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A notion of vertex equitability for proper labellings
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aUniversité Côte d’Azur, CNRS, Inria, I3S, France

Abstract

We introduce an equitable version of proper labellings of graphs, where the notion of equitability
is with respect to the resulting vertex sums. That is, we are interested in k-labellings where, when
computing the sums of labels incident to the vertices, we get a vertex-colouring that is not proper
only, but also equitable. For a given graph G, we are interested in the parameter χΣ(G), which is
the smallest k ≥ 1 (if any) such that G admits such k-labellings.

Through examples of particular graph classes, we observe that this new parameter χΣ behaves
sort of similarly to the parameters χΣ and s, which parameters lie behind the 1-2-3 Conjecture
and the irregularity strength of graphs, in a more or less strong way, depending on the graphs
considered. We then prove general bounds on χΣ, showing that, in some contexts (trees and
connected graphs with large minimum degree), this parameter is bounded above by roughly 3n

4
for

an n-graph. We also prove that determining χΣ is NP-hard in general, and finish off with directions
for further work on the topic.

Keywords: irregular labelling; proper labelling; irregularity strength; 1-2-3 Conjecture;
equitability.

1. Introduction

We deal with notions derived from those behind the so-called irregularity strength of graphs
and the 1-2-3 Conjecture, which notions relate to distinguishing labellings. For more infor-
mation on this field, we refer the interested reader to the dynamic survey [12] by Gallian. For the
sake of keeping this introduction short, in what follows we only recall the notions and results that
are the most important to understand the motivations behind our investigations.

Let G be a graph. A k-labelling ℓ of G is an assignment ℓ ∶ E(G) → {1, . . . , k} of labels (from
{1, . . . , k}) to the edges of G. From ℓ, we can compute several metrics of interest for the vertices
of G. In this work, we are mostly interested in the sums of labels incident to the vertices. That
is, for every vertex v of G, we denote by σℓ(v) (or σ(v) for short) the sum of labels assigned to
the edges incident to v. Note that this function σℓ can be perceived as a vertex-colouring of G.
In case all vertices of G have different colours by σℓ, or, in other words, all resulting sums are
pairwise distinct, we say that ℓ is irregular. Now, in case only all pairs of adjacent vertices of G
have different colours by ℓ, or, in other words, if σℓ is a proper vertex-colouring of G, then we say
that ℓ is proper. The smallest k ≥ 1 (if any) such that G admits irregular k-labellings is denoted
by s(G), while the smallest k ≥ 1 (if any) such that G admits proper k-labellings is denoted by
χΣ(G). In the literature, the parameter s(G) is called the irregularity strength of G.

Investigations on irregular and proper labellings were initiated in 1988 by Chartrand et al.
in [10], in which the authors deal with a particular practical problem through irregular labellings.
Proper labellings were later investigated as a local version of irregular labellings, as Karoński,
Łuczak, and Thomason introduced, in [16], the so-called 1-2-3 Conjecture in 2004. Investigations
on both types of objects are still very active nowadays, many questions being still open; notably:

• Generally speaking, the irregularity strength is a parameter that remains very far from being
fully understood, even for simple classes of graphs such as trees. Among the most important
results on this parameter to date, it was proved by Nierhoff in [19] that s(G) ≤ ∣V (G)∣ − 1



holds for every nice graph1 G, which is tight in general (consider e.g. any star with at
least two leaves). Later on, an important improvement (especially for graphs with large
enough minimum degree) over this upper bound was established by Kalkowski, Karoński,
and Pfender in [15], as they proved that s(G) ≤ 6 ⌈ ∣V (G)∣

δ(G)
⌉ holds for every nice graph G. We

refer the interested reader to [12] for more information on this interesting topic.

• Regarding the parameter χΣ, the 1-2-3 Conjecture raised in [16] postulates that we should
have χΣ(G) ≤ 3 for every nice graph G. This is still mostly open to date, as the 1-2-
3 Conjecture was mostly proved to hold for 3-colourable graphs [16]. To date, the most
important result towards the conjecture was established by Kalkowski, Karoński, and Pfender
in [14], in which they proved that χΣ(G) ≤ 5 holds for every nice graph G. Let us mention
also that a full proof to the 1-2-3 Conjecture was recently proposed by Keusch in [17]. For
more details on the 1-2-3 Conjecture, we would advise the reader to refer to [22].

Irregular labellings and proper labellings are, by definition, types of objects that are undoubt-
edly close. This is illustrated, notably, by the facts that these two notions coincide in complete
graphs, and that the proofs from [14] and [15], in which the best upper bounds on the parameters s
and χΣ to date have been established, exploit similar ideas. They are also rather distant notions, as
showcased by the fact that the irregularity strength of disconnected graphs is subject to dedicated
studies, while, in the context of the 1-2-3 Conjecture, we can obviously focus on connected graphs.

The general connections between irregular labellings and proper labellings have sometimes
been investigated in the literature, through the introduction of intermediate variants. For instance,
Przybyło considered in [21] labellings through which only vertices within a certain fixed distance are
required to have distinct sums, and Bensmail, Hocquard, and Marcille considered in [5] labellings
where both the computed sums and the distinction condition are within a certain range. More
generally speaking, irregular labellings and proper labellings were derived to a number of variants
of varying interest, obtained through playing with the multiple parameters that define them.

In this work, we introduce a new variant of proper labellings, which can be motivated as follows.
As mentioned earlier, another way to see proper labellings is to regard them as a way to “encode”
proper vertex-colourings. Among other natural questions, one can wonder about similar concerns
for other types of vertex-colourings. It is worth mentioning that this thread of research has already
been considered in the literature, with variants of proper labellings being considered for e.g. acyclic
vertex-colourings [13], injective vertex-colourings [7], and oriented vertex-colourings [6].

We here initiate the study of a combination of proper labellings and equitable proper vertex-
colourings2, defined formally as follows. Let G be a graph. Given a k-vertex-colouring ϕ ∶ V (G)→
{1, . . . , k} of G, for any i ∈ {1, . . . , k} we denote by nbℓ(i) (or nb(i) for short) the number of vertices
v of G verifying ϕ(v) = i. We say that ϕ is equitable if, for any two distinct i, j ∈ {1, . . . , k}, we
have ∣nb(i) − nb(j)∣ ≤ 1. Now, given a labelling ℓ of G, we derive the notation nb to labellings, as
follows: for any i ∈ N+, we denote by nbℓ(i) (or simply by nb(i)) the number of vertices of G with
sum i by ℓ. We now say that ℓ is equiproper if σℓ is an equitable proper vertex-colouring of G. In
other words, all resulting sums must appear about the same number of times. Finally, we denote
by χΣ(G) the smallest k ≥ 1 such that G admits equiproper k-labellings.

It is worth mentioning that notions of equitability for proper labellings have already been
investigated in the literature, namely in [2, 3, 8]. However, in those works, the notion of equitablity
in question is with respect to how the labels are assigned, and not with respect to the resulting
sums. Thus, those works do not relate to the new notions we introduce here.

While, as mentioned above, our original intent for introducing and studying equiproper la-
bellings was to investigate their connections with proper labellings, as will be exposed through
our results, it actually turns out that equiproper labellings tend to behave in a way that is more
reminiscent of irregular labellings. Thus, equiproper labellings can somewhat be seen as another
intermediate notion between irregular labellings and proper labellings.

1It can be observed that s(G) and χΣ(G) are well defined if and only if G does not contain K2, the complete
graph on two vertices, as a connected component. We say G is nice whenever it has this property.

2This notion was introduced by Meyer in [18]; we voluntarily do not survey the topic in the current work, as this
is not required at any point of our investigations.

2



This work is organised as follows. We start in Section 2 by raising first observations and
comments on equiproper labellings, which we then investigate in easy classes of graphs, our main
goal being to provide a first insight into how these objects behave in general. In Section 3, we
then prove that determining χΣ(G) for a given graph G is NP-complete, a result of a kind that
has not been established for the irregularity strength to date, and which we prove through a proof
giving yet more hints about the peculiar behaviour of equiproper labellings. In Section 4, we then
provide general upper bounds of χΣ(G) in situations where G has particular properties. Namely,
we consider nice trees, and connected graphs with minimum degree at least 4. We conclude in
Section 5 with perspectives for further work on the topic.

2. First look into equiproper labellings, through some classes of graphs

As mentioned earlier, observe that irregular labellings are always equiproper, since, by an
irregular labelling ℓ, for every i ∈ N+ we have nb(i) ∈ {0,1}. On the other hand, an equiproper
labelling is, by definition, always proper. Thus:

Observation 2.1. If G is a nice graph, then χΣ(G) ≤ χΣ(G) ≤ s(G).

This implies that χΣ(G) is well defined for a graph G if and only if G is nice. From Observa-
tion 2.1, we also get that, in order to come up with a graph G for which χΣ(G) could be “large”,
maybe a good idea would be to consider a graph with large irregularity strength. As mentioned
earlier, we always have s(G) ≤ ∣V (G)∣ − 1 for a nice graph G (see [19]), and this is known to be
tight because of stars. Considering these graphs in our context, we get:

Observation 2.2. For a star Sn with n ≥ 2 leaves, we have χΣ(Sn) ≥ ⌈n2 ⌉.

Proof. Denote by r the n-vertex3 of Sn, and by u1, . . . , un its leaves. Note that, by any k-labelling
ℓ of Sn, we must have σ(r) > σ(u1), . . . , σ(un). For this reason, we necessarily have nb(σ(r)) = 1,
and, thus, for every i ∈ N+ such that nb(i) ≠ 0, we must have nb(i) ∈ {1,2} for ℓ to be equiproper.
Then, by any equiproper k-labelling of Sn, any assigned label can be assigned to at most two edges.
Thus, we deduce that χΣ(Sn) ≥ ⌈n2 ⌉.

Observation 2.2 shows that there is no k ≥ 1 such that χΣ(G) ≤ k holds for every nice graph
G, which might indicate that equiproper labellings are closer to irregular labellings than to proper
labellings. In what follows, we investigate equiproper labellings in easy classes of graphs. Our
results highlight that, actually, for some graphs the parameter χΣ can behave very similarly to
both s and χΣ, while, in some contexts, it can be closer to any of the two.

We first observe that, in complete graphs, every proper vertex-colouring must be equitable,
as all vertices must get assigned distinct colours. In the context of distinguishing labellings, this
implies irregular, proper, and equiproper labellings are equivalent objects in complete graphs.

Observation 2.3. In any complete graph, any irregular labelling is proper and equiproper, and
vice versa. Consequently, for every n ≥ 3, we have s(Kn) = χΣ(Kn) = χΣ(Kn), and thus these
three parameters are always equal to 3 (see e.g. [10]).

The example of complete graphs thus shows a peculiar context in which χΣ, χΣ, and s behave
similarly. The next class we consider, connected graphs with maximum degree 2, or, in other words,
paths and cycles, showcases a situation in which χΣ behaves in a very similar way as χΣ (with,
yet, a slightly different behaviour), and, thus, quite differently from s. Indeed (see e.g. [9]):

Observation 2.4. If Pn is any path of order n ≥ 3, then

• χΣ(Pn) = 1 if n = 3, and

• χΣ(Pn) = 2 otherwise.

If Cn is any cycle of order n ≥ 3, then

3Throughout, a k-vertex refers to a vertex of degree k.
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• χΣ(Cn) = 2 if n ≡ 0 mod 4, and

• χΣ(Cn) = 3 otherwise.

In both cases, there is no k ≥ 1 such that s(Pn), s(Cn) ≤ k for every n.

Proof. The last statement follows from the straight observation that, by a k-labelling ℓ of any
graph, for a vertex v of degree 2, we have σ(v) ∈ {2, . . . ,2k}. Thus, for ℓ to be irregular in some Pn

or Cn, we need n − 2 or n, respectively, to be at most ∣{2, . . . ,2k}∣ = 2k − 1 so that every 2-vertex
can get a distinct sum. Hence, k must be a function of n.

Regarding the value of χΣ for paths and cycles, recall first that χΣ(G) = 1 for a graph G if
and only if G is locally irregular4, and note that P3 is the only path or cycle with this property.
More generally speaking, note also that, by a k-labelling of any graph, a 1-vertex, because we are
assigning strictly positive labels only, cannot get the same sum as its unique neighbour. This means
that, when designing a proper labelling of a path, we only need to pay attention to the resulting
sums for its adjacent 2-vertices.

Note, now, that if u and v are two adjacent 2-vertices, where N(u) = {u′, v} and N(v) = {v′, u}
(where, possibly, u′ = v′), then, by a labelling ℓ, so that σ(u) ≠ σ(v) we must have ℓ(u′u) ≠ ℓ(vv′).
Particularly, in a path or a cycle, every two edges at distance 2 apart must receive distinct labels
by a proper labelling. From this, we come up with another way to look at proper labellings in
paths and cycles. Given a path or a cycle G, let H be the graph obtained by adding a vertex ve
for every edge e of G, and adding an edge between any two vertices ve and vf if, in G, edges e and
f are at distance exactly 2. By the previous arguments, G admits a proper k-labelling if and only
if H admits a proper k-vertex-colouring. The claimed equalities now follow from the fact that, for
G being a path or a cycle, H is either an odd-length cycle (when G is a cycle Cn with n odd), a
disjoint union of two odd-length cycles (when G is a cycle Cn with n ≡ 2 mod 4), or a bipartite
graph (two disjoint paths when G is a path or a cycle of length 4, or the disjoint union of two
even-length cycles when G is a cycle Cn with n ≡ 0 mod 4 and n ≥ 8).

