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Abstract—The availability of a large number of devices
in the Internet of Things (IoT) allows us to carry out
distributed applications in a collaborative fashion. This
approach is especially beneficial in smart city scenarios,
wherein different types of resources (i.e., for sensing and
actuation, in addition to computation and storage) are
key to providing effective location-based services. This
article addresses sharing heterogeneous resources for IoT
applications in smart cities. Specifically, it takes a game-
theoretic approach and addresses the problem of allocating
resources from different devices as a combinatorial double
auction. Features specific to IoT devices, including their
affinity (e.g., ownership and co-location), are leveraged to
form groups that offer resource bundles with a certain
reliability. The proposed solution incurs a low computa-
tional complexity and achieves several important economic
properties: incentive compatibility, individual rationality,
and a balanced budget. Simulations based on a large-scale
dataset demonstrate that the combinatorial double auction
is effective and can be completed in a short time.

Index Terms—Resource sharing, combinatorial auction,
double auction, Internet of Things, fog computing, smart
cities.

I. INTRODUCTION

The Internet of Things (IoT) is composed of a large
number of interconnected devices that are able to per-
form different actions to support diverse applications [1].
Wherein, from one hand, many of these devices are
resource constraint and cannot support fast and accurate
execution of their tasks, and on the other hand, we are
witnessing an ever increasing advanced handheld de-
vices, with enhanced storage and computing capabilities
where they can not only satisfy the needs of their owners
but also act as a host to provide related services to users
nearby. Such actions do not only involve processing and
communication but also sensing, actuation and data stor-
age. In this respect, IoT devices are very heterogeneous
in terms of the number and types of their resources.
For instance, a surveillance camera has some storage
and processing capabilities, to annotate video streams;
a smart light includes both a proximity sensor (to detect
the presence of people or vehicles nearby) and an actual

actuation component (to switch the light on and off
accordingly).

Emerging edge computing provides an effective solu-
tion to overcome the limitations of the cloud. Indeed,
different from cloud computing, edge computing is a
type of decentralized computing paradigm, which moves
data, computation, and storage from the data center to
edge nodes of the network [2]. Edge technologies also
provide more intelligent analysis and processing services
near the data sources, e.g., user equipment’s, intelligent
vehicles, etc. In this case, the communication delay can
be significantly reduced, the system efficiency can be
effectively increased.

However, the existing literature has primarily focused
on several challenges in edge computing (i.e., security
and reliability, heterogeneity). Instead, economic aspects
in the reliable allocation of heterogeneous IoT resources
have received limited attention (Section II). This article
leverage this concept to address the above-mentioned
issues by taking a game-theoretic approach to trade
resources among different IoT applications. Specifically,
we adopt auction theory to provide fair resource al-
location between buyers, and sellers 1 in the case of
competition. Indeed, as the interest of heterogeneous
devices is usually inconsistent, so we opt double auc-
tion mechanism to consider the interests of all parties
[3]. However, different from the existing edge-related
auction which only considers the price, some non-price
attributes (location, affinity, and computing power) are
also considered for providing fair resource allocation
in our proposed method. In real scenarios, due to the
different type of tasks and different capabilities of IoT
devices, both buyers and sellers may have different
preferences over each other (i.e., a device prefer to
choose a seller with higher capabilities when processing
safety-related tasks). This mechanism takes into account
the locality characteristics of the systems, where mobile
devices can only offload tasks to the edge node in

1We use buyer and seller terms referring to IoT devices who is need
of services and the ones with spare resources to offer respectively



their proximity, and the edge node only serves the
neighbouring devices with available resources. The main
contributions of this work are as follows: First, it models
resource sharing as a combinatorial auction in which
IoT service providers and devices simultaneously place
bids for a collection of heterogeneous resources. The
proposed approach leverages affinity between devices
(e.g., in terms of co-location and ownership) and an
efficient representation of resource bundles (Section III).
Moreover, it introduces a double auction algorithm that
has a low time complexity and achieves several economic
properties: incentive compatibility, individual rationality,
and a balanced budget (Section IV). Finally, extensive
simulations based on a large-scale dataset demonstrate
that the combinatorial double auction is effective, as it
efficiently allocates resources and is carried out within a
short time (Section V).

