy, TyÔ1, TyÔ2), as needed. �

The following notion is inspired by Proposition 2.6.

Definition 2.7. Let X be a smooth algebraic variety, x ∈ X and let Cx ' P1 be a
smooth rational curve on X passing through x. We say that the pair (x,Cx) verifies
the two-orbit property if
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(∗) Cx is union of two orbits O1 and O2 of rank 1 sprays (E1, p1, s1) and (E2, p2, s2)
on X, respectively, where Oi

∼= A1 passes through x and the restriction of
(Ei, pi, si) on Oi is dominating at x.

We say that X verifies the curve-orbit property if through each point x ∈ X passes
a smooth rational curve Cx on X satisfying (∗). If Cx can be chosen from a specific
family F of rational smooth projective curves on X then we say that X verifies the
curve-orbit property with respect to F .

Remark 2.8. Notice that any one-dimensional orbit Ox of a Ga-spray is isomorphic to
A1 and the restriction of this spray to Ox is dominating at x. In the sequel we mostly
deal with Ga-sprays.

Corollary 2.9. Let X be a smooth variety, % : F → X be a line bundle and Y = F \ZF .
Suppose that

(i) X is elliptic and verifies the curve-orbit property with respect to a covering
family of smooth projective rational curves {Cx} on X, and

(ii) % : F → X restricts to a nontrivial line bundle on each member Cx of the family.
Then Y is elliptic.

Proof. Fix a dominating spray (E, p, s) on X. Let (Êi, p̂i, ŝi), i = 1, 2 and (Ê, p̂, ŝ)
be the sprays on Y induced by the (Ei, pi, si) and (E, p, s), respectively, see Lemma
2.3. By Proposition 2.6 it suffices to verify conditions (i) and (ii) of this proposition
at any point y ∈ %−1(x) ∩ Y . Indeed, then the latter triple of sprays is dominating at
y. The family of all such triples for x ∈ X is dominating on Y , which proves that Y is
subelliptic, hence elliptic by [KZ23, Theorem 0.1].

Since the spray (E, p, s) is dominating, condition (i) of Proposition 2.6 holds. To
verify (ii) of Proposition 2.6 we have to show that for each y ∈ %−1(x)∩Y the ŝi-orbits
Ô1 and Ô2 of y are transversal at y. By assumption (i) the si-orbits Oi, i = 1, 2 provide
a trivializing cover for the line bundle %|Cx : F |Cx → Cx. Since %|Ôi

: Ôi → Oi is an
isomorphism, Ôi is a non-vanishing local section of F |Cx over Oi. Thus, Ôi is a constant
section given by vi = 1 in appropriate coordinates (ui, vi) in F |Oi

' A1 × A1
∗.

We may consider that x = {ui = 1} in Oi, i = 1, 2. Let z = u1/u2 be an affine
coordinate in ω = O1 ∩ O2 ' A1

∗. Due to (ii) the line bundle %|Cx : F |Cx → Cx
is nontrivial. So, its transition function on ω equals v2/v1 = zk for some k 6= 0.
Therefore, in coordinates (u1, v1) in Y |O1 ' A1 ×A1

∗ the curve Ô2 is given by equation
v1 = u−k1 . Hence, Ô2 is transversal to Ô1 at the point y = (1, 1) ∈ F |O1 . �

2.3. Ellipticity of twisted A1
∗-fibrations. Let X be a smooth complete variety. In

this subsection we provide an analog of Corollary 2.9 for any, not necessarily locally
trivial smooth fibration % : Y → X with all fibers isomorphic to A1

∗ = A1 \ {0}. Such a
fibration extends to a locally trivial fibration %̄ : Ȳ → X with general fiber P1 and with
a divisor X̃ = Ȳ \ Y being smooth and either irreducible or a union of two disjoint
sections Z0 and Z∞ of %̄. The A1

∗-fibration % : Y → X is said to be twisted in the former
case and untwisted in the latter case.
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Letting in the untwisted case F = Ȳ \Z∞ we get a locally trivial line bundle %̄|F : F →
X with zero section Z0 so that Y = F \ Z0. This returns us to the setup of Corollary
2.9.

To extend Corollary 2.9 in the twisted setup, we deal with µ2-varieties and µ2-
vector bundles. Indeed, a twisted A1

∗-fibration % : Y → X can be untwisted as follows.
Consider the unramified Galois covering %̃ = %̄|X̃ : X̃ → X with Galois group µ2 so
that X = X̃/µ2. The induced P1-fiber bundle %̃∗Ȳ → X̃ over X̃ admits two disjoint
sections Z0 and Z∞ where Z0 is the tautological section. Letting F̃ = %̃∗Ȳ \ Z∞ we
get a line bundle F̃ → X̃. Hence, the induced A1

∗-fibration Ỹ = %̃∗Ȳ \ (Z0 ∪ Z∞)→ X̃
is untwisted. Furthermore, Ỹ carries a free µ2-action making the projection Ỹ → X̃
equivariant and such that Y = Ỹ /µ2. We can now deduce the following analog of
Corollary 2.9 for twisted A1

∗-fibrations.

