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A B S T R A C T 

Astrophysical surv e ys rely heavily on the classification of sources as stars, galaxies, or quasars from multiband photometry. 
Surv e ys in narrow-band filters allow for greater discriminatory power, but the variety of different types and redshifts of the 
objects present a challenge to standard template-based methods. In this work, which is part of a larger effort that aims at building 

a catalogue of quasars from the miniJPAS surv e y, we present a machine learning-based method that employs convolutional 
neural networks (CNNs) to classify point-like sources including the information in the measurement errors. We validate our 
methods using data from the miniJPAS surv e y, a proof-of-concept project of the Javalambre Physics of the Accelerating Universe 
Astrophysical Surv e y (J-PAS) collaboration co v ering ∼1 de g 

2 of the northern sk y using the 56 narrow-band filters of the J- 
PAS surv e y. Due to the scarcity of real data, we trained our algorithms using mocks that were purpose-built to reproduce the 
distributions of different types of objects that we expect to find in the miniJPAS surv e y, as well as the properties of the real 
observations in terms of signal and noise. We compare the performance of the CNNs with other well-established machine learning 

classification methods based on decision trees, finding that the CNNs impro v e the classification when the measurement errors 
are provided as inputs. The predicted distribution of objects in miniJPAS is consistent with the putative luminosity functions of 
stars, quasars, and unresolved galaxies. Our results are a proof of concept for the idea that the J-PAS surv e y will be able to detect 
unprecedented numbers of quasars with high confidence. 
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 I N T RO D U C T I O N  

alaxy surv e ys hav e evolv ed to tackle a broad range of fundamental
uestions, from dark energy and neutrino masses to galaxy evolution 
nd the halo–galaxy connection (Cole et al. 2005 ; Blake et al. 2012 ;
ikage et al. 2019 ; Alam et al. 2021 ; DES Collaboration 2021 ).
echnological advances and investment in new instruments have 
mplified the scope of these surv e ys, which demand increasingly 
ophisticated toolboxes for data reduction, statistical analysis, and 
henomenology. 
The first step in any survey is finding luminous sources behind 

he foregrounds of the sky and the Milky Way – a task that is often
erformed using optical data. Typically, a large number of sources 
re detected using photometry in broad optical filters, but only a 
mall fraction of those sources are then selected for spectroscopic 
ollo w-up observ ations. This target selection can be made on the
asis of the multiband photometry, by inspecting variability in the 
ime domain (Morganson et al. 2015 ; Ivezi ́c et al. 2019 ), by cross-
atching the sources with other wavelengths (Jansen et al. 2001 ; 
right et al. 2010 ), or by some combination thereof. In fact, the

ecision process about which of those luminous sources are likely to 
e the kinds of objects of interest to a given survey is the crucial first
tep that determines how we employ valuable resources, such as a 
ulti-object spectrograph on a large telescope. 
The Javalambre Physics of the Accelerating Universe Astrophys- 

cal Surv e y (J-PAS; Benitez et al. 2014 ) was designed to take
ultiband photometry in narrow filters (of width ∼100 Å) of all 

ources in its field of view, providing low-resolution spectra ( R ∼
0) in the interval 3500 Å � λ � 9000 Å – in that context, see
lso Wolf et al. ( 2003 ) and Mart ́ı et al. ( 2014 ) for other narrow-
and surv e ys. The science verification phase of the surv e y, miniJPAS
Bonoli et al. 2021 ), achieved 5 σ limiting magnitudes (for an aperture
f 3 arcsec) of approximately ∼23–24 for the broad-bands ( u , g , r ,
nd i ), and between ∼22 and 23 for the narrow bands. MiniJPAS
as demonstrated that optical ‘pseudo-spectra’ are often sufficient to 
etermine with high confidence whether an object is a star, a galaxy, a
uasar, or some other type of source – and, in the case of extragalactic
ources, to determine the redshifts of those objects with sub-per cent 
recision. 
Ho we ver, e ven with exquisite photometry a precise determination 

f the classes of very large numbers (millions or even billions) of
bjects is a challenge to established methods such as magnitude 
nd/or colour cuts, as well as techniques that rely on template 
tting (Takada et al. 2014 ; Dawson et al. 2016 ). This is particularly
roblematic in the case of rare objects such as quasars, which can be
rowned by the heaps of stars and galaxies that constitute the bulk
f sources in photometric surv e ys (Myers et al. 2015 ; Dwelly et al.
017 ). 
Gi ven the adv antages of narro w-band photometry to classify

strophysical sources, and in particular objects with strong emission 
ines such as quasars (Chaves-Montero et al. 2017 ), the J-PAS and

EAVE-QSO (Pieri et al. 2016 ) surv e ys hav e partnered to produce
he largest, most complete high-redshift quasar surv e y to date. The
oal is to build a near-complete sample of quasars identified with the
elp of the J-PAS multiband photometry (hereafter, J-spectra), target- 
ng in particular the z ≥ 2.1 quasars for follow-up using the WEAVE

ulti-object spectrograph (Dalton 2016 ). The WEAVE instrument 
ill confirm whether those objects are really quasars, helping refine 

he J-PAS classification and redshift estimates. WEAVE will also 
e able to measure the Ly α absorption systems along the lines of
ight to those high-redshift quasars, providing crucial information 
bout the large-scale structures along those lines of sight. This data 
et, which will eventually cover approximately 6000 deg 2 , will allow
s to compute the clustering of matter using both the Ly α systems
nd the quasars themselves, measuring distances using the baryon 
coustic oscillation scale and imposing constraints on cosmological 
arameters at high redshifts. 
In this paper, we show how machine learning (ML) techniques 

an be used to classify astrophysical objects using as input data
he J-spectra yielded by multiband photometric data, including the 

easurement errors. Here, we employ only photometric features such 
s the fluxes and their associated errors. Additional features, such as
orphology, time domain, or other ancillary data, were not included 

n our analysis at this moment. 
The main innovation in this paper is a systematic inclusion of

nformation about the uncertainties in the fluxes, which are key 
ngredients of any measurements, but are often ignored in ML appli-
ations that take scientific data as input (Reis, Baron & Shahaf 2018 ;
aqui et al. 2021 ; Villacampa-Calvo et al. 2021 ; Shy et al. 2022 ).
ere, we focus on convolutional neural networks (CNNs; LeCun 

t al. 1989 ), which have been developed primarily as tools to extract
eatures from two-dimensional (2D) images (Simonyan & Zisserman 
014 ). CNNs have also been employed for classification purposes 
n astrophysics due to its general ability to detect features in images
Burke et al. 2019 ; Pasquet et al. 2019 ), on multiband photometric
ata (Sharma et al. 2020 ), and even in the time-spectral domain (Qu
t al. 2021 ). It is straightforward to apply CNNs to sequential data,
nd to incorporate the information about measurement errors – for a 
eneral description of the technique, see also Rodrigues, Abramo & 

irata ( 2021 ). In order to compare our CNN-based techniques with
ther well-established ML classification methods, we have also tested 
he performance of random forests (RFs; Breiman 2001 ) and the light
radient boosting machine (LightGBM; Ke et al. 2017 ), two powerful
ecision tree (DT; Breiman et al. 1984 )-based algorithms. 
This work is part of a larger effort to classify miniJPAS point-

