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Introduction

Modeling and prediction of rare events are topics that have given rise to an abundant literature in recent decades, especially to model climate, earthquakes and other environmental phenomena, such as precipitation, temperature and flooding, situations where we have to face significant risks that can have dramatic financial or human consequences. For these applications, the natural toolbox is the extreme value theory, where the pioneering paper is due to [START_REF] Fisher | Limiting forms of the frequency distribution in the largest particle size and smallest member of a sample[END_REF] who formulated the three types of limiting distributions for the maximum of a random sample X 1 , . . . , X n correctly normalised. Later, [START_REF] Gnedenko | Sur la distribution limite du terme maximum d'une série aléatoire[END_REF] proposed a rigorous proof that the three types are the only possible limit distributions for univariate extremes and characterized the domains of attraction of these limit laws. In this paper, we will consider some estimation problems within a rich subclass of the max-domain of attraction, namely the Gumbel class. Although the distributions in the Gumbel class may have different types of tail behaviour, their commonality is that they all have an extreme value index of zero. Therefore, it is impossible to differentiate them on the basis of this parameter alone. To solve this issue, we restrict our 1 study to Weibull-type distributions, which means that the sample at our disposal, X 1 , . . . , X n , will have a common distribution function F X which satisfies

F X pxq " 1 ´e´x 1{θ X pxq , x ą 0, ( 1 
)
where θ is a positive parameter and X is a slowly varying function at infinity, i.e., a positive measurable function such that lim tÑ8 X ptxq X ptq " 1 for all x ą 0.

(2)

The parameter θ is called the Weibull-tail coefficient and it governs the tail behaviour, where larger values correspond to a slower decay of the survival distribution function F X :" 1 ´FX towards zero. Different values of this parameter allow the Weibull-type distributions to cover a large part of the Gumbel class, which implies that these distributions constitute a flexible family. Commonly used members of this family include the Weibull, normal, gamma and logistic distributions, to name only a few. As expected, the estimation of θ has led to a huge literature. We refer to [START_REF] Broniatowski | On the estimation of the Weibull tail coefficient[END_REF], [START_REF] Beirlant | The mean residual life function at great age: applications to tail estimation[END_REF], [START_REF] Girard | A Hill type estimator of the Weibull tail coefficient[END_REF], [START_REF] Gardes | Estimating extreme quantiles of Weibull tail distributions[END_REF], 2008, 2016), [START_REF] Diebolt | Bias-reduced estimators of the Weibull tail-coefficient[END_REF], [START_REF] Dierckx | A new estimation method for Weibulltype tails based on the mean excess function[END_REF], Goegebeur et al. (2010), [START_REF] Goegebeur | A weighted mean excess function approach to the estimation of Weibull-type tails[END_REF], [START_REF] Goegebeur | Robust conditional Weibull-type estimation[END_REF], de [START_REF] De Wet | Kernel regression with Weibulltype tails[END_REF] and the references therein.

In this paper we will study the estimation of the following bivariate risk measure

M EM β,p :" E " pX ´UX p1{pqq β `ˇY ą U Y p1{pq ı ,
where y `:" maxp0, yq, β ą 0, pX, Y q is a random vector with X having a continuous distribution function F X of Weibull-type and Y is a random variable with continuous distribution function F Y kept general, and U ' denotes the tail quantile function defined as U ' pxq " inftz : F ' pzq ě 1 ´1{xu, x ą 1, with ' being either X or Y . The role of the power parameter β is to allow the computation of both the mean and the second moment and thus the variance of the excess pX ´UX p1{pqq `given that the related variable Y is extreme. The risk measure M EM β,p will be called the marginal excess moment.

Similar risk measures have been already considered in the literature, but only in the Fréchet max-domain of attraction, i.e., in case where the extreme value index is strictly positive. See, e.g., Das andFasen-Hartmann (2018, 2019) who consider the estimation of a risk measure closely related to M EM β,p with β " 1, called the marginal mean excess, and [START_REF] Goegebeur | Nonparametric estimation of conditional marginal excess moments[END_REF] where the pair of interest pX, Y q is recorded together with a random covariate in R d . The novelty in the present paper lies in the max-domain of attraction considered, and the fact that no assumption on the distribution function of Y is imposed, whereas in, e.g., [START_REF] Goegebeur | Nonparametric estimation of conditional marginal excess moments[END_REF], the two variables X and Y are both in the same max-domain of attraction, namely the Fréchet. In the present paper we study thus the estimation of the marginal excess moment when the distribution function of X is of Weibull-type. These Weibull-type distributions have an upper tail that is lighter than that of distributions in the Fréchet max-domain of attraction, and find important applications in areas like environmental science, climate science, hydrology, engineering and medicine.

The remainder of the paper is organized as follows. In Section 2, we expand M EM β,p in case p Ó 0. This allows us to propose an estimator for M EM β,p under extrapolation, i.e., for p ă 1{n, where n is the size of the sample on which the estimation is based. This estimator also depends on a nonparametric estimator for M EM β,k{n introduced in Section 3, where k is an intermediate sequence, i.e., a sequence such that k " kpnq Ñ 8 with k{n Ñ 0 as n Ñ 8. The weak convergence of this latter estimator properly normalised is also established in Section 3.

A similar result for the estimator for M EM β,p under extrapolation is proved in Section 4. We examine the finite sample properties of the estimator with a simulation experiment in Section 5, while in Section 6 we illustrate how the proposed method can be used for wave height estimation at extreme wind speeds. Some auxiliary results are given in Section 7, whereas the proofs of the main results are postponed to Section 8.

Construction of the estimator

To motivate the construction of our estimator for M EM β,p in case of extrapolation, i.e., when p ă 1{n, we first look at a theoretical expansion of it assuming p Ó 0. Since both the variables X and Y are involved in the conditional expectation of interest, a condition on the joint distribution of pX, Y q is required. This condition describes the right-hand upper tail dependence of pX, Y q and is formulated as follows, after denoting R t px, yq :" tPpF X pXq ď x{t, F Y pY q ď y{tq:

Assumption pRq For all px, yq P r0, 8s 2 ztp8, 8qu we have that lim tÑ8 R t px, yq ": Rpx, yq exists.

Note that the convergence in Assumption pRq is in fact uniform for px, yq P r0, T s 2 for any T ą 0, due to the continuity of R and the monotonicity of R t .

Let RV ψ denote the class of regularly varying functions at infinity with index ψ P R, i.e., positive measurable functions f satisfying f ptxq{f ptq Ñ x ψ , as t Ñ 8, for all x ą 0. Denote Hpxq " ´log F X pxq, and hence F X pxq " e ´Hpxq . In the case where F X is of Weibull-type we have then H P RV 1{θ . Note that if H is differentiable with derivative H 1 then H 1 " h where h is the hazard rate function.

Lemma 2.1 Assume F X satisfies (1), H is differentiable with derivative h P RV 1{θ´1 . If Assumption pRq holds, then, as p Ó 0, we have

M EM β,p " a X ´1 p ¯ıβ ÝÑ ż 8 0 R `e´z , 1 ˘dz β ,
where a X ptq :" 1{hpU X ptqq.

Considering now an intermediate sequence k, Lemma 2.1 yields the approximation

M EM β,p { " a X ´1 p ¯ıβ M EM β,k{n { " a X `n k ˘‰β " 1,
from which we deduce that, with h denoting the slowly varying function associated with h,

M EM β,p " ˜aX p 1 p q a X p n k q ¸β M EM β,k{n " ˜UX p 1 p q U X p n k q ¸βp1´1{θq ˜ h pU X p n k qq h pU X p 1 p qq ¸β M EM β,k{n .
Note that (1) is equivalent to assume that U X satisfies

U X pxq " plog xq θ U plog xq, (3) 
where U is also a slowly varying function at infinity. Thus, we deduce the following estimator for M EM β,p { M EM β,p :"

ˆlogp1{pq logpn{kq ˙βp p θ k ´1q M EM β,k{n , (4) 
where p θ k is an estimator of θ and M EM β,k{n an intermediate estimator of M EM β,k{n . We refer to Theorem 4.2 for the weak convergence of this estimator, after proper normalisation, which is the main result of this paper.

Estimation of M EM β,k{n

Assume we have at our disposal a sample pX 1 , Y 1 q, . . . , pX n , Y n q of independent copies of the random vector pX, Y q. Let X i,n , i " 1, . . . , n, and Y i,n , i " 1, . . . , n, denote the order statistics pertaining to the X and Y sample, respectively. We define

M EM β,k{n :" 1 k n ÿ i"1 rX i ´Xn´k,n s β `1l tY i ąY n´k,n u ,
and introduce

M EM β,k{n px, yq :" 1 k n ÿ i"1 " X i ´UX ´n k ¯´x a X ´n k ¯ıβ `1l tY i ąU Y p n ky qu .
Then, M EM β,k{n can be rewritten as

M EM β,k{n " M EM β,k{n pp u n,k , p e n,Y q , a.s.,
where p u n,k :" pX n´k,n ´UX pn{kqq{a X pn{kq and p e n,Y :" n k F Y pY n´k,n q.

To study the main asymptotic behaviour of M EM β,k{n , we need to strengthen Assumption pRq by specifying the uniform rate of convergence of R t px, yq towards its limit Rpx, yq as t Ñ 8.

