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1 | INTRODUCTION

Abstract

Voltage sags are the most frequent and impactful disturbances in industrial power grids,
leading to high financial losses for industrial clients. The identification of the cause and
its relative location is crucial for the contractual relation between the energy provider and
the industrial customers. This paper proposes a methodology to identify the origins of
voltage sags based on instantaneous symmetrical components and dynamic time warping,
Short-Time Fourier and Fortescue transform are implemented in the pre-processing step
using the voltage and current waveforms. Then, a distance-based classification strategy to
identify the sources of voltage sags is used. It relies on a four-dimension time-series sig-
nature used as features. Moreover, a confidence index associated with the classification
output is provided. The proposal offers an easy implementation in industrial applica-
tions with no previous recorded data. It has the benefit of using a reduced-size reference
database entirely composed of synthetic data. The main advantages of the proposed
method are its generalization capabilities and the possibility of raising an alert based
on the confidence index. The obtained classification accuracy on synthetic data with
seven causes is 100%. The method reaches a classification Fl-score higher than 99%
with field measurements representing five classes obtained from three different industrial
sites.

solutions to eliminate the sources of voltage sags (corrective
solutions) or to protect the most sensitive equipment (mitiga-

The demand for power quality analysis in industrial networks
has increased over the past decades. One of the main reasons is
the financial impact of poor power quality. Among the electrical
disturbances that can affect industrial networks, voltage sags are
the most frequent and severe [1-3]. Understanding the origins
of voltage sags is essential in the diagnosis process to implement
corrective solutions and avoid financial losses due to produc-
tion line downtime, damaged equipment, and wasted product.
The three leading causes of voltage sags are: line faults, induc-
tion motor starting, and transformer energizing [4, 5], which
can occur at the distribution network level or at the industrial
site itself. Identifying the cause and its relative location is cru-
cial for the contractual relationship between the energy provider
and the industrial customers. Finding the voltage sag source
allows the implementation of cost-effective and well-adapted

tion solutions). For instance, if the sags are due to events inside
the industrial site, corrective solutions can be more easily imple-
mented according to the event causing the sag. Similarly, if the
sags are due to events in the distribution system outside the
maximum contract limits, the industrial customer may request
financial compensation and compliance with the contract toler-
ances from the power utility operator. However, if the events
are due to events in the distribution network within the contract
limits, the industrial customer will be advised to implement tar-
geted solutions on his site to protect only the most sensitive
equipment and avoid financial losses.

Experts in power quality can analyse the data recorded by
specialised monitoring devices installed on-premise during a
limited amount of time, and provide a diagnosis. However,
access to such expertise is not always available, and when it is,
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it can be time-consuming and expensive. Therefore, the devel-
opment of a methodology to automatically identify sources of
voltage sag is a critical issue in the power quality diagnosis of
industrial power systems. The classification methodology pro-
posed in this work aims to identify the causes of voltage dips.
This problem is different from the classification of voltage dip
types, also called voltage dip characterisation, which has been
abundantly addressed in the literature [6-9]. Indeed, a classi-
fication approach based on the causes of voltage sags may be
more difficult but generally more relevant for the diagnosis of
the electrical system, as pointed out by Bollen et al. in [10].

This paper proposes a method to identify the causes of
voltage sags. It is based on a four-dimension time series signa-
ture. We consider Short-Time Fourier Transform (STFT), and
instantaneous symmetrical components (Fortescue transform)
to obtain distinctive signatures and use a dependent Dynamic
Time Warping distance-based classification strategy. Our goal is
to identify the cause and the relative location of a given voltage
sag. The latter is equally important to allow industrial customers
to determine whether the voltage drop is due to an event in
the distribution grid or the industrial network, and therefore,
they would be able to implement an appropriate countermea-
sure. Thus, we define the following seven causes of voltage
dips affecting industrial sites: (a) upstream balanced faults, (b)
upstream unbalanced faults, (c) downstream balanced faults,
(d) downstream unbalanced faults, () upstream transformer
energizing, (f) downstream transformer energizing, (g) down-
stream motor starting, In addition, the algorithm also provides a
confidence index associated with the classification output, thus
improving its reliability.

This paper is organized as follows. Section 2 describes the
problem statement and related works, and Section 3 presents
the characteristics of the main voltage sag causes and the model
of the industrial network used for data generation. Section 4
details the classification method. Section 5 is dedicated to the
performance analysis of the proposal in terms of class separabil-
ity, robustness to noise, and fundamental frequency variations.
Finally, in Section 6, a minimum database size is obtained, the
results on real data are presented, and the classification accuracy
analysis is detailed. The main conclusions are given in Section 7.

2 | PROBLEM STATEMENT AND
RELATED WORKS

Most of the existing analysis methods in this field are mainly
based on scalar feature extraction strategies, which are used as
inputs to the classifier. Examples of such work include the fol-
lowing. [11, 12] proposed a solution based on S-transform (ST)
in combination with Extreme Learning Machine (ELM) as a
classifier. In [13], the authors used the Empirical Mode Decom-
position (EMD) and the Hilbert transform (HT) combined with
a Probabilistic Neural Network (PNN). In [14—17], the authors
implemented variants of the Wavelet transform (WT) for feature
extraction and different classifiers or combinations of classifiers
such as Support Vector Machine (SVM), Random Forest (RF),
Multilayer Neural Network (MLP), PNN and Naive Bayes. In

[18], Nagata et al. presented a method for the detection and clas-
sification based on High Order Statistics (HOS) and Artificial
Neural Networks (ANN).

One of the main limitations of these approaches is their
dependence on the choice of features, which should be done
carefully to avoid the loss of relevant information in the pro-
cess. In order to extract robust features, it is necessary to have
a large and representative dataset for training, which can be a
particularly limiting aspect, as voltage dips are disturbances of
limited occurrence and therefore challenging to measure. Thus,
building up an extensive training data set is a major obstacle
to implementing these methods in real industrial applications.
In addition, the transformations used in the pre-processing
step and the retained features rarely take into account the
physical properties of the events. Thus, the generalisation capa-
bilities of these algorithms are compromised, as it is difficult
to provide guarantees on the behaviour of the selected features
when applied to new data from the training data set. This is
a well-known problem in machine learning, known as Domain
Adaptation [19], defined as the ability to successfully apply an
algorithm trained in a source domain to a different but related
target domain. In our tresearch area, this problem was high-
lighted by Bollen et al. in [10] when a model trained with a
synthetic dataset was tested on measured data, and provided
non-acceptable results.