II. RELATED WORK

Resources sharing among IoT devices has received
considerable attention in the literature. For instance,
Kortoçi et al. [4] focused on collaborative data storage
in the opportunistic IoT, wherein mobile data collectors
infrequently visit nodes. Ranjbaran et al. [5] leveraged
matching theory to obtain a many-to-many assignment
of resources involving heterogeneous devices.

Several works took a game-theoretic approach in
characterizing the IoT and edge scenarios. Farris at
al. [6] introduced the concept of the federation for
mobile IoT clouds at the network edge. Specifically, the
authors considered a coalition formation game and a
Nash-stable solution to manage the resulting federations.
Moreover, several existing works have recently adopted
auction theory to solve the resource management at
the edge of network [7]–[10]. It is inspired by the
existing works that different types of auction methods
are suitable for different types of problems in specific
application scenarios. For example, a multi-round-sealed
sequential combinatorial auction mechanism is used in
a scenario for purchasing the combinational resources
to obtain mobile edge computing service by service
providers [11]. Also for fog providers, Anjan et al.
[12] investigated that the combinatorial auction-based
mechanism can improve the allocation of resources to
create higher income. Furthermore, combinatorial clock
auction is also used for live video streaming in mobile
edge to improve the quality of experience of cloud
services [13], [14]. Zavodovski et al. [9] designed a
truthful decentralized double auction for for computa-
tional resource sharing, by explicitly targeting distributed
ledger models. Kiani and Ansari [15] developed a one-
way auction mechanism for resource allocation in edge
computing systems which, however, does not guarantee
trustfulness. Ma et al. [10] proposed a truthful double

auction mechanism for resource allocation for the indus-
trial IoT. Even though the approach pursued here is sim-
ilar, this work specifically addresses heterogeneous IoT
resources, resulting in a combinatorial auction, where,
our proposed mechanism allows one seller to serve
multiple buyers simultaneously. Moreover, different from
the existing edge-related auction which only considers
the price, some non-price attributes (location, affinity,
and computing power) are also considered for providing
fair resource allocation in the system.

III. RESOURCE TRADING

This section first introduces the system model and then
formulates the resource-sharing problem, followed by
an auction design that reduces its complexity. It finally
introduces the matching principle to allocate resources
to devices as well as the actual payment mechanism.

A. System Model

The reference scenario is represented by a smart
city neighbourhood, consisting of N public and private
entities, E = {E1, E2, . . . , EN}, each owning a set of
DEi

devices DEi
= {dj : dj ∈ Ei}. These devices are

heterogeneous, in the sense that they offer different types
of services (equivalently, resources). Specifically, the set
of the offered services by device di is Sdi = {Sτ :
τ ∈ T }, where τ is the type available services in the
set T ; these could be sensing, actuation, computation,
storage and bandwidth resources for instance. Devices
can be mobile: they alternate between moving from one
location to another and staying at a certain location for
some time, which is assumed to be known in advance
or estimated through machine learning methods [16].

Devices leverage a nearby edge node (EN) for man-
agement purposes: they inform the EN about their ca-
pabilities as well as users’ preferences and update their
information as their location changes.

Devices act as Micro-Providers (MPs) for services, in
the sense that they can offer part or all of the resources
needed for user requests. Assuming that R is the set of
all the requests in the system, the individual request r
submitted by client i and valid until time ti is described
by:

ri ≜ < ti,P(i), bi, t
s
i , t

e
i , qi, ϕ(i), fi, li > (1)

Here, P(i) = (ρi1, . . . , ρij , . . . ρik) with P(i) ∈ Zk : ρij
is the amount of resource with type j ∈ T requested
(ρij > 0). The client makes a bid bi ∈ R+ representing
the maximum price that it is willing to pay for the whole
bundle P(i). Note that this is a reserved price based on
a private monetary valuation for the requested services.
The terms tsi and tei , indicate the period (in terms of
starting and ending time) during which the resources
are needed, while qi specifies the maximum number of