This assumption can be expressed as follows.

Assumption pSq There exist κ ą 0 and τ ă 0 such that

sup xą0,yPr 1 2 ,2s |R t px, yq ´Rpx, yq| x κ ^1 " O pt τ q .
This assumption can be viewed as a second-order condition in the bivariate framework. It excludes the case Rpx, yq " 0, @x, y ě 0, corresponding to a pair pX, Y q asymptotically upper tail independent.

Theorem 3.1 Assume F X satisfies (1), H is differentiable with derivative h which is ultimately monotone, and h is differentiable with derivative h 1 satisfying xh 1 pxq{hpxq Ñ 1{θ ´1 as x Ñ 8. Assume also pSq and Rpy, 1q continuously differentiable in y. Then, if k Ñ 8 as n Ñ 8 such that k{n Ñ 0, ? ka X pn{kq{U X pn{kq Ñ 0 and ? kpn{kq τ Ñ 0, we have

? k ˜M EM β,k{n M EM β,k{n ´1¸d ÝÑ Θ where Θ :" 1 ş 8 0 Rpe ´z , 1qdz β "ż 8 0 W R `e´v , 1 ˘dv β ´WR p1, 8qG 1 p1q ´WR p8, 1q " Gp1q ´G1 p1q ‰ * ,
with W R a zero centered Gaussian process with covariance structure

E tW R px 1 , y 1 q W R px 2 , y 2 qu " R px 1 ^x2 , y 1 ^y2 q ,
and Gptq :" ş 8 0 R pe ´v t, 1q dv β . The variance of the limit in Theorem 3.1 is given by

VarpΘq " 1 `ş8 0 Rpe ´z , 1qdz β ˘2 "ż 8 0 Rpe ´v, 1qdv 2β `pG 1 p1qq 2 `pGp1q ´G1 p1qq 2 ´2Gp1q ż 8 0 Rpe ´v, 1qdv β `2G 1 p1qpGp1q ´G1 p1qqRp1, 1q  .
Note that the condition xh 1 pxq{hpxq Ñ 1{θ ´1 as x Ñ 8 implies that h P RV 1{θ´1 (see Proposition 2.5 in [START_REF] Resnick | Heavy-tail phenomena, probabilistic and statistical modeling[END_REF].

4 Estimation of M EM β,p

In this section we study the asymptotic properties of the estimator { M EM β,p given in (4). As estimator for the Weibull-tail coefficient θ we use the estimator proposed by [START_REF] Girard | A Hill type estimator of the Weibull tail coefficient[END_REF], given by p θ k :"

1 k ř k i"1 plog X n´i`1,n ´log X n´k,n q 1 k ř k i"1 `log log n i ´log log n k ˘.
As a first step we obtain the limiting distribution of this estimator, properly normalised, in terms of a stochastic process that is closely related to the limiting process in Theorem 3.1.

Theorem 4.1 Assume F X satisfies (1), H is differentiable with derivative h which is ultimately monotone, and h is differentiable with derivative h 1 satisfying xh 1 pxq{hpxq Ñ 1{θ ´1 as x Ñ 8. Then, if k Ñ 8 as n Ñ 8 such that ? k a X pn{kq U X pn{kq Ñ 0 and

? k U X pn{kq 1 X pU X pn{kqq X pU X pn{kqq Ñ 0, we have ? k ´p θ k ´θ¯d ÝÑ Γ,
where

Γ :" θ "ż 8 0 W R `e´v , 8 ˘dv ´WR p1, 8q
* .

Note that this convergence result can be restated as ? k ´p θ k ´θ¯d ÝÑ N p0, θ 2 q, as obtained also by [START_REF] Girard | A Hill type estimator of the Weibull tail coefficient[END_REF] under similar conditions on k and n but through arguments based on properties of upper order statistics. In fact the condition ? ka X pn{kq{U X pn{kq Ñ 0 can be replaced by ? k{ logpn{kq Ñ 0, as used in [START_REF] Girard | A Hill type estimator of the Weibull tail coefficient[END_REF], and the condition ? k

U X pn{kq 1 X pU X pn{kqq X pU X pn{kqq
Ñ 0 is closely related to the condition ? kbplog n{kq Ñ 0 in [START_REF] Girard | A Hill type estimator of the Weibull tail coefficient[END_REF]. Our contribution lies in obtaining the weak convergence result for p θ k using arguments based on empirical process convergence. As is clear from the arguments in Sections 7 and 8, the process that underlies p θ k is closely related to the process that underlies M EM β,p , leading to the joint convergence of p θ k and M EM β,p , after normalisation, which is needed for the main theorem given below.

We can now state the main result of the paper, namely the weak convergence of { M EM β,p , properly normalised.

Theorem 4.2 Assume F X satisfies (1), H is differentiable with derivative h which is ultimately monotone, and h is differentiable with derivative h 1 satisfying xh 1 pxq{hpxq Ñ 1{θ ´1 as x Ñ 8. Assume also pSq and Rpy, 1q continuously differentiable in y.

Then, if k Ñ 8 as n Ñ 8 such that ? k a X p n k q U X p n k q Ñ 0, ? k `n k ˘τ Ñ 0 and ? k sup xěU X pn{kq x| 1 X pxq|
X pxq Ñ 0, we have for p satisfying p ď k n such that log 1{p log n{k Ñ λ P r1, 8q that

? k ˜{ M EM β,p M EM β,p ´1¸d Ñ β logpλqΓ `Θ.
The covariance between the random variables Γ and Θ is given by

CovpΓ, Θq " θ ş 8 0 Rpe ´z , 1qdz β "ż 8 0 Rpe ´v, 1qdv β`1 ´pGp1q ´G1 p1qq ż 8 0 Rpe ´v, 1qdv ´ż 8 0 Rpe ´v, 1qdv β `pGp1q ´G1 p1qqRp1, 1q  .
Note that in case λ " 1, which corresponds asymptotically with no extrapolation, we have that the limiting distribution for { M EM β,p corresponds with that of M EM β,p , which is what could be expected intuitively.

Simulation experiment

In this section a simulation study is implemented to investigate the finite sample performance of the proposed estimator. Two models are considered:

Model 1. The logistic copula model given by Cpu 1 , u 2 q " e ´tp´log u 1 q ξ `p´log u 2 q ξ u 1{ξ , u 1 , u 2 P r0, 1s, with ξ " 4. This model satisfies pSq with Rpx, yq " x `y ´px ξ `yξ q 1{ξ , τ " ´1 and κ " 1 ´ε for some small ε ą 0. For the marginal distribution of X we consider two settings, namely X " Weibullpθq with θ " 1 and θ " 1.5, while Y " Γpα, λq with pα, λq " p2, 1q.

Model 2. The copula function of p|Z 1 |, |Z 2 |q where pZ 1 , Z 2 q follows the bivariate standard Cauchy distribution with density function f given by

f pz 1 , z 2 q " 1 2π 1 p1 `z2 1 `z2 2 q 3{2 , pz 1 , z 2 q P R 2 .
This model was also considered in [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF] and satisfies pSq with Rpx, yq " x `y áx 2 `y2 , τ " ´1 and κ " 2. For the marginal distributions we consider the settings • X " |N p1.2, 1q| and Y " U r0, 10s. The folded normal distribution is of Weibull-type with θ " 1{2.

• X " Extended Weibullpθ, ξq, i.e., X has distribution function satisfying 1 ´FX pxq " rpxqe ´x1{θ , x ą 0, where θ ą 1 and r P RV ξ with ξ P R. We take θ " 1.25 and rpxq " x ´1{5 , so ξ " ´0.2.

As for Y we take Y " Burrp1, 1, 1q, where the distribution function of the Burrpζ, λ, φq distribution is given by

F Y pyq " 1 ´ˆζ ζ `yφ ˙λ , y ą 0,
and ζ, λ, φ ą 0.

In the considered models, the distribution of X is always of Weibull-type, though with different Weibull-tail index, namely θ P t0.5, 1, 1.25, 1.5u, while we consider models with different forms of tail heaviness for Y . The Γpα, λq distribution is in the max-domain of attraction of the Gumbel distribution, the uniform distribution belongs to the max-domain of attraction of the (extreme-value) Weibull distribution and the Burr distribution is in that of the Fréchet distribution.

From each distribution we generate 200 samples with sample sizes n " 500 and n " 2000, and we estimate M EM β,p for p P t1{n, 1{p5nqu, and β P t1, 2u. In Figure 1 we show for Model 1 with X " Weibullp1q the boxplots of { M EM β,p {M EM β,p , computed over the 200 replications, as a function of k for n " 500 (left) and n " 2000 (right), and, from top to bottom, pβ, pq " p1, 1{nq, p1, 1{p5nqq, p2, 1{nq and p2, 1{p5nqq. Figures 2 till 4 are constructed in an analogous way for the other distributions. From the simulations we observe the following:

• For all the distributions considered the estimation is very good for k small compared to n, with boxplots nicely centered at the value one. This is in agreement with the theoretical condition k{n Ñ 0. When k increases (for fixed n) then at some point, which depends on the model, an estimation bias occurs. On the other hand, increasing k leads to less variable estimates.