ike sources. The first paper (Queiroz et al. 2022 ) describes the
onstruction of simulated data sets (mocks) that we used to train
ur algorithms, and in this paper we apply CNN and DT-based ML
odels to those mocks. In particular, we present a technique that

nables us to take into account the measurement errors in the J-
pectra. We e v aluate the performances of the classifiers not only with
espect to validation data sets, but also for the real miniJPAS point
ources, by comparing the numbers of objects with those expected 
rom the luminosity functions (LFs) in different magnitude ranges, 
edshift ranges, and for the different stellar types. Finally, we test
he robustness of the classification against changes in the training 
ets, and we perform a feature importance analysis to e v aluate
hich miniJPAS filters are more rele v ant to distinguish between the
ifferent classes. In a closely related work, Mart ́ınez-Solaeche et al.
in preparation) focus on a class of well-established ML models, the
rtificial neural networks (NNs), to explore different input features 
s well as to implement data augmentation techniques that introduce 
ybrid objects (ad-mixtures of single, pure populations) and study 
ow this affects the confidence of the classification. In another 
orthcoming paper (P ́erez-R ̀afols et al., in preparation), a spectral
tting method (P ́erez-R ̀afols et al. 2020 ) is used to estimate the
robability that an object is a quasar at a given redshift. Finally, in
 ́erez-R ̀afols et al. (in preparation), we will sho w ho w to combine
ll the previous classifiers, as well as any additional external 
nformation, into a ‘consensus’ catalogue of stars, galaxies, and low- 
edshift ( z < 2.1) and high-redshift ( z ≥ 2.1) quasars. That combined
lassification will constitute the final output of our mocks and of our
uite of ML techniques, and will be validated with the help of the
pectroscopically confirmed miniJPAS sources (the ‘truth table’). 
MNRAS 520, 3494–3509 (2023) 
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Figure 1. Histogram of the r magnitudes of the miniJPAS point-like source 
subsample (solid line), compared with those for the SDSS cross-match 
sample (dashed lines). The distribution of objects classified by SDSS as 
stars, galaxies, and low- z and high- z QSOs is shown in coloured dashed lines. 
The cross-match sample is ef fecti vely limited at r � 22, while the miniJPAS 
sample reaches up to r � 24.0. The vertical dotted line shows r = 23.6. 
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The paper is organized as follows: In Section 2 , we describe the
eal and mock data sets. In Section 3 , we introduce the methodology
nd the ML algorithms. In Section 4 , we e v aluate the performance
f the models and present the results when the methods are applied
o the mock test sets. In Section 5 , we show the results for the point
ources in the miniJPAS data. Finally, in Section 6 we draw our
ain conclusions, and gi ve perspecti ves for future improvements

nd applications. 

 DATA  

n this section, we describe the miniJPAS data sample, and briefly
ntroduce the mocks used to train and validate the ML models – a
ull description of the method used in the construction of the mocks,
s well as tests used to compare them to the miniJPAS data, can be
ound in Queiroz et al. ( 2022 ). 

.1 The J-PAS and miniJPAS sur v eys 

-PAS is soon starting full surv e y operations, using a 1.2-Gpixel
amera mounted on a telescope with a 2.55-m mirror and a field of
iew of 4.2 deg 2 (Benitez et al. 2014 ). The J-PAS photometric system
Mar ́ın-Franch et al. 2012 ) consists of 54 narrow-band filters and 2
edium-band filters (named uJA V A and J1007). In 2020, before

he full instrument was completed, the J-PAS Pathfinder camera
onducted an ∼1-deg 2 science verification survey (the miniJPAS
urv e y) on the area of the All-wavelength Extended Groth Strip
nternational Surv e y (AEGIS; Davis et al. ( 2007 )). In addition to
he narrow-band and medium-band filters, miniJPAS includes four
loan Digital Sk y Surv e y (SDSS)-like filters u , g , r , and i (total of
0 filters). The primary catalogue contains 64 293 sources, and is
stimated to be complete for point sources up to a magnitude of r
 23.6. More details about miniJPAS can be found in Bonoli et al.

 2021 ). 
Starting from the dual-mode photometry catalogue, we make a

uality cut that eliminates all objects with any of the flags that could
ndicate a problem with the photometry in any of the filters. This
rst cut lowers the number of sources down to 46 440 objects. Next,
ince we are not interested in extended sources (these are almost
nequivocally classified as galaxies), we selected only the point-like
ources from the miniJPAS full sample, by imposing the cut ERT ≥
 . 1, which is a stellarity index constructed from image morphological
nformation, with the help of Extremely Randomized Trees (Baqui
t al. 2021 ), and which is provided in the miniJPAS catalogue. If that
lassification failed ( ERT = −99 . 0), we then used the stellar-galaxy
ocus classification, with a cut of SGLC ≥ 0 . 1 (L ́opez-Sanjuan et al.
019 ). After these refinements, we end up with 11 419 sources that we
ust now classify as stars, galaxies, low-redshift ( z < 2.1) quasars,

r high-redshift ( z ≥ 2.1) quasars. 1 We then extract the fluxes and
ux errors for all these objects in each filter, using the photometry
or a fixed aperture of 3 arcsec and correcting for the light profile
utside of that area, as detailed in Queiroz et al. ( 2022 ). We refer to
his sample as the miniJPAS point-like source subsample. 

The area of the miniJPAS surv e y was chosen to o v erlap with
he AEGIS field (Davis et al. 2007 ) because in that region there is
 wealth of information such as optical spectra from the Baryon
scillation Spectroscopic Surv e y (BOSS; Da wson et al. 2013 ),
NRAS 520, 3494–3509 (2023) 

 The z = 2.1 pivot was chosen because of the Lyman α feature. Hence, our 
lassification provides a preliminary sample of high-redshift quasars that will 
e impro v ed with appropriate redshift estimators. 
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DSS and DEEP2/DEEP3 (Cooper et al. 2011 ; Newman et al. 2013 ),
s well as X-ray data from XMM . Ho we ver, in our applications we
onsider only the cross-match of miniJPAS with the SDSS Data
elease (DR) 12 Superset (P ̂ aris et al. 2017 ), which contains visually

nspected spectra and redshifts of all BOSS quasar candidates. As a
esult of that cross-match, we end up with 117 quasars, 40 galaxies,
nd 115 stars. Fig. 1 shows the histograms of the r magnitudes of
he objects in the miniJPAS point-like source subsample, as well as
he objects from the SDSS cross-match sample, which is also split
nto the different classes. The cross-match sample constitutes a ‘truth
able’ that we can use to check the classification derived on the basis
f the miniJPAS J-spectra. Although the SDSS cross-match sample
onstitutes an important test set, one should bear in mind that it is
ot only extremely small, but it is also biased in terms of brighter
ources, stellar types, redshifts, etc. The scarcity of spectroscopically
onfirmed objects is a problem not only for testing the methods, but
ainly for training the ML methods, which require very large data

ets in order to tune the weights of the network. Therefore, in order
o train and to validate our classifiers with reliable statistics, we
mploy simulated data, the mock J-spectra, which are described in
he following section. 

.2 Mock J-spectra 

L algorithms are usually trained and validated using real-world
ata sets, and are subsequently applied to data that are as similar as
ossible to the training sets. Ho we ver, when real data are not available
r are too scarce, simulations can be employed to either complement
xisting real-world training sets or to build entire training sets (see
.g. Hoyle et al. 2015 ; Ramachandra et al. 2021 ). 