devices that can be used to fulfill the request. This is
an important parameter, since the higher the number of
allowed devices, the simpler is to find matching devices,
but it is also may endanger the reliability of service as
there is a higher possibility that one of the assigned
devices acts non-cooperative (e.g. leave the coverage
area of the edge node, thus delaying the service pro-
visioning. Moreover, fi ∈ {0, 1} is a bundle preference
indicator: fi = 1 means that the client needs either the
whole bundle or no services at all, whereas fi = 0
signifies that any subset of the requested service types
(between 0 to k) is enough. Moreover, ϕ(i) ∈ [0, 1]
denotes the importance level of the requested service:
ϕi = 1 indicates that the service is extremely valuable
(i.e. the client would like to get the service from a trusted
micro-provider with higher capabilities when processing
safety-related tasks). whereas ϕi = 0 means that the
client is willing to obtain resources with a focus on
price, without any preferences on the bundle. Finally,
the request is tagged with the location li of the client,
broadly defined (for instance, as either GPS coordinates
or a network address). As this mechanism takes into
account the locality characteristics of the IoT systems,
where clients only offload tasks to ENs in the proximity
and ENs only serve clients with their neighbouring MPs.

Moreover, MPs may submit their offers to the EN an-
nouncing their owned spare resources, overall indicated
as the set O. The offer from MP j is described similarly
to the requests:

oj ≜ < ti,P(j), t
s
j , t

e
j , Cj , qj , lj > (2)

where P(j) = (ρj1, ..., ρjl) and ρjl is the amount of
the resource of type l ∈ T , whereas tsj and tej are the
start and ending times resources are available. Here,
Cj = (cj1, ...cjl) describes the costs associated with
each type of resource. These values are considered a
reserved price to ensure a minimum amount of resources
so that the micro-provider does not suffer losses from
resource sharing and allocation. Finally, qj is a quota
in terms of the maximum number of requests that a
device can be matched with and lj is the device location.
The bidding process takes place over time, which is
supposed to be divided into Ts timeslots with a duration
equal to T (seconds). Devices with spare resources and
clients needing services submit their offers and requests
(respectively) to the EN at each timeslot t.

B. Problem Formulation

In this paper, we take forward our research by propos-
ing a double combinatorial auction-based mechanism for
the resource-sharing problem. From the perspective of
mechanism design, optimization targets for economic
performance can be divided into two main aspects. One
is revenue maximization, which pursues the benefit of the

seller. While the other one is the efficiency mechanism,
which focuses on maximizing social welfare. For a
double auction, welfare is the difference between the
total value of the buyers and total cost of the sellers
[17]. So, as we want to motivate clients and providers
equally, we focus on maximizing social welfare. Indeed,
social welfare is equivalent to allocating resources to the
buyers who value them most, buying those goods from
the sellers which have the lowest prices.

Recall that each client i declares a bid bi > 0 and
has a private true valuation vi for any combination of
resources expressed according to Eq. (1). The same
condition is also established for available resources; in
other words, the micro-provider j may have more than
one free resource at a given time with the associated
cost Cj for all resources that have been specified in its
offer. Indeed, as each EN is considered independently, so
without loss of generality we can formulate the problem
as welfare-maximization for each EN. We define the
the allocation matrix Xϵ = [xϵij ] which represent the
allocation between request i ∈ Rϵ and offer j ∈ Oϵ.
Which xϵij = 1 states the best possible matching the
given scenario when request i is assigned to offer j.

We define the problem of welfare-maximization as
follows:

max
∑
i∈Rϵ

∑
j∈Oϵ

vix
ϵ
ij −

∑
i∈Rϵ

∑
j∈Oϵ

xϵijψ
ϵ
ijCj (3)

subject to∑
j∈Oϵ

≤ qi, ∀i ∈ Rϵ (4)∑
i∈Rϵ

ψϵ
ijx

ϵ
ij ≤ ρj (5)

ρi,kx
ϵ
ij ≤ ρjk, ∀i ∈ Rϵ,∀j ∈ Oϵ,∀k ∈ T , (6)

vi ≥ ψϵ
ijCj , (7)

vi ≥ 0, ∀i ∈ Rϵ, (8)
Cj ≥ 0, ∀i ∈ Oϵ, (9)
xϵij ∈ {0, 1} (10)

The objective function, Eq(3), is aiming at maximizing
the welfare for all requests and offers accepted in under
EN ϵ. Where, ψϵ

ij is the resource fraction of offer j
allocated to request i. Eq. (4) ensures that a request
is matched to at most qi devices. Eq. (5) establishes
the feasibility of resource allocation, i.e., that there are
sufficient resources to serve the requests. Eq. (6) ensures
that if offer j is assigned to request i, j has sufficient
quantity of resource type k to serve i. Eq. (7), ensures
that the valuation of the client is greater than the cost
of allocated resources. Eq. (9) and Eq. (10) state that
valuation and cost can only be non-negative rational



numbers. Finally, Eq. (10) indicates that the decision
variables are binary integers.