• The estimation results improve with increasing n, as expected.

• Larger values of θ lead to more variable estimates. This can be expected as θ determines the upper tail heaviness of the Weibull-type model.

• For fixed n the variability of the estimates increases for smaller values of p, as smaller p lead to more extreme extrapolations.

• Also, for fixed n, the variability increases with β, so higher order moments are more difficult to estimate than those of lower order.

Wind speed and wave height data

Accurate information on wave climatology is important for many coastal and ocean engineering applications, in particular for the design of marine and coastal infrastructures like offshore wind farms, drilling platforms, sea walls, harbours and ships. As a measure for the severity of the sea state, the significant wave height is one of the most important wave parameters [START_REF] Vanem | A truncated, translated Weibull distribution for shallow water sea states[END_REF]. Consequently, a lot of attention has been devoted to the statistical modelling of this variable, and commonly used distributions are the Weibull, Rayleigh, normal, gamma and logistic distributions, see, e.g., [START_REF] Ferreira | Modelling the long-term distribution of significant wave height with the Beta and Gamma models[END_REF], [START_REF] Athanassoulis | Probabilistic description of metocean parameters by means of kernel density models 1. Theoretical backgrounds and first results[END_REF], and [START_REF] Shariff | Modelling significant wave height data of north sea: Rayleigh vs Weibull distributions[END_REF], among others. However, there are large model uncertainties in fitting parametric models to significant wave height data [START_REF] Vanem | A truncated, translated Weibull distribution for shallow water sea states[END_REF], and hence semi-parametric models like the Weibull-type model considered in the present paper can be a valuable alternative, as they provide a unifying framework that contains many distributions with similar distribution tails. Moreover, for many applications the joint distribution of several metocean variables, like wave height and wind speed, is of interest, e.g., [START_REF] Mittendorf | Joint description methods of wind and waves for the design of offshore wind turbines[END_REF]. We illustrate our developed method and estimate the excess of the significant wave height when wind speed is above a high quantile of its distribution.

The dataset considered here is collected at a surface buoy of the Ocean Observatories Initiative (OOI) Coastal Endurance Array, Oregon Line, and publicly available at https://dataexplorer.oceanobservatories.org/#ooi/array/CE/subsite/CE04OSSM/node/ CE04OSSM-SB/data. The dataset contains hourly measurements of, among others, air and sea surface temperature, wind speed, significant wave height and wave period from 2015, April 8 until 2022, September 8. For our analysis we consider a dataset of weekly measurements of significant wave height pXq, in meters, and wind speed pY q, in meters per second. This gives n " 210. We use weekly measurements in our analysis in order to reduce the temporal dependence between the observations. In Figure 5 we show the scatterplot of significant wave height versus wind speed, which indicates a positive association between the two variables, as expected. To investigate the assumption of an underlying Weibull-type distribution for X we construct a Weibull quantile-quantile plot, for which the coordinates are given by plogp´logp1 ´i{pn `1qqq, log X i,n q, i " 1, . . . , n, see Figure 6, left panel. This quantile-quantile plot becomes linear in the largest observations, supporting the assumption of a Weibull-type distribution for X; see [START_REF] Goegebeur | Goodness-of-fit testing for Weibull-type behavior[END_REF] for a discussion of Weibull quantile plots. The plot of p θ k as a function of k shown in Figure 6, right panel, is stable for k in the range 50 till 80 and indicates a θ estimate of approximately 0.4. Finally, we show { M EM 1,p and { M EM 2,p with p " 1{n (black line) and p " 1{p5nq (red dashed line) in Figure 7, left and right panel, respectively. As is clear from (4), for p θ k less than one, which corresponds with a 'light-tailed' Weibull-type distribution, { M EM β,p increases with p. The opposite effect will be observed for situations where p θ k exceeds one, so for 'heavy-tailed' Weibull-type distributions. Following the theoretical results, and as also observed in the simulation experiment, k should be taken small compared to n. However, for small k the estimates show quite some variability, especially for β " 2. As estimate for M EM β,p we report the median of { M EM β,p computed for k-values up to 50. This gives 0.369 for pβ, pq " p1, 1{nq, 0.314 for pβ, pq " p1, 1{p5nqq, 0.573 for pβ, pq " p2, 1{nq and 0.417 pβ, pq " p2, 1{p5nqq. Estimation of bivariate risk measures like M EM β,p at extreme levels is practically clearly challenging, especially when the size of the dataset is small, as is the case here. Despite this, the method performs quite well on this dataset of wave heights and wind speeds. 

Auxiliary results

Remark that M EM β,k{n px, yq

" β 1 k n ÿ i"1 ż 8 U X p n k q`x a X p n k q " u ´UX ´n k ¯´x a X ´n k ¯ıβ´1 1l tX i ąuu du 1l tX i ąU X p n k q`x a X p n k qu 1l tY i ąU Y p n ky qu " β ż 8 U X p n k q`x a X p n k q 1 k n ÿ i"1 1l tX i ąu,Y i ąU Y p n ky qu " u ´UX ´n k ¯´x a X ´n k ¯ıβ´1 du " β ż 8 0 1 k n ÿ i"1 1l tX i ąz`U X p n k q`x a X p n k q,Y i ąU Y p n ky qu z β´1 dz " " a X ´n k ¯ıβ ż 8 0 1 k n ÿ i"1 1l tX i ąU X p n k q`a X p n k qpv`xq,Y i ąU Y p n ky qu dv β " " a X ´n k ¯ıβ ż 8 0 1 k n ÿ i"1 1l tF X pX i qăF X pU X p n k q`a X p n k qpv`xqq,F Y pY i qă k n yu dv β a.s. " " a X ´n k ¯ıβ ż 8 0 T n ´n k F X ´UX ´n k ¯`a X ´n k ¯pv `xq ¯, y ¯dv β ,
where

T n px, yq :" 1 k n ÿ i"1 1l tF X pX i qă k n x,F Y pY i qă k n yu .
The asymptotic behavior of T n px, yq, after proper normalisation, is described by the aforementioned W R process (see Theorem 3.1). We refer to Lemma 1 of [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF], which we include below for completeness. For convenient representation, the limiting processes in their Lemma 1 are defined on the same probability space via the Skorohod construction, but it should be kept in mind that they are only in distribution equal to the original processes.

Lemma 

F X ´t `z hptq F X ptq ÝÑ e ´z , (5) 
uniformly for z ě ´δ, for any δ ą 0. 1) and H is differentiable with derivative h P RV 1{θ´1 , then, for a sequence k such that k Ñ 8 with k{n Ñ 0, we have [START_REF] De Haan | Extreme value theory, an introduction[END_REF]. Now, for z ą 0, the convergence ( 5) is equivalent to the convergence in distribution of hptqpX ´tq given that X ą t towards the standard exponential distribution. The latter distribution being continuous, the convergence is in fact uniform for z ą 0. Further, since the limit in ( 5) is continuous and the left-hand side in ( 5) is monotone, the convergence is also uniform for z P r´δ, 0s. This achieves the proof of Lemma 7.2.

! ? k " T n ´n k F X ´UX ´n k ¯`a X ´n k ¯pv `xq ¯, y Rn{k ´n k F X ´UX ´n k ¯`a X ´n k ¯pv `xq ¯, y ¯ı ´WR ´e´pv`xq , y ¯) dv β ˇˇP ÝÑ 0. Lemma 7.3 If F X satisfies (
? k X n´k,n ´UX p n k q a X p n k q d ÝÑ W R p1,
Proof of Proposition 7.1. We have

ˇˇˇż 8 0 ! ? k " T n ´n k F X ´UX ´n k ¯`a X ´n k ¯pv `xq ¯, y Rn{k ´n k F X ´UX ´n k ¯`a X ´n k ¯pv `xq ¯, y ¯ı ´WR ´e´pv`xq , y ¯) dv β ˇď ˇˇˇż 8 0 ! ? k " T n ´n k F X ´UX ´n k ¯`a X ´n k ¯pv `xq ¯, y Rn{k ´n k F X ´UX ´n k ¯`a X ´n k ¯pv `xq ¯, y ¯ı ´WR ´n k F X ´UX ´n k ¯`a X ´n k ¯pv `xq ¯, y ¯) dv β ˇż 8 0 ! W R ´n k F X ´UX ´n k ¯`a X ´n k ¯pv `xq ¯, y ¯´W R ´e´pv`xq , y ¯) dv β ˇˇ"
: Q 1,n px, yq `Q2,n px, yq.