For paths and cycles, we start by observing that χΣ is at least 3 in general. Note that, in the
next observation, we do not make explicit the length threshold above which a path or cycle requires
the use of labels 1, 2, and 3; while this threshold could probably be retrieved from our arguments,
our main intent is actually to establish that labels 1 and 2 do not suffice in general, which is why
the upcoming statement is voluntarily vague.

Observation 2.5. If G is a long enough path or cycle, then χΣ(G) > 2.

Proof. Consider any maximal (non-cycle) path P = v1v2 . . . vp of G (we have v1vp ∈ E(G) if G is a
cycle). For every i ∈ {1, . . . , p−1}, we denote by ei the edge vivi+1. Every ei with i odd is said odd,
while every ei with i even is said even. Assume now an equiproper 2-labelling ℓ of G exists, and let
us focus on the edges of P . For the reasons given in the proof of Observation 2.4, recall that every
two “consecutive” even edges ei and ei+2 must be assigned distinct labels by ℓ, and similarly for
every two “consecutive” odd edges ei and ei+2. In some way, this means that ℓ is fully determined
by the labels ℓ(e1) and ℓ(e2), and, thus, so are σ(v2), . . . , σ(vp−1).

• If ℓ(e1) = ℓ(e2) = 1, then note that (σ(v2), . . . , σ(vp−1)) = (2,3,4,3,2,3,4,3,2, . . . ). That
is, we get σ(vi) = 3 for every odd i ∈ {3, . . . , p − 1}, while we get σ(vi) = 2 for every even
i ∈ {2, . . . , p−1} with i ≡ 2 mod 4 and σ(vi) = 4 for every even i ∈ {4, . . . , p−1} with i ≡ 0 mod 4.

• If ℓ(e1) = ℓ(e2) = 2, then (σ(v2), . . . , σ(vp−1)) = (4,3,2,3,4,3,2,3,4, . . . ). That is, we get
σ(vi) = 3 for every odd i ∈ {3, . . . , p−1}, while we get σ(vi) = 4 for every even i ∈ {2, . . . , p−1}
with i ≡ 2 mod 4 and σ(vi) = 2 for every even i ∈ {4, . . . , p − 1} with i ≡ 0 mod 4.

• If (ℓ(e1), ℓ(e2)) = (1,2), then (σ(v2), . . . , σ(vp−1)) = (3,4,3,2,3,4,3,2,3, . . . ). That is, we get
σ(vi) = 3 for every even i ∈ {2, . . . , p−1}, while we get σ(vi) = 4 for every odd i ∈ {3, . . . , p−1}
with i ≡ 3 mod 4 and σ(vi) = 2 for every odd i ∈ {5, . . . , p − 1} with i ≡ 1 mod 4.

4A graph is locally irregular if every two of its adjacent vertices have different degrees.
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• If (ℓ(e1), ℓ(e2)) = (2,1), then (σ(v2), . . . , σ(vp−1)) = (3,2,3,4,3,2,3,4,3, . . . ). That is, we get
σ(vi) = 3 for every even i ∈ {2, . . . , p−1}, while we get σ(vi) = 2 for every odd i ∈ {3, . . . , p−1}
with i ≡ 3 mod 4 and σ(vi) = 4 for every odd i ∈ {5, . . . , p − 1} with i ≡ 1 mod 4.

In all cases, it can thus be noted that nb(3) is about twice nb(2) and nb(4). Thus, assuming G
is long enough, and because P is a longest path of G, we deduce that ℓ cannot be equiproper.

Due to Observation 2.5 one could wonder whether χΣ can be arbitrarily large for a given path
or cycle, especially when taking into account that such large graphs have a lot of vertices with the
same degree, 2, meaning that, by a k-labelling with k relatively small, the range of possibly sums
for the vertices is small too. It turns out that χΣ is always at most 3 for any nice path or cycle.
So, while χΣ and χΣ are not always equal for such graphs, χΣ is yet much closer to χΣ than to s.

Theorem 2.6. If G is a nice path or cycle, then χΣ(G) ≤ 3.

Proof. Note that given a proper vertex-colouring of H, the graph obtained from G as described
in the proof of Observation 2.4, it is far from obvious what sums will be obtained for the vertices
of G, by the corresponding labelling. For these reasons, we instead describe how to construct an
equiproper 3-labelling of G right away from scratch, depending on what the length of G is. Also,
to avoid dealing with pathological cases, in what follows we assume that G is long enough (thereby
getting that Observation 2.5 cannot be made worse); by that, we mean of length at least 12. It is
not too complicated to check by hand that the claim also holds for smaller length values.

Assume first that G is a path (v1, . . . , vn). For every i ∈ {1, . . . , n−1}, we denote by ei the edge
vivi+1. We consider three cases.

• ∣E(G)∣ ≡ 2 mod 3 (with ∣E(G)∣ ≥ 8).
In this case, assign labels 3, 2, and 2 to e1, e2, and e3, respectively, and, from here on,
while possible, repeatedly pick the next three unlabelled edges ei, ei+1, and ei+2, and assign
labels 1, 3, and 2, respectively, to them, until en−3 gets labelled (thus with label 2). Finally,
assign labels 2 and 3 to en−2 and en−1, respectively. By the resulting 3-labelling of G, note
that σ(v1) = 3, σ(v2) = 5, and σ(v3) = 4. Meanwhile, we get σ(vn−2) = 4, σ(vn−1) = 5, and
σ(vn) = 3. Also, for every i ∈ {4, . . . , n − 3}, we have σ(vi) = 3 if i ≡ 1 mod 3, σ(vi) = 4 if
i ≡ 2 mod 3, and σ(vi) = 5 if i ≡ 0 mod 3. Since ∣E(G)∣ ≡ 2 mod 3, note that n ≡ 0 mod 3.
From these arguments, we thus deduce that nb(3) = nb(4) = nb(5) while all vertices have
sum in {3,4,5}, and the resulting 3-labelling is thus equiproper. In particular, its properness
follows from the fact that no two edges at distance 2 of G are assigned the same label.

• ∣E(G)∣ ≡ 0 mod 3 (with ∣E(G)∣ ≥ 12).
Apply the same 3-labelling process as in the previous step (that is, assign labels 3, 2, and
2 to e1, e2, and e3, before repeatedly assigning labels 1, 3, and 2 to consecutive triples of
unlabelled edges ei, ei+1, and ei+2), but stop when en−7 is labelled. Now, assign labels 2, 1, 3,
2, 2, and 3 to en−6, . . . en−1, respectively. As in the previous case, we get σ(v1) = 3, σ(v2) = 5,
and σ(v3) = 4, and for every i ∈ {4, . . . , n − 7}, we have σ(vi) = 3 if i ≡ 1 mod 3, σ(vi) = 4
if i ≡ 2 mod 3, and σ(vi) = 5 if i ≡ 0 mod 3. Particularly, because ∣E(G)∣ ≡ 0 mod 3, note
that en−7 was assigned label 2. Also, σ(vn−7) = 5. Note now that, due to how we finished
the labelling, we have σ(vn−6) = 4, σ(vn−5) = 3, σ(vn−4) = 4, σ(vn−3) = 5, σ(vn−2) = 4,
σ(vn−1) = 5, and σ(vn) = 3. So, we have nb(4) − 1 = nb(3) = nb(5), while all vertices have
sum in {3,4,5}. Also, no two edges of G at distance 2 are assigned the same label. The
resulting 3-labelling of G is thus equiproper.

• ∣E(G)∣ ≡ 1 mod 3 (with ∣E(G)∣ ≥ 7).
In this case, for every i ∈ {1, . . . , n − 5}, assign label 3 to ei if i ≡ 1 mod 3, label 2 to ei if
i ≡ 2 mod 3, and label 1 to ei if i ≡ 0 mod 3. Lastly, assign label 3, 2, 2, and 3 to en−4, en−3,
en−2, and en−1, respectively. As a result, σ(v1) = 3, while, for every i ∈ {2, . . . , n − 5}, we
have σ(vi) = 5 if i ≡ 2 mod 3, σ(vi) = 3 if i ≡ 0 mod 3, and σ(vi) = 4 if i ≡ 1 mod 3. Also,
σ(vn−5) = 3. Due to how we labelled the last edges, note that we also have σ(vn−4) = 4,
σ(vn−3) = 5, σ(vn−2) = 4, σ(vn−1) = 5, and σ(vn) = 3. From these arguments, we deduce that
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4

2

3

5

6

4

3

5

11

2

3

3 1

2

3

(d) ∣E(G)∣ ≡ 3 mod 5
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(e) ∣E(G)∣ ≡ 4 mod 5

Figure 1: Cases for cycles in the proof of Theorem 2.6. Numbers in vertices are sums obtained by the depicted
equiproper 3-labelling. In each case, vertex v0 is filled with gray.

nb(3) = nb(5) = nb(4)+ 1. Since no two edges at distance 2 of G are assigned the same label,
and all vertices have sum in {3,4,5}, the attained 3-labelling is thus equiproper.

Now consider the case where G is a cycle (v0, . . . , vn−1, v0). For every i ∈ {0, . . . , n−1}, we denote
by ei the edge vivi+1 (where operations over the subscripts, here and further, are modulo n). Once
again, we consider a few cases (see Figure 1 for an illustration).

• If ∣E(G)∣ ≡ 0 mod 5 (with ∣E(G)∣ ≥ 5), then we consider every i ∈ {0, . . . , n − 1}, and assign
label 1 to ei if i ≡ 0,1 mod 5, label 2 to ei if i ≡ 2 mod 5, and label 3 to ei otherwise, if
i ≡ 3,4 mod 5. As a result, for every i ∈ {0, . . . , n − 1}, we get σ(vi) = 2 if i ≡ 1 mod 5,
σ(vi) = 3 if i ≡ 2 mod 5, σ(vi) = 5 if i ≡ 3 mod 5, σ(vi) = 6 if i ≡ 4 mod 5, and σ(vi) = 4 if
i ≡ 0 mod 5. Then, nb(2) = nb(3) = nb(4) = nb(5) = nb(6), and all sums are in {2,3,4,5,6}.
Also, no edges at distance 2 are assigned the same label. Then, the 3-labelling is equiproper.

• If ∣E(G)∣ ≡ 1 mod 5 (with ∣E(G)∣ ≥ 11), then we consider every i ∈ {0, . . . , n − 7}, and as in
the previous case assign label 1 to ei if i ≡ 0,1 mod 5, label 2 to ei if i ≡ 2 mod 5, and label 3
to ei otherwise, if i ≡ 3,4 mod 5. Finally, we assign labels 1, 1, 2, 2, 3, and 3 to en−6, en−5,
en−4, en−3, en−2, and en−1, respectively. Then, for every i ∈ {1, . . . , n − 7}, we get σ(vi) = 2
if i ≡ 1 mod 5, σ(vi) = 3 if i ≡ 2 mod 5, σ(vi) = 5 if i ≡ 3 mod 5, σ(vi) = 6 if i ≡ 4 mod 5, and
σ(vi) = 4 if i ≡ 0 mod 5. Also, σ(v0) = 4, σ(vn−1) = 6, σ(vn−2) = 5, σ(vn−3) = 4, σ(vn−4) = 3,
σ(vn−5) = 2, and σ(vn−6) = 4. Then, nb(2) = nb(3) = nb(5) = nb(6), while nb(2) = nb(4) − 1.
Also all vertices of G have sum in {2,3,4,5,6} and no two edges at distance 2 are assigned
the same label. Then, the resulting 3-labelling of G is equiproper.

• If ∣E(G)∣ ≡ 2 mod 5 (with ∣E(G)∣ ≥ 7), then we consider every i ∈ {0, . . . , n− 3}, and as in the
previous cases assign label 1 to ei if i ≡ 0,1 mod 5, label 2 to ei if i ≡ 2 mod 5, and label 3
to ei otherwise, if i ≡ 3,4 mod 5. Finally, we assign label 2 to en−2 and en−1. Then, for
every i ∈ {1, . . . , n − 3}, we get σ(vi) = 2 if i ≡ 1 mod 5, σ(vi) = 3 if i ≡ 2 mod 5, σ(vi) = 5 if
i ≡ 3 mod 5, σ(vi) = 6 if i ≡ 4 mod 5, and σ(vi) = 4 if i ≡ 0 mod 5. Also, σ(v0) = 3, σ(vn−1) = 4,
and σ(vn−2) = 5. Then, nb(3) = nb(5), while nb(2) = nb(4) = nb(6), and nb(3) = nb(2) + 1.
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Also all vertices of G have sum in {2,3,4,5,6} and no two edges at distance 2 are assigned
the same label. Then, the resulting 3-labelling of G is equiproper.