C. Auction Design

To address the complexity of the problem introduced
above, the following presents an auction-based mech-
anism involving a set of agents (clients) and a set of
micro-providers (devices). The process takes place over
multiple rounds; for simplicity, the rest of the discussion
focuses on a single round. The EN act as the broker for
the auction.

The original problem is relaxed first by restricting
the permitted combinations to a cluster of available
resources, determined according to their characteristics
and their affinity. Specifically, each cluster is represented
by a subtree with a given level of importance. Assume
that k ⊆ A represents a combination of items and K is
the set of all combinations |K| = 2n. Accordingly, the
set C of partitions can be defined as:

C = {ω ⊆ K|k, k′ ∈ ω ⇒ k ∩ k′ = ∅} (11)

where partition ω is the set of pairwise disjoint subsets of
items. In detail, a directed tree structure T is created for
C as follows: the vertices correspond to the permitted
combinations; and (k, k′) is an edge in T(C) if and
only if k covers k′ in C (i.e., there is a direct path
from k to k′). Formally, (k, k′) is an edge if there
is no subset k′′ ∈ C such that k ⊃ k′′ ⊃ k′; that
is, k′ is the tail and k is the head of the edge [18].
Moreover, every k has at most one incoming edge in the
directed tree. Note that a set of permitted combinations
C = {ωi} i ∈ {1, . . . , d}, where d is the depth of
the tree, form a tree structure if for any pair of subsets
∀k, k′ ∈ C are disjoint (i.e. s ∩ s′ = ∅) or one is the
subset of the other. In the considered setting, each level
in the tree indeed forms a partition (i.e., every single
item is just included in at most one subset) such that the
number of single items in each level is the same (i.e.,
∀i |ωi| = |ωi+1| i ∈ {1, 2, . . . , d}) where, ωi denote
the partition in level i. Also, for each edge (k, k′) ∈ T(C)
the combination k is larger than k′ (|k| > |k′|) if k
covers k′. The leaves of the tree k ∈ C correspond to
single resources (k ∈ ω1 and |k| = 1). At each level,
partitions are formed in such a way that the importance
among the items in a given subset is higher than a
threshold of ∆. Indeed, each subset in ωi at level i form
a subtree that can be considered independently. Such a
partitioning scheme allows the assignment of the best
possible matching according to user preferences. The
cost of each combination is considered superadditive:
C(k ∪ k′) = C(k) + C(k′) + µ(C(k) + C(k′)) where
0 < µ < 1, where this coefficient is larger in the first
tree (µ(T1) > µ(T2)), as more appealing combinations
are assumed to be more expensive. An upper bound g

TABLE I: Affinity types [20] and corresponding values.

Type Abbr. F

Owner Object Relationship OOR 1.0
Co-Location Object Relationship CLOR 0.8
Co-Work Object Relationship CWOR 0.8
Social Object Relationship SOR 0.6
Parental Object Relationship POR 0.5

for the size of permitted combinations is also defined,
as the maximum number of physical devices that can be
assigned to a given request. Consequently, the depth of
the tree is limited by this parameter (d = g+1), thereby
reducing computational demands. It is worth mentioning
that the permitted combinations are temporally compati-
ble, i.e. they are all available in a certain period of time.

D. Matching Principle

After collecting all requests and the set of allowed
combinations, it remains to derive the actual mappings
according to certain principles. Note that the character-
istics of available resources are not public in the bidding
phase, so clients cannot explicitly target them. Therefore,
a matching principle is needed to find the most suitable
combination for each request. This allows the winner
request to obtain the best approximation of the services
specified in the bids.

For this purpose, the concept of reliability among
devices is considered on the basis of two main fac-
tors. The first is device affinity(i.e., object sociality),
expressed as the coefficient Fi,j that represents the type
of relationship between IoT devices i and j according
to the social IoT [19], (as indicated in Table I). The
second factor is the reputation of a device, based on
the history of successful transactions carried out in the
past. Specifically, Wi = ki

Ki
is the transaction success

rate for device i, where ki is the number of successful
transactions involving device i and K the total number
of transactions. Accordingly, the reliability involving
devices i and j is:

Rij = γAij + (1− γ)Wi (12)

where γ is a weight determined as a trade-off between
the impact of the two terms.