Classical machine learning algorithms only deal with scalar
features in the examples mentioned above. This approach may
be well suited to the analysis of steady-state disturbances. How-
ever, the time dependence of electrical waveforms is important
for analysing short-duration disturbances such as voltage dips.
This is because the information related to the undetlying causes
of voltage dips is encoded through the entire duration of the
event, and extracting scalar features involves a risk of informa-
tion loss [20]. For this purpose, a classification approach based
on time series seems more relevant for a more efficient analysis
of voltage sags. Time series classification is an area of machine
learning that has developed in recent years, and new algorithms
have recently appeared [21, 22]. Recent approaches to identi-
fying the causes of voltage drops take advantage of temporal
waveforms by applying deep learning algorithms. In [23] a self-
supervised voltage sag source identification method based on
Convolutional Neural Networks (CNN) and an autoencoder
has been proposed. A bidirectional long short-term memory
network (Bi-LSTM) was proposed in [24] and [25]. Indeed,
these models have no feature extraction step as deep neural
networks are designed to extract their own features during the
training stage. Even if this can be an advantage when access to
expert knowledge is not available, these approaches are highly
data-driven, and their performance strongly depends on the
characteristics of the training dataset (size, diversity etc.).

Although deep learning approaches are popular, there are
other time series classification methods that are less dependent
on the size of the training dataset. For instance, 1-Nearest
Neighbor classifier with Dynamic Time Warping (INN-DTW)
is a recommended benchmark due to its simplicity and hard-
to-beat accuracy [22]. However, one of the disadvantages of
this method is the small number of neighbors involved in the
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classification, which may decrease its robustness. The time
alignment difference between compared signals is handled by
the DTW algorithm [26]. Youssef et al. [27] proposed a power
quality event classification method using the DTW algorithm,
Walsh, and Fast Fourier transform. In [28], we presented a
voltage sag cause classification method based on symmetrical
components and INN-DTW as a classifier.

It is also important to notice that compared to the major-
ity of data-driven approaches in the literature, few proposals
include expert knowledge in their solutions by extracting mean-
ingful features from the electrical point of view [29, 30].
Usually, these approaches also implement rule-based strategies
for the classification stage by setting thresholds, which can
prevent algorithms from generalizing optimally when applied
to different grid configurations. Another way of incorporat-
ing electric-based concepts into diagnosis algorithms is to use
some of the tools usually applied in this field. For instance, the
Clarke transform has been used in [8, 31] for the characteriza-
tion of voltage sags and swells and in [32] for fault classification
and voltage sag parameter computation. The Fortescue trans-
form is also widely used to analyze unbalanced power systems.
It has been used for the characterization of voltage sags [7,
33, 34], and for determining the relative location of voltage
sag origins [35, 36]. But, to the best of our knowledge, it has
not been applied for the classification of the causes of voltage
sags.

3 | INDUSTRIAL NETWORK MODEL
AND MAIN VOLTAGE SAG SOURCES

3.1 | Main voltage sag sources

The leading causes of voltage sag reported in the literature are:
line faults, energizing of transformers, and starting of induc-
tion motors, as they considerably increase the amplitude of
the absotbed current. Moreover, current and voltage wave-
forms depend on the event causing the voltage sag and on the
loads in the industrial network. It should also be noted that
the characteristics of the distribution network, in particular the
power available at the point of common coupling (PCC), has a
significant impact on the magnitude of the voltage drop.

3.1.1 | Line faults

The most common cause of voltage sags is line faults, which
can be originated either from the upstream or downstream
networks. They can be caused by lightning or any object in
contact with energized lines. There are different types of faults
depending on the affected phases. Faults can also be classified
in symmetrical and asymmetrical. Three-phase faults (LLL) or
three phase-to-ground faults (LLLG) are considered symmet-
rical, while single phase-to-ground faults (L-G), double-phase
faults (LL), and double phase-to-ground faults (LL-G) ate con-
sidered asymmetrical. During a fault occurrence, the voltage
drops because of the high inrush current. The voltage is restored

in the healthy part of the grid as soon as the faulted feeder
is detected and de-energized by the corresponding protective
device (upstream case) or as soon as a protective device (e.g. cir-
cuit breaker or fuse) detects the over-current and disconnects
the faulted asset (downstream case).

3.1.2 | Transformer energizing

In transmission and distribution grids, the energizing of a trans-
former usually follows the end of a protection cycle: when
the faulted supply is disconnected, the loaded transformers are
energized. Transformer energizing can also occur in industrial
networks downstream of the monitoring point. The magnetic
flux may exceed the saturation limit when energizing the trans-
former, creating a high inrush current and a voltage drop. Core
saturation affects the frequency spectrum of waveforms with
additional harmonics during the transient. A significant level of
voltage unbalance also affects all three phases. Another char-
acteristic is the voltage exponential recovery, determined by
the time constant with which the residual flux decreases in the
transformer cote [37].

3.1.3 | Induction motor startup

Induction motor online startup creates a high inrush current
that can reach 7-10 times its nominal value, causing a mea-
surable voltage sag at the monitoring point. As voltage drops,
current rapidly increases. Voltage recovery is achieved at the
end of the startup as the current slowly decreases. The total
startup time depends on motor characteristics (power, inertia,
torque, load type, ...), ranging from less than one second for
small motors to a few seconds for large motors.

3.2 | Industrial network simulation model
description

The simulated case study is designed on the EMTP® soft-
ware [38] (Electromagnetic Transients Program), which is a
simulation tool for load-flow, steady-state, and time-domain
analysis for power systems. The electric model is composed
of two sub-networks: the industrial network and the distribu-
tion network, as displayed in Figure 1. Note that the monitoring
device is placed downstream of the main MV /LV transformer.
The location of the events is relative to the monitoring point.
Thus, events occurring in the distribution network are quali-
fied as upstream, and those occurring in the industrial network
as downstream.