Supervised learning algorithms depend on large and complete
raining sets with verified labels in order for the models to be
roperly fitted (Deng et al. 2009 ). In the case of J-P AS/miniJP AS
ata, the numbers of objects with confirmed labels are barely large
nough for us to test the algorithms – never mind training them.
oreo v er, catalogues of astrophysical objects with confirmed labels

re typically biased due to the target selection processes prior to the
pectroscopic observations. They are also typically brighter, allowing
or better signal-to-noise ratio (SNR) observations, and as a result
ay not contain a faithful representation of the variety of objects
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xpected to be found in a deeper, complete sample. Therefore, mocks 
re important in astronomy not only to augment the volume of the
raining sets, but also to fill in the sample where it lacks in diversity,
n terms of magnitude ranges, types, and redshifts. 

Ho we ver, the construction of realistic simulated data sets is beset
ith substantial challenges. First, the frequencies of the objects in the 

raining sets need to be kept under control; otherwise, we may bias
he classes in the validation and test sets. Secondly, the properties of
he simulated data itself must mimic, as much as possible, those of
he real data sets. This means that not only the measurements, but
lso their uncertainties, must observe the same distributions in terms 
f luminosity, object class, and SNR. 
In Queiroz et al. ( 2022 ), we have described in detail how we have

onstructed a mock catalogue of quasars, stars, and galaxies that 
eproduce the frequencies of those classes of objects that we expect 
o find in the real data sets. The first step in those simulations is a
andom sampling of objects drawn from given distribution functions: 
he quasars obey a standard LF (Palanque-Delabrouille et al. 2016 ), 
he galaxies follow a distribution based on the miniJPAS sample 
ross-matched with DEEP3 and SDSS DR12Q used in the quasar 
election, and the stellar types and magnitudes follow the distribution 
xpected for the specific region of the Milky Way that o v erlaps with
he AEGIS field (Robin et al. 2003 ). 

After specifying the types, luminosities, and redshifts of the 
bjects in the mocks, we search for SDSS optical spectra and compute 
he fluxes and magnitudes in the J-PAS filters by convolving those 
pectra with the filters. The synthetic fluxes are similar to those 
easured by miniJPAS, except for the fact that their SNRs are 

ypically much higher due to the nature of the SDSS spectroscopic 
bservations. The next step is therefore to add noise to the synthetic
uxes in such a way that the final simulated data set has an SNR
istribution that is consistent with the miniJPAS observations. 
At this point, care must be taken to reproduce the actual noise

roperties of the underlying real data set. As shown in Queiroz et al.
 2022 ), for some filters the noise models turned out not to be well
tted by a Gaussian, but some are better fitted by slightly different
istributions. In this paper, unless noted otherwise, we train and test
ur ML methods with the mocks produced using the best-fitting noise 
odels, labelled as noise ‘model 11’. 
Finally, the mocks also model the pattern of non-detections (NDs) 

rom the miniJPAS point-like source subsample. In order to train the 
L models, we leave the fluxes exactly as they are in the catalogues,
ithout any special treatment of those low SNR measurements. 
We used four data sets to train and validate our models. The training

et is a balanced data set (Johnson & Khoshgoftaar 2019 ) containing
qual numbers of stars, galaxies, and quasars (10 5 of each); the 
alidation set, which we used for the ML model selection, contains 
0 4 objects of each class; and the ‘balanced test set’ contains another
0 4 stars, galaxies, and quasars. In addition, we used an alternative 
est set, the ‘1-deg 2 test set’, that contains the expected numbers of
bjects within 1 deg 2 , down to the photometric depths of miniJPAS.
hus, this test set is not balanced. As usual in ML, both test sets

emained completely blind to the training procedure. 

 M AC H I N E  L E A R N I N G  M O D E L S  

ividing complex objects into classes is one of the tasks where ML
as become widely used: identifying letters in written manuscripts, 
etecting different types of animals in images, or addressing financial 
isks from socio-economic data are some of the simplest examples 
here the applications of ML methods have shown remarkable 

uccess. 
Here, we consider classification using photometric catalogues as 
he basic data set for classifying the objects, and we focus on the
uxes and their associated errors – i.e. we will rely on the averaged
pectral features of those astrophysical sources. The set of fluxes 
or, equi v alently, magnitudes) in broad-band photometric surv e ys
s typically treated as ‘tabular data’, since there are only a few
easurements that follow a certain order, which can be thought 

s the central wavelengths of the filters (the photometric bands). 
There are in fact some particular ML models that are considered as

tandard benchmarks for tabular data classification – e.g. RFs, NNs, 
radient boosting, etc. – and these methods are also commonly used 
o separate astrophysical sources (Nakoneczny et al. 2019 , 2021 ;
aqui et al. 2021 ; Nakazono et al. 2021 ). In the case of narrow-band

urv e ys, ho we v er, we hav e a significantly higher spectral resolution
ompared with broad-band surv e ys. This means not only that there is
uch more data, but also that the rele v ant local features (e.g. breaks,

mission and absorption lines) can involve complex combinations of 
e veral dif ferent points in the input data sequence. 

The classification of astrophysical sources involv es sev eral addi- 
ional challenges related to ML such as biased training sets, handling

issing data (e.g. non-observations and NDs), noisy labels, 2 and 
oisy attributes. Moreo v er, one could also raise the issues of model
nterpretation and uncertainty quantification. 

The problem of biased training sets arises because in astronomy 
he training sets are usually built based on cross-matches with 
pectroscopic surv e ys – from which we get reliable labels. Apart
rom the fact that spectroscopic surv e ys require significantly more
esources compared with imaging, spectroscopic training sets may 
e biased o v er bright sources, redshift ranges, etc. This is an issue for
L since these models are unreliable on ‘out of domain’ samples,

.e. data that extrapolate the training set. In this work, this problem is
artially alleviated with the help of the mocks, which were built not
nly to increase the size of the training sample, but also to be more
epresentative of what we expect to find in the real data, in terms of
rightness, redshift, and stellar types. 
Queiroz et al. ( 2022 ) also a v oided the problem of noisy labels as
uch as possible, by building the mocks only with the sources from

he SDSS Superset catalogue, which should return the most reliable 
lassification based on high-resolution spectra complemented by 
isual inspection. 
In this work, we also draw special attention to noisy attributes (the

rrors in input data). Our catalogues contain, for each object, the 60
uxes and associated uncertainties provided by the J-PAS filter set. 
e test several ML models to classify miniJPAS quasars, stars, and

alaxies and focus on CNNs because of their flexibility as well as
he ease with which we can include the information conv e yed by
he measurement errors while keeping the context of those errors –
.e. the fact that a given uncertainty is related to its corresponding

easurement (Rodrigues et al. 2021 ). These uncertainties inform the 
ignificance of individual measurements – and this is equally true 
oth for template fitting using a χ2 as for ML methods. If the data set
s very homogeneous, with nearly identical uncertainties for all data 
oints, then of course there is no information in the errors. Ho we ver,
or e xtremely div erse data sets such as astronomical catalogues, with
oth bright and faint objects, and a complex distribution of SNRs as
 function of magnitude, this information is critical. 