Proposition 2.10. Let X be a smooth variety and % : Y → X be a smooth A1
∗-fibration.

Suppose that
(i) X is elliptic and verifies the curve-orbit property with respect to a covering

family of smooth projective rational curves {Cx} on X;
(ii) for any member Cx of the family the restriction %|%−1(Cx) : %−1(Cx) → Cx is a

nontrivial A1
∗-fiber bundle. 2

Then Y is elliptic.

Ê ′

%̂′

/µ2

p̂′

Ẽ

p̃

/µ2

Ỹ

%̃

X̃

/µ2

Ê

%̂
p̂

E

p

Y

%

X

Ê ′

%̂′

/µ2

ŝ′

Ẽ

s̃

/µ2

Ỹ

%̃

X̃

/µ2

Ê

%̂
ŝ

E

s

Y

%

X

Figure 1.

2Condition (ii) is equivalent to the following one:
(ii′) F̃ → X̃ restricts to a nontrivial line bundle on each of the two components of the curve C̃x =

%̃−1(Cx) on X̃.
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Proof. Since X is elliptic there exists a dominating spray (E, p, s) on X. Consider
the natural µ2-action on X̃. Lemma 2.5 guarantees the existence of a pullback spray
(Ẽ, p̃, s̃) on X̃ such that the induced morphisms p̃ and s̃ are µ2-equivariant with respect
to the induced µ2-action on Ẽ. By Lemma 2.3 the latter spray admits a pullback to a
µ2-equivariant spray (Ê ′, p̂′, ŝ′) on Ỹ , see Figure 1.

The spray (Ê ′, p̂′, ŝ′) verifies the assumptions of Lemma 2.4, with notation changed
accordingly. By this lemma, the µ2-equivariant spray (Ê ′, p̂′, ŝ′) on Ỹ induces a push-
forward spray (Ê, p̂, ŝ) on Y . Since the spray (E, p, s) on X is dominating, the resulting
spray (Ê, p̂, ŝ) on Y is dominating in codimension 1, that is, for each y ∈ Y and v ∈ TxX
with %(y) = x the s-orbit of y is tangent to a vector w ∈ TyY with d%(w) = v. The
curve-orbit property of X together with condition (ii) above guarantees the existence
of a rank 1 spray (E0, p0, s0) on Y such that the s0-orbit of y is tangent to a nonzero
vector from Ker(d%), see the proof of Proposition 2.6. Now the conclusion follows by
an argument from the latter proof. �

2.4. Examples.

Example 2.11. Let B be a smooth complete variety and π : X → B be a ruling, that
is, a locally trivial fiber bundle over B with general fiber P1. Suppose that X is elliptic
and let F → X be a line bundle whose restriction to a fiber of π is nontrivial. Then
the assumptions (i) and (ii) of Corollary 2.9 hold with the family F = {Cx}x∈X where
Cx = π−1(π(x)). According to this corollary Y = F \ ZF is elliptic.

Example 2.12. The criterion of Corollary 2.9 can be applied to a generalized affine
cone Ŷ over a smooth projective variety X defined by an ample polarization D on X,
see the definition in the Introduction. Indeed, blowing Ŷ up at the vertex v ∈ Ŷ yields
the line bundle F = OX(−D) → X so that Y \ {v} = F \ ZF . For instance, if D is a
hyperplane section of X ⊂ Pn then F = OX(−1). Since D is ample the condition (ii)
of Corollary 2.9 holds for any curve C on X. Thus, we arrive at the following criterion.

Corollary 2.13. Let a smooth projective variety X be elliptic and verify the curve-
orbit property (∗), see Definition 2.7. Let Ŷ → X be a generalized affine cone over X
with smooth locus Y = Ŷ \ {v}. Then Y is elliptic.

Example 2.14. 1. The curve-orbit property holds for X = P1. Indeed, given a point
x ∈ P1 we can choose two opposite Borel subgroups B± of PGL(2,K) = Aut(P1) in
such a way that the unique fixed point x± of the unipotent radical U± of B± is different
from x. Then the orbits U±x are one-dimensional and cover P1, that is, (∗) holds.