While reliability is important, it is not the only factor
having an impact on how clients are willing to accept
resources – the cost is also significant, especially for low
values of preference (e.g., ϕ(i) < 0.5). Accordingly, a
matching quality level between request r and the feasible
combination a is defined as:

S(r, a) =
Ta∩Tr∑
i=1

⌈
ρ′

i
a − ρ′

i
r

⌉( ρ′
i
a

(ρ′ia − ρ′ir)
2 + 1

)
+ϕ(r)(Rir)

(13)



Here, a is a permitted combination that the request
ri can afford (bi > ca), whereas ρ′

i
a ∈ [0, 1] and

ρ′
i
r ∈ [0, 1] are normalized value of resource type i

in subset a and request r respectively, calculated based
on the maximum amount of available resources in the
market. Furthermore, Rir indicates the reliability of
request i for the device owning resource j in subset
a. Eq. (13) allows to rank the subsets for a particular
request with at least one common resource during the
same time period, namely, |Ta∩Tr| > 1. For the case of
fi = 1 (the client requests the whole bundle), the subset
needs to satisfy |Ta ∩ Tr| = |Tr|.
E. Payment Mechanism

The actual payment mechanism relies on the concepts
of utility and pricing based on critical value [21]. The
utility of client i from an accepted request is ri as
ui = vi − pi, where vi is the private valuation for
the requested bundle. Similarly, the utility for micro-
provider j offering some resource is uj = πj − cj ,
where πj is the revenue of the provider from sharing
that resource. By definition, the utility is zero if the
participant in the auction is not assigned a resource. The
critical value vci for request ri is a unique value that
a client must declare to win the requested bundle. In
other words, for any vi > vci the request wins and pays
its critical value, while for any vi < vci the client loses
the auction and pays zero. The critical value is computed
based on the second loser request rz who would win if ri
did not participate. Such a payment method is monotone
as increasing the bid bi for a smaller combination does
not result in a client losing. Furthermore, declaring a
bid below the true valuation may lead to a loss in the
mechanism. On the other hand, offering less for more
items does not incur a lost bid to win.

IV. RESOURCE SHARING
THROUGH COMBINATORIAL AUCTION

This section presents the proof of the economic
properties for proposed heterogeneous REsource Sharing
through Combinatorial Auction (RESCA). RESCA is a
double auction mechanism where both micro-providers
and clients submit their offers and requests to the EN
by specifying their costs and valuations (respectively). It
covers both winner determination (equivalently, finding
the best match for devices allocated to tasks) and the
actual payment. RESCA is executed at the EN – acting
as the broker – during each round l of the auction; it
guarantees that none of the devices are allocated if they
are below their declared cost, and also no client pays
more than what they have offered in their requests.

A. Analysis of RESCA

The following proves that RESCA satisfies the follow-
ing economic properties.

• Computational efficiency (CE): the trading algorithm
should be computed in polynomial time.

• Incentive compatibility (IC) or Truthfulness: the dom-
inant strategy for the SPs and each device is to bid
their true valuation, otherwise their profit reduces.

• Individual rationality (IR): both the SPs and devices
obtain non-negative profit from the auction.

• Balanced budget (BB): the total payment of devices
should exceed the total charging of the SPs.

The rest of the section proves each of these properties;
the proofs refer to a single round of the auction since
the pricing policy of a given round is independent of the
others.

Theorem 1 (Computational efficiency). RESCA has a
polynomial complexity.

Proof. The main task of the RESCA mechanism is to
match the requests with a subset of offers. Accord-
ingly, the complexity of winner determination in the
tree structure in O(|C|(|C| + n)), wherein |C| is the
number of all permitted combinations. For any directed
tree structure, it is |C| < 2n − 1 [22]. Therefore,
the breadth-first search finds a match for each request
in the directed tree T(C), with |V | = 2n − 1 and
|E| = 2n− 2, in O(n2) time, Moreover, the mechanism
prunes the tree at each search node, leading to a speedup
in the later phases. Indeed, each subtree corresponds to
an independent subproblem, namely, the subset of the
combinations and the associated requests. The worst case
is represented by all clients bidding exactly one unit for
a single type of resource. The complexity of ranking the
bids is O(m logm), where m is the number of requests.
Finally, the time to carry out the payment is O(m), as it
involves iterating over the set of winner clients and the
bids are already sorted [23]. So the overall complexity
of the algorithm is O(mn2).