We compare the CNNs with two additional ML baseline models: 
Fs (Breiman 2001 ) and LightGBM (LGBM; Ke et al. 2017 ), for
MNRAS 520, 3494–3509 (2023) 
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hich we discard the uncertainties. Feedback from intrinsically
if ferent ML methods gi ves important hints on ho w to impro v e the
odels, on pre-processing of the input data, and on the validation

f the mock data sets. In this paper, we also performed a feature
mportance analysis (Appendix B ), which can be used to address the
roblem of model interpretation. 
Regarding pre-processing, in order to pass the inputs to our ML
odels, we normalize the fluxes and flux uncertainties of any given

bject according to the root mean square flux for that object: 

f λ → 

f λ√ ∑ 

λ f 2 λ

, 

σλ → 

σλ√ ∑ 

λ f 2 λ

, 

(1) 

here the wavelength here is just a label corresponding to the central
avelength of each filter, λ ∈ (uJA V A, uJPAS, . . . , J1007). 
In the next subsections, we introduce the ML algorithms used in

his work. 

.1 Convolutional neural networks 

 NN is a type of learning algorithm where multiple acti v ation units
neurons) are combined through layers to extract information from
he data and return a prediction. The input layer receives the set of
eatures of some instance from the data set and to each feature is
ssigned a weight. The acti v ation functions encoded in the neurons
rom the following layer operate in the scalar product between
he features and corresponding weights. This procedure is repeated
ecursively until the last layer, which outputs the predictions. The
ayers from NN structures where all neurons are fully connected are
alled ‘dense layers’, and they are designed to learn how to recognize
lobal patterns from the input features. 
CNNs work similarly, but were developed to learn how to detect

ocal patterns using convolution kernels. For this reason, CNNs have
ecome the benchmark for feature extraction on data sets such as
mages and sequential data. The architectures of CNNs are usually
omposed of sets of convolution and dense layers: local features are
xtracted from the input data with the convolution kernels, and are
hen combined into the dense layers to output the prediction. 

In our context, CNNs can be used to search for local features
n the J-spectra. A similar idea has already been used to classify
strophysical sources from narrow-band surv e ys in Cabayol et al.
 2018 ), where they show that one-dimensional (1D) convolution
ernels can be used to classify galaxies and stars, leading to better
esults when compared to usual ML algorithms, which are due to the
bility of the CNNs to extract these local features. For an application
n the context of high-resolution spectroscopic data, see e.g. Busca &
alland ( 2018 ), Lo v ell et al. ( 2019 ), and Sharma et al. ( 2019 ). 
We created our own CNN architectures with the help of the keras

ramework (Chollet et al. 2015 ). We used the adam optimizer to
inimize the categorical cross-entropy loss function 

ross-entropy = − 1 

N 

N ∑ 

n 

K ∑ 

k 

y nk log p nk , (2) 

here N is the number of instances, K is the number of classes, y nk 

s the true class, and p nk is the assigned probability. The convergence
f the models was monitored using learning curves of the F 1 score
see Section 4.1 ) and the loss function on the training and validation
ets. The number of epochs is constrained to the EarlyStopping
allback: the training is interrupted when the validation loss stops
NRAS 520, 3494–3509 (2023) 
mproving for a number of epochs specified by the patience . In
rder to prevent the training from stagnating, we vary the learning
ate using the ReduceLROnPlateau callback, which reduces the
earning rate when the validation loss stops decreasing for a chosen
umber of epochs. We also use the ModelCheckPoint callback
o save the set of weights that leads to the best F 1 macro-averaged
core in the validation set. The final model corresponds to this set
f weights, ensuring that the model has varied very little in the last
pochs. In all intermediate layers, both convolution and dense, we use
s acti v ation the rectified linear unit (ReLU) function f ( x ) = max (0, x )
Nair & Hinton 2010 ). In the last dense layer, on the other hand, we
se the softmax acti v ation function in order to obtain a probabilistic
nterpretation of the output value; i.e. the scores assigned to the four
lasses add up to one. 

The input feature maps and architectures for each CNN ver-
ion are illustrated in Fig. 2 . We call a set of convolution
 Conv1D or Conv2D ), BatchNormalization , MaxPooling ,
nd Dropout layers a ‘block’. 

.1.1 CNN1 

he first CNN version receives as input the set of fluxes (J-spectra)
nd nominal errors organized as 1D vectors in two channels (upper
anel in Fig. 2 ). In this way, the learned features from both channels
re combined in the output feature map. We also trained and tested
NN1 without the second channel, i.e. only with the fluxes, without

ncluding the uncertainties. 
After the set of convolution layers processes the J-spectrum, it

eturns a tensor that is converted into a 1D vector in the Flatten
ayer. In addition to the J-spectrum ‘tensor’, we also add as input the
 magnitude in the Flatten layer. 3 This vector then serves as input
or two intermediate dense layers with 64 and 32 neurons, which are
nally connected to the output layer that returns the scores assigned

o each class. 

.1.2 CNN2 

he strategy used to account for the uncertainties as input features in
NN2 is to treat the measurements as probability distributions with
ean value equal to the flux measurements, and standard deviation

qual to the corresponding nominal errors (Rodrigues et al. 2021 ).
hese distributions are then represented as 2D matrices, as illustrated

n Fig. 3 . This format for the input data can be particularly useful
o represent errors that do not follow a simple form such as a
aussian distribution. Furthermore, since the matrix representation

s identical to an image, it is naturally suited for CNNs with 2D
onvolution kernels. The idea of representing fluxes and uncertainties
s heatmaps has already been used in the context of astrophysical
ource classification (Qu et al. 2021 , 2022 ). The bottom panel of
ig. 2 illustrates the architecture of our CNN2 method. Once again,
e add the r magnitude in the Flatten layer feature map, and the
ense layers contain 64 and 32 neurons, as in CNN1. 

.2 Decision tree-based algorithms 

n the following subsections, we introduce the DT-based models
sed to compare with the performance of the CNNs. The details
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Figure 2. CNN1 (top) and CNN2 (bottom) architectures. CNN1 input data are the set of normalized fluxes and corresponding uncertainties represented as a 
vector with two channels. One can also train CNN1 without the errors by including only the first channel. The input data of CNN2 are the set of normalized 
fluxes and corresponding uncertainties represented in two dimensions (see Fig. 3 ). A ‘block’ contains a convolution, batch normalization, max pooling, and 
dropout layers. The yellow box in the feature maps from both flatten layers represents the r magnitude, which is added to the feature map after the convolution 
layers have processed the J-spectra. 

Figure 3. Diagram representing the CNN2 input data. Columns correspond 
to the miniJPAS filters and rows correspond to normalized fluxes. Darker 
pixels correspond to higher probability, i.e. denser regions of the probability 
distribution. The top panels show a G-type star (left) and a galaxy at z = 0.45 
(right). The bottom panels show a low- z QSO at z = 0.60 (left) and a high- z 
QSO at z = 2.59 (right). Computed according to noise model 11. 
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bout hyperparameter (HP) tuning of these models are described in 
ppendix D . 
A DT is a structure where the algorithm makes predictions by 

plitting the data set based on constraints imposed in terms of the
eatures. Each decision rule is encoded in a node of the tree. The
lgorithm establishes which feature will be e v aluated at each node
y measuring the worth of a split based on each of the features.
his is quantified by the information gain, which measures the 
xpected decrease in some impurity function. This function can be 
ither entropy or the gini impurity . The features that lead to the
ighest increase in the gain are then allocated to the corresponding
ode. 