2. Any generalized flag variety G/P with a reductive group G over K verifies the
curve-orbit property. Indeed, by homogeneity of G/P and due to the previous example
it suffices to find an SL(2,K)- or PGL(2,K)-subgroup S of G and a point x ∈ G/P
such that the orbit C = Sx is isomorphic to P1.

Fix a a Cartan subalgebra h of lie(P ) ⊂ lie(G), let ∆ ⊂ h∨ be the associated root
system of G, ∆± be the subset of positive resp. negative roots in ∆ and ∆P ⊂ ∆ be
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the root system of P . We assume that ∆+
P = ∆+. Consider the root decomposition

(3) lie(P ) = h⊕
⊕
αi∈∆+

gαi
⊕
⊕
αi∈∆−

P

gαi

where gα is the root subspace of lie(G) which corresponds to a root α ∈ ∆.
Pick a negative root α ∈ ∆− \∆−P and let S be the subgroup of G with Lie algebra

lie(S) = gα ⊕ g−α ⊕ hα where hα = [gα, g−α] ⊂ h.

Thus, S is isomorphic to either SL(2,K) or PGL(2,K) and S ∩ P = BS is the Borel
subgroup of S with Lie algebra

lie(BS) = g−α ⊕ hα .

Since BS ⊂ BP , the BS-action on G/P fixes the distinguished point x0 = eP ∈ G/P .
Let U− be the one-parameter unipotent subgroup of S with Lie algebra gα. Assuming
that U− also fixes x0 we obtain [gα, lie(P )] ⊂ lie(P ); in particular, gα = [gα, hα] ⊂
lie(P ). The latter contradicts (3). Therefore, x0 ∈ (G/P )BS \ (G/P )S and so, the
S-orbit C = Sx0 is isomorphic to P1.

Recall that a variety X is said to be of class A0 if X is covered by open subsets
isomorphic to the affine space An where n = dimX. Such a variety is subelliptic, see
[For17a, Proposition 6.4.5]. Therefore, it is elliptic by [KZ23, Theorem 0.1].

A generalized flag variety G/P where G is a reductive algebraic group and P ⊂ G
is a parabolic subgroup belongs to class A0, see [APS14, Sec. 4(3)]; cf. also [Gro89,
3.5F]. Indeed, a maximal unipotent subgroup U of G acts on G/P with an open orbit
isomorphic to an affine space, see, e.g., [Akh95, Sec. 3.1, proof of Proposition 7]. Since
G acts on G/P transitively, the assertion follows. See also [APS14, Sec. 4] for further
examples.

Corollary 2.15. Let X = G/P be a flag variety and Ŷ be a generalized affine cone
over X. Then the smooth locus Y = Ŷ \ {v} of Ŷ is elliptic.

Proof. By the previous discussion and Example 2.14 X verifies the assumptions of
Corollary 2.13. So, the assertion follows due to this Corollary. �

Remark 2.16. Let Ŷ be the affine cone over a flag variety G/P embedded in Pn as a
projectively normal subvariety. Then Ŷ is normal and moreover, flexible, see [AKZ12,
Theorem 0.2]. Hence, Y = Ȳ \ {v} is elliptic.

3. Cones over blown-up varieties of class A0

3.1. The enhanced curve-orbit property. Blowing up a variety X of class A0 with
center at a point results again in a variety of class A0, see, e.g., [Gro89, Sect. 3.5.D′′] or
[For17a, Proposition 6.4.6]. In particular, any rational smooth projective surface is of
class A0, see [For17a, Corollary 6.4.7]. The next proposition allows to apply Corollary
2.13 to varieties of class A0 blown up at a point.

Proposition 3.1. Let X be a complete variety of class A0 and of dimension n ≥ 3.
Suppose that X verifies the following enhanced curve-orbit property:
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(∗∗) for each x ∈ X and any finite subsetM in X \{x} one can find a curve Cx ' P1

on X which avoids M and verifies the two-orbit property (∗) of Definition 2.7
with pairs of Ga-sprays (Ei, pi, si), i = 1, 2.

Let σ : X̃ → X be the blowup of a point x0 ∈ X. Then X̃ also verifies (∗∗).

Proof. Given a point x̃ ∈ X̃ fix a finite subset M̃ ⊂ X̃ \ {x̃}. Assume first that
x := σ(x̃) 6= x0. Choose a curve Cx ⊂ X and a pair of extended Ga-sprays (Ei, pi, si)
on X satisfying (∗∗) with M = {x0} ∪ σ(M̃) ⊂ X. Replace the (Ei, pi, si) by suitable
replicas such that the si-orbits of x0 become singletons, while the si-orbits Oi of x
do not change. By Proposition 1.5 one can lift these sprays to extended Ga-sprays
(Ẽi, p̃i, s̃i) on X̃, i = 1, 2 such that σ(Õi) = Oi where Õi is the s̃i-orbit of the point x̃.
It is easily seen that the curve Cx̃ = σ−1(Cx) and the lifted sprays (Ẽi, p̃i, s̃i) satisfy
(∗∗).