• If ∣E(G)∣ ≡ 3 mod 5 (with ∣E(G)∣ ≥ 8), then we consider every i ∈ {0, . . . , n − 4}, and as
previously assign label 1 to ei if i ≡ 0,1 mod 5, label 2 to ei if i ≡ 2 mod 5, and label 3 to ei
otherwise, if i ≡ 3,4 mod 5. Finally, we assign label 1 to en−3, label 2 to en−2, and label 3 to
en−1. Then, for every i ∈ {1, . . . , n−4}, we get σ(vi) = 2 if i ≡ 1 mod 5, σ(vi) = 3 if i ≡ 2 mod 5,
σ(vi) = 5 if i ≡ 3 mod 5, σ(vi) = 6 if i ≡ 4 mod 5, and σ(vi) = 4 if i ≡ 0 mod 5. Also, σ(v0) = 4,
σ(vn−1) = 5, σ(vn−2) = 3, and σ(vn−3) = 4. Then, nb(3) = nb(4) = nb(5), while nb(2) = nb(6),
and nb(3) = nb(2) + 1. Also all vertices of G have sum in {2,3,4,5,6} and no two edges at
distance 2 are assigned the same label. Then, the resulting 3-labelling of G is equiproper.

• If ∣E(G)∣ ≡ 4 mod 5 (with ∣E(G)∣ ≥ 9), then we consider every i ∈ {0, . . . , n − 5}, and as
previously assign label 1 to ei if i ≡ 0,1 mod 5, label 2 to ei if i ≡ 2 mod 5, and label 3 to
ei otherwise, if i ≡ 3,4 mod 5. Finally, we assign label 1 to en−4 and en−3, label 2 to en−2,
and label 3 to en−1. Then, for every i ∈ {1, . . . , n − 5}, we get σ(vi) = 2 if i ≡ 1 mod 5,
σ(vi) = 3 if i ≡ 2 mod 5, σ(vi) = 5 if i ≡ 3 mod 5, σ(vi) = 6 if i ≡ 4 mod 5, and σ(vi) = 4 if
i ≡ 0 mod 5. Also, σ(v0) = 4, σ(vn−1) = 5, σ(vn−2) = 3, σ(vn−3) = 2, and σ(vn−4) = 4. Then,
nb(2) = nb(3) = nb(4) = nb(5), and nb(2) = nb(6) + 1. Also all vertices of G have sum in
{2,3,4,5,6} and no two edges at distance 2 are assigned the same label. Then, the resulting
3-labelling of G is equiproper.

Turning to complete bipartite graphs now, we recall the following (see e.g. [9]):

Observation 2.7. If Ks,t is a complete bipartite graph with parts of cardinality s and t (with
s + t ≥ 3), then

• χΣ(Ks,t) = 1 if s ≠ t, and

• χΣ(Ks,t) = 2 otherwise.

Furthermore, there is no k ≥ 1 such that s(Ks,t) ≤ k for every s, t.

Proof. The first item is because Ks,t is locally irregular when s ≠ t. When s = t, a proper 2-labelling
can be obtained by choosing any vertex v of Ks,t, assigning label 2 to all edges incident to v, and
assigning label 1 to all other edges. The last claim follows from the same reason as in the proof of
Observation 2.4. Particularly, if s = 2, then, so that the t vertices with degree 2 can have pairwise
distinct sums by any irregular k-labelling of Ks,t, we must have ∣{2, . . . ,2k}∣ = 2k − 1 ≥ t. Thus, k
must be a function of s and t.

Contrarily to the case of paths and cycles (recall Theorem 2.6), it turns out that χΣ, in the
context of complete bipartite graphs, has a behaviour that is more reminiscent of that of the
irregularity strength, in the following sense:

Observation 2.8. There is no k ≥ 1 such that χΣ(Ks,t) ≤ k for every s, t (with s + t ≥ 3).

Proof. For some s and t, let (U,V ) denote the bipartition of Ks,t where ∣U ∣ = s and ∣V ∣ = t, and
s ≤ t. Then, d(u) = t for every u ∈ U , and d(v) = s for every v ∈ V .

Fix now any k ≥ 1, and assume e.g. that t > (s + 1)ks. Note that, by any k-labelling ℓ of Ks,t,
we have σ(u) ≥ d(u) = t for every u ∈ U , and σ(v) ≤ kd(v) = ks for every v ∈ V . Particularly, since
t > (s + 1)ks, we have t > ks, and thus a vertex of U cannot have the same sum as a vertex of V .
For this reason, if ℓ is equiproper, then, for every u ∈ U , we must have nb(σ(u)) ≤ ∣U ∣ = s. This
means that, for any i ∈ N+ such that nb(i) > 0, we have nb(i) ≤ s+ 1. Now, the vertices v ∈ V have
sum in {s, . . . , ks}, which is a set of cardinality (k − 1)s + 1. Particularly, since t > (s + 1)ks, we
have t > (s+1)((k−1)s+1), and thus for some vertex v in V we must have nb(σ(v)) > s+1, which
contradicts that ℓ is equiproper. Since this holds for every k ≥ 1, the claim follows.
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3. Complexity aspects

We now consider the complexity of the problem of determining χΣ(G) for a given graph G.
Unsurprisingly (see below), we prove this problem to be NP-complete. One of the main points of
interest behind our result actually lies in the forcing mechanisms we develop to establish it, which
allows to get further understanding over equiproper labellings.

For record, recall that deciding whether χΣ(G) ≤ 2 holds for a given graph G was proved to be
NP-complete [11]. On the other hand, we still do not know whether the similar result holds for
the irregularity strength, as exposed in [4], in which hints on this question are provided. For other
variants lying in between irregular labellings and proper labellings, such NP-completeness results
were also established (see e.g. [5]). This is also the case for other variants dealing with equitability,
but with respect to the assigned labels, see [3].

Our result, now, reads as follows:

Theorem 3.1. Deciding whether χΣ(G) ≤ 2 holds for a given graph G is NP-complete.

Proof. Since the problem is clearly in NP, we focus on proving its NP-hardness. This is done by
reduction from the Cubic Monotone 1-in-3 SAT problem, which was proved to be NP-hard
in [20]. Recall that an instance of Cubic Monotone 1-in-3 SAT is a 3CNF formula F over
clauses C1, . . . ,Cm and variables x1, . . . , xn, where all clauses of F contain exactly three distinct
(positive) variables, and all variables appear (in positive form) in exactly three distinct clauses
each. The question is whether F can be 1-in-3 satisfied, i.e., whether there is a truth assignment
to the variables such that every clause contains exactly one true variable (thus together with two
false ones). Given such an F , we construct, in polynomial time, a graph G such that F is 1-in-3
satisfiable if and only if G admits equiproper 2-labellings.

By definition of Cubic Monotone 1-in-3 SAT, note that the graph GF modelling the struc-
ture of F (in which there is a clause vertex vC associated to every clause C, a variable ver-
tex vx associated to every variable x, and a formula edge vCvx whenever variable x belongs to
clause C) is cubic, and thus we must have n = m, i.e., the number of variables equals the num-
ber of clauses. We can also assume n is even, as, clearly, F is 1-in-3 satisfiable if and only if
F ∧ (x ∨ x′ ∨ x′′) ∧ (x ∨ x′ ∨ x′′) ∧ (x ∨ x′ ∨ x′′) (where x, x′, and x′′ are new variables) is 1-in-3
satisfiable, and the latter formula has three more clauses each containing three distinct (positive)
variables, and three more variables each appearing (in positive form) in three distinct clauses.

We define F as the formula being the negation of F , having a clause Ci = (xi1 ∧ xi2 ∧ xi3) for
every clause Ci = (xi1 ∧xi2 ∧xi3) of F , being defined over the n negated variables x1, . . . , xn. Note
that F also has n clauses and n (negated) variables, and F is 1-in-3 satisfiable if and only if F is.

Now set Φ = F ∧ F . Thus, Φ is a 3CNF cubic formula with 2n clauses C1, . . . ,Cn,C1, . . . ,Cn

defined over 2n literals x1, . . . , xn and x1, . . . , xn. We actually construct a graph G from Φ, such
that Φ is 1-in-3 satisfiable if and only if G admits equiproper 2-labellings. Note that this yields
the desired equivalence between F and G.

The construction of G goes as follows (see Figure 2).

• Start from GΦ, the graph modelling Φ, having 2n clause vertices vC1 , . . . , vCn , vC1
, . . . , vCn

associated to C1, . . . ,Cn,C1, . . . ,Cn, and 2n literal vertices vx1 , . . . , vxn , vx1 , . . . , vxn associ-
ated to x1, . . . , xn, x1, . . . , xn. Also, GΦ has formula edges as indicated by F and F . More
precisely, note that G is, for now, the (cubic) disjoint union of GF and GF .

• Now, add to the graph 18n new vertices a1, . . . , a18n, isolated for now. Similarly, add 20n new
vertices b1, . . . , b20n, and 20n new vertices c1, . . . , c20n. Last, add 21n

2
new vertices d1, . . . , d 21n

2

(recall n is even) to the graph, and 21n
2

new vertices e1, . . . , e 21n
2

.

• We now add edges incident to the di’s and ei’s, going to the ai’s, bi’s, ci’s, and vertices of
GΦ. We call 1-edges the edges incident to the di’s we will add, and 2-edges those incident to
the ei’s. Essentially, the point is that, due to the eventual structure of G, in any equiproper
2-labelling, the 1-edges will necessarily be assigned label 1, while the 2-edges will necessarily
be assigned label 2. We add these edges so that 1) the degrees of the di’s grow equally, 2)
the degrees of the ei’s grow equally, and 3) the degrees of the di’s are about twice those of
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Figure 2: Part of the reduction in the proof of Theorem 3.1. Red edges are 1-edges, while blue edges are 2-edges.
Numbers near 1-edges and 2-edges incident to some vertex indicate how many 1-edges and 2-edges are incident to
that vertex. For legibility reason, note that not all edges are drawn. Particularly, in this illustration, the 1-edges and
2-edges incident to p1, q1, and r1 depict the case where we must add at least two 1-edges and at least two 2-edges
incident to the di’s and ei’s. On the other hand, there are no 1-edges and 2-edges incident to p21n+1, q21n+1, and
r21n+1, which corresponds to the case where no 1-edges and 2-edges miss.

the ei’s. To guarantee most of these conditions, we proceed in the following way. In what
follows, when needing to attach a 1-edge at some vertex u (being neither a di nor an ei) for
the first time, we add d1u. Later on, assuming we need to attach another 1-edge at some u,
then, assuming the last added 1-edge is incident to di, we add di+1u, where d1 is regarded as
d 21n

2 +1
. In some sense, we add edges incident to the di’s in a balanced way, cycling through

the ordering d1, . . . , d 21n
2

. We add 2-edges the same way, except they are incident to the ei’s.

Now, the 1-edges and 2-edges we add are the following:

– To every clause vertex, we attach eight 1-edges and four 2-edges.

– To every literal vertex, we attach two 1-edges and one 2-edge.

– To every ai, we attach ten 1-edges and five 2-edges.

– To every bi, we attach four 1-edges and two 2-edges.

– To every ci, we attach five 1-edges and three 2-edges.

• Note that the number of 1-edges we attached is 16n (clause vertices) + 4n (literal vertices)
+ 180n (ai’s) + 80n (bi’s) + 100n (ci’s), that is, 380n. Meanwhile, the number of 2-edges we
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attached is 8n (clause vertices) + 2n (literal vertices) + 90n (ai’s) + 40n (bi’s) + 60n (ci’s),
that is, 200n. Then, (2 × 200n) − 380n = 20n, which means that if we wanted the number of
1-edges (and thus the sum of the degrees of the di’s) to be twice the number of 2-edges (and
thus the sum of the degrees of the ei’s), then 20n more 1-edges would need to be added.

We add n more ai’s, denoted by a18n+1, . . . , a19n, to each of which we attach 20 1-edges. As
a result, the number of attached 1-edges is now 400n, twice that of attached 2-edges, 200n.

In terms of degrees, note that the clause vertices have degree 15 (recall the formula edges), the
literal vertices have degree 6, the ai’s have degree 15 (a1, . . . , a18n) or 20 (a18n+1, . . . , a19n),
the bi’s have degree 6, and the ci’s have degree 8. Also, besides the di’s and the ei’s, vertices
are incident to at most 20 1-edges or 2-edges of the same type, meaning that the process
above keeps the graph simple, assuming 21n

2
> 20 (which we can assume, as otherwise F

would be of constant size, and its 1-in-3 satisfiability could be determined in constant time).

On the other hand, note that 38 < 400n
21n
2

< 39 and 19 < 200n
21n
2

< 20. Due to how we have added
1-edges and 2-edges (in a balanced and equitable way), this implies the di’s have degree in
{38,39}, while the ei’s have degree in {19,20}. So, for now, the di’s are the vertices of G with
the largest degrees; a problem, however, is that their degrees are not large enough, in the
sense that, besides the ei’s, some other vertices could reach the same sums by a 2-labelling. In
particular, note that some of the ai’s have degree 20. In what follows, we add more structure
to the graph to make the degrees of the di’s and ei’s a bit larger. What we desire, is that,
by a 2-labelling of G, only the ei’s can have the same sums as the di’s.

• We now add 21n new vertices f1, . . . , f21n to the graph, joined to the di’s and ei’s as follows.
We arrange the fi’s into the 21n

2
pairs P1 = {f1, f2}, P2 = {f3, f4}, P3 = {f5, f6}, and so on.