3.2.1 | Industrial network

For out study, the nominal voltage of the industrial network is
400 V, and the frequency is 50 Hz. The site is connected to a
Dy11121kV/400 V transformer of 400 kVA. In order to model
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FIGURE 1 Simplified diagram of the industrial network model

the behaviour of a reduced but representative LV industrial site,
the following loads were included:

* Induction motors with rated power varying from 22 to 110 kW
with variable inertia and torque.

o Variable speed drivers with scalar control.

* Three-phase rectifiers designed as 6-pulse rectifiers feeding 30
kW DC loads.

* Three-phase loads of 30 kW and cos@ of 0.9.

* Single-phase loads of 5.5 kW and cosg of 0.6.

* Three-phase isolation transformers (400 V /400 V) with rated
power varying from 100 to 250 kVA with Dyz and YNyn
winding connections.

The loads are not all simultaneously connected. For instance,
the large motors and transformers are connected only for the
motor startup and the transformer energizing scenarios. The
nominal power consumption of the modeled industrial site is
around 350 kW. In order to emulate the critical state whete
the network is susceptible to experiencing voltage sags, the
main 400 kVA transformer is not optimally designed. Some of
the devices are sources of permanent disturbances frequently
present in industrial networks:

* Harmonics. Vatiable speed drivers and 6-pulse rectifiers
generate current harmonics, mostly of orders 5 and 7.

* Unbalance. The presence of single-phase loads simulates the
injection of a certain level of unbalance.

3.2.2 | Distribution network

In the distribution network (upstream), the voltage level is 21
kV. The nominal power of the main busbar varies in the range
[10 to 100] MVA, and the ratio of the reactance to the resistance

of the system is 0.1. The length of the MV lines ranges between
0 and 30 km. Two feeders connect the 21 kV busbar to the
main industrial network and to a secondary site. The latter is
composed of Dynll transformers whose rated power varies
between 500 and 1250 kVA. The transformers ate connected in
parallel, feeding loads of 300 kW.

3.3 | Voltage sag generation

3.3.1 | Line faults

Different line fault types are generated: single line-to-ground
(L-G), line-to-line (LL), double line-to-ground (LL-G), and
three-phase (LLL) faults. The magnitude of voltage sag mainly
depends on the fault type, the distance to the fault (line length),
and the value of the ground fault resistance. The duration of
the sag in this case depends on the action of the protection
equipment. Typical fault clearance time varies between 3 and
30 cycles (60-600 ms in a 50 Hz grid)[4]. This type of event
is generated at three locations: the secondary site’s feeder MV
line (upstream), the 400 V busbar of the main industrial net-
work (downstream), and the secondary side of an isolation
transformer (downstream).

3.3.2 | Transformer energizing

The magnitude of the voltage sag caused by this event depends
on the transformer’s power and its core flux initial state (differ-
ent from zero when the core has not been entirely demagnetized
before re-energizing). The duration of the sag depends on the
transformer’s characteristics. This event is generated at two loca-
tions: the secondary side (upstream) and at the 400 V busbar of
the industrial network (downstream).

3.3.3 | Direct online motor startup

The magnitude of the voltage sag caused by a motor startup
depends on its powet, torque, and total inertia. These param-
eters also determine the entire duration of the event and the
sag as a consequence. It is generated by directly connecting the
induction motor to the 400 V busbar of the industrial network
(downstream).

The generated voltage sags vary between 10% and 98%
(residual voltage). Although a voltage sag is defined as the reduc-
tion of voltage RMS values lower than 90%, shallow voltage
drops are also included in the dataset. Their identification can
be more difficult than deep voltage sags since the variations on
voltage and current can be very low.

4 | CLASSIFICATION OF VOLTAGE SAG
CAUSES

The proposed classification method described in Figure 2
mainly relies on the pre-processing step. The voltage and
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FIGURE 2 Flowchart of the proposed voltage sag source classification
method

current waveforms, measured at the monitoring point installed
at the secondary of the main transformer, are used as inputs.
The first transformation in the pre-processing step is the
Short-Time Fourier Transform (STFT), which accomplishes
two tasks: (a) decomposition of the signals into their harmonic
content and (b) computation of the complex values of real
waveforms. The second task is essential as the Fortescue trans-
form is defined in the complex domain. Then, the Fortescue
transform converts the three instantaneous phasors into three
instantaneous symmetrical components (positive, negative, and
zero-sequence). Four instantaneous symmetrical components
are retained: (a) positive-sequence voltage (harmonic 1), (b)
negative-sequence voltage (harmonic 1), (c) positive-sequence
voltage (harmonic 2), and (d) positive-sequence current (har-
monic 1). Finally, these four components are normalized using
min-max normalization.

The set of four-time series represents the voltage sag signa-
ture (four-dimensional signature). The signature of each of the
seven defined classes can be visually identified and distinguished
from the others.

The pre-processing stage is based on the one briefly pre-
sented in [28]. The main contributions on a new optimized and
more robust distance-based classification strategy. For this pur-
pose, a database containing the signatures of labelled events
belonging to each class was constructed. The classification of
a new event is based on the analysis of the distances between
its signature and those in the database. A spatio-temporal align-
ment step is first performed between the new signature and

those in the database. Then, the distance of the new signature
to each class in the database can be calculated. The predicted
label assigned to the event will correspond to the closest class.
Finally, two confidence scores on the classification output are
calculated and provided.

4.1 | Pre-processing

41.1 | Short-time fourier transform

STFT [39] is a technique used for the analysis of the frequency
content variation of a non-stationary signal. It is obtained by
applying the Discrete Fourier transform (DFT) over the signal
through a sliding window of length ;. The window overlap
between signal segments compensates for the signal attenuation
at the window edges. The DFT of each segment is saved into a
matrix containing the magnitude and angle for each data point
in time and frequency.

The matrix is defined as:

STFT () = [Xo0(f)s X1 (f)s e » X7 ()]s M
with,
X,(N= D, x(ngn—sR)e />, ©)

where #is the length of the discrete signal x(#), X (f) is the DFT
of the windowed signal centered at time s&, R is the distance
between two adjacent windows and g(#) is the window function.