We will study the two terms separately. Concerning Q 1,n px, yq, according to Lemma 7.2, there exists some T ą 0 such that for n large and x ě ´δ, we have

Q 1,n px, yq ď sup 0ăy 1 ďT,yPr 1 2 ,2s
ˇˇ?krT n py 1 , yq ´Rn{k py 1 , yqs ´WR py 1 , yq ˇy

η 1 ˆż 8 0 ˜F X `UX `n k ˘`a X `n k ˘pv ´δq F X `UX `n k ˘˘¸η dv β .
The supremum term is negligeable a.s. according to Lemma 7.1. We need now to prove that the integral is bounded. We have, by the mean value theorem with ξ " ξpvq a value between zero and one,

ż 8 0 ˜F X `UX `n k ˘`a X `n k ˘pv ´δq F X `UX `n k ˘˘¸η dv β " ż δ 0 e ´η h p U X p n k q `aX p n k q ξpv´δq q h p U X p n k qq pv´δq dv β `ż 8 δ e ´η h p U X p n k q `aX p n k q ξpv´δq q h p U X p n k qq pv´δq dv β ": I 1,n `I2,n .
We start with I 1,n . By the use of the Potter bound (see Proposition B.1.9.5 in de Haan and [START_REF] De Haan | Extreme value theory, an introduction[END_REF], for δ 1 , δ 2 ą 0 and n large we have

I 1,n ď ż δ 0 e ´ηp1`δ 1 q ˜1`a X p n k q U X p n k q ξpv´δq ¸1{θ´1´δ 2 pv´δq dv β .
In case θ ă 1, take 0 ă δ 2 ă 1{θ ´1, and obtain, for n large, the bound

I 1,n ď ż δ 0 e ´ηp1`δ 1 qpv´δq dv β .
In case θ ě 1 we have, for 0 ă ε 1 ă 1{δ and n large

I 1,n ď ż δ 0 e ´ηp1`δ 1 qp1´ε 1 δq 1{θ´1´δ 2 pv´δq dv β .
In both cases the integrals are finite. Now consider I 2,n . Again by the Potter bound, for 0 ă δ 1 ă 1, δ 2 ą 0 and n large

I 2,n ď ż 8 δ e ´ηp1´δ 1 q ˜1`a X p n k q U X p n k q ξpv´δq ¸1{θ´1´δ 2 pv´δq dv β .
In case θ ă 1, take 0 ă δ 2 ă 1{θ ´1, and obtain, for n large, the bound

I 2,n ď ż 8 δ e ´ηp1´δ 1 qpv´δq dv β .
In case θ ě 1, for ε 1 ą 0 and n large

I 2,n ď ż 8 δ e ´ηp1´δ 1 qp1`ε 1 pv´δqq 1{θ´1´δ 2 pv´δq dv β .
Now take v ˚ą δ and 0 ă δ 2 ă 1{θ, and obtain

I 2,n ď ż v δ dv β `β ż 8 v ˚e´ηp1´δ 1 q ´ε1 `1 v ˚´δ ¯1{θ´1´δ 2 pv´δq 1{θ´δ 2 v β´1 dv.
Again, in both cases all integrals are finite.

Overall, we have then sup xPr´δ,δs,yPr 1 2 ,2s

Q 1,n px, yq " o P p1q.

We move now to the study of Q 2,n px, yq for which we use the following decomposition for T ą 0 where Γp., .q denotes the incomplete Gamma function, namely Γps, zq :" ş 8 z v s´1 e ´v dv. Using Lemma 2 in [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF] and by choosing T large enough, we can make the upper bound arbitrary small. Similarly, now using Lemma 7.2 we have for n large,

Q 2,n px, yq ď ż T 0 ˇˇW R ´n k F X ´UX ´n k ¯`a X ´n k ¯pv `xq ¯, y ¯´W R ´e´pv`xq , y ¯ˇˇd v β `ż 8 T ˇˇW R ´e´pv`xq , y ¯ˇˇd v β `ż 8 T ˇˇW R ´n k F X ´UX ´n k ¯`a X ´n k ¯pv `xq ¯, y ¯ˇˇd v β ": Q p1q 2,
P ˜sup xPr´δ,δs,yPr1{2,2s Q p3q 2,n px, yq ą ε{4 ḑ P ˜sup 0ăzďe δ `c,0ăyă8 |W R pz, yq| z η ż 8 T " n k F X ´UX ´n k ¯`a X ´n k ¯pv ´δq ¯ıη dv β ą ε{4 ¸.
We study the integral from the above display. Without loss of generality we take already T ě δ`ι for some small ι ą 0. The analysis is similar to that of I 2,n above. We have, for 0 ă δ 1 ă 1, δ 2 ą 0 and n large

ż 8 T « F X `UX `n k ˘`a X `n k ˘pv ´δq F X `UX `n k ˘˘ff η v β´1 dv ď ż 8 T e ´ηp1´δ 1 q ˜1`a X p n k q U X p n k q ξpv´δq ¸1{θ´1´δ 2 pv´δq v β´1 dv.
In case θ ă 1 we take 0 ă δ 2 ă 1{θ ´1, and obtain, for n large,

ż 8 T « F X `UX `n k ˘`a X `n k ˘pv ´δq F X `UX `n k ˘˘ff η v β´1 dv ď e ηp1´δ 1 qδ ż 8 T e ´ηp1´δ 1 qv v β´1 dv.
In case θ ě 1 take 0 ă δ 2 ă 1{θ. For ε 1 ą 0 and n large

ż 8 T « F X `UX `n k ˘`a X `n k ˘pv ´δq F X `UX `n k ˘˘ff η v β´1 dv ď ż 8 T e ´ηp1´δ 1 qp1`ε 1 pv´δqq 1{θ´1´δ 2 pv´δq v β´1 dv ď ż 8 T e ´ηp1´δ 1 qpε 1 `1 ι q 1{θ´1´δ 2 pv´δq 1{θ´δ 2 v β´1 dv.
In both cases, for n large the integrals can be made arbitrary small by taking T large.

So, for ε ą 0 there exists a n 1 such that for n ą n 1 we have We now turn to the first probability in the right-hand side of ( 7). With the T obtained above we have

P ˜sup xPr´δ,δs,yPr 1 2 ,2s Q p1q 2,n px, yq ą ε{2 ḑ P ˜sup xPr´δ,δ`T s,yPr 1 2 ,2s ˇˇW R ´n k F X ´UX ´n k ¯`a X ´n k ¯x¯, y ¯´W R `e´x , y ˘ˇˇą ε 2T β ¸.
Using Lemma 7.2 combined with the uniform continuity of W R on compact sets, we have for

n ą n 2 P ˜sup xPr´δ,δs,yPr 1 2 ,2s Q p1q 2,n px, yq ą ε{2 ¸ă ε{2.
Combined, for ε ą 0 we have for n ą maxpn 1 , n 2 q that P ˜sup xPr´δ,δs,yPr 1 2 ,2s

Q 2,n px, yq ą ε ¸ă ε, and hence Proposition 7.1 follows.

Proof of Lemma 7.3. First remark that

P ˆ?k X n´k,n ´UX p n k q a X p n k q ď x " P ˆXn´k,n ď U X ´n k ¯`x ? k a X ´n k ¯" 1 ´P ˆ?k " n k F X pX n´k,n q ´1ı ď ? k " n k F X ˆUX ´n k ¯`x ? k a X ´n k ¯˙´1 ˙. (8) 
Now, under (1) and by using two applications of the mean value theorem, with ξ and ∆ being values between zero and one,

? k » - F X ´UX `n k ˘`x ? k a X `n k ˘F X `UX `n k ˘˘´1 fi fl " ? k » - -e ´hˆU X p n k q `ξx ? k a X p n k q ḣp U X p n k qq x ? k ´1fi ffi fl " ´e´∆ h ˆUX p n k q `ξx ? k a X p n k q ḣp U X p n k qq x ? k h ´UX `n k ˘`ξx ? k a X `n k ˘h `UX `n k ˘˘x Ñ ´x, (9) 
since h P RV 1{θ´1 and by using the uniformity of the convergence in regular variation. Now, recall that F X pX n´k,n q d " U k`1,n where U k`1,n is the pk `1q´th smallest value in a sample of size n from a Uniform distribution on r0, 1s. Hence n k F X pX n´k,n q P ÝÑ 1. Additionally, we have

? k " n k F X pX n´k,n q ´1ı " ´?k " T n ´n k F X pX n´k,n q , 8 ¯´n k F X pX n´k,n q ı a.s.,
which yields by Lemma 7.1

? k " n k F X pX n´k,n q ´1ı d ÝÑ ´WR p1, 8q. (10) 
Combining ( 8), ( 9) and ( 10), Lemma 7.3 follows.