.2.1 Random forests 

Fs have been widely used for many tasks related to astrophysical
ata, including source classification (Nakoneczny et al. 2019 ; Baqui 
t al. 2021 ; Nakazono et al. 2021 ). The method consists of combining
ultiple DTs to a v oid o v erfitting and build a powerful classifier. 
We implemented the RF model with the scikit-learn (Pe- 

regosa et al. 2011 ) PYTHON package. Each tree is built with a
ubsample of the data, using the bootstrap aggregating ( ba g ging ;
reiman 1996 ) technique. 
The number of features to consider when looking for the best split

s by default set as the square root of the total number of features.
he mechanism of combining independent trees using the bagging 
trategy makes RF robust to o v erfitting, and is usually not necessary
o limit the growth of each individual tree. 

The size of the subsample, the number of features, and the maxi-
um depth of the trees are examples of RF HPs. The chosen values of

he HPs from scikit-learn RandomForestClassifier 
re specified in Table D2 . 

.2.2 LightGBM 

radient boosting decision tree (GBDT) is another type of DT 

nsemble method that has also pro v ed to be an excellent tool for
 variety of problems, including astrophysical source classification 
Nakoneczny et al. 2019 ). As opposed to RF, the trees are not grown
ndependently. Instead, each tree is built to reduce the error of the
revious one. This is an iterative method that uses gradient descent
o minimize the loss function, which we chose to be the categorical
ross-entropy – see equation ( 2 ). 

We implemented GBDTs with LGBM (Ke et al. 2017 ). There
re several well-succeeded frameworks to implement GBDTs, for 
xample XGBoost (Chen & Guestrin 2016 ). LGBM was developed 
MNRAS 520, 3494–3509 (2023) 
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Figure 4. Performance of the ML models when applied to the balanced 
test set, in terms of the macro-averaged F 1 score (top), and the ROC-AUC 

(bottom), for the different r-magnitude bins. 
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o accelerate the training, but it often presents similar (or even better)
erformance compared with XGBoost. Ho we ver, due to LGBM’s
eaf-wise growth scheme, it might be susceptible to o v erfitting, so
e limit the growth rate and the maximum number of leaves of the

rees (see Table D1 ). 

 P E R F O R M A N C E  IN  T H E  M O C K  TEST  SETS  

e start analysing the performance of the CNN1 (with and without
he errors), CNN2, RF, and LGBM classifiers when they are applied
o the mock test samples. The results when applying those methods
o real data will be shown in the next section. 

.1 Evaluation metrics 

n order to build a high-quality quasar catalogue, we need to find the
est possible balance between completeness and purity , i.e. we want
o reco v er the highest fraction of quasars possible, but in a such a
ay that our sample remains as free from contaminants as possible.
ith that in mind, we e v aluate the performance of the classifiers by

omputing both purity (‘precision’) and completeness (‘recall’): 

urity = 

TP 
TP + FP , (3) 

ompleteness = 

TP 
TP + FN , (4) 

here TP, FP, and FN are true positive, false positive, and false
e gativ e, respectiv ely. In order to find the ideal balance between
ompleteness and purity, it is useful to define the F 1 score, which
ombines both scores into a single number: 

 1 = 2 × purity × completeness 

purity + completeness 
. (5) 

All ML models employed in this work return a score associated
ith each class, which can be interpreted as a proxy for the probability

hat an object belongs to that class. The scores of all classes add up
o 1. We have the freedom to choose different thresholds for these
lassification scores (the ‘probabilities’) in order to impro v e the final
lassification. Depending on that choice, one may obtain a more
omplete or more pure sample; i.e. the F 1 score depends on the
hreshold. By default, the chosen class k corresponds to the class
ith the highest score, according to the argmax rule: 

 i = argmax 
k 

f k ( x i ) , (6) 

here x i and y i are the input data and predicted class of instance i ,
espectively, and f is some function that assigns probabilities to each
lass k . This means that, when we apply some trained ML model to
lassify an instance i , it returns a probability associated with each
lass k and the final class corresponds to k with highest score. 

Another useful metric is the receiver operating characteristic
ROC) curve, because it shows the quality of a classifier before
hoosing a specific threshold by computing the TP rate versus FP
ate. Moreo v er, the area under the ROC curve (ROC-AUC) is a
seful summary statistic of the ROC curve to measure the quality of
 classifier. Since we are working with multiple classes, we computed
he one- versus -all ROC-AUC score. 

Finally, in order to compare the o v erall performance of a classifier
y considering the performance o v er all classes, it is useful to
ompute the unweighted, or macro -averaged score, defined as 

¯
 = 

1 

K 

K ∑ 

k 

S k , (7) 
NRAS 520, 3494–3509 (2023) 
here S is some score or metric, k labels the individual classes, and K
s the total number of classes. This metric does not take into account
he imbalance of classes, and thus a v oids biasing the analysis o v er

ore frequent types. 
Fig. 4 shows the macro-averaged F 1 and ROC-AUC scores

btained with the classifiers in the balanced test set, in multiple
ntervals of r magnitude – see Appendix A for the complete confusion

atrices. It is striking how much the performance of the CNN1
lassifier impro v es when the information about the errors is included,
n particular for the fainter objects where SNR is even more crucial.
hat performance is similar using CNN2, which employs an entirely
ifferent architecture for the input data but that, like CNN1, also
ses the convolutional layers to incorporate the errors in the context
f their corresponding measurements. The fact that both DT-based
ethods (specially LGBM), which do not take the errors into account,

ttain a performance that is similar to CNN1 without errors indicates
hat the reason for the impro v ement in the classification seen in
he two CNN methods with errors is in fact due to the additional
nformation contained in the uncertainties. We also see from Fig. 4
hat the performances of all the classifiers degrade as the samples
ecome fainter, which is expected since those objects are increasingly
oisier and therefore harder to identify. We used the same magnitude
ins as Martinez-Solaeche et al. (in preparation), which verified a
imilar behaviour. Due to its superior performance, we will focus on
he results obtained with CNN1 for the remainder of this section,
nless noted otherwise – but we emphasize that the results outlined
ere are qualitatively consistent between all classifiers. 

.2 Results 

n this section, we present the results when we apply the CNN1
ethod to the two mock test sets: the balanced test set (with 10 4 
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Figure 5. Completeness and purity of the CNN1 method for the mock 1-deg 2 test, as a function of the probability threshold, for each class. Brighter (fainter) 
objects are shown in solid (dashed) lines. 

Figure 6. Confusion matrix computed with CNN1 for the mock balanced 
test. 
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Figure 7. Fraction of stellar types that were incorrectly classified by CNN1 
in the balanced test set. 
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bjects in each class), and the 1-deg 2 test set, which is perhaps
 more realistic representation of the miniJPAS sample. For much 
f this analysis, it is more revealing to evaluate the predictions in
erms of the balanced test set, just because it is the largest one and
e can thus work with more reliable statistics. Ho we ver, e v aluating

he proper choice of threshold using the balanced test set can be
isleading, since we want to estimate the purity and completeness in 
 realistic scenario, with the expected fraction of objects of each class. 
herefore, we start by showing, in Fig. 5 , the purity and completeness
s a function of the probability threshold in the 1-deg 2 test set. We
plit the sample in two bins of r magnitude, 17.5 < r ≤ 22.5 and 22.5
 r ≤ 23.6, because the optimal choice for the cut might depend on

ow bright the object is: fainter objects are much noisier, so we expect 
 classifier to be less confident in this regime. Based on this analysis,
e define the ‘1-deg 2 threshold criteria’ to select candidates in the 
iniJPAS catalogue – one value for bright and one for faint sources,

ccording to the magnitude bins shown in Fig. 5 . It corresponds to
he value of threshold that leads to highest F 1 score in the 1-deg 2 

est sample, and it must be at least equal to 0.5 to ensure that the
robability associated with some class is greater than the sum of
he others. Notice, ho we ver, that not all objects are assigned a class
ccording to this criterion. 