The parameters are set as: W; = F,/F, with F; the sampling
frequency of x(#), F' the nominal frequency (50 Hz), R =1
and g(#) is a rectangular window. The signal is decomposed
into a set of frequency bands cortesponding to its harmonics
(fi =50 Hz, f, =100 Hz, f; =150 Hz...). The rectangular
window avoids amplitude attenuation, and the minimum dis-
tance between adjacent windows (maximum overlap) gives the
best possible time resolution.

The first reason we implement STFT to decompose the signal
into its harmonic components is only to extract the harmon-
ics of interest and avoid those affected by the industrial loads.
For instance, harmonics of orders 5 and 7 are significantly
affected by 6-pulse rectifiers (present in variable speed drivers
and three-phase rectifiers). Their isolation increases the gener-
alization capacity of the algorithm despite the different types of
loads present in the industrial network. The fundamental fre-
quency (harmonic of order 1) contains primary information for
voltage sag analysis, as sags are low-frequency disturbances. The
presence of even harmonics due to transformer energizing is
also useful information for their identification. Therefore, the
harmonic of order 2 is also extracted from the STFT matrix.
The second reason for implementing STFT, is that the Fortes-
cue transform to be applied next is defined in the complex
domain. Real waveforms of voltage and current are converted
into corresponding complex harmonic phasors.
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4.1.2 | Fortescue transform Voltage and current waveforms s V,, waveform
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. 0 005 ) 01 015 02
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transform is defined as:

ool B L B

X (=51 a 2|[X,] ©
2

X 1oa® allX,

2
where a = ¢/3” is the phasor rotation operator.

The Instantaneous Symmetrical Components (ISCs) of the
harmonics extracted from voltage and current waveforms are
calculated using the instantaneous complex values previously
determined by STFT. Positive-sequence components represent
the actual voltage and current being provided to the load. In
a perfectly balanced system, negative and zero-sequence com-
ponents are equal to zero. Zero-sequence is directly related
to the grounding system and transformer winding connec-
tions. However, for upstream disturbances, the zero-sequence
component is filtered [41] since MV/LV transformers of indus-
trial sites in France usually have a Dy winding connection.
Since the induction motors’ windings are connected in delta
(D) or ungrounded wye (Y), no zero-sequence current is
generated. Therefore, the zero-sequence voltage is not influ-
enced by the induction motor either [33]. Finally, four ISCs
are selected: (a) positive-sequence voltage (harmonic 1), (b)
negative-sequence voltage (harmonic 1), (c) positive-sequence
voltage (harmonic 2), and (d) positive-sequence current (har-
monic 1). Their characteristics are described in more detail in
Section 4.2.

4.1.3 | Minmax normalization

The sclected ISCs constitute a four-dimension time series
signature. We use the shape of each ISC as the main discrim-
inant characteristic between classes (causes) of voltage sags. A
min-max normalization is applied to each ISC to perform a
shape-based time series classification. Minmax normalization
with a re-scaling between [a, 4] is defined in (4) with X being
the ISC to be normalized, 2 = —0.5 and 4 = 0.5.

X — min(X)
s o e o Sl GRS @)
The ISCs are first re-scaled, then zero-centered by subtracting
the value of the first point from the rest of the sequence. Fach
time series is defined between [—1, 1] at the end of this opera-
tion. Figure 3 illustrates the different steps of the pre-processing
and the components obtained at each step.

Voltage and current phasors

transform

Fortescue ‘ Fortescue \ Eq. (3)

transform
V_h1 - amplitude V_h1 -angle

Vi) (0 [Vt (n2y (0 Ly (1) %, §
o 2 sof g o
Voiny (O || Vopnzy(® Lnyy(®) 3 ﬂ | A
Y.D(hl)(t) ‘_/D(hzl(t) ![)(hl}(t) . 01 02 (] 01 02

Instantaneous Symmetrical
Components (ISC)

‘ V, h1 -amplitude V_h1 - amplitude
1 ] )
Min-max
I Normalization Ea. (4) °U “V_—L
[Vinny] (®) ' o1 02 o o1 02
V- ay| )
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‘K?mz;‘(f) T A ) A ]

L+ nny | ®) i ’
) 1

4-dimension time series signature o o1 0z o o1
Time (s) Time (s)

I, h1-amplitude

FIGURE 3 Detailed steps of the pre-processing and obtained
components for the calculation of the four-dimensional signatures

The four-dimension signatures of real records of voltage sags
are illustrated: Figure 4 shows an upstream unbalanced fault,
Figure 5 an upstream transformer energizing, and Figure 6a
downstream motor startup.

4.2 | Electrical interpretation of signatures

The four-dimensional signatures obtained at the end of the pre-
processing stage can be interpreted from an electrical point of
view. Each ISC reflects one or more electrical characteristics of
the event.

1. Voltage positive-sequence harmonic 1 component represents the
voltage evolution during the sag, with very similar character-
istics to the RMS three-phase voltage curves. The rapid drop
is directly related to the onset of the voltage sag, For exam-
ple, the quasi-square shape is characteristic of sags caused by
faults, which have a rapid recovery after the fault is cleared.
Sags caused by starting motors and energized transformers
have, in contrast, a progressive recovery with characteristics
similar to their RMS voltage curves.

2. Voltage negative-sequence harmonic 1 component reflects the
unbalanced nature of the voltage sag. For instance, the sud-
den increase and sustained relative high values during the
sag are expected characteristics of an imbalanced line fault.
On the contrary, a symmetrical fault will only present two
peaks at the sag transients’ beginning and end. A three-phase
motor starting will show only one peak (with one or more
lobes) at the first and only transient, as it causes a balanced

858017 SUOWILLIOD 8A 1810 3(ealdde aup Aq pauienob ae sajoie YO ‘85N JO Sa|nJ Joj A%eid18UlUO A8]IM UO (SUOTPUOO-PUB-SW.BI W00 A8 | IM A Iq 1[BU1|UO//SdNL) SUORIPUOD PUe SWLB | 8L 88S *[£202/20/20] Uo AriqiTauliuo A1 ‘Aejoes-s1ied a1sleAlun Aq 59/2T ZPiB/6r0T 0T/I0pA0D Ao im Aeiq Ul juo Yo eesa e 1//:Sdny Wo.y pepeo|umoq ‘0 ‘G698TS.LT



VEIZAGA ET AL.