Now, for every i ∈ {1, . . . , 21n
2
}, we add four 1-edges incident to di, going to the four vertices

in the pairs Pi and Pi+1 (where, naturally, P 21n
2 +1

= P1). As a result, the di’s are each joined
to four fi’s, while the fi’s are each incident to two 1-edges. Thus, the di’s now have degree
in {42,43}. Similarly, for every i ∈ {1, . . . , 21n

2
}, we add two 2-edges incident to ei, going to

the two vertices in Pi. The ei’s are thus each joined to two fi’s, and each fi is incident to
exactly one 2-edge; thus, the ei’s now have degree in {21,22}, while the fi’s are now incident
to both two 1-edges and one 2-edge.

• Our goal, now, is to add a few edges incident to the di’s and to the ei’s so that all di’s have
degree 44, while all ei’s have degree 22. We do so while adding some more structure to the
graph to ensure some forcing mechanisms. More precisely, we add edges incident to the di’s
and ei’s going to new vertices (pi’s, qi’s, and ri’s below), in such a way the resulting degrees
for these new vertices remain small.

Formally, for every i ∈ {1, . . . ,21n + 1}, we start by adding three new vertices pi, qi, and ri
to the graph, isolated for now. We then add some more 1-edges and 2-edges, in the manner
described below to reach the desired properties.

Note that to reach the desired degrees, some of the di’s miss two incident edges, while all of
the others miss only one incident edge. Regarding the ei’s, some of them miss exactly one
incident edge, while the others miss none. Particularly, the total number of missing 1-edges
is thus larger than the total number of missing 2-edges. Also, since there are 21n

2
di’s and

21n
2

ei’s, the number of missed edges is at most 3 × 21n
2

.

Free to rename the di’s and ei’s, we may assume that there are α,β ∈ {0, . . . , 21n
2
} such that

the first α di’s miss two incident edges while the others miss only one, and that the first β
ei’s miss one incident edge while the others do not. In what follows, when adding missing
1-edges and 2-edges (going to the pi’s, qi’s, and ri’s), we do so following this ordering over
the di’s and ei’s; that is, the first α 1-edges we add are incident to d1, . . . , dα, while the first
β 2-edges we add are incident to e1, . . . , eβ (where, again, after considering d 21n

2
and e 21n

2
,

the next vertices to be considered are d1 and e1, respectively). This guarantees we first deal
with the di’s and ei’s that miss the most edges. Also, this guarantees, whenever attaching
two 1-edges at some vertex, that they do not originate from the same di (so that the graph
remains simple).
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The process now goes as follows. As long as there remain 1-edges and 2-edges (incident to
the di’s and ei’s) to be added, we consider a new value of i ∈ {1, . . . ,21n + 1}, and add new
1-edges and 2-edges going from the next (following the ordering above) faulty di’s and ei’s
and going to vertices in {pi, qi, ri}. Since we want to keep control over the degrees of pi,
qi, and ri, this is done in multiple possible ways, depending on the number of 1-edges and
2-edges that remain to be added.
Now, consider every i ∈ {1, . . . ,21n + 1} in turn; then:

1. If, in total, at least two 2-edges miss, then there also miss at least two 1-edges. Then,
we add a 1-edge incident to pi, a 2-edge incident to qi, and both a 1-edge and a 2-edge
incident to ri (see Figure 2). Note that pi and qi get degree 1, while ri gets degree 2.

2. If exactly one 2-edge misses:

– If exactly one 1-edge misses, then we add a 1-edge incident to pi and a 2-edge
incident to qi. Note that pi and qi get degree 1, while ri remains of degree 0.

– If exactly two 1-edges miss, then we add a 1-edge incident to pi, and both a 1-edge
and a 2-edge incident to ri. Note that pi gets degree 1, qi remains of degree 0, while
ri gets degree 2.

– If exactly three 1-edges miss, then we add three 1-edges incident to ri, and a 2-edge
incident to qi. Note that pi remains of degree 0, qi gets degree 1, while ri gets
degree 3.

– If at least four 1-edges miss, then we add a 1-edge incident to pi, a 2-edge incident
to qi, and three 1-edges incident to ri. Note that pi and qi get degree 1, while ri
gets degree 3.

3. If no 2-edges miss but some 1-edges miss:

– If exactly one 1-edge misses, then we add a 1-edge incident to pi. Note that pi gets
degree 1, while qi and ri remain of degree 0.

– If at least two 1-edges miss, then we add one 1-edge incident to pi, one 1-edge
incident to ri, and we add the edge qiri. Note that pi and qi get degree 1, while ri
gets degree 2 (★).

4. If no 2-edges and no 1-edges miss, then we add the edges piri and qiri (see Figure 2).
Note that pi and qi get degree 1, while ri gets degree 2. In that case, note that {pi, qi, ri}
induces a path of length 2 which is isolated from the rest of the graph; we say this set
{pi, qi, ri} is isolated.

Once this process achieves, note that all pi’s and qi’s have degree 1, except maybe for one
(isolated) of them. Meanwhile, all di’s have degree 44, and all ei’s have degree 22, as intended.
Above, we have also marked (with ★) one particular case (which might occur several times)
in which the treatment is a bit peculiar, as, besides 1-edges and 2-edges, for some i we also
had to add one edge joining some vertices in {pi, qi, ri} (while {pi, qi, ri} is not isolated). This
case being handled differently from the others, it will be commented upon in the upcoming
analysis. Note also that, since n can be assumed to be large enough, the first case above
must have occurred at least once; particularly, we might assume r1 is incident to exactly one
1-edge and exactly one 2-edge. Also, it can be checked that at most one of the ri’s is isolated.

• Last, to achieve the construction of G, for every i ∈ {1, . . . , n}, we add the edge vxivxi .

The graph we have obtained at this point is our G. Clearly, the whole construction is achieved
in polynomial time. We now prove a few claims.

Claim 3.2. If ℓ is any equiproper 2-labelling of G, then, for every i ∈ N+ such that nb(i) ≠ 0, we
have nb(i) ∈ {21n,21n + 1}.

Proof of the claim. Recall that at most one of the pi’s and qi’s is not of degree 1, and that these
vertices are the only 1-vertices of G. Since there are 21n + 1 pi’s and 21n + 1 qi’s, this means the
number of 1-vertices of G lies in {42n+1,42n+2}. Also, by any 2-labelling, recall that any 1-vertex
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has sum in {1,2}. For these reasons, by any equiproper 2-labelling ℓ of G, at least one of nb(1)
and nb(2) must be at least 21n + 1.

Note also that the maximum degree of a vertex in G is 44, which is achieved by the di’s.
Furthermore, besides the di’s, the vertices that have the largest degree are the ei’s, which have
degree 22. Recall that there are 21n

2
di’s, and 21n

2
ei’s, thus 21n di’s and ei’s in total. Also, by

any 2-labelling, the di’s have sum in {44, . . . ,88}, while the ei’s have sum in {22, . . . ,44}, and all
other vertices have sum strictly less than 44. Thus, for every i ∈ {45, . . . ,88}, we necessarily have
nb(i) ≤ 21n

2
, while nb(44) can be as large as 21n (which occurs when all di’s and ei’s have sum 44).

From these arguments, we deduce that, by any equiproper 2-labelling of G, we must have
nb(i) = 0 for every i ∈ {45, . . . ,88} and nb(44) > 0. Furthermore, so that nb(44) and either nb(1)
or nb(2) are not too distant (i.e., their difference is at most 1), we must have nb(44) = 21n, while
the largest of nb(1) and nb(2) must be 21n + 1. This implies that, for every i ∈ N+ such that
nb(i) ≠ 0, we must have nb(i) ∈ {21n,21n + 1}. ◇

Claim 3.3. In every equiproper 2-labelling ℓ of G, all 1-edges must be assigned label 1, and all
2-edges must be assigned label 2.

Proof of the claim. As mentioned in the proof of Claim 3.2, we must have nb(44) = 21n, and this
requires all di’s and all ei’s to have sum 44 by ℓ. Since all di’s have degree 44 and all ei’s have
degree 22, we deduce that all edges incident to the di’s must be assigned label 1, while all edges
incident to the ei’s must be assigned label 2. ◇

Claim 3.4. In every equiproper 2-labelling ℓ of G:

• all ai’s have sum 20;

• all bi’s have sum 8;

• all ci’s have sum 11;

• all di’s and ei’s have sum 44;

• all fi’s have sum 4;

• for every set {pi, qi, ri}:

– if {pi, qi, ri} is not isolated, then σ(pi) = 1, σ(qi) = 2, and σ(ri) = 3;
– if {pi, qi, ri} is isolated, then either {σ(pi), σ(qi)} = {1,2} and σ(ri) = 3, or σ(pi) =

σ(qi) ∈ {1,2} and σ(ri) ∈ {2,4}; furthermore, in the latter situation, {pi, qi, ri} is the
only isolated set with these properties.

Particularly, nb(20) ≥ 19n, nb(8) ≥ 20n, nb(11) ≥ 20n, nb(44) = 21n, nb(1) ≥ 21n, nb(2) ≥ 21n,
and nb(3) ≥ 21n.

Proof of the claim. The first part follows mainly from Claim 3.3, since most of the edges incident
to these vertices are 1-edges and 2-edges. Actually, besides isolated sets {pi, qi, ri}, the only case
in which these vertices are not incident to 1-edges and 2-edges only, is that of two vertices qi and
ri joined by an edge, which occurred when we dealt with the case marked with ★ above.

Note that case ★ might have occurred several times. We claim, however, that for any i such
that case ★ applied, we must have ℓ(qiri) = 2. Assume indeed that we have ℓ(qiri) = 1 for some
such i. Then σ(ri) = 2 due to a 1-edge incident to ri. If the number of 1-vertices of G was 42n+ 2,
then we would deduce that there are at least 42n + 3 vertices with sum in {1,2}, and thus that
either nb(1) or nb(2) must be at least 21n + 2, a contradiction to Claim 3.2. So, the number of
1-vertices of G must be 42n+1, and we must have nb(1) = nb(2) = 21n+1. For this to happen, note
that must have ended up adding 1-edges and 2-edges with the case right before that marked with
★. The application of this case implies there is some j > i such that both qj and rj are isolated.
Thus, the number of non-isolated ri’s is exactly 21n. Meanwhile, note that, due to the 1-edges and
2-edges we have added, only the ri’s can have sum 3, and we know for sure that σ(r1) = 3, i.e.,
there are vertices with sum 3. Since σ(ri) = 2, we thus deduce that nb(3) < 21n, a contradiction to
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Claim 3.2. Thus, we have ℓ(qiri) = 2 as claimed, and, for all i such that {pi, qi, ri} is not isolated,
we have σ(pi) = 1, σ(qi) = 2, and σ(ri) = 3, due to the 1-edges and 2-edges.

In the case of an isolated set {pi, qi, ri}, note that there are, essentially, two main ways to
2-label it: either ℓ(piri) = ℓ(qiri), or ℓ(piri) ≠ ℓ(qiri). In the former case, note that this yields
σ(ri) ∈ {2,4}, while, in the latter case, this yields σ(ri) = 3. As mentioned earlier, the number of
non-isolated ri’s is 21n or 21n+ 1, for every j such that {pj , qj , rj} and rj are not isolated we have
σ(rj) = 3, and the only vertices of G which can have sum 3 are the non-isolated ri’s. If the number
of non-isolated ri’s is 21n, then, so that nb(3) does not contradict Claim 3.2, we deduce that, for
every isolated {pi, qi, ri}, we must have ℓ(piri) ≠ ℓ(qiri), which yields {σ(pi), σ(qi)} = {1,2} and
σ(ri) = 3. Now, if the number of non-isolated ri’s is 21n + 1, then either ℓ(piri) ≠ ℓ(qiri) for every
isolated {pi, qi, ri} and we reach the same conclusion, or there exists exactly one i (as otherwise we
would have nb(3) < 21n) such that {pi, qi, ri} is isolated and ℓ(piri) = ℓ(qiri). In that precise last
case, we have the conclusions described in the statement. Particularly, note that if σ(ri) = 4, then
nb(4) = 21n + 1 (as, besides ri, only the fi’s can have sum 4).

Regarding the very last part of the statement, it follows from the number of ai’s, bi’s, ci’s, di’s,
ei’s, fi’s, pi’s, qi’s, and ri’s in G, and from arguments given in the proof of Claim 3.3. ◇

Claim 3.5. In every equiproper 2-labelling ℓ of G:

• for every clause vertex vC , we have σ(vC) = 20;

• for every two opposite literal vertices vx and vx, we have {σ(vx), σ(vx)} = {8,11}.

Particularly, every clause vertex must be incident to two formula edges assigned label 1 and one
formula edge assigned label 2, while every literal vertex must have its three incident formula edges
assigned the same label. Also, any two opposite literal vertices vx and vx must assign distinct labels
to their respective incident formula edges.

Proof of the claim. Recall that, by construction, vC is incident to eight 1-edges and four 2-edges,
while vx and vx are adjacent and each incident to two 1-edges and one 2-edge. By Claim 3.3, recall
that all 1-edges must be assigned label 1 by ℓ, while all 2-edges must be assigned label 2. Since
all clause vertices and literal vertices are also each incident to three formula edges (which can each
be assigned label 1 or 2), we must have σ(vC) ∈ {19,20,21,22} and σ(vx), σ(vx) ∈ {8,9,10,11,12}.
Particularly, note that a clause vertex and a literal vertex cannot have the same sum.