For the remaining of the analysis in this section, we work with the
alanced test set, for which the best choice of threshold is in good
pproximation of the ‘argmax’ criterion, defined in equation ( 6 ). 
Fig. 6 shows the confusion matrix computed with CNN1. We are
ble to distinguish between low- z and high- z QSOs satisfactorily, and
he main source of confusion is between low- z QSOs and galaxies,
hich is in agreement with the results of Martinez-Solaeche et al. (in
reparation). In Appendix A , we show the confusion matrices split
nto the same r -magnitude bins as in Fig. 4 , for all ML methods. 

As a complementary analysis, we trained CNN1 in a binary 
lassification scheme, by labelling low- z and high- z QSOs as one
ingle class, and stars together with galaxies as another class. The
esults of that analysis are nearly identical with the numbers shown
n Fig. 6 when we combine the low- z and high- z QSOs in one class,
nd the stars and galaxies in the other class. 

Fig. 7 shows the fractions of stellar types that were incorrectly
lassified in the mock balanced test set. We show this result in
erms of fractions to a v oid biasing the analysis o v er more frequent
tellar types; i.e. we take the ratio between the number of incorrectly
lassified stars of a given stellar type and the total number of stars
f the corresponding type. White dwarfs (WDs) and O-type stars 
how the highest fraction of incorrect classifications, which are often 
lassified as low- z QSOs. The steep blue continuum of the WD
pectra can be easily mistaken for the blue and featureless continuum
f the QSO spectra at low redshifts (Richards et al. 2002 ; Myers
t al. 2015 ). The A, F, and M stellar types also have colours and/or
pectral features similar to those from QSOs. Ho we ver, we did not
etect significant confusion of these types as compared to the others.
n particular, M stars are classified as galaxies. Stars of types O, B,
nd F are featureless, which might explain the significant confusion 
ith low- z QSOs. In fact, low- z QSOs are the class of objects that are
ost affected by contamination from stars, which is a well-known 

roblem for broad-band classification in the optical range (Richards 
t al. 2009 ), which still persists even with narrow-band data. For the
MNRAS 520, 3494–3509 (2023) 
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M

Figure 8. Redshift of the galaxies that were incorrectly classified as stars 
(top), low- z QSOs (middle), and high- z QSOs (bottom) by CNN1 in the 
balanced test set. 

f  

A  

t  

t  

c  

o  

c
 

b  

h  

n  

m  

c  

c  

v  

f  

a  

a  

t  

o
 

c  

g  

t  

s  

T  

a

Figure 9. Redshifts of the quasars from the balanced test set that were 
incorrectly classified by CNN1. The top and middle panels show the quasars 
that were classified as stars and galaxies, respectively, and the bottom panel 
shows the quasars that were classified as quasars in the wrong redshift interval. 
The bars of the histograms co v er a redshift range of �z = 0.2 and were split 
according to the r magnitude. The bin containing the pi vot v alue z = 2.1 that 
separates low- z QSOs from high- z QSOs is shown with different transparency. 
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ew stars that end up classified as high- z QSOs, most are of types B,
, and F as well as some G stars, although some stellar types outside

he main sequence (WD, Carbon, and CV) can also contaminate
hat sample. In general, redder stars (G, K, and M) are more often
onfused with galaxies, while bluer stars (O, B, A, and F) are more
ften confused with QSOs, and Carbon stars are the type most often
onfused with galaxies. 

In Fig. 8 , we show the redshifts of the galaxies for each magnitude
in that are confused with stars (upper), low- z QSOs (middle), and
igh- z QSOs (lower panel). Since galaxies and quasars are typically
ot as bright as Milky Way stars, we split the samples into bins of
agnitude in the r band in order to check the dependence of the

lassification on the brightness of these sources. Once again, we
ompute the fraction of galaxies, now in each redshift bin. There is
ery little leaking of galaxies to high- z quasars and it is dominated by
ainter objects. From the confusion matrix in Fig. 6 , we see that there
re only 50 galaxies classified as high- z QSOs. The galaxies that
re classified as low- z QSOs (and also those classified as stars) have
ypically lower redshifts, although we see similarly high confusion
f galaxies within 0.8 < z < 0.9 and low- z QSOs. 
In Fig. 9 , we show the redshifts of the QSOs that were incorrectly

lassified. Similarly to what happened for the incorrectly classified
alaxies, the confusion as a function of redshift is partially related to
he fainter magnitudes of these objects. The top and middle panels
how the QSOs that were classified as stars and galaxies, respectively.
he bottom panel shows the low- z /high- z QSOs that were classified
s high- z /low- z QSOs. 
NRAS 520, 3494–3509 (2023) 
QSOs classified as galaxies are typically fainter, while those
lassified as stars are similarly distributed in the bright and faint
nds. This reflects the fact that, on the one hand, faint objects are
arder to classify, and we thus expect a higher mixing at this regime.
n the other hand, stars are most abundant in the bright end, and

herefore are expected to be the most frequent contaminants. 
The quasar population within z ∈ [0.6, 2.0] has a scarcity of

mission lines, which could explain the confusion with stars and
alaxies. For z < 0.6, we see a higher contamination of the galaxy
ample that does not happen for stars. This might be due to the fact
hat the strongest QSO emission lines in this redshift range, such as
 α, are also commonly found in galaxies. 
From Fig. 6 , we see that 10 per cent of the high- z QSOs are

lassified as low- z QSOs, while only 2.7 per cent of low- z QSOs
re classified as high- z QSOs. The bottom panel of Fig. 9 shows
he redshift of those objects. The redshift cut at z = 2.1, which
ifferentiates the two populations of QSOs, blurs the distinction
etween the two classes in the z ∈ [2.0, 2.2] range (the bin with
igher transparency). The number of incorrectly high- z QSOs that
re classified as low- z QSOs starts dropping for z > 2.2, faster for
right objects and slower for faint objects, indicating some level of
onfusion between the Ly α break and other spectral features of the
ow- z quasars. 

.3 Robustness tests 

e tested the robustness of the ML classification by modifying the
omposition of the training set in different ways. After training the
L model with the modified samples, we e v aluated the performance

n the balanced test set, which we kept unchanged. 
The first test consists in using only 50 per cent of the original

umbers of stars and keeping the number of galaxies and QSOs
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rom the original training set ( half stars test). Since the stars were
emo v ed randomly, we e xpect the completeness of the star sample
nd, as a consequence, the purity of the other classes, to decrease to
ome extent. The second exercise is the double stars test, which is
omplementary to the previous one: we exclude 50 per cent of the
alaxies and 50 per cent of the quasars (once again, randomly), while
aintaining all the stars of the original training set. 
The idea is that, by changing the proportion of classes in the train-

ng set, we expect the models to show a drop in their performances,
n particular for the less represented types. If the classification is
 ery sensitiv e to small changes in the e xact mix es of populations
n the training set, then the model is not robust. If, on the other
and, the performance of the classifier drops by only a small amount
fter a significant change to the training set, then the ML model has
onverged to a nearly stationary regime. 