Suppose now that x̃ lies on the exceptional divisor E = σ−1(x0). Choose a neighbor-
hood Ω ' An of x̃ in X̃. Identifying Ω with An = SpecK[u1, . . . , un] we may suppose
that x is the origin of An. Then (u1 : · · · : un) can serve as homogeneous coordinates
in E ' Pn−1. Notice that X̃ can be covered with n open subsets Ui ' An such that
Ui ∩ E = E \Hi ' An−1 where Hi is the coordinate hyperplane in E = Pn−1 given by
ui = 0.

Choose the affine coordinates (u1, . . . , un) in X = An in such a way that x̃ =
(u1 : · · · : un) ∈ Pn−1 has two nonzero coordinates, say u1 and u2, that is, x̃ ∈ U1 ∩U2.
Since n− 1 ≥ 2, a general projective line Cx̃ ⊂ E = Pn−1 through x̃ meets H1 and H2

in two distinct points and does not meet M̃ . Furthermore, for i = 1, 2 the affine line
Ōi = Cx̃ \ Hi ' A1 in Ui is an orbit of a Ga-action on Ui ' An and so, a s̄i-orbit of
the associated extended Ga-spray (Ēi, p̄i, s̄i) on X̃. One has Cx̃ = Ō1 ∪ Ō2. Thus, (∗∗)
holds for X̃. �

Remark 3.2. Assuming that M̃ is empty the same construction of two extended Ga-
sprays on X̃ with Cx̃ = O1 ∪ O2 satisfying the two-orbit property goes through for
n = 2, while this time E ' P1.

3.2. Enhanced curve-orbit property for flag varieties.

Proposition 3.3. A generalized flag variety X = G/P of dimension n ≥ 2 verifies
the enhanced curve-orbit property (∗∗).

Proof. The stabilizer of the distinguished point x0 = eP ∈ G/P coincides with the
parabolic subgroup P . The construction of Example 2.14 produces a subgroup S
of G isomorphic either to SL(2,K) or to PGL(2,K), or in other terms, a subgroup
locally isomorphic to SL(2,K), along with a pair of opposite one-parameter unipotent
subgroups U± of S and an S-orbit C = S/B+ ' P1 passing through x0 such that the
orbits U±x0 are one-dimensional and cover C, where B+ = S ∩ P is a Borel subgroup
of S.

The conjugation of S by elements a ∈ P yields a family Sa = aSa−1 of SL(2,K)-
resp. PGL(2,K)-subgroups of G along with a family of their orbits Ca = aC ∼= P1

passing through x0. We claim that the family of P1-curves F = {Ca}a∈P has no base
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point different from x0. Assuming that F contains at least two distinct curves the base
point set Bs(F) is finite. Since the parabolic subgroup P is connected each x ∈ Bs(F)
is fixed by P . Since P coincides with its normalizer NG(P ), see [Hum95, Theorem
X.29.4(c)], x0 = eP is the unique fixed point of P . Indeed, if PgP = gP for some
g ∈ G, then g ∈ NG(P ) = P and so, gP = P .

Let us show that card(F) ≥ 2. In the notation of (3) we have

dim(G/P ) = card(∆− \∆−P ) ≥ 2.

Therefore, ∆− \ ∆−P contains two distinct negative roots αi, i = 1, 2. Let U+
i be the

root subgroup of P with lie(U+
i ) = g−αi

, Si be the subgroup in G with

lie(Si) = lie(gαi
, g−αi

) ∼= sl(2,K)

and Bi = Si ∩ P ⊃ U+
i be a Borel subgroup of Si, cf. Example 2.14. The Si-orbit of

the distinguished point x0 is a P1-curve Ci = Si/Bi on G/P . Notice that U+
1 and U+

2

are two distinct subgroups of the unipotent radical Ru(P ). Let P− be the opposite
parabolic subgroup of G and B−i be the opposite Borel subgroup of Si with unipotent
radical U−i . Then U

−
1 and U−2 are two distinct subgroups of Ru(P−). The Ru(P−)-orbit

of x0 is open in G/P and the isotropy subgroup of x0 in Ru(P−) is trivial. Hence the
orbits U−i x0, i = 1, 2 are distinct and so are the curves Ci = U−i x0, i = 1, 2, as claimed.