Now, recall that, by Claim 3.4, all 19n ai’s must have sum 20 by ℓ, all 20n bi’s must have sum 8,
and all 20n ci’s must have sum 11. Meanwhile, recall that, by Claim 3.2, for every i ∈ N+ such
that nb(i) ≠ 0, we have nb(i) ∈ {21n,21n + 1}. Then, so that, nb(20) ∈ {21n,21n + 1}, it must be
that the 2n clause vertices have sum 20, to get 21n vertices with sum 20 in total. This requires
every clause vertex to be incident to exactly one formula edge assigned label 2, while the other two
must be assigned label 1. Likewise, so that nb(8),nb(11) ∈ {21n,21n + 1}, since there are only 2n
literal vertices, there must be n literal vertices with sum 8, while the other n must have sum 11.
Note that having σ(vl) = 8 for some literal vertex vl requires the three incident formula edges to
be assigned label 1, and similarly for the edge vlvl. In other words, if σ(vl) = 8 for some literal
l, then ℓ(vlvl) = 1, which forces to have σ(vl) > 8 so that σ(vl) ≠ σ(vl), and thus we must have
σ(vl) = 11, which requires the three formula edges incident to vl to be assigned label 2. ◇

We can now prove that we have the desired equivalence between 1-in-3 satisfying Φ (and thus
F and F ), and designing an equiproper 2-labelling of G. It follows from the following arguments:

• Imagine that having ℓ(vCvl) = 2 for some clause C and some literal l by some equiproper
2-labelling ℓ of G models that l brings truth value true to C by some truth assignment to
the variables of Φ, and that having ℓ(vCvl) = 1 models that l brings truth value false to C.

• The fact that, for any clause vertex vC , exactly one incident formula edge must be assigned
label 2 while the other two must be assigned label 1 (Claim 3.5), models that C is considered
satisfied by a truth assignment only if it contains one true literal and two false ones.
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• Likewise, the fact that, for any literal vertex vl, all incident formula edges must be assigned
the same label, and that this label must be different from that assigned to the three formula
edges incident to vl (Claim 3.5), models that each of vl and vl brings, by any truth assignment,
the same truth value to all clauses that contain them, and l and l are assigned opposite values.

From these arguments, it is not too complicated to see that the equivalence holds. Particularly,
the fact that an equiproper 2-labelling of G can be designed from any truth assignment 1-in-3
satisfying Φ follows from the labelling arguments given through Claims 3.2 to 3.5.

Looking closely at the reduction in the proof of Theorem 3.1, it can be observed that the reduced
graph G we construct always verifies χΣ(G) = 2. This is because G is almost locally irregular (and
thus very close to have χΣ(G) = 1), in the sense that an edge uv of G verifies d(u) = d(v) if and
only if {u, v} is a pair of opposite literal vertices {vx, vx}. Indeed, note that all ai’s have degree
15 or 20, all bi’s have degree 6, all ci’s have degree 8, all clause vertices have degree 15, all literal
vertices have degree 7, all di’s have degree 44, all ei’s have degree 22, all fi’s have degree 3, and
all pi’s, qi’s, and ri’s have degree at most 3. A proper 2-labelling of G can then be obtained by
considering every positive literal vertex vx, assigning label 1 to any one formula edge incident to
vx, and eventually assigning label 2 to all other edges of G. As a result, all ai’s have sum 30 or 40,
all bi’s have sum 12, all ci’s have sum 16, all clause vertices have sum in {27,28,29,30}, all positive
literal vertices have sum 13, all negative literal vertices have sum 14, all di’s have sum 88, all ei’s
have sum 44, all fi’s have sum 6, and all pi’s, qi’s, and ri’s have sum at most 6. Particularly, recall
that for every non-isolated set {pi, qi, ri}, the only possible edge joining its vertices is qiri (which
might have been added when dealing with case ★), in which case d(qi) = 1 and d(ri) = 2, and thus
σ(qi) = 2 and σ(ri) = 4. Meanwhile, if {pi, qi, ri} is isolated, then piri and qiri are edges, but we
have d(pi) = d(qi) = 1 and d(ri) = 2, and thus σ(pi) = σ(qi) = 2 and σ(ri) = 4.

This implies a stronger result, being that even under the assumption that some graph G admits
proper 2-labellings, deciding whether G admits equiproper 2-labellings is not easy, unless P=NP.

4. General upper bounds

In this section, we focus on proving upper bounds on χΣ(G) when G lies in general graph
classes. By Observation 2.1, recall that we always have χΣ(G) ≤ s(G), and thus first bounds can
already be deduced from known ones on the irregularity strength. Particularly, recall that we
always have s(G) ≤ ∣V (G)∣−1 (see [19]), and the improved bound s(G) ≤ 6 ⌈ ∣V (G)∣

δ(G)
⌉ (see [15]) when

δ(G) is large enough. The latter bound also shows that, like the irregularity strength, pathological
graphs for our problem (as those from Observation 2.2) must involve vertices of small degree.

Our main goal in this section is to provide upper bounds, for particular graphs G, that sort
of lie in between ∣V (G)∣

2
(theoretical lower bound from Observation 2.2) and ∣V (G)∣ (upper bound

from [19]). In that spirit, the two bounds we provide are about 3∣V (G)∣
4

. The proofs we provide,
in particular the one of upcoming Theorem 4.2, draw direct inspiration from [15], combined with
new ideas to be exposed below. As emphasised by Observation 2.2, 1-vertices are, again, a great
source of trouble, which explains why our most general result, Theorem 4.2 for connected graphs
of minimum degree at least 4, requires vertices of sufficiently large degree. To also make a step
towards such pathological graphs as well, we also consider trees, in Theorem 4.1.

As mentioned earlier, irregular labellings are always equiproper, the reason being that, by such
labellings, the resulting σ has a very strong property, being that every resulting sum appears
exactly once. Generally speaking, when designing an equiproper labelling, having sums appearing
lots of times is rather tricky, as it forces all resulting sums to appear lots of times too (though it
can be done in very particular contexts, recall the proof of Theorem 2.6).

There is a convenient intermediate case, however, being that if, by a proper labelling, all
resulting sums appear at most twice, then the labelling is equiproper. Clearly, such a property is
much weaker than being irregular, so one can expect it to be easier to work with. Consequently,
we come up with the following notions. A k-vertex-colouring of a graph is strongly equitable if,
for every i ∈ {1, . . . , k}, we have nb(i) ≤ 2. Now, we say that a labelling ℓ of a graph is loosely
irregular if ℓ is proper and, for every i ∈ N+ such that nb(i) ≠ 0, we have nb(i) ∈ {1,2}. As
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mentioned earlier, a loosely irregular labelling is always equiproper, as, by such a labelling, the
vertex-colouring (induced by the sums) is proper and strongly equitable.

We are now ready to prove our two results in this section. We start off with trees.

Theorem 4.1. If T is a nice tree on n ≥ 9 vertices, then χΣ(T ) ≤ 3 ⌈n4 ⌉.

Proof. Consider a vertex r of T with maximum degree ∆(T ) =∆ ≥ 2. We may even assume ∆ ≥ 3
as otherwise T would be a path, and the result would follow from Theorem 2.6. Thus, let us denote
by u1, u2, and u3 any three neighbours of r. We consider that T is rooted at r, which, in the usual
way, defines a virtual orientation of T from its root to its leaves, by which every non-root vertex
is incident to a unique parent edge (going to its unique neighbour closer to r). For every vertex of
T , all its incident edges (if any) that are not its parent edge (if its exists) are its child edges.

Let now ϕ be a strongly equitable proper {1, . . . ,2 ⌈n
4
⌉}-vertex-colouring of T − r, with the

additional property that ϕ(u1) = 2 ⌈n4 ⌉ − 2, ϕ(u2) = 2 ⌈n4 ⌉ − 1, and ϕ(u3) = 2 ⌈n4 ⌉. Since n ≥ 9, note
that ϕ assigns at least six different colours. To obtain such a vertex-colouring, one can, e.g., just
process the vertices of T − r as they are encountered during a BFS algorithm performed from r,
starting with considering u1, u2, and u3 first (assigning them the desired colours), and, whenever
considering a new vertex v, assigning any colour different from that assigned to its parent u, and
that has not already been assigned twice. Particularly, it can be noted that we always have

2 ⌈n
4
⌉ − ⌊n − 2

2
⌋ ≥ 1,

which means that, when treating v, at least one colour α assigned at most once is available.
If that colour α is not the same as that assigned to u, then we can freely assign colour α to
v and go on. Otherwise, if u is assigned colour α, then we can consider any other colour β /∈
{2 ⌈n

4
⌉−2,2 ⌈n

4
⌉−1,2 ⌈n

4
⌉} assigned by ϕ (recall there at at least six colours), and swap all assigned

α’s and β’s. As a result, v can now be assigned colour α, and the process can go on. Particularly,
note that swapping colours the way we do preserves that the colours of u1, u2, and u3 are pairwise
distinct. So, eventually, if we have ϕ(u1) ≠ 2 ⌈n4 ⌉ − 2, ϕ(u2) ≠ 2 ⌈n4 ⌉ − 1, or ϕ(u3) ≠ 2 ⌈n4 ⌉, then, by
swapping pairs of colours, we can guarantee ϕ(u1) = 2 ⌈n4 ⌉− 2, ϕ(u2) = 2 ⌈n4 ⌉− 1, and ϕ(u3) = 2 ⌈n4 ⌉.

We start by designing a (3 ⌈n
4
⌉)-labelling ℓ of T such that, for every vertex v ∈ V (T ) ∖ {r}, we

have σ(v) ≡ ϕ(v)mod 3 ⌈n
4
⌉. For that, we proceed as follows. We start from all edges of T being

unlabelled. We then repeatedly consider one vertex v whose all incident child edges are labelled
by ℓ, while its incident parent edge vu is not, and assign a label to vu by ℓ so that σ(v) fulfils
the desired condition. Precisely, we choose ℓ(vu) in the following way. We look at the sum of the
labels assigned to the child edges incident to v, and, denoting by x the value of this sum, we assign
to vu a label y in {1, . . . ,3 ⌈n

4
⌉} so that x + y ≡ ϕ(v)mod 3 ⌈n

4
⌉. Note that this is always possible,

since we are working modulo 3 ⌈n
4
⌉ and assign labels in {1, . . . ,3 ⌈n

4
⌉}.

Note that this process does go through all vertices of T −r since T is 1-degenerate (in particular,
we can start with any leaf as v), and, once all vertices have been treated, all edges of T are assigned
a label by ℓ. Also, we have σ(v) ≡ ϕ(v)mod 3 ⌈n

4
⌉ for every v ∈ V (T ) ∖ {r}.

As a general remark, note also that it is always possible to alter ℓ(ru1), ℓ(ru2), and ℓ(ru3)
so that σ(u1) = −2 mod 3 ⌈n

4
⌉, σ(u2) = −1 mod 3 ⌈n

4
⌉, and σ(u3) = 0 mod 3 ⌈n

4
⌉, respectively, and

this can be achieved by either adding ⌈n
4
⌉ to some label, or subtracting 2 ⌈n

4
⌉ from it. Formally,

regarding ru1 (the process is identical regarding ru2 and ru3), if ℓ(ru1) < 2 ⌈n4 ⌉ + 1, then we reach
the desired condition upon adding ⌈n

4
⌉ to ℓ(ru1), while, if ℓ(ru1) ≥ 2 ⌈n4 ⌉ + 1, then we reach those

conclusions upon subtracting 2 ⌈n
4
⌉ from ℓ(ru1). Applying such alteration to some rui is called

performing a valid change to rui. By the above, we either add ⌈n
4
⌉ to ℓ(rui), in which case the

valid change is said increasing, or subtract 2 ⌈n
4
⌉ from ℓ(rui), in which case it is said decreasing.

Back to considering ℓ, if the resulting sum function σ is proper and strongly equitable, then
ℓ is equiproper and we are done. Otherwise, it must be that either 1) ℓ is not proper because of
r (which requires that σ(r)mod 3 ⌈n

4
⌉ ∈ {1, . . . ,2 ⌈n

4
⌉}), or 2) ℓ is proper but nb(σ(r)) > 2. We

consider these two cases in what follows, and perform fixing modifications on ℓ in each.

• Assume first ℓ is not proper. We consider four cases.
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– σ(r)mod 3 ⌈n
4
⌉ belongs to {⌈n

4
⌉ + 1, . . . ,2 ⌈n

4
⌉ − 3}.

In this case, recall that σ(r)mod 3 ⌈n
4
⌉ ≠ σ(u1)mod 3 ⌈n

4
⌉. Then, by performing a valid

change to ru1, we get that only r and u1 have sum in {2 ⌈n
4
⌉+1, . . . ,3 ⌈n

4
⌉−1,0} modulo

3 ⌈n
4
⌉. Also, we still have σ(r) ≠ σ(u1). Thus, the labelling is equiproper.

– σ(r)mod 3 ⌈n
4
⌉ belongs to {1, . . . , ⌈n

4
⌉ − 3}.