Fig. 10 shows the scores (completeness and purity) as a function of
he probability threshold for the different training sets. As expected, 
he completeness of stars drops in the half stars test. Although the
urity of stars increases, it does not compensate the loss in the
ompleteness, which also translates into a lower purity of galaxies 
nd quasars (especially at high redshift). The same reasoning works 
or the double stars test: the completeness of quasars and galaxies 
rops by a small amount, but there is no significant gain in the purity
ecause of the mixing between these two classes. 
These results reflect a well-known feature of ML techniques, 

hich are unable to reliably identify objects that are poorly rep- 
esented in the training set. Nevertheless, we verified that the 
erformance of our classifiers is relatively insensitive to significant 
hanges in the training sample, which indicates that our ML models 
re robust in that sense. 

 M I N I J PA S  P O I N T-L I K E  S O U R C E  

LASSIF ICATION  

n this section, we discuss the predictions in the miniJPAS point- 
ike source subsample, which contains 11 419 objects. Considering 
nly the magnitude range of 17.5 ≤ r < 23.6, we are left with
468 sources. We have spectroscopic confirmation for some of the 
bjects in this data set, obtained by cross-matching the miniJPAS 

atalogue with the SDSS DR12 Superset (see Section 2.1 ). The 
onfusion matrix obtained for that sample is shown in Fig. 11 .
he typical magnitude range co v ered by this sample is 17.5 ≤ r

22.5 (see Fig. 1 ). Therefore, in order to see the degradation of
he results on real data relative to the mocks, one should compare
ig. 11 with the first two bins from Fig. A1 . The completeness
f all classes is higher than 0.8, which is a good indication that
he models trained with the mocks translate fairly well to real 
ata predictions. In particular, we see, once again, that the main 
ource of confusion is between low- z QSOs and g alaxies. Reg arding
igh- z QSOs, of the 30 objects of the cross-match sample, 3 were
ncorrectly classified as galaxies, 2 as low- z QSOs, and only 1 as a
tar. 

Fig. 12 shows the number of objects found in the point-like 
ource catalogue within r ∈ [17.5, 23.6], as a function of the ML
core (‘probability’) threshold. Coloured lines show the models that 
nclude the uncertainties (CNN1 and CNN2) and, for comparison, 
he grey lines show LGBM and CNN1 without errors. The choice of
hreshold for CNN1 can be guided by Fig. 5 . Once again, we split the
ample into brighter and fainter objects (17.5 < r ≤ 22.5 and 22.5 <
 ≤ 23.6, respectively) in order to evaluate how many sources of each
lass are found in these two regimes, and to e v aluate ho w confident
he models are when facing brighter and fainter objects. The dotted 
urves show a more dramatic decrease for higher probabilities, which 
eans that the models are less confident when presented with fainter

bjects. According to the ML classifiers, stars (galaxies) are the most
bundant objects in the bright (faint) end. The numbers predicted by
he classifiers are very similar for bright objects. CNN1 and CNN2,
o we ver, find a significantly higher number of faint high- z QSOs as
ompared to LGBM and CNN1 without errors. 

Fig. 13 shows the number of objects classified by CNN1 with and
ithout errors, along with the number predicted by the corresponding 
Fs (see section 2.2 and also Queiroz et al. 2022 ). We show both

he classification obtained using the argmax rule, equation ( 6 ), which
ssigns a class to all sources in the catalogue, and the classification
sing the 1-deg 2 threshold criteria and a very restrict threshold of
.9. Adding up all the objects predicted by the LFs results in ∼4000
bjects with r ∈ [17.5, 23.6]. Ho we ver, the number of instances from
he miniJPAS catalogue within that interval is 7468. Therefore, we 
hould not expect the numbers to agree perfectly with the LFs even
hen applying the argmax threshold. On the other hand, the total
umber of objects using the threshold of 0.9 in CNN1 is 4420. 

 C O N C L U S I O N  

n this work, which is part of the effort to identify quasars in the
iniJPAS surv e y, we applied sev eral ML models (CNN1, CNN2,
GBM, and RF) to classify miniJPAS point-like sources as stars, 
alaxies, and low- z ( z < 2.1) and high- z ( z ≥ 2.1) quasars, employing
nly photometry-based pseudo-spectra. In order to train and validate 
he models, we used mock data catalogues developed by Queiroz et
l. ( 2022 ). The final miniJPAS quasar catalogue will be produced
y combining the predictions from several classifiers (P ́erez-R ̀afols 
t al., in preparation), among them the ML models presented in
his work, as well as those presented in Mart ́ınez-Solaeche et al. (in
reparation) and P ́erez-R ̀afols et al. (in preparation). 
In this paper, we have constructed and tested five different ML
odels designed to be applied to miniJPAS data. We have focused

n CNNs because of their potential to extract local features from
he input data (the pseudo-spectra), and their ability to incorporate 
he information about errors in the data (Rodrigues et al. 2021 ).

e also applied well-established DT-based models as a baseline, 
nd in order to complement the CNN approach. We tested the
obustness of the training sets by varying the populations of stars
nd retraining the models on modified samples, finding very small 
ariations in the purity and completeness when training with these 
ifferent data sets and applying to a fixed test set. We have also
hecked, using permutation feature importance, that bluer filters 
re particularly rele v ant to correctly classifying high- z QSOs (see
ppendix B ). 
We e v aluated the performance of the classifiers in terms of the

urity and completeness of the predicted samples, and analysed the 
onfusion between the four classes. We also investigated in more 
etail the sources of misclassification in terms of their luminosities, 
tellar types, and redshifts. We verified that, as a general rule, the
ain source of confusion is between galaxies and low- z QSOs in the

aint end. Stars are more often confused with low- z QSOs as well,
pecially bluer types (O, B, A, and F), cataclysmic variables, and

Ds. The redshift range of QSOs that were most often classified
s galaxies is z ∈ [1.0, 1.6]. The performances of the classifiers
ecrease as the objects become fainter and noisier. We verified that
he predictions with a mock test set are indeed consistent with our
re vious kno wledge about quasars, stars, and galaxy features, which
einforces the quality of the mock data and also of the ML models
eveloped in this work. 
MNRAS 520, 3494–3509 (2023) 
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M

Figure 10. Robustness tests performed with CNN1 in the balanced test set. Completeness (solid lines) and purity (dashed lines) as a function of the probability 
threshold for each class. Different colours represent different training sets. 

Figure 11. Confusion matrix obtained with the method CNN1 for the cross- 
match of the miniJPAS point sources with the SDSS DR12 Superset. 
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After validation, the ML models were finally applied to the
iniJPAS data. For the few objects with spectroscopic confirmation

f their classes, we obtained results consistent with the mock test sets
QSO completeness ∼0.8 and purity ∼0.95). Of the 7468 point-like
ources in miniJPAS that lie in the magnitude range 17.5 < r ≤ 23.6,
e found 2309 stars, 3827 galaxies, 118 low- z QSOs, and 547 high- z
SOs with CNN1 (noise model 11) and the 1-deg 2 threshold criteria
667 objects did not have a type assigned with sufficient confidence

o pass the thresholds specified in Section 4.2. 
When applying proper choices of probability thresholds to select

he quasar candidates, the models underestimate the number of low- z
SOs and o v erestimate the number of high- z QSOs, specially in the
ery faint end, as compared to the LF from Palanque-Delabrouille
t al. ( 2016 ). Taken at face value, our results seem more consistent
ith the LF from Croom et al. ( 2009 ), which expects a higher number
f faint high-redshift QSOs as compared to Palanque-Delabrouille
t al. ( 2016 ). 