-

Voltage (pu)

0.05 0.1 0.15 0.2 0.25 0.3
Time (s)

S
T
4
A

Current (pu)

)
T

0.05 0.1 0.15 0.2 0.25 03
Time (s)

(a) Voltage and current waveforms
Voltage Positive-seq H1 Voltage Positve-seq H2

1
—>| e/ |
0 0 ' ' — -
A gL R . . . .
005 0.1 0.15 02 025 03 005 0.1 0.15 02 025 03
Time (s) Time (s)
4 Voltage Negative-seq H1 ] Current Positive-seqH1
0 - 0 o — —
[ [ =P
4 4 . . R .
005 01 015 02 025 03 005 01 015 02 025 03
Time (s) Time (s)

(b) Time series signature

FIGURE 4  Voltage sag caused by an upstream non-symmetrical fault
(real measurement data)
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FIGURE 5 Voltage sag caused by an upstream transformer energizing
(real measurement data)

Motor startup
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FIGURE 6 Voltage sag caused by a downstream induction motor startup
(real measurement data)

sag, Finally, a transformer energizing will at first cause a
high increase and then a slow decrease until the voltage is
recovered. This behavior is also expected as the transformers
cause unbalanced voltage sags.

Voltage positive-sequence harmonic 2 component is particularly
useful to identify a voltage sag caused by a transformer enet-
gizing since it causes the onset of even harmonics. At the
fault occurrence, two peaks are present at the beginning and
the end of the sag. For motor starting, only one peak is visible
at the beginning of the event, corresponding to a transient.
Current positive-sequence bharmonic 1 component is used to
determine the relative location of the event (upstream or
downstream of the monitoring device). For upstream events,
it rapidly decreases at the event occurrence time. This phe-
nomenon can be explained by the energy sink analogy
presented in [42], where events such as faults or load connec-
tions consume high amounts of current and energy. Then,
the current recovers and stabilizes during the voltage sag,
this stage being visible during sags caused by faults. When
the voltage is restored at the end of the sag, the current will
reach a peak value higher than its nominal value. The magni-
tude of the peak depends on the duration and severity of the
sag and the connected loads (motors power and inertia, DC
bus capacity etc.). For downstream events, on the contrary,
this ISC will increase and keep sustained values as long as
the sag is on and will decrease proportionally to the voltage
recovery curve.
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4.3 | Signatures classification

The classification of the events is based on the similarity of
the time series signatures. A similarity measure can be obtained
by calculating the distance between two signatures. Classical
distance measures such as Euclidean distance are not suitable
when applied directly to similar time series that slightly differ
in time or speed. Thus, an algorithm such as DTW [26], capa-
ble of handling time misalignment, is necessary. In the same
way, spatial misalignment can be a problem when analyzing
incomplete signals (due to the limitations of the monitoring
device).

43.1 | Space and time alighment

Space-alignment

The characteristics and parameters of the monitoring device
are sometimes not well calibrated. This can cause incomplete
event recordings, which can affect the signature-matching pro-
cess. This can be especially problematic if the missing segment
corresponds to the beginning of the event, as it is necessary
to have at least one “healthy” period before the sag. This first
period is used as a reference for zero-centering the signatures.
An offset can be applied to correct space misalignment.

At first, we verify if there exists a risk of having less than
one reference petiod due to an incomplete registered event by
calculating the difference between the mean value of the first
period and the last period for each ISC of the signature. If the
difference & is higher than a minimum threshold of 0.05 pu, an
offset can improve the alignment. A vector containing possible
offsets is defined as X, ;r = —sign(8) * [0,0.05,0.1,... ], and
the Euclidean distance is calculated between the ISC query plus
the offset and the ISC reference. The minimal Euclidean dis-
tance gives the optimal offset, which is applied at the end of this
stage.

Time-alignment

Dynamic Time Warping (DTW) [26] is a well-known algo-
rithm used for handling time alignment differences between
two univariate time series. The extension of this algorithm
to multivariate time series can be achieved either by calcu-
lating the DTW distance for each dimension independently
and adding the calculated distances (independent dynamic
time warping or DTW)) or by calculating the DTW dis-
tance across all the dimensions simultaneously (dependent
dynamic time warping or DTWp)[22]. In our case, the four
dimensions of each signature are time-correlated, and a single
optimal time alignment warping path is calculated for all the
dimensions.

A local distance matrix of size Lx/ is calculated, I being the
length of the signature. Each element of the distance matrix
is defined through a chosen distance measure, the Euclidean
distance being usually the privileged choice. The equation cal-
culating the elements e(7, j) of the distance matrix for two
signatures ¢ (query) and 7 (reference) of dimension G = 4 with

Reference

Reference
Reference

(a) (b)

FIGURE 7  Local step patterns: (a) symmetricl, (b) symmetric2, (c) asymmetric
[44]

indexes 7, j € [0, L] is given by

G=4

ein)) = Y, (@9 = r(9)* )

=1

The optimal watrping function ¢(#) defined in (6), is found
through the minimization of the cumulative cost /2 defined in
(7) obtained from the distance matrix. It is given by two inte-
ger vectors ¢, (1), ¢, (1) of same length IV (with L <= N <=
21), mapping the time axis of the query ¢ to the reference 7.
These vectors indicate the time alignment to be applied to both
signatures ¢ and r to all the dimensions.

P(k) = (#, (), $,(n)) with &= [0, N], ©)

JV
Ein(gs ) = rrgﬂ Z a(by(n); . (m)w(n). ¥

n=1

Finally, the normalized distance between the aligned query
and reference D(g, r) is defined in (8). The factor 1/N normal-
izes the total distance, regardless of the length /V, which tends
to increase when signatures are stretched or compressed in

time.
1 G=4 N
D(g.r) = 5 2 \| 2@y = rd, .07 ®
=1 n=1

Local or global constraints can be applied to limit certain
types of time series distortions, also called “singularities.” These
constraints are included by modifying the weights w(x) used to
calculate the cumulative cost.