It must be that, w.l.o.g., either we can perform an increasing valid change to both ru1

and ru2, or we can perform a decreasing valid change to both ru1 and ru2. Perform these
two valid changes. As a result, only r, u1, and u2 have sum in {2 ⌈n

4
⌉+1, . . . ,3 ⌈n

4
⌉−1,0}

modulo 3 ⌈n
4
⌉, while we still have σ(u1) ≠ σ(u2) (which is even true modulo ⌈n

4
⌉), and

σ(r) /∈ {σ(u1), σ(u2)} (which is also true modulo ⌈n
4
⌉). Thus, the labelling is equiproper.

– σ(r)mod 3 ⌈n
4
⌉ belongs to {2 ⌈n

4
⌉ − 2,2 ⌈n

4
⌉ − 1,2 ⌈n

4
⌉}.

Assume r has, modulo 3 ⌈n
4
⌉, the same sum as some ui. Then just apply a valid change

to any ruj with j ≠ i. Then, only r and uj have sum in {2 ⌈n
4
⌉+1, . . . ,3 ⌈n

4
⌉−1,0} modulo

3 ⌈n
4
⌉, while we still have σ(r) ≠ σ(uj) (since this is still true modulo ⌈n

4
⌉). Then the

resulting labelling is equiproper.

– σ(r)mod 3 ⌈n
4
⌉ belongs to {⌈n

4
⌉ − 2, ⌈n

4
⌉ − 1, ⌈n

4
⌉}.

Again, let i ∈ {1,2,3} be the unique index such that, modulo ⌈n
4
⌉, we have σ(r) = σ(ui).

Then, apply the valid changes to both ruj and ruk, where {j, k} = {1,2,3} ∖ {i}. Note
that, regardless of whether these two valid changes are both increasing or decreasing, or
whether they are of different types, we get that r, uj , and uk are the only vertices with
sum in {2 ⌈n

4
⌉+ 1, . . . ,3 ⌈n

4
⌉− 1,0} modulo 3 ⌈n

4
⌉. Also, we still have σ(uj) ≠ σ(uk) (this

even holds modulo ⌈n
4
⌉) and σ(r) /∈ {σ(uj), σ(uk)} (again, this is true modulo ⌈n

4
⌉).

Thus, the attained labelling is equiproper.

• Assume now ℓ is proper but nb(σ(r)) > 2. We here consider three cases.

– σ(r)mod 3 ⌈n
4
⌉ belongs to {⌈n

4
⌉ + 1, . . . ,2 ⌈n

4
⌉}.

Perform a valid change to ru1. Then, we get that only r and u1 have sum in {2 ⌈n
4
⌉ +

1, . . . ,3 ⌈n
4
⌉ − 1,0} modulo 3 ⌈n

4
⌉. Also, we have σ(r) ≠ σ(u1) since ℓ was proper is the

first place. The obtained labelling is thus equiproper.

– σ(r)mod 3 ⌈n
4
⌉ belongs to {1, . . . , ⌈n

4
⌉ − 3}.

Perform two valid changes of the same type, i.e., two increasing valid changes or two
decreasing valid changes. Assume these two valid changes are onto ru1 and ru2, w.l.o.g.
Regardless of what exact valid changes have been performed, only r, u1, and u2 have
sum in {2 ⌈n

4
⌉ + 1, . . . ,3 ⌈n

4
⌉ − 1,0} modulo 3 ⌈n

4
⌉. Also, we still have σ(u1) ≠ σ(u2) and

σ(r) /∈ {σ(u1), σ(u2)} (these hold modulo ⌈n
4
⌉). Thus, we have an equiproper labelling.

– σ(r)mod 3 ⌈n
4
⌉ belongs to {⌈n

4
⌉ − 2, ⌈n

4
⌉ − 1, ⌈n

4
⌉}.

Assume w.l.o.g. that r has sum ⌈n
4
⌉−2 modulo 3 ⌈n

4
⌉. We here perform a valid change to

ru1. As a result, u1 is the only vertex with sum 3⌈n
4
⌉−2 modulo 3 ⌈n

4
⌉, while, since u1 no

longer has this property, there are at most two vertices, including r and perhaps a vertex
not in {u1, u2, u3}, with sum 2⌈n

4
⌉− 2 modulo 3 ⌈n

4
⌉. So, the labelling is equiproper.

We now prove a more general result.

Theorem 4.2. If G is a connected graph on n ≥ 17 vertices with δ(G) ≥ 4, then χΣ(G) ≤ 3 ⌈n4 ⌉+2.

Proof. Let v1, . . . , vn be an ordering over the vertices of G. According to this ordering, every edge
vivj with i < j is forward from vi’s point of view, while it is backward from vj ’s one. Among all
possible orderings as v1, . . . , vn, we fix one such that every vi with i ∈ {1, . . . , n − 1} is incident to
forward edges. Such an ordering can be obtained e.g. by choosing any vertex as vn, and then
reversing the ordering in which vertices are encountered during a BFS algorithm from vn.
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Set
P = {(x,x + ⌈n

4
⌉) ∶ x ∈ N+ and xmod 2 ⌈n

4
⌉ ∈ {1, . . . , ⌈n

4
⌉}} .

To design an equiproper (3 ⌈n
4
⌉ + 2)-labelling of G, we actually design a loosely irregular one, ℓ,

through the following ideas, starting from all edges unlabelled. We treat the vi’s one by one in
order, starting from v1 and finishing with vn−1 (eventually, vn will be treated separately). Whenever
we consider a new vi this way, we assume vi is incident to b ≥ 0 backward edges e1, . . . , eb and
f ≥ 1 forward edges f1, . . . , ff . We denote by u1, . . . , ub and w1, . . . ,wf the ends of e1, . . . , eb and
f1, . . . , ff , respectively, different from vi. We assume the ei’s and fi’s are ordered so that their
ends follow the ordering v1, . . . , vn. By that, we mean that if u1, . . . , ub,w1, . . . ,wf correspond to
vertices vi1 , . . . , vib , vib+1 , vib+f of the ordering, then i1 < ⋅ ⋅ ⋅ < ib < vi < ib+1 < ⋅ ⋅ ⋅ < ib+f .

When dealing with vi, we will modify labels assigned by ℓ to edges incident to vi so that we
reach a suitable situation at vi, i.e., a situation fulfilling the following properties:

1. For every j ≤ i, all edges incident to vj have been assigned a label in {1, . . . ,3 ⌈n
4
⌉+ 2}, a pair

Φ(vj) = (ϕ(vj), ϕ′(vj)) ∈ P with ϕ(vj)mod 2 ⌈n
4
⌉ ∈ {1, . . . , ⌈n

4
⌉} and ϕ′(vj) = ϕ(vj) + ⌈n4 ⌉ has

been defined, and, currently, σ(vj) ∈ Φ(vj) (modulo 2 ⌈n
4
⌉).

2. For every j < i, all forward edges incident to vj not incident to vi are assigned labels in
{⌈n

4
⌉ + 1, . . . ,2 ⌈n

4
⌉ + 2}.

3. For every forward edge fj incident to vi with j > 1, we have ℓ(fj) ∈ {⌈n4 ⌉ + 1, . . . ,2 ⌈
n
4
⌉ + 2}.

4. We have ℓ(f1) ∈ {1, . . . ,3 ⌈n4 ⌉ + 2}. Furthermore, if, modulo 2 ⌈n
4
⌉, σ(vi) = ϕ(vi), then ℓ(f1) ∈

{1, . . . ,2 ⌈n
4
⌉ + 2}. Otherwise, if σ(vi) = ϕ′(vi), then ℓ(f1) ∈ {⌈n4 ⌉ + 1, . . . ,3 ⌈

n
4
⌉ + 2}.

5. For every two adjacent vertices vj and vj′ with j, j′ ≤ i (and thus j ≠ j′), we have ϕ(vj) ≠
ϕ(vj′), and, thus, Φ(vj) ∩Φ(vj′) = ∅.

6. For every pair P = (x,x + ⌈n
4
⌉) ∈ P, there are at most two vj with j ≤ i such that Φ(vj) = P .

Having two possible values (modulo 2 ⌈n
4
⌉), those in Φ(vi), for any σ(vi) all along the process

guarantees that, later on, when treating a later vertex vj adjacent to vi, we can locally alter the
labelling to modify σ(vj) (and thus potentially reach more pairs as Φ(vj)) without breaking it is
loosely irregular. Note indeed that, by Properties 3 and 4, when treating vj , we can always perform
a valid change on vjvi, i.e., either increase ℓ(vjvi) by ⌈n

4
⌉ or decrease ℓ(vjvi) by ⌈n

4
⌉, depending

on whether σ(vi) = ϕ(vi) or σ(vi) = ϕ′(vi), respectively, while preserving Property 1. Property 5
is to ensure ℓ is proper at any point, while Property 6 is to guarantee σℓ is strongly equitable.

So, the tricky part, when treating a new vi, is to perform local changes (valid changes backwards,
and properly choosing labels assigned to the forward edges) so that a suitable situation is attained.
The upcoming claims prove formally how to handle the main possible cases. Let us add that these
claims can only be proved under the assumption that vertices have large enough degrees, i.e., at
least 4; in particular, from the arguments given in the proofs of Claims 4.3 to 4.5, one can retrieve
why we need our hypothesis on δ(G).

The first claim corresponds to situations where vi has no backward neighbours.

Claim 4.3. If b = 0, then, since δ(G) ≥ 4, through performing changes around vi complying with
the properties of a suitable situation, a suitable situation at vi can be reached.

Proof of the claim. Since b = 0, Properties 1, 2, and 5 do not have to be considered when dealing
with vi. Through assigning any label in {1, . . . ,2 ⌈n

4
⌉} to f1 and any label in {⌈n

4
⌉ + 1, . . . ,2 ⌈n

4
⌉}

to f2, . . . , ff , we meet Property 3 of a suitable situation at vi. Also, when assigning such labels,
as long as we define Φ(vi) so that the resulting σ(vi) is ϕ(vi) (the lowest value in Φ(vi)), we also
meet Property 4. So the main matter is choosing Φ(vi) so that Property 6 holds.

By assigning labels to f1, . . . , ff as mentioned above, note that σ(vi) can take any value in

S = {1 + (f − 1) (⌈n
4
⌉ + 1) , . . . ,2 ⌈n

4
⌉ + (f − 1) (2 ⌈n

4
⌉)} ,
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⌉
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Figure 3: Illustration of the label changes made in the proof of Claim 4.4. Here, b = 2.

which are, thus, possible values we could consider as ϕ(vi). Recall however that ϕ(vi) must belong
to {1, . . . , ⌈n

4
⌉} modulo 2 ⌈n

4
⌉. Now, note that

∣S∣ = 2f ⌈n
4
⌉ − (1 + (f − 1) (⌈n

4
⌉ + 1)) + 1 = (f + 1) ⌈n

4
⌉ − f + 1,

and, thus, at least
1

2
⋅ ⌈n

4
⌉ ⋅
⎢⎢⎢⎢⎣

(f + 1) ⌈n
4
⌉ − f + 1

⌈n
4
⌉

⎥⎥⎥⎥⎦
values in S must belong to {1, . . . , ⌈n

4
⌉} modulo 2 ⌈n

4
⌉, and are thus values we could choose as ϕ(vi).

Now, regarding Property 6, since f ≥ 4 (due to δ(G) ≥ 4), this is at least 2 ⌈n
4
⌉ possible values since

n ≥ 9 (which guarantees ⌊5 − 3
⌈
n
4
⌉
⌋ ≥ 4). Since the number of forbidden pairs in P (assigned to two

previous vj ’s) as Φ(vi) is at most

⌊ i − 1
2
⌋ ≤ ⌊n − 1 − f

2
⌋ < ⌊n

2
⌋ ≤ 2 ⌈n

4
⌉ ,

we deduce there is some value in S that appears as ϕ(vj) for at most one vj with j < i. We can
then assign labels to the fj ’s and define Φ(vi) accordingly, to reach a suitable situation at vi. ◇

We now deal with situations where vi has backward neighbours. To make the analysis clearer,
we start with the “surrounding” of vi being in initial position. By that, we mean we apply the
following local changes:

• for every j ∈ {1, . . . , b}, if σ(uj) = ϕ′(uj), then we perform a (decreasing) valid change onto
viuj , so that σ(uj) = ϕ(uj) (modulo 2 ⌈n

4
⌉);

• we set ℓ(f1) = 1;

• for every j ∈ {2, . . . , f}, we set ℓ(fj) = ⌈n4 ⌉ + 1.

In other words, we make σ(vi) as small as possible through performing valid changes backwards,
and, for the forward edges, assigning the smallest labels possible complying with Properties 3 and
4. Note that Φ(vi) being not defined yet, Property 4 is technically not fully fulfilled yet.

Claim 4.4. Assume b ≥ 1, and, in initial position, we currently have σ(vi) = (2α + 1) ⌈n4 ⌉ + β
for some α ≥ 0 and β ∈ {1, . . . , ⌈n

4
⌉} (i.e., σ(vi)mod 2 ⌈n

4
⌉ ∈ {⌈n

4
⌉ + 1, . . . ,2 ⌈n

4
⌉ − 1,0}). Then,

since δ(G) ≥ 4, through performing changes around vi complying with the properties of a suitable
situation, a suitable situation at vi can be reached.