Thus, for any finite subsetM = {x1, . . . , xm} ⊂ G/P\{x0} and for every i = 1, . . . ,m
one can choose a curve Cai = aiC from our family which does not meet xi. The set of
elements ai ∈ P with this property is open and dense in P . Therefore, for a general
a ∈ P the curve Ca does not intersect M . Since G/P is homogeneous the choice of a
point x0 is irrelevant. It follows that G/P verifies condition (∗∗), see Example 2.14. �

3.3. The main result in dimensions ≥ 3.

Theorem 3.4. Let X be a smooth complete variety and Y be the smooth locus of a
generalized affine cone over X, see the Introduction. Then Y is elliptic in each of the
following cases:

(a) n = dimX ≥ 3 and X is obtained from a variety X0 of class A0 verifying
condition (∗∗) of Proposition 3.1 (say, X0 = G/P is a flag variety of dimension
n ≥ 3, see Proposition 3.3) via a finite number of subsequent blowups;

(b) X is obtained by blowing up a finite subset of a Hirzebruch surface Fn, n ≥ 0
or of P2 (say, X is a del Pezzo surface).

Proof. Notice that in (a) and (b) X is of class A0, hence elliptic. Thus, it suffices to
check conditions (i) and (ii) of Corollary 2.9. In all cases condition (ii) holds because
of Corollary 2.13. Condition (i) is provided by Propositions 3.1 and 3.3, Remark 3.2
and Example 2.11. �

Remark 3.5. The proof of Theorem 3.4(a) does not work for n = 2. Indeed, in this
case the exceptional curve E = P1 in the proof of Proposition 3.1 can contain points of
M̃ . However, its conclusion still holds for n = 2; see Theorem 4.1 in the next section.
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4. Elliptic cones over rational surfaces

In this section we extend Theorem 3.4 to any rational smooth projective surface X.

Theorem 4.1. Let X be a rational smooth projective surface and Y = Ŷ \ {v} be the
smooth locus of a generalized cone Ŷ over X. Then Y is elliptic.

Due to Corollary 2.13, Theorem 4.1 follows from the next proposition.

Proposition 4.2. X verifies the curve-orbit property (∗).

The proof of Proposition 4.2 uses induction on the number of blowups when forming
X. The following proposition provides the inductive step.

Proposition 4.3. Let X be a smooth projective surface and π : X → P1 be a fibration
with general fiber P1. Assume that for any fiber component C of π and any point x ∈ C
the following hold.

(i) There exists an open subset Ux in X such that X \Ux has no isolated point and
Ox := Ux ∩ C = C \ {x} ∼= A1;

(ii) there exists a proper birational morphism νx : Ux → A2 such that
• Ox is sent by νx isomorphically onto a coordinate axis L in A2;
• the exceptional divisor of νx consists of some fiber components of π;
• no one of these components is contracted to a point of L;

(iii) there is a Ga-action λx on Ux such that Ox is the λx-orbit of x;
(iv) for the extended Ga-spray (Ex, px, sx) on X associated with λx, Ox is the sx-orbit

of any point x′ ∈ Ox.
Let σ : X̃ → X be the blowup of a point x0 ∈ X and π̃ = π ◦ σ : X̃ → P1 be the induced
P1-fibration. Then (i)− (iv) hold with π : X → P1 replaced by π̃ : X̃ → P1.

Proof. Let C̃ be a fiber component of π̃ on X̃ and x̃ ∈ C̃. If C̃ is different from the
exceptional curve of σ then we let C = σ(C̃) ⊂ X and x = σ(x̃) ∈ C; otherwise, we let
x = x0. Consider an open subset Ux ⊂ X satisfying (i)-(iv).

The following cases can occur:
(a) C̃ = σ−1(x0) is the exceptional curve of σ and x = x0;
(b) C is a fiber component of π and x0 /∈ C;
(c) C is a fiber component of π and x0 ∈ C.

In case (a) we choose an open neighborhood U0
∼= A2 of x0 inX. Such a neighborhood

does exist since X belongs to class A0. We also choose a coordinate system (u, v) on U0

such that x0 is the origin and the axis L = {u = 0} goes in direction of x̃ ∈ C̃ = PTx0U0.
Then Ũ0 := σ−1(U0) = Ũ1∪Ũ2 where the Ũi ' A2 are equipped with coordinates (ui, vi)
such that

(α) the restrictions σ0|Ũi
: Ũi → U0 are given by

σ0|Ũ1
: (u1, v1) 7→ (u1v1, v1) and σ0|Ũ2

: (u2, v2) 7→ (u2, u2v2);

(β) σ0 sends the coordinate axis L1 := {u1 = 0} in Ũ1 isomorphically onto L.
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Then Ux̃ := Ũ1 equipped with the Ga-action λx̃ by translations in direction of L1

satisfies (i)–(iv).
If (b) or (c) takes place then the preimage Ux̃ = σ−1(Ux) in X̃ satisfies

Ox̃ := Ux̃ ∩ C̃ = σ−1(C \ {x}) = C̃ \ {x̃}.
Clearly, Ux̃ also satisfies condition (i).