Theorem 2 (Incentive compatibility). RESCA is incen-
tive-compatible (i.e., truthful).

Proof. Recall that the payment method discussed in the
previous section is monotonic and the price is decided
based on the critical value, which are necessary con-
ditions for incentive compatibility [24]. Specifically, a
truthful request ri wins the combination si by biding the
value bi for which it pays the critical value vci , namely,
vci ≤ bi. There are two possible untruthful behaviours of
the participants.
• If client i overbids, it is bi > vi and the request i still

can win the auction but its payment does not change,
as it corresponds to its critical value vci < vi.

• If client i underbids, it is bi < vi and the client may
still win the auction but its payment does not change,
unless pi > bi in which case its utility is zero as the
client loses the auction.



The same reasoning can be used for the offers of
micro-providers. As a result, there is no incentive for
participants to bid untruthfully, thus RESCA is incentive-
compatible.

Theorem 3 (Individual rationality). RESCA satisfies
individual rationality.

Proof. The utility of client i is zero if request ri does not
win the auction. Similarly, the utility of a micro-provider
is zero if it cannot trade any resource. If a micro-provider
trades a resource it is paid no less than its reserved price.
Moreover, if a request wins the auction, it pays less than
its own bid, according to critical value payment. Con-
sequently, both participants have a non-negative utility
by participating in the auction, which establishes the
individual rationality satisfied by RESCA.

Theorem 4 (Balanced budget). RESCA maintains a
balanced budget.

Proof. Given any reserved price ck for combination k,
the bid of the winning device j is bj , with bj > ck.
In addition, the final payment for the winning request
is based on a critical pricing model where pj > ck. In
other words, the broker does not pay extra money in the
auction, thereby resulting in a balanced budget.

V. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
resource-sharing mechanism for IoT applications in a
smart city scenario. It first introduces the considered
setup and the evaluation methodology, then presents the
obtained results.

A. Setup and Methodology

The evaluation is conducted by using a custom simu-
lator written in Python. The considered scenario includes
IoT devices acting as micro-providers for four types of
resources: sensing, computation, storage, and actuation.
IoT devices are connected to the Internet and are within a
certain geographical area served by an EN. The specific
features of the devices are selected from the IoT network
dataset2 in [25]. Specifically, the dataset encompasses
more than 16,000 devices, both public and private; it
also provides information about IoT applications and
services deployed in a metropolitan area as well as the
social relations between the devices, including mobility.
The network includes an EN serving 1,000 devices with
different capabilities, selected according to the values
in [5]. The EN periodically collects the available re-
sources from the devices, after which the auction takes
place with RESCA.

2http://social-iot.org/index.php?p=downloads

TABLE II: Simulation parameters.

Parameter Value

Number of users 200
Number of devices per user / municipality 5
Number of available resources [1,000, 4,000]
Sensing units per service request [1, 8]
Computation units per service request [1, 15] MFLOPS
Storage units per service request [10, 1,500] MB
Actuating units per service request [1, 3]
Number of sensing resources per device [2, 8]
Number of actuation resources per device [1, 3]
Amount of RAM per device [0.1, 16] GB
Amount of storage per device [0.1, 1,024] GB

Simulations are carried out by using the independent
replication method with 40 iterations for each experi-
ment. The results report the average values; the corre-
sponding standard deviations are also reported as error
bars when noticeable. Table II details the parameters
used in the simulation.

B. Simulation Results

The rest of this section presents the simulation results
by dividing them into two different categories. The first
one characterizes resource allocation, primarily in terms
of the fraction of resources allocated successfully with
respect to the corresponding requests (Figure 1). The
second set of experiments focuses on the economic
properties of RESCA in terms of revenue and prices
(payments) as well as the runtime of the winner deter-
mination part of the algorithm (Figure 2).

Fig. 1a reports the percentage of successfully allocated
resources as a function of the available resources for
different amounts of requests. Clearly, the chances of
success increase with the availability of resources in all
cases. Initially, the success rate increases almost linearly,
while it starts growing faster after a value of available
resources that depends on the number of requests. In
any case, RESCA successfully allocates more than 70%
of the resources when there are up to 1,000 requests,
demonstrating its sharing efficiency.