Proof of the claim. Recall that, currently, ℓ(f1) = 1. For every x ∈ {(2α+2) ⌈n
4
⌉+1, . . . , (2α+3) ⌈n

4
⌉},

note that we can increase ℓ(f1) by at most 2 ⌈n
4
⌉ − 1 (thus so that ℓ(f1) is no more than 2 ⌈n

4
⌉)

so that σ(vi) = x while (x,x + ⌈n
4
⌉) lies in P and is, thus, a possible pair we could define a Φ(vi).

This is thus a set of ⌈n
4
⌉ possible pairs as Φ(vi). Note then that, upon performing a pair of valid

changes backwards (which are increasing, since we started in initial position), we increase σ(vi) by
2 ⌈n

4
⌉, which allows, through the same arguments, to reach ⌈n

4
⌉ other possible pairs as Φ(vi) (see

Figure 3). By performing pairs of valid changes backwards this way, we thus deduce a set of

(1 + ⌊ b
2
⌋) ⌈n

4
⌉
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possible pairs as Φ(vi), which can be reached through local changes that fulfil Properties 1 to 4 of
a suitable situation. It now remains to prove that the last part of the statement holds, i.e., that
at least one of these pairs can be chosen as Φ(vi) so that Properties 5 and 6 also hold.

Since δ(G) ≥ 4, we have b + f ≥ 4. Note that at most

b + ⌊ i − 1 − b
2

⌋ ≤ b + ⌊n − 1 − f − b
2

⌋ < b + ⌊n
2
⌋ − ⌊ b

2
⌋ + 1 = ⌊n

2
⌋ + ⌈ b

2
⌉ + 1 ≤ 2 ⌈n

4
⌉ + ⌈ b

2
⌉ + 1 ≤ 4 ⌈n

4
⌉

of the possible pairs are forbidden as Φ(vi) due to Properties 5 and 6. Thus, one of the pairs can
be chosen as Φ(vi) if b ≥ 6, and we can change labels around vi accordingly to be done in this case.
For smaller values of b, below we refine the analysis to prove we can also be done.

In particular, ideas we use include the following. Above, note that we first alter ℓ(f1) so that
σ(vi) reaches a value x in {1, . . . , ⌈n

4
⌉} modulo 2 ⌈n

4
⌉, and this can be done so that ℓ(f1) reaches

value at most 2 ⌈n
4
⌉ (one of our constraints). To then open up to more pairs as (ϕ(vi), ϕ(vi)+ ⌈n4 ⌉),

we then perform, from any of these possible values x, valid changes in pairs, to repeatedly increase
ϕ(vi) by an additional 2 ⌈n

4
⌉, thereby getting new pairs to reach and exploit as Φ(vi). So, in some

sense, some valid change is not exploited when b is odd. To overcome this issue, we somewhat pair
it with an additional virtual valid change, which is simulated by adding another ⌈n

4
⌉ to ℓ(f1). In

particular, see below, this can be done so that ℓ(f1) retains a desired value.

• If b ∈ {4,5}, then the number of possible pairs we can consider as Φ(vi) is at least 3 ⌈n
4
⌉.

Since n ≥ 17 and b ∈ {4,5}, the number of forbidden pairs is thus strictly less than 3 ⌈n
4
⌉, and

there is thus one we can choose as Φ(vi), and perform the corresponding local label changes.

• If b = 3, then the number of possible pairs we can consider as Φ(vi) is at least 2 ⌈n
4
⌉. Mean-

while, as mentioned above, the number of forbidden pairs as Φ(vi) is at most

b + ⌊n − 1 − f − b
2

⌋ ≤ 3 + ⌊n − 5
2
⌋ ,

which is at most 2 ⌈n
4
⌉ (particularly, equality holds whenever n ≡ 0,3 mod 4). In this case, it

suffices to show that there is one additional pair we could choose as Φ(vi). From the initial
position, start by adding some value x ∈ {1, . . . , ⌈n

4
⌉} to ℓ(f1) so that σ(vi) ≡ 1 mod 2 ⌈n

4
⌉.

Then, apply the three valid changes backwards, before adding another ⌈n
4
⌉ to ℓ(f1) (which, as

described above, is intended to simulate a last valid change). As a result, σ(vi) ≡ 1 mod 2 ⌈n
4
⌉,

and the pair (σ(vi), σ(vi)+ ⌈n4 ⌉) does not belong to the set of pairs of P we have considered
earlier on (since it was obtained, essentially, by virtually performing an additional pair of
valid changes). So we have found an additional pair as desired, and we can make local label
changes so that a suitable situation is reached at vi. Particularly, note that ℓ(f1) ≤ 2 ⌈n4 ⌉+ 1,
which complies with Property 4.

• If b = 2, then the number of possible pairs as Φ(vi) is at least 2 ⌈n
4
⌉. Since δ(G) ≥ 4, we thus

have f ≥ 2. The number of forbidden pairs in this case is thus at most

b + ⌊n − 1 − f − b
2

⌋ ≤ 2 + ⌊n − 3 − 2
2

⌋ = ⌊n − 1
2
⌋ ≤ ⌊n

2
⌋ ≤ 2 ⌈n

4
⌉ .

In that case, note that by increasing ℓ(f2) by ⌈n
4
⌉, we get ℓ(f2) = 2 ⌈n4 ⌉+1, which still complies

with Property 3, and has the same effect as performing another valid change backwards. We
can thus proceed similarly as in the previous case to reach another possible pair as Φ(vi),
and thus we can attain a suitable situation at vi.

• If b = 1, then f ≥ 3. In this situation, note that, upon adding adding 1 and ⌈n
4
⌉−1 to ℓ(f2) and

ℓ(f3), respectively, we still have that Property 3 holds, and σ(vi) increases by ⌈n
4
⌉, which has

the same effect as performing a valid change backwards. This means the number of possible
pairs we can consider as Φ(vi) is actually at least 2 ⌈n

4
⌉. Meanwhile, the number of forbidden

pairs here is at most

b + ⌊n − 1 − f − b
2

⌋ ≤ 1 + ⌊n − 5
2
⌋ < ⌊n

2
⌋ ≤ 2 ⌈n

4
⌉ .
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Figure 4: Illustration of the label changes made in the proof of Claim 4.5. Here, b = 3.

So, again, we can perform label changes around vi so that we reach a suitable situation.

This concludes the proof of the claim. ◇

Claim 4.5. Assume b ≥ 1, and, in initial position, we currently have σ(vi) = 2α ⌈n4 ⌉ + β for some
α ≥ 0 and β ∈ {1, . . . , ⌈n

4
⌉} (i.e., σ(vi)mod 2 ⌈n

4
⌉ ∈ {1, . . . , ⌈n

4
⌉}). Then, since δ(G) ≥ 4, through

performing changes around vi complying with the properties of a suitable situation, a suitable
situation at vi can be reached.

Proof of the claim. For every x ∈ {2α ⌈n
4
⌉ + β, . . . , (2α + 1) ⌈n

4
⌉}, note that we can increase ℓ(f1)

by some value in {0, . . . , ⌈n
4
⌉ − β} (thus so that ℓ(f1) remains at most 2 ⌈n

4
⌉) so that the resulting

σ(vi) lies in {1, . . . , ⌈n
4
⌉} modulo 2 ⌈n

4
⌉. Then, (x,x + ⌈n

4
⌉) ∈ P is a possible pair we could consider

as Φ(vi), and we thus deduce a set of ⌈n
4
⌉ − β + 1 first possible pairs as Φ(vi). Note also that by

performing two valid changes backwards (thus increasing), we get σ(vi) = 2(α+ 2) ⌈n4 ⌉+β, and the
same arguments apply. This also applies upon performing pairs of valid changes backwards. Thus,
so far, we deduce a set of

(1 + ⌊ b
2
⌋)(⌈n

4
⌉ − β + 1) (1)

possible pairs of P that could be considered as Φ(vi).
Also (see Figure 4), from the initial position, by increasing ℓ(f1) by at most ⌈n

4
⌉ − β + 1 (thus

maintaining ℓ(f1) ≤ ⌈n4 ⌉ + 1) we can have σ(vi) reach value (2α + 1) ⌈n
4
⌉ + 1. By then performing

one valid change backwards, and then increasing ℓ(f1) again by at most β − 1, we get access, as
Φ(vi), to all pairs of P with ϕ(vi) ∈ {(2α + 2) ⌈n4 ⌉ + 1, . . . , (2α + 2) ⌈

n
4
⌉ + β − 1}, thus to β − 1 pairs.

Again, this generalises upon performing pairs of valid changes backwards. We thus deduce another
set of

⌈ b
2
⌉ (β − 1) (2)

other possible pairs as Φ(vi). Thus, so far, we have a set of at least

⌈ b
2
⌉ ⌈n

4
⌉

pairs we could consider as Φ(vi).
Now, similarly as in the proof of Claim 4.4, the number of forbidden pairs as Φ(vi) is

b + ⌊ i − 1 − b
2

⌋ ≤ b + ⌊n − 1 − f − b
2

⌋ < b + ⌊n
2
⌋ − ⌊ b

2
⌋ + 1 = ⌊n

2
⌋ + ⌈ b

2
⌉ + 1 ≤ 2 ⌈n

4
⌉ + ⌈ b

2
⌉ + 1 ≤ 4 ⌈n

4
⌉ .

Thus, if b ≥ 7, then one of the aforementioned pairs can be chosen as Φ(vi), and by performing the
corresponding local label changes, we are done. We now deal with the remaining values of b.

• If b ∈ {5,6}, then the number of possible pairs as Φ(vi) above is at least 3 ⌈n
4
⌉. Since n ≥ 17

and b ∈ {5,6}, the number of forbidden pairs is strictly less than 3 ⌈n
4
⌉, and there is thus one

pair we can choose as Φ(vi) and make the corresponding local label changes around vi.
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• If b = 4, then the number of possible pairs as Φ(vi) is at least 2 ⌈n
4
⌉. Meanwhile the number

of forbidden pairs is

b + ⌊n − 1 − f − b
2

⌋ ≤ 4 + ⌊n − 6
2
⌋ ,

and thus
2 ⌈n

4
⌉ − (4 + ⌊n − 6

2
⌋) ∈ {−1,0,1}.

If this difference is 1, then there is a pair we can choose as Φ(vi) and we are done. Now,
since b = 4, by (1) above we note that there are ⌈n

4
⌉ − β + 1 extra pairs we could consider as

Φ(vi). Particularly, since β ≤ ⌈n
4
⌉, there is at least one extra pair we can consider, and so

we are also done if the difference above is 0. So the last case is when the difference above is
−1 (which occurs whenever n ≡ 0 mod 4), and we have β = ⌈n

4
⌉ (as otherwise, by (1), there

would be at least two extra pairs we could consider as Φ(vi), and we would be done). Here,
we thus need to expose one extra pair that can be considered as Φ(vi).
In this situation, consider the following label modifications, starting from the initial position.
Start by adding 1 to ℓ(f1) so that ℓ(f1) = 2 and σ(vi) ≡ ⌈n4 ⌉ + 1 mod 2 ⌈n

4
⌉. Now perform

the four valid changes backwards, and increase ℓ(f1) by another ⌈n
4
⌉. As a result, we have

ℓ(f1) = ⌈n4 ⌉ + 2, and σ(vi) ≡ 1 mod 2 ⌈n
4
⌉. Particularly, we have (σ(vi), σ(vi) + ⌈n4 ⌉) ∈ P, and

this pair is not part of those we have exposed in (1) and (2) above. Thus, this is one more
pair we can consider as Φ(vi), and, together with the ones we have exposed earlier, there is
one we can properly choose as Φ(vi), and perform the corresponding label changes to reach
a suitable situation at vi.

• If b = 3, then the number of possible pairs as Φ(vi) is at least 2 ⌈n
4
⌉. As in the previous case,

taking the forbidden pairs into account, the number of possible pairs we can actually consider
is at least

2 ⌈n
4
⌉ − (3 + ⌊n − 5

2
⌋) ∈ {0,1}.

Again, if this difference is 1, then we have our conclusion. So, we can assume the difference is
0 (which occurs when n ≡ 3,0 mod 4), and we just need to show there is an extra pair, apart
from those behind (1) and (2), that can be considered as Φ(vi).

– If β < ⌈n
4
⌉, then we can reach such a pair as follows. First, from the initial position, add

⌈n
4
⌉ − β to ℓ(f1) so that σ(vi) ≡ ⌈n4 ⌉mod 2 ⌈n

4
⌉. Then, ℓ(f1) ≤ ⌈n4 ⌉ at this point. Now,

perform the three valid changes backwards, and add another 2 ⌈n
4
⌉ to ℓ(f1). As a result,

we have 2 ⌈n
4
⌉ < ℓ(f1) ≤ 3 ⌈n4 ⌉, and σ(vi) ≡ 0 mod 2 ⌈n

4
⌉. Also, since β < ⌈n

4
⌉, it can be

noted that (σ(vi)− ⌈n4 ⌉ , σ(vi)) ∈ P, and this pair is not one of those behind (1) and (2).

– If β = ⌈n
4
⌉, then, from the initial position, perform the three valid changes backwards,

and add 1+2 ⌈n
4
⌉ to ℓ(f1). As a result, we have ℓ(f1) = 2 ⌈n4 ⌉+2 and σ(vi) ≡ 1 mod 2 ⌈n

4
⌉.