This paper is another milestone in the J-PAS effort to map quasars
t all redshifts with a minimal selection bias. These quasars will
e useful for a variety of applications: first, to study large-scale
tructure at high and intermediate redshifts, using both the QSOs
hemselves as tracers (Ata et al. 2018 ), the Ly α forest from their
ines of sight (Bautista et al. 2017 ), which will be measured by the

EAVE instrument (Pieri et al. 2016 ), and their cross-correlations
du Mas des Bourboux et al. 2017 ); secondly, to determine with
igher accuracy both the quasar LF (Croom et al. 2009 ; Palanque-
elabrouille et al. 2016 ) and the black hole mass function (Chaves-
NRAS 520, 3494–3509 (2023) 
ontero et al. 2022 ), revealing the history of formation of those
bjects; and finally, in the long run J-PAS should also be able to
ake a census of the QSOs including different subtypes that may

e less represented in spectroscopic surv e ys due to the traditional
argeting strategies. 
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Figure 12. Number of objects predicted by different classifiers as a function of the probability threshold. We compare models that do (coloured lines) and 
do not (grey lines) include the uncertainties: CNN1 (purple), CNN2 (pink), CNN1 without errors (dark grey), and LGBM (light grey). Solid and dotted lines 
represent objects in different r bins. 

Figure 13. Number of objects predicted by CNN1 with (purple) and without (grey) errors as a function of the r magnitude. We compare the obtained numbers 
when imposing different probability threshold criteria: argmax (solid lines), 1 deg 2 (dashed lines), and a very strict choice of threshold = 0.9 (dotted lines). The 
LFs of each type are shown as coloured solid-dotted lines for comparison. 
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Figure A1. Confusion matrices of the classifiers in different r -band magnitude bins. From top to bottom: CNN1 without errors, CNN1, CNN2, LGBM, and RF. 
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PPENDIX  B:  FEATURE  I M P O RTA N C E  

e performed a permutation feature importance analysis in the
alanced test set to explore which features are more rele v ant for
he models to make the predictions. We implemented this with
he eli5 package. The procedure is the following: we exclude
ne filter at time and e v aluate ho w the F 1 score of each class
ecreases with this missing filter. By ‘exclusion’ of the filter
e mean that the value of the filter becomes a random number,

omputed by combining the values of the features. Missing filters
hat lead to higher decrease in the performance are more impor-
ant. 

Fig. B1 shows the result of the permutation feature importance
ith LGBM in the balanced test set. We e v aluate ho w much the F 1 

core decreases as we remo v e each of the features. We see that the
xclusion of redder filters leads to a higher decrease in the F 1 score
f low- z QSOs, while for high- z QSOs the bluer filters are more
mportant. The Ly α and C IV emission lines are important features
hat characterize high- z QSOs. In the redshift range of 2.1 ≤ z ≤ 4.0,
he Ly α line falls within 3780 Å < λ < 6080 Å and C IV falls within
800 Å < λ < 7745 Å, which could explain the importance of the
lters that co v er these wavelengths. 
We retrained LGBM excluding the 10 least important filters

ccording to Fig. B1 for each of the four classes. The results remained
ery similar, indicating that, although their contribution to the overall
lassification performance seems small, there is no clear advantage
n excluding those features. 
NRAS 520, 3494–3509 (2023) 

igure B1. Permutation feature importance analysis in the balanced test set with
easurement of a given filter is not available. The input features of LGBM (shown

and (see Section 3.2 ). 

com
PPENDI X  C :  C N N  SETTI NGS  

n this section, we describe the construction of CNN2 input data
atrices (illustrated in Fig. 3 ). The parameters of the matrices are the

umber of columns, number of rows, and the values to set the upper
nd lower boundaries ( n cols , n rows , up bound , low bound
see Rodrigues et al. 2021 ). A matrix is created by getting the
ean value of the normalized fluxes (see equation 1 ) of the object

nd by establishing the upper and lower values (the boundaries of
he matrix) with low bound and up bound . In other words, if
n object has the mean value equal to m̄ , the matrix will co v er
he range of [ ̄m − low bound , m̄ + up bound ]. The number of
olumns can be simply set as the number of attributes n cols = 60,
ince in our problem there is no uncertainty between the filters;
.e. a measurement certainly belongs to the given filter. The other
arameters must be chosen more carefully to ensure that the matrix
o v ers the complete J-spectra ranges and to ensure that the resolution
f the pixels is large enough to properly resemble the probability
istribution. Each filter has a specific probability distribution defined
ccording to noise model 11. We set n rows = 90, up bound
 0.6, and low bound = 0.3. The resolution of the pixels is given

y ( up bound + low bound ) / n rows ≈ 0 . 01, which means that
he probability distribution of the normalized fluxes is binned with
ntervals of ≈0.01. 
 LGBM. It computes the decrease in the F 1 score of each class when the 
 in the horizontal axis) are the normalized fluxes and the magnitude in the r 
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able D1. LGBM HP settings. Parameters not shown were set as default. 

yperparameter Value 

bjective ‘Multiclass’ 
um class 4 
oosting ‘GBDT’ 
earning rate 0.1 
um leaves 31 
ax depth 6 
arly stopping rounds 200 

able D2. RF HP settings. Parameters not shown were set as default. 

yperparameter Value 

 estimators 100 
riterion ‘gini’ 
ax depth None 
in samples split 100 
in samples leaf 20 
ax features ‘Auto’ 
ax samples None 
ootstrap True 
andom state 2 
lass weight { 0:1, 1:1, 2:1.47, 3:3.11 } 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
PPENDI X  D :  HYPERPARAMETER  T U N I N G  

his section describes the hyperparameter (HP) setting of the DT- 
ased models. There are automated ways to set HPs, e.g. with grid
earch, but these might be computationally e xpensiv e. In this work,
e performed a simple manual selection, by varying a few HPs that
e consider rele v ant to monitor o v erfitting and underfitting. The best

et of HPs was chosen according to the performance in the validation
et. Parameters not shown were set as default. 

For LGBM, we tried varying the boosting type to search for
etter performance and computational gains, and the HPs shown 
n Table D1 to monitor o v erfitting, such as the number of leaves and
aximum depth of a tree. The number of trees ( n iterations )

s conditioned to early stopping rounds , which interrupts 
raining after 200 iterations without improving the loss in the 
alidation set. 

For RF, we tried different values for the parameters shown in Ta-
le D2 . Although we do not limit the depth of each tree ( max depth
 None), we a v oid o v erfitting by: (i) using the bagging strate gy

o create a tree; i.e. we set bootstrap = True, draw a sample
with replacement) equally sized to the training set ( max samples
 None), and sample 

√ 

n features ( max features = ‘auto’), 
here n is the total number of features; and (ii) increasing the required
umber of instances to perform a split and to create a leaf in the trees
 min samples split and min samples leaf , respectively). 

e also find an impro v ement by weighting the two types of quasars
o match the proportion of stars and galaxies. 
MNRAS 520, 3494–3509 (2023) 
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