Assume that case (b) takes place. It is easily seen that the composition νx̃ = νx ◦
σ : Ux̃ → A2 satisfies (ii). Replacing λx with an appropriate replica, if necessary, we
may assume that x0 /∈ C is fixed by λx, while Ox = C ∩Ux = C \{x} is still an orbit of
λx. Thus, λx can be lifted to a Ga-action λx̃ on Ux̃ such that Ox̃ is the λx̃-orbit of x̃ and
so, (iii) holds for λx̃. Letting (Ex̃, px̃, sx̃) be the extended Ga-spray on X̃ associated
with λx̃ we obtain a data verifying (i)–(iv).

Case (c) splits in two sub-cases:
(c′) x = x0;
(c′′) x 6= x0.

In case (c′) we have x0 = x /∈ Ux. Hence, letting Ux̃ = σ−1(Ux) the restriction
σ|Ux̃

: Ux̃ → Ux is an isomorphism. Proceeding as before we come to the desired
conclusion.

In case (c′′) we have x0 ∈ C \ {x} = Ox and νx(x0) ∈ νx(Ox) = L. We may suppose
that νx(x0) = 0̄ ∈ A2 is the origin. By (ii), νx : Ux → A2 is étale on Ox ⊂ Ux. Hence,
νx is a blowup of A2 with center an ideal I ⊂ OA2(A2) supported on A2 \ L. Since
νx sends Ox isomorphically onto L, the proper birational morphism νx ◦ σ : Ux̃ → A2

also sends Ox̃ isomorphically onto L. Notice that the blowups with disjoint centers
commute. Hence, νx ◦ σ = σ0 ◦ ν0 where σ0 : Ũ0 → A2 is the blowup of A2 at the origin
and ν0 is the blowup of Ũ0 with center Ĩ = σ∗0(I) ⊂ OŨ0

(Ũ0). These morphisms fit in
a commutative diagram

Ux̃
σ−→ Ux

↓ν0 ↓νx
Ũ0

σ0−→ A2

Choose affine coordinates (u, v) on A2 such that x0 = (0, 0) is the origin and L =
{u = 0}. Then Ũ0 = Ũ1∪Ũ2 where Ũi ' A2 is equipped with coordinates (ui, vi) so that
(α) and (β) above hold. Morphism σ0 sends a coordinate axis L1 in Ũ1 isomorphically
onto L and ν0 sends Ox̃ isomorphically onto L1.

Replace now Ux̃ by Ux̃,1 := ν−1
0 (Ũ1) and ν by ν1 = ν0|Ux̃,1

: Ux̃,1 → Ũ1 ' A2. We
have Ox̃ = Ux̃,1∩ C̃ and ν1|Ox̃

: Ox̃ → L1 is an isomorphism which sends x0 ∈ Ox̃ to the
origin 0̄ ∈ Ũ1 = A2. Furthermore, ν1 is étale on Ox̃ and so, Ux̃,1 verifies (i) and (ii).

Consider now the Ga-action λ on Ũ1 = A2 by translations in direction of L1 so that
L1 is a λ-orbit. Replacing λ by an appropriate replica we can achieve that λ acts freely
on L1 and leaves invariant the center Ĩ|Ux̃,1

of the blowup ν0|Ux̃,1
. Then λ admits a lift

λ̃ to Ux̃,1 such that Ox̃ is a λ̃-orbit. Therefore, Ux̃,1 satisfies (iii) and (iv). �

Proof of Proposition 4.2. Clearly, P2 and the Hirzebruch surfaces Fn with n ≥ 0 verify
the curve-orbit property. It is well known that any rational smooth projective surfaceX
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non-isomorphic to P2 results from a sequence of blowups starting with Fn for some n ≥
0. Moreover, properties (i)–(iv) of Proposition 3.1 hold for the P1-fibration π : Fn → P1.
By this proposition and the induction on the number of blowups these properties still
hold for X. Let x ∈ X lies on a fiber component C of the induced P1-fibration
π : X → P1. Choose two distinct points x1, x2 ∈ C \ {x}. Let Ui and (Ei, pi, si) verify
(i)–(iv) of Proposition 3.1 with x replaced by xi, i = 1, 2. Then Oi = C \ {xi} is an
si-orbit of x. The restriction of the extended Ga-spray (Ei, pi, si) to Oi is dominating.
Therefore, X verifies the curve-orbit property. This proves Proposition 4.2. �

5. Appendix A: High transitivity of the End(X)-action

It is known that the automorphism group Aut(X) of a flexible variety X acts highly
transitively on the smooth locus Xreg, that is, it acts m-transitively for any m ≥ 1,
see [AFKKZ13, Theorem 0.1]. A similar transitivity property holds for the monoid of
endomorphisms End(X) provided X is a smooth elliptic variety in the Gromov’ sense.
Abusing the language we say that End(X) acts highly transitively on X if for any two
isomorphic zero-dimensional subschemes Z1 and Z2 of X every isomorphism Z1

'−→ Z2

extends to an endomorphism of X.

Proposition 5.1. Let X be a smooth quasiaffine variety. If X is elliptic then End(X)
acts highly transitively on X.

The above proposition is an easy consequence of the following epimorphism theorem
due to Kusakabe [Kus22, Theorem 1.2], which generalizes an earlier result of Forstnerič
[For17b, Theorem 1.6] valid for complete elliptic varieties. This phenomenon was ex-
pected in [Gro89, Sec. 3.4(C)]; see also [Arz22] for analogs in the case of flexible
varieties.

Theorem 5.2. For any smooth (sub)elliptic variety X of dimension n there exists a
morphism ϕ : An+1 → X such that ϕ(An+1 \ Sing(ϕ)) = X where

Sing(ϕ) = {x ∈ An+1|ϕ is not smooth at x}
is the singular locus of ϕ. If X is complete then the same is true with An instead of
An+1.

Using the fact that any morphism of a zero-dimensional scheme Z → X can be lifted
through a smooth morphism ϕ : An+1 \ Sing(ϕ) → X, Kusakabe derives the following
interpolation result, see [Kus22, Corollary 1.5]; cf. [Gro89, Sec. 3.4(E)].

Corollary 5.3. Let X be a smooth (sub)elliptic variety, Y be an affine variety and Z
be a zero-dimensional subscheme of Y . Then for any morphism f : Z → X there exists
a morphism f̃ : Y → X such that f̃ |Z = f .

In fact, Corollary 5.3 remains valid with the same proof if one assumes Y to be
quasiaffine. Letting in Corollary 5.3 Y = X and Z1 = Z we can extend the given
morphism f : Z1 → Z2 onto a zero-dimensional subscheme Z2 ofX to an endomorphism
f̃ : X → X. This yields Proposition 5.1. Furthermore, taking in Corollary 5.3 Y = A1

we obtain the following corollary, cf. [Gro89, Sec. 3.4(B)] and [KZ00, p. 1661].



18 S. KALIMAN AND M. ZAIDENBERG

Corollary 5.4. Any smooth elliptic variety X is A1-rich, that is, through any m dis-
tinct points of X passes an A1-curve A1 → X. Moreover, given a finite collection of
curve jets j1, . . . , jm on X with not necessarily distinct centers, there exists an A1-curve
f : A1 → X interpolating these jets.

Notice that for a flexible smooth affine variety X one can find an orbit of a Ga-action
on X interpolating given curve jets, see [AFKKZ13, Theorem 4.14].

6. Appendix B: Gromov’s Extension Lemma

For the reader’s convenience we recall the formulation of Proposition 1.1.

Proposition 6.1. Let D be a reduced effective divisor on X and (E, p, s) be a spray
on U = X \ supp(D) with values in X such that p : E → X is a trivial bundle of rank
r ≥ 1. Then there exists a spray (Ẽ, p̃, s̃) on X whose restriction to U is isomorphic
to (E, p, s) and such that s̃|p̃−1(X\U) = p̃|p̃−1(X\U) and for each x ∈ U the s̃-orbit of x
coincides with the s-orbit of x.

Proof. Extend E to a trivial vector bundle on X; abusing notation, the latter is again
denoted by p : E → X. Let ξ be a canonical section of OX(D) → X such that
div(ξ) = D.

Consider the twisted vector bundle pn : En = E ⊗ OX(−nD) → X where n ∈ N.
Since ξ does not vanish on U the homomorphism ϕn : En → E induced by the tensor
multiplication by ξn restricts to an isomorphism on U which sends sn := s ◦ ϕn to s.
We claim that sn extends to a morphism En → X for a sufficiently large n. It is easily
seen that in the latter case (Ẽ, p̃, s̃) = (En, pn, sn) is a desired spray on X.