Global constraints such as the Sakoe-Chiba band [26] or
the Itakura parallelogram [43] limit the distance of the warping
function to the main diagonal. However, these constraints are
not adequate for our problem since they can prevent an opti-
mal alignment of two similar events but with highly different
duration, limiting time dilation or compression capabilities.

Local constraints include step patterns, which are more flexi-
ble but still can limit severe signal distortion. Figure 7 illustrates
three well-known step patterns : symmetricl, symmetric2 and asym-
metric [44]. The best step pattern should allow minimal distance
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TABLE 1  Step pattern comparison

symmetricl symmetric2 asymmetric

D(e02) Z(%) D(e02) Z(%) D(e02) Z (%)

Intra-class  1.85 19.79 1.41 71.83 2.26 40.74
Inter-class  9.48 20.59 6.26 90.11 6.89 47.15

between signatures of the same class and maximal distance
between signatures of different classes, with the distortion of
the time series being minimal in both cases. The distance
between two signatures is given by Equation (8). The distor-
tion rate Z(g is defined in Equation (9), with NV being the
warping path length and L the length of the original signature.
Since the two compared signatures are equal in length, a perfect
time alignment would correspond to a diagonal warping path
of length N = L and Z4) = 0. The maximum warping path
length being NV = 2L, the maximum value of Z) = 100.

N—-L

Zoy=—7— @)

Table 1 shows the distance D and distortion rate 2 for sig-
natures belonging to the same class (intra-class) and between
classes (inter-class) for the three-step patterns. The symmetricl
step pattern has the best trade-off between minimal intra-class
distance, maximal inter-class distance, and minimal distortion
rate.

The symmetricl step pattern favors oblique steps over hor-
izontal or vertical ones. This characteristic limits distortion
compared to the symmetric2 step pattern, which considers a ver-
tical plus horizontal step equivalent to an oblique step. The
symmetric] step pattern also allows a higher degtree of dilation or
compression compared to the asymmetric step pattern. The latter
imposes a single match point for every point in a time series.

Figure 8 illustrates the result of the space and time-alignment
step using the symmetric 1 step pattern. The query signature cor-
responds to a real voltage sag and the reference to a synthetic
voltage sag.

432 | Distance-to-class calculation

The classification of a new voltage sag signature ¢* is achieved
by the mean distance to all the reference signatures 7, belong-
ing to the class C} of size M. In order to obtain a more robust
estimator of the mean distance to each class 4 (¢*), we define
dy(g™) using a bootstrapping approach, as described in (11). We
define B as the total number of sub-samples X}, ;, extracted
from the population of distances X, = {D(q", r )} with m =
1,2,..M, and d ; as the mean of Xp ;.

M
- 1
%a") = 37 X DG ren): (10)
1

m=
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(b) Signatures after space and time-alignment

FIGURE 8  Result of the space and time alignment step. The query
corresponds to a real voltage sag and the reference to synthetic voltage sag.
The space alignment corrects the error caused by the monitoring device

B
&g =35 D an

b=1

Once the distances d;(4%) between the new voltage sag event
signature ¢* to each class C} are calculated, we obtain a vector
containing the distances to the K classes. The closest class gives
the label y* assigned to the event such as:

o = argmin (4 ("), d(g*), de(q™) s d (@) (12)
kE{L,. K}

433 |
output

Confidence score on the classification

In order to validate the efficiency of the method, we propose
to compute a confidence score associated with the classi-
fication output result. Therefore, we define two confidence
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FIGURE 9 Likelihood function (a) and output score (b) of a binary Naive
Bayes classifier using KDE. New voltage sag signature ¢* to the class C;, given
the distance to the class x = d,(¢*)

indexes: a probabilistic-based index (NB-KDE) and a relative
distance-based index (RD).

Probabilistic (NB-KDE) index

The first confidence index is obtained through a set of K
binary Naive Bayes classifiers using a Kernel Density Estimator
(NB-KDE). Each binary classifier is trained using a one-vs-rest
approach. According to Bayes theorem given in (13), where x =
di(q"), the postetior probability P(y = C|x) is proportional to
the likelihood function estimated by the KDE P(x|y = C) and
the prior P(Cy). Figure 9 shows the likelihood function and the
output score of a binary Naive Bayes classifier using KDE.

Py = Clx) & P(x]y = CPG = Cp). 13)

The probabilistic index NB-KDE associated with the classifi-
cation output given in (12) is the output provided by the binary
classifier £ = y*, as defined in (14).

NB-KDE = P(x|y = Cp)P(y = Cps). (14)

The closer a new voltage sag signature ¢* is to the reference
signatures ;. of a given class C; of the database, the higher the
confidence index NB-KDE will be. As expected, the number of
reference signatures in the database influences the estimation of
the likelihood function. An extensive and variate database will
provide a reasonable estimate of the likelihood function by the
KDE, thus, 2 more accurate NB-KDE confidence index. On
the contrary, a reduced database will produce a poor likelihood
function estimation, and the NB-KDE confidence index will
not be considered as reliable.

Relative distance-based (RD) index

The second confidence index is based on the calculated dis-
tances to the different classes. According to Ben-Israel ez al. [45],
several relations can be assumed between the distance d;(q%)
and its membership probability p(¢*), including the working
principle defined in (15), where 7 (g*) is a function depending
only on ¢*.

Pe(g)e™ @) = F(g"). (15)

This relation establishes that the probabilities decay expo-
nentially as distances increase. Based on this principle, the
membership probability pg(4*) can be defined as in Equa-
tion (16), proposed in [45]. Since d.(g%) is an estimator of
Ay (q"), we use d(¢") = dp(g%). The confidence index RD is the
membership probability p, (%) of the predicted class £ = y*.

1

* s
peq) = —— k=12 K (16)

Z H @)

i=1 j#i

Figure 10 illustrates the distance to class and member-
ship probability of a new voltage sag caused by an upstream
symmetrical fault.