Fig. 1b also shows the percentage of successfully
allocated resources, but this time as a function of the
number of requests, for different values of importance
(i.e., ϕ) and bundle preference (i.e., f ). The simulations
consider the number of items per request in the range [1-
6] and 1,000 available resources. Of course, the fraction
of successful allocations decreases as the number of
requests increases, but the impact of the two different
parameters is more significant. When the importance
factor is relaxed (i.e., the affinity is not considered when
ϕ = 0) the success rate increases. In turn, the success
rate decreases when the affinity is high (i.e., reliability is
the main factor for clients). This happens since RESCA
selects resources with OOR affinity to maximize the
importance preference of clients. The bundle preference
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Fig. 1: (a) Percentage of successful assignments, (b) impact of different preferences on successful assignment. (c) the effect of
requests size on successful assignment for 1500 available resources, for two different scenarios
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Fig. 2: (a) Payment and bidding price of clients; (b) payment and asking prices for 100 winning requests. (c) Running time in
comparison with dynamic programming.

parameter also affects the success rate significantly, in
which the chance of winning resources increases for
devices that are more flexible in their requests (i.e.,
f = 0).

Moreover, Fig. 1c shows the percentage of success-
fully allocated resources as a function of the number of
requests, for different distributions of items per request.
Here, a fixed level of importance ϕ = 0.7 is considered.
Also here it is apparent how the percentage of success
increases for flexible requests, compared to those with
stricter requirements (i.e., a client willing to always get
a requested resource entirely). The same happens when
fewer items are requested.

Economic properties Figure 2a shows the total revenue
of RESCA compared to a non-truthful benchmark as a
function of the number of requests. The benchmark is a
double auction using the same algorithm as in RESCA,
but with a payment mechanism that is not based on
the critical value. Clearly, the non-truthful benchmark
achieves a higher revenue than RESCA. However, the
difference with RESCA is relatively small, especially
when there are fewer than 500 requests. This result is
remarkable, as RESCA also has the potential to enable

efficient use of spare resources in the long term (i.e.,
over multiple rounds of the auction).

Moreover, Figure 2b shows the total payments of the
winning clients together with their bidding prices and the
asking price of selected micro-providers. In this case,
the number of requests is set to 300, and the number
of resources is varied between 400 to 1,400; all values
are normalized in a range of (0-100] for clarity. The
figure clearly shows that the winning clients acquire
their requested bundle yet their payments do not exceed
their valuations. At the same time, the selected micro-
providers earn more than their reserved price, which
motivates them to participate in the next rounds of
resource trading. Both these results confirm the analysis
in Section IV-A.

Finally, Figure 2c shows the running time for the
tree-based winner determination in RESCA as well as
the same for the optimal algorithm in [26], based on
dynamic programming. The experiments were carried
out on a machine with a 3.2 GHz ARMv8-A processor
with 8 cores and 16 GB of RAM. The figure clearly
shows how the computation time of RESCA is always
below 30 seconds and significantly lower than that of



the solution employing dynamic programming. The latter
obtains extremely high running time when the number
of simultaneous resources is 20 or more (more than
15 minutes). This confirms that winner determination
algorithms employing dynamic programming are not
scalable, whereas the solution in RESCA is fast irre-
spective of the number of resources.

VI. CONCLUSION

This article has considered an IoT scenario in which
devices share heterogeneous resources according to the
fog networking paradigm. In particular, it has charac-
terized the value of resource combinations by means of
the reliability of the corresponding devices to provide
services relying on these resources. Moreover, it has been
considered an efficient representation of resource bundles
and a combinatorial double auction mechanism to assign
these resources to different services. The resulting mech-
anism for resource sharing has been analytically charac-
terized in terms of time complexity and economic prop-
erties. Finally, these have been validated by an extensive
simulation study leveraging a large-scale IoT dataset,
which has also characterized the efficiency of resource
allocation. The obtained results have established that the
proposed approach is effective in sharing resources, by
also obtaining a solution in a short time. In future work,
we plan to consider distributed long-term interactions
between IoT devices without EN intervention. The other
interesting thread is to evaluate how the behaviour of
unreliable or malicious users affects the dynamics of
sharing.
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