Also, (σ(vi), σ(vi)+ ⌈n4 ⌉) ∈ P and this pair is not one of those we have exhibited earlier.

Thus, in both cases, we can define Φ(vi) properly, and make the corresponding label changes
to reach a suitable situation at vi.

• If b = 2, then f ≥ 2. Besides the ⌈n
4
⌉ possible pairs as Φ(vi) mentioned through (1) and (2),

note that we can also add ⌈n
4
⌉−β+2 to ℓ(f1) (so that ℓ(f1) is at most ⌈n

4
⌉+2), perform the two

valid changes backwards, and increase ℓ(f2) by ⌈n
4
⌉−1 (so that ℓ(f2) = 2 ⌈n4 ⌉). Note that this

complies with the properties of a suitable situation. As a result, note that σ(vi) ≡ 1 mod 2 ⌈n
4
⌉,

and that, for every x ∈ {0, . . . , ⌈n
4
⌉ − 1}, the pair (σ(vi) + x,σ(vi) + x + ⌈n4 ⌉) ∈ P is not one

of the pairs we have exposed earlier. Thus, upon increasing ℓ(f1) by at most 2 ⌈n
4
⌉ + 1, we

can reach ⌈n
4
⌉ more possible pairs as Φ(vi). Together with the pairs behind (1) and (2), we

thus deduce a set of 2 ⌈n
4
⌉ possible pairs we could consider as Φ(vi). Actually, since b = 2,
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note that this number of possible pairs is at least 2 ⌈n
4
⌉ + 1 due to (1) (there are an extra

⌈n
4
⌉ − β + 1 ≥ 1 pairs here). Meanwhile, the number of forbidden pairs is

b + ⌊n − 1 − f − b
2

⌋ ≤ 2 + ⌊n − 5
2
⌋ .

Since
(2 ⌈n

4
⌉ + 1) − (2 + ⌊n − 5

2
⌋) ≥ 3,

there is thus at least one pair we can properly choose as Φ(vi), and make the corresponding
label changes to get the conclusion we desire.

• If b = 1, then f ≥ 3. As in the last case of the proof of Claim 4.4, note that, via adding
1 and ⌈n

4
⌉ − 1 to ℓ(f2) and ℓ(f3), respectively, we can, essentially, simulate a valid change

backwards. Remark also that this results in ℓ(f2) = 2, and that we could increase ℓ(f2) by
another 2 ⌈n

4
⌉ while still having ℓ(f2) fulfilling Property 3. From this, by the same arguments

as in the previous case, we deduce a set of 2 ⌈n
4
⌉ pairs we can consider as Φ(vi). Meanwhile,

the number of forbidden pairs is

b + ⌊n − 1 − f − b
2

⌋ ≤ 1 + ⌊n − 5
2
⌋ .

Since
2 ⌈n

4
⌉ − (1 + ⌊n − 5

2
⌋) ≥ 2,

we again deduce that there is one pair we can properly set as Φ(vi), and adjust the labels
around vi accordingly to reach a suitable situation.

We are thus done in all cases. ◇

Back to the proof of Theorem 4.2, we start from all edges of G unlabelled. Then we go through
all of v1, . . . , vn−1 one by one in order. For each vi considered this way, we first perform label
modifications around vi, if needed, so that we get in initial position. Then, by one of Claims 4.3,
4.4, and 4.5 (depending on the local situation), we can always modify labels around vi so that a
suitable situation at vi is attained, and the process can go on.

Once all vi’s have been treated this way, all edges of G have been assigned a label, and if the
resulting ℓ is not loosely irregular, then it must be because of vn. Particularly, either 1) vn has the
same sum as one of its neighbours (which we denote u1, . . . , ud, for some d ≥ 4, in what follows),
or 2) σ(vn) is the sum by ℓ of three vertices (including vn) of G.

For each backward edge vnui, recall that we can perform a valid change. For every i ∈ {1, . . . , d},
we perform a (decreasing) valid change on vnui if σ(ui) = ϕ′(ui). This way, for every i ∈ {1, . . . , d},
we have σ(ui) = ϕ(ui). Recall also that for every x ∈ N+ such that xmod 2 ⌈n

4
⌉ ∈ {1, . . . , ⌈n

4
⌉}, there

are at most two ui with ϕ(ui) = x.

• Assume first σ(vn)mod 2 ⌈n
4
⌉ ∈ {1, . . . , ⌈n

4
⌉}. As mentioned earlier, if ℓ is not loosely irregular,

then it can be because of two reasons.

– If ℓ is not proper, then, w.l.o.g., we have σ(u1) = σ(vn). As mentioned earlier, at most
one other ui can verify σ(u1) = σ(ui). Since d ≥ 4, we might thus assume σ(u2) ≠
σ(u1), w.l.o.g. Now just perform a valid change to vnu2. As a result, we now have
σ(vn)mod 2 ⌈n

4
⌉ ∈ {⌈n

4
⌉+1, . . . ,2 ⌈n

4
⌉−1,0}, and, among all ui’s, only u2 has this property.

However, we have σ(u2) ≠ σ(vn). Thus, the resulting ℓ is proper. It is also loosely
irregular, since, in {v1, . . . , vn−1}, at most two vertices can have sum σ(vn) (since, so
that σ(vi) = σ(vn) for some i, we must have σ(vn) ∈ Φ(vi)), one of which is u1, whose
sum is σ(vn)− ⌈n4 ⌉. For these reasons, we indeed deduce at most two vertices of G have
sum σ(u1), and similarly at most two vertices of G have sum σ(vn).
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– If ℓ is proper but not loosely irregular, then there are three vertices in G with sum σ(vn).
Particularly, no ui has the same sum as vn. Then just perform a valid change to vnu1.
Since u1 is the only vertex among the ui’s to have sum in {⌈n

4
⌉+1, . . . ,2 ⌈n

4
⌉−1,0}modulo

2 ⌈n
4
⌉, the resulting labelling is proper. Also, since at most two vertices in {v1, . . . , vn−1}

can have sum σ(vn)− ⌈n4 ⌉ or σ(vn), and, in the first place, there were two such vertices
with sum σ(vn)−⌈n4 ⌉, we deduce that, now, vn is the only vertex with sum σ(vn). Thus,
the resulting labelling is loosely irregular.

• Second, assume σ(vn)mod 2 ⌈n
4
⌉ ∈ {⌈n

4
⌉ + 1, . . . ,2 ⌈n

4
⌉ − 1,0}. Recall that we have σ(ui)mod

2 ⌈n
4
⌉ ∈ {1, . . . , ⌈n

4
⌉} for every i ∈ {1, . . . , d}, and, thus, in this case the labelling must be

proper. Hence, if ℓ is not loosely irregular, then it must be because there are two vertices
in {v1, . . . , vn−1} ∖ {u1, . . . , ud} with sum σ(vn). Recall also that at most two of the ui’s
have sum in {σ(vn) + ⌈n4 ⌉ , σ(vn) + 2 ⌈

n
4
⌉)}. Since d ≥ 4, we can thus assume, w.l.o.g., that

σ(u1), σ(u2) /∈ {σ(vn) + ⌈n4 ⌉ , σ(vn) + 2 ⌈
n
4
⌉)}. Start by performing one valid change to vnu1;

two cases can occur:

– If the resulting labelling is not proper, then it must be because, for some ui, we have
σ(vn) = σ(ui). By our choice of u1 and u2, we have ui /∈ {u1, u2}. In that case, perform
another valid change, to vnu2. As a result, the attained labelling is proper, since only
u1 and u2 have sum in {⌈n

4
⌉+ 1, . . . ,2 ⌈n

4
⌉− 1,0} modulo 2 ⌈n

4
⌉. Meanwhile, at most two

vertices in {v1, . . . , vn−1} have sum σ(vn) or σ(vn)− ⌈n4 ⌉, one of which is ui, whose sum
is σ(vn) − ⌈n4 ⌉. Thus, there are at most two vertices with sum σ(vn) in G, and the
labelling is loosely irregular.

– If the resulting labelling is proper but not loosely irregular, then there must be two
vertices in {v1, . . . , vn−1} with sum σ(vn), and these two vertices do not include any
of u1, . . . , ud since otherwise we would fall into the previous case. Here, just perform
another valid change, to vnu2. Since u1 and u2 cannot have sum σ(vn) due to how
we chose them, the labelling is proper. Also, since at most two vertices of G have sum
σ(vn) or σ(vn) − ⌈n4 ⌉ modulo 2 ⌈n

4
⌉, and these two vertices were assumed to actually

have sum σ(vn)− ⌈n4 ⌉, we deduce that vn is the only vertex of G with sum σ(vn). Thus,
the labelling is loosely irregular.

We thus end up with a loosely irregular (thus equiproper) (3 ⌈n
4
⌉ + 2)-labelling of G.

5. Conclusion

In this work, we have introduced and investigated an equitable version of proper labellings,
where the notion of equitability is with respect to the induced sums. As seen earlier, notably
through Observation 2.1, equiproper labellings sort of lie in between proper labellings and irregular
labellings. The exact connection between the three is not clear however, as, for particular graphs
G, sometimes χΣ(G) is closer to χΣ(G), while in other cases χΣ(G) is closer to s(G), and there
are even cases where χΣ(G) actually lies somewhere in between χΣ(G) and s(G). From a more
general point of view, the fact that χΣ(G) should always be at most 3 (as hypothesised by the
1-2-3 Conjecture, which might have been proved in [17]), while χΣ(G) is not bounded above by an
absolute constant (recall Observation 2.2), tend to locate the parameter χΣ closer to the irregularity
strength.

Our results in this work lead us to a few questions and directions, which we think could be
subject to further work on the topic. For instance:

• We suspect that the upper bounds on χΣ we provided in Section 4, even if made more
general, would not be best possible in general, and that a type of bound as indicated by
Observation 2.2 would be more relevant. If we had to make some guess, then maybe, for
every nice n-graph G, it might be plausible that χΣ(G) ≤ ⌈n2 ⌉ + O(1) always holds. Note
that the proof methods we used to prove Theorems 4.1 and 4.2 would tend to support such
a bound. Particularly, the use we made of strongly equitable proper vertex-colourings and
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loosely irregular labellings might make this presumption believable. Another direction could
be to investigate the existence of graphs that are worse than stars for equiproper labellings.

• It is important to note, however, that if one aims at deducing the exact value of χΣ(G) for
some graph G, then one sometimes has to consider labellings where all resulting sums appear
a lot. This is well illustrated by the proof of Theorem 2.6. However, the structure of paths
and cycles is so regular that it is not clear whether this phenomenon is frequent in general or
not. To progress towards this question, maybe it could be interesting to investigate locally
irregular graphs. Recall indeed that if G is locally irregular, then χΣ(G) = 1. However,
depending on the degree sequence of G, it is not clear what χΣ(G) should be in general:
intuitively, if the degree sequence of G is sort of balanced (all degree values appear about
the same number of times) then χΣ(G) should be close to 1, while, if the degree sequence is
unbalanced (all degree values appear different numbers of times, and the degree values are
pairwise close) then it is more likely that χΣ(G) should be large. In some sense, such examples
could be among the most pathological ones (while being representative of all graphs), and it
could thus be of prime interest to understand them fully. Recall en passant that nice stars
(which we considered in Observation 2.2) are locally irregular.

• Towards improving Theorems 4.1 and 4.2, it could be crucial to develop new labelling meth-
ods. Note that, when dealing with proper labellings, one important method is the modulo
method, used e.g. in [16], through which, by a labelling, we ask adjacent vertices to have
distinct sums modulo some fixed value. In the case of equiproper labellings, this method is
not quite viable in general, as, through the modulo method, we somewhat do not pay atten-
tion to the actual vertex sums, which are crucial in our definition of equitability. Our proofs
of Theorems 4.1 and 4.2, however, showcase safe situations in which restricting the sums to
some modulo can be done. So we wonder whether we can go farther with this approach,
especially since it has been used for irregular labellings (see e.g. [19]).

• Regarding our complexity result in Section 3, Theorem 3.1, note that, in our reduction, the
reduced graph is not connected in general, so one first question could be on modifying our
proof so that the result holds for connected graphs. One could also wonder about establishing
the same result for graphs with additional properties, such as being bipartite. Indeed, recall
that deciding whether χΣ(G) ≤ 2 for a given graph G is NP-complete in general [11], but
polynomial-time solvable when G is bipartite [23]. Thus, restricting Theorem 3.1 to bipartite
graphs would draw a neat difference between proper labellings and equiproper labellings.
Similarly, note that some numbers in the proof of Theorem 3.1 are voluntarily large to make
the arguments clearer, but, through optimising them and coming up with new structures,
maybe it could be possible to establish a similar result for e.g. graphs of bounded degree
(note that deciding whether χΣ(G) ≤ 2 holds for a given cubic graph G is NP-complete [1]).
Another question could be about generalising Theorem 3.1 to equiproper k-labellings: that
is, for any fixed k ≥ 2, we wonder whether deciding if χΣ(G) ≤ k is NP-complete. Note that
we proved this for k = 2. A last question could be about the complexity of determining s(G)
for a given graph G, which is still unknown, and was recently investigated in [4].
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