Proof of Lemma 7.4. First we use the Lipschitz property of the function R to obtain

? k ˇˇˇż 8 0 " R ´n k F X ´UX ´n k ¯`a X ´n k ¯px `vq ¯, y ¯´R ´e´px`vq , y ¯ı dv β ˇˇď ? k ż 8 0 ˇˇn k F X ´UX ´n k ¯`a X ´n k ¯px `vq ¯´e ´px`vq ˇˇdv β .
Then, by the differentiability of H and two applications of the mean value theorem

? k ż 8 0 ˇˇˇˇF X `UX `n k ˘`a X `n k ˘px `vq F X `UX `n k ˘˘´e ´px`vq ˇˇˇˇd v β " ? k ż 8 0 ˇˇˇˇˇe ´hp U X p n k q `aX p n k q ξpx`vq q h p U X p n k qq px`vq ´e´px`vq ˇˇˇˇˇd v β " ? k ż 8 0 e ´px`vq ˇˇˇˇˇˇe ´« h p U X p n k q `aX p n k q ξpx`vq q h p U X p n k qq ´1ff px`vq ´1ˇˇˇˇˇˇˇd v β " ? k ż 8 0 e ´#1`∆ « h p U X p n k q `aX p n k q ξpx`vq q h p U X p n k qq ´1ff+ px`vq ˇˇˇˇh `UX `n k ˘`a X `n k ˘ξpx `vq h `UX `n k ˘˘´1 ˇˇˇˇ| x `v|dv β " ? k ż 8 0 e ´#1`∆ « h p U X p n k q `aX p n k q ξpx`vq q h p U X p n k qq ´1ff+ px`vq ˇˇˇˇh `UX `n k ˘`a X `n k ˘ξpx `vq h `UX `n k ˘˘´1 ˇˇˇˇ| x `v|dv β 1l txě0u `» - - ? k ż ´x 0 e ´#1`∆ « h p U X p n k q `aX p n k q ξpx`vq q h p U X p n k qq ´1ff+ px`vq ˇˇˇˇh `UX `n k ˘`a X `n k ˘ξpx `vq h `UX `n k ˘˘´1 ˇˇˇˇ| x `v|dv β `?k ż 8 ´x e ´#1`∆ « h p U X p n k q `aX p n k q ξpx`vq q h p U X p n k qq ´1ff+ px`vq ˇˇˇˇh `UX `n k ˘`a X `n k ˘ξpx `vq h `UX `n k ˘˘´1 ˇˇˇˇ| x `v|dv β fi ffi fl 1l txă0u ": T 1 1l txě0u `rT 2,1 `T2,2 s1l txă0u ,
where ξ " ξpx, vq and ∆ " ∆px, vq are values between zero and one.

We bound the above integrals in turn, by constants that do not depend on x. We start with T 1 .

For the exponential function appearing in the integral we have the following: piq h is ultimately increasing (θ ď 1), then e

´#1`∆

« h p U X p n k q `aX p n k q ξpx`vq q h p U X p n k qq ´1ff+ px`vq ď e ´px`vq .
piiq h is ultimately decreasing (θ ě 1), then for 0 ă δ 1 ă 1, δ 2 , ε 1 ą 0 and n large we have

e ´#1`∆ « h p U X p n k q `aX p n k q ξpx`vq q h p U X p n k qq ´1ff+ px`vq ď e ´hp U X p n k q `aX p n k q ξpx`vq q h p U X p n k qq px`vq ď e ´p1´δ 1 q ˜1`a X p n k q U X p n k q ξpx`vq ¸1{θ´1´δ 2 px`vq ď e ´p1´δ 1 qp1`ε 1 px`vqq 1{θ´1´δ 2 px`vq ,
where line 2 follows from the use of the Potter bound.

For the absolute difference in the integral we proceed as follows. We use the differentiability of h and obtain, with ξ " ξpx, vq a value between zero and one,

ˇˇˇˇh `UX `n k ˘`a X `n k ˘ξpx `vq h `UX `n k ˘˘´1 ˇˇˇď ˇˇh 1 `UX `n k ˘`a X `n k ˘ξpx `vq ˘ȟ `UX `n k ˘˘a X ´n k ¯px `vq " pU X `n k ˘`a X `n k ˘ξpx `vqq|h 1 `UX `n k ˘`a X `n k ˘ξpx `vq ˘| h `UX `n k ˘`a X `n k ˘ξpx `vq ˘h `UX `n k ˘`a X `n k ˘ξpx `vq h `UX `n k ˘ȃ X `n k ȖX `n k ˘`a X `n k ˘ξpx `vq px `vq.
Again we distinguish the case where h is ultimately increasing or decreasing. piq h is ultimately increasing. We use the fact that xh 1 pxq{hpxq Ñ 1{θ ´1 as x Ñ 8 and the Potter bound to obtain, for δ 3 , ε 2 ą 0, and n large

ˇˇˇˇh `UX `n k ˘`a X `n k ˘ξpx `vq h `UX `n k ˘˘´1 ˇˇˇˇď C ˜1 `aX `n k ȖX `n k ˘ξpx `vq ¸1{θ´1`δ 3 a X `n k ȖX `n k ˘px `vq ď Cp1 `ε2 px `vqq 1{θ´1`δ 3 a X `n k ȖX `n k ˘px `vq,
where C is a positive constant. piiq h is ultimately decreasing. For n large

ˇˇˇˇh `UX `n k ˘`a X `n k ˘ξpx `vq h `UX `n k ˘˘´1 ˇˇˇˇď C a X `n k ȖX `n k ˘px `vq,
for some positive constant C.

We now return to T 1 . piq h is ultimately increasing. We have, for n large, and v ˚ą 0,

T 1 ď C ? k a X `n k ȖX `n k ˘ż 8 0 e ´px`vq p1 `ε2 px `vqq 1{θ´1`δ 3 px `vq 2 dv β ď C ? k a X `n k ȖX `n k ˘ż 8 0 e ´v p1 `ε2 pδ `vqq 1{θ´1`δ 3 pδ `vq 2 dv β ď C ? k a X `n k ȖX `n k ˘«ż v 0 e ´v p1 `ε2 pδ `vqq 1{θ´1`δ 3 pδ `vq 2 dv β `ż 8 v ˚e´v p1 `ε2 pδ `vqq 1{θ´1`δ 3 pδ `vq 2 dv β  .
The first integral in the right-hand side can clearly be bounded by a constant K not depending on x. Hence

T 1 ď C ? k a X `n k ȖX `n k ˘«K `β ż 8 v ˚e´v ˆε2 `1 `ε2 δ v ˙1{θ´1`δ 3 ˆ1 `δ v ˙2 v β`1{θ`δ 3 dv ff ď C ? k a X `n k ȖX `n k ˘«K `β ˆε2 `1 `ε2 δ v ˚˙1{θ´1`δ 3 ˆ1 `δ v ˚˙2 ż 8 v ˚e´v v β`1{θ`δ 3 dv ff .
So we can conclude that there is a constant K not depending on x such that for n large

T 1 ď ? k a X `n k ȖX `n k ˘K.
piiq h is ultimately decreasing. Then, for 0 ă δ 2 ă 1{θ, v ˚ą 0, and n large, we have,

T 1 ď C ? k a X `n k ȖX `n k ˘ż 8 0 e ´p1´δ 1 qp1`ε 1 px`vqq 1{θ´1´δ 2 px`vq px `vq 2 dv β ď C ? k a X `n k ȖX `n k ˘«ż v 0 e ´p1´δ 1 qp1`ε 1 pδ`vqq 1{θ´1´δ 2 v pδ `vq 2 dv β `ż 8 v ˚e´p1´δ 1 qp1`ε 1 pδ`vqq 1{θ´1´δ 2 v pδ `vq 2 dv β  ď C ? k a X `n k ȖX `n k ˘«K `β ˆ1 `δ v ˚˙2 ż 8 v ˚e´p1´δ 1 q ´ε1 `1`ε 1 δ v ˚¯1{θ´1´δ 2 v 1{θ´δ 2 v β`1 dv ff .
So also in this case there is a constant K not depending on x such that for n large

T 1 ď ? k a X `n k ȖX `n k ˘K.
We now turn to T 2,2 . In the integral T 2,2 we have that x `v ą 0 and hence the same bounds can be applied as for T 1 making the analysis very similar. For brevity we omit the details here.

Finally we analyse T 2,1 . Note that in this case ´δ ď x ď x `v ď 0. The exponential function in the integral can be bounded as follows: piq h is ultimately increasing, then

e ´#1`∆ « h p U X p n k q `aX p n k q ξpx`vq q h p U X p n k qq ´1ff+ px`vq ď e ´px`vq .
piiq h is ultimately decreasing, then for δ 1 , δ 2 ą 0, 0 ă ε 1 ă 1{δ, and n large we have

e ´#1`∆ « h p U X p n k q `aX p n k q ξpx`vq q h p U X p n k qq ´1ff+ px`vq ď e ´hp U X p n k q `aX p n k q ξpx`vq q h p U X p n k qq px`vq ď e ´p1`δ 1 q ˜1`a X p n k q U X p n k q ξpx`vq ¸1{θ´1´δ 2 px`vq ď e ´p1`δ 1 qp1`ε 1 px`vqq 1{θ´1´δ 2 px`vq ,
where line 2 follows from the use of the Potter bound.

As for the absolute difference in the integral we obtain the following: piq h is ultimately increasing, then for 0 ă ε 2 ă 1{δ and n large

ˇˇˇˇh `UX `n k ˘`a X `n k ˘ξpx `vq h `UX `n k ˘˘´1 ˇˇˇˇď C 1 1 `ε2 px `vq a X `n k ȖX `n k ˘|x `v|.
piiq h is ultimately decreasing, then for 0 ă ε 2 ă 1{δ, δ 3 ą 0, and n large

ˇˇˇˇh `UX `n k ˘`a X `n k ˘ξpx `vq h `UX `n k ˘˘´1 ˇˇˇˇď C p1 `ε2 px `vqq 1{θ´2´δ 3 a X `n k ȖX `n k ˘|x `v|.
These bounds are now used in the integral T 2,1 . piq h is ultimately increasing. We have, for n large,

T 2,1 ď C ? k a X `n k ȖX `n k ˘ż ´x 0 e ´px`vq 1 1 `ε2 px `vq px `vq 2 dv β ď C ? k a X `n k ȖX `n k ˘δ2 e δ 1 ´ε2 δ ż δ 0 e ´vdv β ď ? k a X `n k ȖX `n k ˘K,
where K is a constant not depending on x. piiq h is ultimately decreasing. Then, for n large,

T 2,1 ď C ? k a X `n k ȖX `n k ˘ż ´x 0 e ´p1`δ 1 qp1`ε 1 px`vqq 1{θ´1´δ 2 px`vq p1 `ε2 px `vqq 1{θ´2´δ 3 px `vq 2 dv β ď C ? k a X `n k ȖX `n k ˘δ2 p1 ´ε2 δq 1{θ´2´δ 3 e p1`δ 1 qp1´ε 1 δq 1{θ´1´δ 2 δ ż δ 0 e ´p1`δ 1 qp1´ε 1 δq 1{θ´1´δ 2 v dv β ď ? k a X `n k ȖX `n k ˘K,
where K does not depend on x.