The argument is local and, thus, we restrict consideration to an affine neighborhood
ω ⊂ X of a given point x0 ∈ supp(D) such that

• D|ω = h∗(0) for some h ∈ Oω(ω) and
• En|ω ∼=ω ω × Ar is a trivial vector bundle.

Notice that over ω∗ = ω\supp(D) the spray (En, pn, sn) is the hn-homothety of (E, p, s).
The latter means that sn is given, after trivialization, by

sn : (x, v) 7→ s(x, hn(x)v) ∀(x, v) ∈ ω∗ × Ar.

Let ω ↪→ Am be a closed embedding. Then s yields a rational map

s : ω × Ar 99K Am of the form (x, v) 7→ x+ ψ(x, v)

where ψ is a rational vector function which is regular in a neighborhood of ω∗ × {0}
and vanishes on ω∗ × {0}. Every coordinate function of ψ can be written in the form

q(v)

hkr(v)
where v = (t1, . . . , tr) ∈ Ar and q, r ∈ Oω(ω)[t1, . . . , tr]

are such that q(0) = 0 and the zero loci of r and h have no common component in
ω × Ar.

Furthermore, we may suppose that the divisors r∗(0) and q∗(0) have no common
irreducible component T in ω ×Ar passing through (x0, 0) ∈ ω ×Ar. Indeed, let T be
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such a component. It is well known that Pic(ω×Ar) = pr∗1(Pic(ω)). Hence, the divisor
T − pr∗1(T0) is principal for some divisor T0 on ω. Shrinking ω one may suppose that
T0 is principal. Hence, T is principal, i.e., T = f ∗(0) for some regular function f on
ω × Ar. Thus, dividing r and q by f we can get rid of T .

This implies that r does not vanish on ω∗ × {0} since otherwise ψ is not regular on
ω∗ × {0}. In particular, r(0) = ahl where a is a non-vanishing function on ω.

The hn-homothety sn of s yields a rational map

sn : ω × Ar 99K ω ⊂ Am, (x, v) 7→ x+ ψn(x, v),

where ψ is a rational vector function which is regular in a neighborhood of ω∗ × {0}
and vanishes on ω∗ × {0}. Every coordinate function of ψn ∈ is of the form

q(hnv)

hkr(hnv)
.

Since q(0) = 0 and [r(hnv)− r(v)]|v=0 = 0 we see that

q(hnv) = hnq̃(v) and r(hnv) = r(0) + hnr̃(v) = hla+ hnr̃(v).

Hence, for n > k + l the function
q(hnv)

hkr(hnv)
=

hn−k−lq̃(v)

a+ hn−lr̃(v)

is regular in a neighborhood Ω of ω×{0} and vanishes to order n−k− l on (supp(D)×
Ar) ∩ Ω.

Consider now sn+1 = s ◦ ϕn+1 = sn ◦ ϕ1 where, after trivialization,

ϕ1|ω×Ar : ω × Ar → ω × Ar, (x, v) 7→ (x, h(x)v).

Letting Ω̃ = ϕ−1
1 (Ω) ⊂ ω × Ar we see that

ϕ1(Ω̃) ⊂ Ω and (supp(D) ∩ ω)× Ar ⊂ Ω̃.

Hence, sn+1 is regular on Ω̃ and so, on p−1
n+1(supp(D) ∩ ω). This yields a spray

(En+1, pn+1, sn+1) on ω ∪ U with values in X. Choosing a finite cover of supp(D)
by affine open subsets ωi and a sufficiently large n we get the desired extension of
(E, p, s) to a spray (Ẽ, p̃, s̃) on X. �

Remark 6.2. The same proof works also for the original Gromov’s Localization Lemma,
see [Gro89, 3.5.B].

Acknowledgments. We are grateful to Ivan Arzhantsev for useful consultation about
flag varieties. His suggestions allowed to simplify the proofs in this part; the original
proofs were much longer.



20 S. KALIMAN AND M. ZAIDENBERG

References

[Akh95] D. N. Akhiezer, Lie group actions in complex analysis, Aspects of Mathematics E 27. Friedr.
Vieweg & Sohn, 1995.

[Arz22] I. Arzhantsev, On images of affine spaces. arXiv:2209 (2022).
[AFKKZ13] I. V. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, and M. Zaidenberg, Flexible

varieties and automorphism groups, Duke Math. J. 162 (2013), no. 4, 767–823.
[AKZ12] I. V. Arzhantsev, K. G. Kuyumzhiyan, and M. G. Zaidenberg, Flag varieties, toric varieties,

and suspensions: Three instances of infinite transitivity, Sbornik: Mathematics 203:7 (2012),
923–949.
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