Although an extensive and variate database would naturally
improve the estimation of class distances di(¢*), the relative
distance-based index should be less sensitive to the size and
diversity of the database than the NB-KDE index.

5 | PERFORMANCE ANALYSIS OF THE
ALGORITHM

This section investigates the classification performance of the
proposed method. For this purpose, a synthetic database is cre-
ated with a large number of fault and disturbance conditions in
order to evaluate the limitations of our proposal and validate the
relevance of our methodology.
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5.1 | Synthetic dataset

A synthetic dataset generated with the simulation model
described in section 3 is built. The dataset consists of 700
voltage sags equally distributed in 7 classes (100 events per
class). The defined classes are upstream balanced faults (A1),
upstream unbalanced faults (A2), downstream balanced faults
(B1), downstream unbalanced faults (B2), upstream transformer
energizing (C1), downstream transformer energizing (C2), and
downstream motor startup (D). The sampling frequency of
the synthetic data is set at 12.8 kHz to match the sampling
frequency of the real data measurements. However, it can
be noted that the sampling frequency could be reduced up
to 400 Hz, while maintaining the main characteristics of the
four-dimension signatures.

Intraclass distribution Hc;
0.30 Interclass distribution Hez -c1

° o o
= N N
w o w

Reference events in the class (%)
o
=
o

0.05 A

0.00 T T T T T T T
0 2 4 6 8 10 12

Distance D le-2

FIGURE 11 Intra-class distribution H¢, and inter-class distribution
Heo—cy, with BC = 0.07

5.2 | Class separability

To verify the class separability capabilities of the proposed
method, we analyze the characteristics of the entire synthetic
dataset. We study the separability of two classes by analyzing
their intra-class and inter-class distances. The intra-class dis-
tance distribution H, is defined as the ensemble of distances
D(xyj, xy, ;) of all the pairs of elements xy ; and x; ; belonging
to the same class Cy. The inter-class distance distribution H_
corresponds to the ensemble of distances D(xy ;, xp ;) between
all the pairs of elements x; ; and x ; from two different classes
Cpand C /;, respectively.

For this study, we use the Bhattacharyya coefficient (BC), as
defined in (17). This coefficient which vaties from 0 to 1, can be
interpreted as the overlap between two distributions H, (x) and
Hg (x) defined in X. Two well-separated classes have a near-to-
zero overlap between their intra-class and inter-class distance
distributions.

BC =Y \[Ho()Hg(x). (17)

xEX

To study the class separability of a particular class o we
calculate the Bhattacharyya coefficient between its intra-class
distribution H,, and the intet-class distributions to the rest of
the classes Hy_g, with § ={1,..K},a # 8. Figure 11 illus-
trates the intra-class distribution of class C2 and the inter-class
distribution between C2 and C'1.

For all the considered cases, the Bhattacharyya results are dis-
played in Table 2. From these results, one can conclude that
the cases can be considered sufficiently well separated: all the
coefficient values ate close to zero (except on the diagonal of
the table where the coefficient is computed between 2 identi-
cal distributions). The worst Bhattacharyya coefficient is BC' =
0.07 obtained for Intra-class distribution H, and inter-class
distribution Heo_q.
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TABLE 2  Bhattacharyya coefficient between the intra- and inter-class
distributions

Intraclass Inter-class distribution Hy_g

distribution

Ho{ Ho{—Al HO{—AZ HD{—BI HOC—BZ Ho{—C 1 Ho{—C 2 Ho{—D
H 4 1.00 0.00 0.00 0.00 0.00 0.00 0.00
H 0.01 1.00 0.00 0.00 0.00 0.00 0.00
Hp 0.00 0.00 1.00 0.00 0.00 0.00 0.00
Hp, 0.00 0.00 0.04 1.00 0.00 0.00 0.00
Hey 0.03 0.06 0.03 0.04 1.00 0.00 0.00
Hery 0.00 0.00 0.00 0.06 0.07 1.00 0.00
Hp 0.00 0.00 0.04 0.00 0.00 0.00 1.00
5.3 | Classification efficiency: Accuracy and

robustness

The standard metrics for classification algorithms that are used
for evaluating the classification output performances of our
algorithm are accuracy, recall, and F1-score (18), the latter being
a good metric for summarizing the first two, mainly when
applied to balanced datasets. A perfect classification is obtained
with an F1-score equal to one.

precision % recall
Fl=2% — 18)

precision + recall”

However, the metrics mentioned above are not suitable for
evaluating the confidence score associated with the classifica-
tion output provided by the algorithm. A more appropriate
metric for this task is Log-Loss. Globally, this metric penalizes
outputs with a low confidence score. The Log-Loss definition is
given in (19), where y = {0, 1} and p s the associated probability
estimates with p = P(y = 1).

Ly = —=0log(p) + (1 =))log(1 = p))- 19)

Although raw Log-Loss values can be hard to interpret, lower
values mean classification outputs with higher confidence. For
instance, a perfect classifier would have a Log-Loss equal to
0. A random-guessing Log-Loss baseline score can be useful
for interpreting this metric. The Log-Loss value for p = 0.5 is
L, = 0.693. Any value higher than this baseline (represented
as a red dashed line on the following figutes) can be interpreted
as worse than random guessing.

We have also studied the robustness to noise of the proposed
classifier. For this purpose, we performed two experiments with
two databases.

Database A is composed of the original 700 synthetic voltage
sags from the synthetic dataset with no added noise. Database
B comprises the original 700 synthetic voltage sags plus 700
events with additional white Gaussian noise at SNR=25 dB. To
evaluate the performance with increasing noise levels regarding
databases A and B, we have created 16 test sets. Each one is
composed of the original 700 synthetic voltage sags to which
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FIGURE 12 Fl-score and mean values for NB-KDFE and RD indexes (a)
and the corresponding Log-loss values (b) associated to the classification
outputs for different levels of SNR

we add an equal level of additional Gaussian noise, with an SNR
varying from 40 to 10 dB.

The results of the experiments with databases A and B are
illustrated in Figure 12. F1-score and mean values of the corre-
sponding confidence indexes NB-KDE and RD are displayed
in Figure 12a and the Log-loss values for the NB-KDE and RD
indexes are shown in Figure 12b.