Since all integrals can be bounded by a constant not depending on x the result of the lemma follows.

Proofs of the main results

Proof of Lemma 2.1. By integration by parts, we have

M EM β,p " E " pX ´UX p1{pqq β `ˇY ą U Y p1{pq ı " β ż 8 U X p1{pq px ´UX p1{pqq β´1 P pX ą x, Y ą U Y p1{pqq p dx " β ra X p1{pqs β ż 8 0 z β´1 P ´F X pXq ă p F X pU X p1{pq`a X p1{pqzq p , F Y pY q ă p p dz.
The aim now is to apply the dominated convergence theorem. First remark that, combining Lemma 7.2 with our Assumption pRq, we have for z ą 0

z β´1 P ´F X pXq ă p F X pU X p1{pq`a X p1{pqzq p , F Y pY q ă p p ÝÑ z β´1 R `e´z , 1 ˘, and 
z β´1 P ´F X pXq ă p F X pU X p1{pq`a X p1{pqzq p , F Y pY q ă p p ď z β´1 min " F X pU X p1{pq `aX p1{pqzq p , 1 * ď z β´1 F X pU X p1{pq `aX p1{pqzq F X pU X p1{pqq " z β´1 e ´hpU X p1{pq`a X p1{pqξzq hpU X p1{pqq z ,
where the last step follows from the mean value theorem, and ξ " ξpzq is a value between zero and one. The latter term in the above display can be handled in the same way as the integrand of I 2,n in the proof of Proposition 7.1 with δ " 0, η " 1 and k{n replaced by p. Thus it can be bounded by an integrable function for p small, and the dominated convergence theorem applies, which establishes Lemma 2.1.

Proof of Theorem 3.1. We consider the following decomposition ´?k ´?k

? k ˜M EM β,k{n M EM β,k{n ´1" 1 M EM β,k{n ? k `M EM β,k{n ´M EM β,k{n " ra X pn{kqs β M EM β,k{n ? k "ż 8 0 T n ´n k F X ´Xn´k,n `aX ´n k ¯v¯, p e n,Y ¯dv β ´ż 8 0 n k P ˆF X pXq ă k n " n k F X ´UX ´n k ¯`a X ´n k ¯v¯ı , F Y pY q ă k n ˙dv β * " ra X pn{kqs β M EM β,k{n ? k "ż 8 0 T n ´n k F X ´Xn´k,n `aX ´n k ¯v¯, p e n,Y ¯dv β ´ż 8 0 R n{k ´n k F X ´UX ´n k ¯`a X ´n k ¯v¯, 1 ¯dv β * " ra X pn{kqs β M EM β,k{n "ż 8 0 W R `e´v , 1 ˘dv β `ż 8 0 " ? k ! T n ´n k F X ´Xn´k
ż 8 0 " R n{k ´n k F X ´UX ´n k ¯`a X ´n k ¯v¯, 1 ¯´R ´n k F X ´UX ´n k ¯`a X ´n k ¯v¯, 1 ¯ı dv β `?k ż 8 0 " R ´n k F X ´Xn´k
ż 8 0 " R ´n k F X ´UX ´n k ¯`a X ´n k ¯v¯, 1 ¯´R `e´v , 1 ˘ı dv β `?k ż 8 0 " R ´e´pv`p u n,k q , p e n,Y ¯´R `e´v , p e n,Y ˘ı dv β `?k ż 8 0 " R `e´v , p e n,Y ˘´R `e´v , 1 ˘‰ dv β `ż 8 0 " W R ´e´pv`p u n,k q , p e n,Y ¯´W R ´e´pv`p u n,k q , 1 ¯ı dv β `ż 8 0 " W R ´e´pv`p u n,k q , 1 ¯´W R `e´v , 1 ˘ı dv β * ": ra X pn{kqs β M EM β,k{n # ż 8 0 W R `e´v , 1 ˘dv β `9 ÿ i"1 Q i,n
+ .

We will study each term separately. We start with Q 1,n for which we apply Proposition 7.1 combined with Lemma 7.3 and the fact that p e n,Y " 1 `oP p1q, in order to obtain, with arbitrary large probability, and for n large, We want to apply the mean value theorem, and thus we need to compute the derivative of G. This can be done by applying the dominated convergence theorem and leads to

|Q 1,n | " ˇˇˇż 8 0 " ? k ! T n ´n k F X ´UX ´n k ¯`a X ´n k ¯pv `p u n,k q ¯, p e n,Y Rn{k ´n k F X ´UX ´n k ¯`a X ´n k ¯pv `p u n,k q ¯,
|R n{k pu, yq ´Rpu, yq| u κ ^1 ż 8 0 « F X `UX `n k ˘`a X `n k ˘pv `p u n,k q F X `UX `n k ˘˘ff κ ^1 dv β ď ? k sup uą0,yPr 1 2 ,2s |R n{k pu, yq ´Rpu, yq| u κ ^1 sup xPr´δ,δs ż 8 0 « F X `UX `n k ˘`a X `n k ˘pv `xq F X `UX `n k ˘˘ff κ ^1 dv β ď ? k sup uą0,yPr 1 2 ,2s |R n{k pu, yq ´Rpu, yq| u κ ^1 ˆsup xPr´δ,δs # ż 8 0 « F X `UX `n k ˘`a X `n k ˘pv `xq F X `UX `n k ˘˘ff κ ^1 dv β 1l txě0u `ż ´x 0 « F X `UX `n k ˘`a X `n k ˘pv `xq F X `UX `n k ˘˘ff κ ^1 dv β 1l txă0u `ż 8 ´x « F X `UX `n k ˘`a X `n k ˘pv `xq F X `UX `n k ˘˘ff κ ^1 dv β 1l txă0u + ď ? k sup uą0,yPr 1 2 ,2s |R n{k pu, yq ´Rpu, yq| u κ ^1 # 2 ż 8 0 « F X `UX `n k ˘`a X `n k ˘pv ´δq F X `
G 1 ptq " ż 8 0 e ´v R 1 `e´v t, 1 ˘dv β ,
with R 1 py, 1q the first derivative of Rpy, 1q with respect to y. Thus

Q 6,n " ? k " e ´p u n,k ´1ı G 1 pξ n q,
where ξ n is a random value between Concerning now Q 8,n , for T ą 0, we have

|Q 8,n | ď ż 8 T ˇˇW R ´e´pv`p u n,k q , p e n,Y ¯ˇˇd v β `ż 8 T ˇˇW R ´e´pv`p u n,k q , 1 ¯ˇˇd v β `ż T 0 ˇˇW R ´e´pv`p u n,k q , p e n,Y ¯´W R ´e´pv`p u n,k q , 1 ¯ˇˇd v β ": Q p1q 8,n `Qp2q 8,n `Qp3q 8,n .
Take ε ą 0 arbitrary. We have Finally, a similar treatment can be done on Q 9,n and shows that Q 9,n " o P p1q. Combining all these results with Lemma 2.1 achieves the proof of Theorem 3.1.

Proof of Theorem 4.1. Remember

p θ k " 1 k ř k i"1 plog X n´i`1,n ´log X n´k,n q 1 k ř k i"1 `log log n i ´log log n k ˘": N D .
Concerning the denominator D, we clearly have

D " 1 k k ÿ i"1 log ˆ1 `log k{i log n{k ˙" 1 k ř k i"1 log k{i log n{k `O ˆ1 plog n{kq 2 ˙,
since for all x ą 0 we have ´x2 2 ď logp1 `xq ´x ď x and 1 k ř k i"1 plog k{iq 2 Ñ 2 as k Ñ 8. Then, for all k ě 1, we can show that

ż k 1 log t dt ď k ÿ i"1 log i ď ż k 1 log t dt `log k, from which we deduce that 1 k k ÿ i"1 log k i " 1 `O ˆlog k k ˙.
This yields

D " 1 log n{k ˆ1 `O ˆlog k k ˙`O ˆ1 log n{k ˙˙. (11) 
Define now

q θ k,n pxq " 1 k n ÿ i"1 " log X i ´log ´UX ´n k ¯`x a X ´n k ¯¯ı 1l tXiąUXp n k q`x a X p n k qu . Then N " q θ k,n pp u n,k q .
We have

q θ k,n pxq " 1 k n ÿ i"1 ż 8 U X p n k q`x a X p n k q 1 u 1l tX i ąuu du " ż 8 U X p n k q`x a X p n k q 1 k n ÿ i"1 1l tX i ąuu 1 u du " a X ´n k ¯ż 8 0 1 k n ÿ i"1 1l tX i ąU X p n k q`aXp n k q pv`xqu 1 U X `n k ˘`a X `n k ˘pv `xq dv " a X ´n k ¯ż 8 0 1 k n ÿ i"1 1l tF X pX i qă k n n k F X pUXp n k q`aXp n k q pv`xqqu 1 U X `n k ˘`a X `n k ˘pv `xq dv, a.s. " a X ´n k ¯ż 8 0 T n ´n k F X ´UX ´n k ¯`a X ´n k ¯pv `xq ¯, 8 ¯1 U X `n k ˘`a X `n k ˘pv `xq dv " a X `n k ȖX `n k ˘ż 8 0 T n `n k F X `UX `n k ˘`a X `n k ˘pv `xq ˘, 8 1 
`aXp n k q U X p n k q pv `xq dv.

This implies that

? k ´p θ k ´θ" ? k ˜q θ k,n pp u n,k q D ´θ" ? k ¨aXp n k q U X p n k q D ż 8 0 T n `n k F X `UX `n k ˘`a X `n k ˘pv `p u n,k q ˘, 8 1 `aXp n k q U X p n k q pv `p u n,k q dv ´θ‹ ' " a X p n k q U X p n k q D ? k ¨ż 8 0 T n `n k F X `UX `n k ˘`a X `n k ˘pv `p u n,k q ˘, 8 1 `aXp n k q U X p n k q pv `p u n,k q dv ´1‹ ' `?k ¨aXp n k q U X p n k q D ´θ‹ ' ": a X p n k q U X p n k q D Q 1 `Q2 .
Concerning Q 2 , using (11), we have

Q 2 " ? k ˜aX `n k ȖX `n k ˘log n k ´θ¸`O ˜?k a X `n k ȖX `n k ˘log n{k log k k ¸`O ˜?k a X `n k ȖX `n k ˘¸.
Since H is differentiable, thus also X , which implies that

hpxq " 1 θ x 1 θ ´1 X pxq " 1 `θ x 1 X pxq X pxq  . ( 12 
)
Consequently

a X `n k ȖX `n k ˘log n k " HpU X pn{kqq U X pn{kqhpU X pn{kqq " θ 1 `θ U X pn{kq 1 X pU X pn{kqq X pU X pn{kqq , (13) 
from which we deduce that

Q 2 " ´θ2 1 `θ U X pn{kq 1 X pU X pn{kqq X pU X pn{kqq ? k U X pn{kq 1 X pU X pn{kqq X pU X pn{kqq `O ¨1 1 `θ U X pn{kq 1 X pU X pn{kqq X pU X pn{kqq log k ? k '`O ˜?k a X `n k ȖX `n k ˘" op1q.
Now, concerning Q 1 , we have the decomposition

Q 1 " ż 8 0 W R
`e´v , 8 ˘dv `?k ´e´p u n,k ´1¯`ż 8 0 " W R ´e´pv`p u n,k q , 8 ¯´W R `e´v , 8 ˘ı dv

´?k a X `n k ȖX `n k ˘ż 8 0 v `p u n,k 1 `aXp n k q U X p n k q pv `p u n,k q e ´pv`p u n,k q dv ´aX `n k ȖX `n k ˘ż 8 0 v `p u n,k 1 `aXp n k q U X p n k q pv `p u n,k q W R ´e´pv`p u n,k q , 8 ¯dv `ż 8 0 W R `n k F X `UX `n k ˘`a X `n k ˘pv `p u n,k q ˘, 8 ˘´W R `e´pv`p u n,k q , 8 1 `aXp n k q U X p n k q pv `p u n,k q dv `?k ż 8 0 n k F X `UX `n k ˘`a X `n k ˘pv `p u n,k q ˘´e ´pv`p u n,k q `aXp n k q U X p n k q pv `p u n,k q dv `ż 8 0 ? k " T n `n k F X `UX `n k ˘`a X `n k ˘pv `p u n,k q ˘, 8 ˘´n k F X `UX `n k ˘`a X `n k ˘pv `p u n,k q ˘‰ 1 `aXp n k q U X p n k q pv `p u n,k q ´WR `n k F X `UX `n k ˘`a X `n k ˘pv `p u n,k q ˘, 8 1 `aXp n k q U X p n k q pv `p u n,k q dv ": Similarly to the study of Q 8,n in the proof of Theorem 3.1, we can show that Q p1q 1 " o P p1q.

ż 8 0 W R `e´v
Concerning Q p2q 1
The integral is clearly bounded in probability, and we assume that ? k a X p n k q U X p n k q Ñ 0. Thus

Q p2q 1 " o P p1q. Concerning Q p3q 1
With arbitrary large probability, for n large and 0 ă ε ă 1{δ, we have The supremum term is negligeable a.s. according to Lemma 7.1. To prove that the integral is bounded, we can follow the lines of proof of Proposition 7.1.

|Q p3q 1 | ď 1 1 ´ε δ a X `
Combining all these results, Theorem 4.1 follows. 

Figure 1 :

 1 Figure 1: Model 1, X " Weibull(1), Y " Γp2, 1q. Boxplots of { M EM β,p {M EM β,p as a function of k for n " 500 (left) and n " 2000 (right) with pβ, pq " p1, 1{nq, p1, 1{p5nqq, p2, 1{nq and p2, 1{p5nqq (from top to bottom).

Figure 2 :

 2 Figure 2: Model 1, X " Weibull(1.5), Y " Γp2, 1q. Boxplots of { M EM β,p {M EM β,p as a function of k for n " 500 (left) and n " 2000 (right) with pβ, pq " p1, 1{nq, p1, 1{p5nqq, p2, 1{nq and p2, 1{p5nqq (from top to bottom).

Figure 3 :

 3 Figure 3: Model 2, X " |N p1.2, 1q|, Y " U r0, 10s. Boxplots of { M EM β,p {M EM β,p as a function of k for n " 500 (left) and n " 2000 (right) with pβ, pq " p1, 1{nq, p1, 1{p5nqq, p2, 1{nq and p2, 1{p5nqq (from top to bottom).
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 4 Figure 4: Model 2, X " Extended Weibull(1.25,-0.2), Y " Burrp1, 1, 1q. Boxplots of { M EM β,p {M EM β,p as a function of k for n " 500 (left) and n " 2000 (right) with pβ, pq " p1, 1{nq, p1, 1{p5nqq, p2, 1{nq and p2, 1{p5nqq (from top to bottom).
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 5 Figure 5: Wave height data. Scatterplot of significant wave height versus wind speed.

Figure 6 :

 6 Figure 6: Wave height data. Weibull quantile plot of significant wave height (left) and p θ k as a function of k for significant wave height (right).

Figure 7 :

 7 Figure 7: Wave height data. { M EM 1,p (left) and { M EM 2,p (right) with p " 1{n (black line) and p " 1{p5nq (red dashed line).

8 0

 8 Now, according to Lemma 7.2, we have for an arbitrary c ą 0 and n large, sup 0ăyďe δ `c ˇˇ?krT n py, 8q ´ys ´WR py, 8q ˇyη ż ˜F X `UX `n k ˘`a X `n k ˘pv ´δq F X `UX `n k ˘˘¸η dv.

  7.1 (Lemma 1 in[START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF] Assume pRq holds and let k Ñ 8 as n Ñ 8 such that k{n Ñ 0. For any η P r0, 1{2q and T ą 0 we have, for n Ñ 8,

	sup x,yPp0,T s	ˇˇˇˇ? krT n px, yq ´Rn{k px, yqs ´WR px, yq x η	ˇˇˇˇÑ 0 a.s. ,
		sup xPp0,T s	ˇˇˇˇ? krT n px, 8q ´xs ´WR px, 8q x η	ˇˇˇˇÑ 0 a.s. ,
		sup	
		yPp0,T s

ˇˇˇˇ? krT n p8, yq ´ys ´WR p8, yq y η ˇˇˇˇÑ 0 a.s. . Lemma 7.2 Let F X satisfy (1), H be differentiable with derivative h P RV 1{θ´1 , then, as t Ñ 8

  8q. Assume F X satisfies (1), H is differentiable with derivative h which is ultimately monotone, and h is differentiable with derivative h 1 satisfying xh 1 pxq{hpxq Ñ 1{θ ´1 as x Ñ 8. Assume also pRq. Then, if k Ñ 8 as n Ñ 8 such that k{n Ñ 0 and ? ka X pn{kq{U X pn{kq Ñ 0, we have, for any δ ą 0, ¯´R ´e´px`vq , y ¯ı dv β ˇˇˇÑ 0.Proof of Lemma 7.2. By the mean value theorem, with ξ a value between zero and one, pointwise, as t Ñ 8, since h P RV 1{θ´1 , and by the uniformity of the convergence in regular variation (see Theorem B.1.4 in de Haan and

	Lemma 7.4 sup xPr´δ,δs,yPr 1 2 ,2s	?	k ˇˇˇż 0 8	" R	´n k	F X ´UX ¯px `vq ¯, y F X ´t `z hptq ´n k ¯`a X ´n k F X ptq " e ´hˆt `ξz hptq ḣptq z ÝÑ e ´z ,

  This yields Q 1,n " o P p1q. Now, concerning Q 2,n , we have, with arbitrary large probability, and for n large,

													¯)
													p e n,Y
				´WR	´e´pv`p u n,k q , p e n,Y ¯ı dv β ˇď
				sup xPr´δ,δs,yPr 1 2 ,2s	ˇˇˇż 0 8	" ?	k	! T n	´n k	F X ´UX	´n k	¯`a X	´n k	¯pv `xq ¯, y	Rn{k
					´n k	F X ´UX	´n k	¯`a X	´n k	¯pv `xq ¯, y ¯) ´WR	´e´pv`xq , y ¯ı dv β ˇˇ.
	|Q 2,n | ď	?	k	sup								
				uą0,yPr 1 2 ,2s							

  by Assumption pSq, the integrals being bounded similarly as the study of Q 1,n px, yq in the proof of Proposition 7.1. A similar treatment forQ 3,n yields Q 3,n " O ´?k `n k ˘τ ¯.The two next terms, Q 4,n and Q 5,n , can be handled by Lemma 7.4 since for i " 4 or 5, we have, with arbitrary large probability, and for n large,

	Now, from the homogeneity of the R´function, we have
		Q 6,n "	?	k	ż 8 0	« e n,Y R p	˜e´pv`p u n,k q p e n,Y	, 1 ¸´p e n,Y R	ˆe´v p e n,Y	, 1 ˙ff dv β
			" p e n,Y	? k	"	G	ˆe´p u n,k p e n,Y	˙´G	ˆ1 p e n,Y	˙ .
												UX `n k	˘˘ff κ	dv β `δβ	+
	" O P ´?k	´n k	¯τ ¯,			
	|Q i,n | ď	sup xPr´δ,δs,yPr 1 2 ,2s	?	k ˇˇˇż 0 8	! R	´n k	F X ´UX	´n k	¯`a X	´n k	¯pv `xq ¯, y ¯´R ´e´pv`xq , y ¯) dv β ˇˇ"
		o P p1q.									

  Hence, for n ą maxpn 1 , n 2 q P p|Q 8,n | ą εq ď 4r ε, and thus Q 8,n " o P p1q.

	We have for η P p0, 1{2q			
		P	´Qp1q 8,n ą	ε 4	¯ď P ˜sup 0ăy 1 ďe δ´T , 1 2 ďy 2 ď2	|W R py 1 , y 2 q| y η 1	sup |x|ďδ	T ż 8	e ´ηpv`xq dv β ą	4 ε	P
							pp e n,Y R r1{2, 2sq `P p|p u n,k | ą δq
							ď P ˜sup 0ăy 1 ďe δ , 1 2 ďy 2 ď2	|W R py 1 , y 2 q| y η 1	ą	4 ε	β η β	Γpβ, η T q e ´ηδ	P
							pp e n,Y R r1{2, 2sq `P p|p u n,k | ą δq
	and the same bound can be also used for P	´Qp2q 8,n ą ε 4 ¯. Choose T such that the first probability
	in the right-hand side is at most r ε{2. Then, for n ą n 1
							P	´Qp1q 8,n ą	ε 4	¯`P	´Qp2q 8,n ą	ε 4	¯ď 3r ε.
	Now, concerning Q p3q 8,n we have			
	P	´Qp3q 8,n ą	ε 2	¯ď P ˜sup
	By the uniform continuity of W R on compact sets and Lemma 7.3 combined with the fact that ? kpp e n,Y ´1q ´Qp3q 8,n ą ε 2 ¯ď r ε.
				P p|Q 8,n | ą εq ď P	´Qp1q 8,n ą	ε 4	¯`P	´Qp2q 8,n ą	ε 4	¯`P	´Qp3q 8,n ą	2 ε	¯.
											29

e ´pT `δq ďy 1 ďe δ ,|y 2 ´1|ďk ´1{4 |W R py 1 , y 2 q ´WR py 1 , 1q|

ż T 0 dv β ą ε 2 P ´|p e n,Y ´1| ą k ´1{4 ¯`P p|p u n,k | ą

δq ď P ˜sup e ´pT `δq ďy 1 ďe δ ,|y 2 ´1|ďk ´1{4 |W R py 1 , y 2 q ´WR py 1 , 1q| ą ε 2 T ´β P ´|p e n,Y ´1| ą k ´1{4 ¯`P p|p u n,k | ą δq . d ÝÑ ´WR p8, 1q, we have for n ą n 2 that P

  , 8 ˘dv ´WR p1, 8q `oP p1q `6 ÿ

	Q piq 1 ,
	i"1
	by Lemma 7.3.
	p1q Concerning Q 1

  Using Lemma 7.2, we can again follow the lines of proof of the term Q 2,n px, yq in the proof of Proposition 7.1 in order to show that Q p4q 1 " o P p1q.With arbitrary large probability, for n large and 0 ă ε ă 1{δ, we have With arbitrary large probability, for n large and 0 ă ε ă 1{δ, we have

	p5q Concerning Q 1									
	|Q p5q 1 | ď	1 1 ´ε δ	sup xPr´δ,δs	? k	ż 8 0	ˇˇn k	F X ´UX	´n k	¯`a X	´n k	¯pv `xq ¯´e ´pv`xq ˇˇdv
			" o P p1q,							
	by the proof of Lemma 7.4.				
	p6q Concerning Q 1									
	|Q p6q 1 |												
	ď	1 1 ´ε δ	sup xPr´δ,δs	ż 8 0	! ?	k	" T n	´n k	F X ´UX	´n k	¯`a X	´n k	¯pv `xq ¯, 8 n
		k	F X ´UX	´n k	¯`a X	´n k	¯pv `xq ¯ı ´WR	´n k	F X ´UX	´n k	¯`a
														n k `n k	ȖX ˘sup 0ăyďe δ	|W R py, 8q| y η	ż 8 0	pv `δq e ´ηpv´δq dv
					" o P p1q.		
	p4q Concerning Q 1									

X ´n k ¯pv `xq ¯, 8 ¯) dv.

  Proof of Theorem 4.2. Consider the following decomposition by Lemma 7.4 and the study of Q 3,n in the proof of Theorem 3.1. A similar result can be obtained for M EM β,p {ra X p1{pqs β . Thus, we haveM EM β, k n {ra X pn{kqs β M EM β,p {ra X p1{pqs β ´1 " o ˆ1 ? k ˙.

	{ M EM β,p M EM β,p	´1 "	# loooooooooooomoooooooooooon ˆlog 1{p log n{k ˙βr p θ k ´θs +	# looooooomooooooon M EM β, k n M EM β, k n +	loooooooooooooooooomoooooooooooooooooon $ & % , . plog n{kq βp1´θq M EM β, k n -plog 1{pq βp1´θq M EM β,p	´1
							T 1							T 2	T 3
			"	# ˆlog 1{p log n{k	˙βr p θ k ´θs	´1+	T 2 T 3	`# M EM β, k n M EM β, k n	´1+	T 3	`$ & %	plog n{kq βp1´θq M EM β, k n plog 1{pq βp1´θq M EM β,p	. ´1, -
			"	" βr p θ k ´θs log	log 1{p log n{k	*	p1 `oP p1qq T 2 T 3	`# M EM β, k n n M EM β, k	´1+	T 3
				`# M EM β, k n M EM β,p {ra X p1{pqs β {ra X pn{kqs β	a X p1{pq ´1+ ˆaX pn{kq	log n{k ˙β ˆlog 1{p	˙βpθ´1q
				`ˆa X pn{kq a X p1{pq	˙β ˆlog 1{p log n{k	˙βpθ´1q	´1.
	We have														
	M EM β, k n ra X pn{kqs β "	ż 8 0	n k	P ˆF X pXq ă	k n	" n k	F X ´UX	´n k	¯`a X	´n k	¯z¯ı	, F Y pY q ă	n k	˙dz β
		"	ż 8	R `e´z , 1 ˘dz β			
			0												
			`ż 8 0	" R n{k ´n k	F X ´UX	´n k	¯`a X	´n k	¯z¯,	1 ¯´R	´n k	F X ´UX	´n k	¯`a X	´n k	¯z¯,	1 ¯ı dz β
			`ż 8 0	" R	´n k	F X ´UX	´n k	¯`a X	´n k	¯z¯,	1 ¯´R `e´z , 1 ˘ı dz β
		"	ż 8 0	R `e´z , 1 ˘dz β `O ´´n k	k ¯τ ¯`o ˆ1 ?	"
			ż 8 0	k R `e´z , 1 ˘dz β `o ˆ1 ?	˙,
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Now, using (12) and the fact that U plog xq " r X pU X pxqqs ´θ, we have ˆaX pn{kq a X p1{pq

Concerning T 4 , using the mean value theorem with u n P rU X pn{kq; U X p1{pqs, we have, for δ 1 , δ 2 ą 0 and n large,

Concerning T 5 , using again the mean value theorem, we have

where ω n is an intermediate value between

´1 and zero.

Combining Theorem 3.1 with Theorem 4.1, Theorem 4.2 follows.