The results highlight that the evolution of the Fl-score is
the same for both experiments. It reaches its maximum value
between SNR=40 dB and SNR=20 dB, and it slowly decreases
in the range from 20 to 10 dB. The confidence indexes NB-
KDE and RD maintain a relatively high mean value for all
classes from 40 to 20 dB but degrade gradually from 25 to 10
dB. In the same way, their Log-Loss values are low and stable
from 40 to 20 dB but increase from 25 to 10 dB.

The NB-KDE index is less robust to variations between the
database and the test set, as it rapidly degrades at noise levels
higher than SNR=25 dB. We note that the extension of the
database with noisy data (database B) slightly improves the pet-
formance of the NB-KDE index for SNR levels from 25 to
15 dB. However, beyond 15 dB, the NB-KDE index calculated
with database B performs worse with database A, as its Log-
Loss values increase. On the contrary, the addition of noisy data
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to the database does not seem to influence the RD index, as it is
more stable regarding variations in the database.

The global classification performance of our proposal is rel-
atively robust in the standard range of noise levels from 40
to 20 dB. This can be explained by the fact that the pre-
processing step implicitly filters the fluctuations through the
STFT transform.

5.4 | Sensitivity to fundamental frequency
variations

To evaluate the sensitivity of the classification results regarding
frequency variations around fundamental frequency (50 Hz), we
proceed as before with two experiments based on two databases.

Database A is composed of the original 700 synthetic voltage
sags with a frequency of 50.0 Hz, and database B is composed
of the 700 synthetic voltage sags plus 210 events at 50.25 Hz
(910 events in total). In order to evaluate the performance with
increasing levels of frequency variation, we build 6 test sets, each
one composed of 210 synthetic voltage sags with a frequency
of FF'=50Hz=+¢€, where € ={0.0,0.1,0.2,0.3,0.4,0.5} Hz.
This range of frequency variations corresponds to the maxi-
mum frequency fluctuations (50 Hz +1%) allowed by French
and Furopean regulation standards regarding the power sup-
ply at the distribution level for synchronous connection to an
interconnected system [46].

The results are plotted in Figure 13a. Fl-score values are
above 95% for the analyzed range of values for databases A and
B. We note that the RD index slowly decreases as € increases
but stays high near 90%, even for frequency variations of € =
+0.5Hz. This is true for both databases. We note a signifi-
cant improvement for the NB-KDE index when the extended
database B is used, compared to database A. However, the RD-
index is significantly more robust and stable than the NB-KDE
index. Regarding Figure 13b, the Log-Loss values of the RD
index remain stable despite frequency variations, and are signif-
icantly lower than the random-guess baseline for both datasets
A and B. This is not the case for the Log-Loss values of the
NBKDE index, which increase and perform worse than the
random-guess baseline with only a £0.1/73 frequency variation
for database A. Although the performance of the Log-loss val-
ues for the NBKDE index slightly improved with database B,
its performance is still highly degraded for frequency variations
over +0.25F7%.

5.5 | Comparison with benchmark method
INN-DTW

In this section, we compare the performance of the proposed
method with the benchmark method INN-DTW presented in
[28]. One of the main limitations of INN-DTW is its sensitiv-
ity to outliers. Indeed, since a single closest neighbor is used for
the classification, the presence of outliers or errors in the label-
ing of the training database can result in classification errors. To
evaluate the sensitivity to outliers of both methods, we intro-
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FIGURE 13 Fl-score and mean values for NB-KDFE and RD indexes (a)
and the corresponding Log-loss values (b) associated to the classification
outputs, for different levels of fundamental frequency variations, /* = 50 Hz
*e€

duce labeling errors in the reference database using the synthetic
dataset, ranging from 0 to 30%. The reference database com-
prises 60 events per class (420 in total) and the test set comprises
40 events per class (280 in total). The classification results in
terms of Fl-score are presented in Figure 14 for both methods.

We observe that the new method is more robust to outliers
than the INN-DTW method. The F1-score for the benchmark
method decreases rapidly to 0.95 for 5% of outliers and 0.67 for
30% of outliers. On the contrary, the proposal maintains an F1-
score of 1 even with 30% of outliers in the reference database,
as the classification is performed taking into account the dis-
tance to an entire class instead of a single neighbor. Another
significant advantage of the method presented in this work is
the provision of confidence scores associated with the classifi-
cation result, in contrast to INN-DTW, which does not provide
this information.

6 | VALIDATION USING INDUSTRIAL
DATA

In order to validate the efficiency of our proposal on real
data, the performance on measurement data is presented in
this section. The signature database is composed exclusively of
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Total 123 138 120 385 outputs, for different synthetic database sizes and tested on real data

synthetic data collected from the simulation model. The test
set contains only real voltage sag records obtained from three
industrial sites.

The data consists of records from monitoring devices
installed at three sites, each within a specific sector: metal equip-
ment manufacturing, food processing, and chemical industries.
The industrial sites under consideration are supplied from the
21 kV distribution network via a 21 kV/400 V Dyn11 trans-
former. The voltage drop detection algorithm is integrated into
the monitoring device. The dataset consists of 385 measure-
ments, representing 5 of the seven classes defined above, as
described in Table 3.

The analysis is performed under the scope of the confusion
mattix, accuracy, and recall metrics. The classification errors are
also analyzed, and the results highlight the usefulness of the pro-
posed confidence indexes in identifying and avoiding possible
false results.

6.1 | Minimum database size setting

In the literature, classification studies generally need a huge
number of data to perform. Unfortunately in industrial prob-

lems, the availability of data in different faulty conditions is not
possible. For this reason, performing the classification with a
reduced size is a key point in this atea of research. In this sec-
tion, we determine the minimum database size for synthetic
data while maintaining good classification performances. We
use a random permutation strategy of five balanced splits. The
database is composed of a determined percentage of the syn-
thetic dataset, and the test set is composed at each iteration of
the entire experimental dataset. We note that the database con-
tains data from 7 classes, and the test set contains events from
the 5 available classes.

The results are illustrated in Figure 15. The F1-score reaches
values higher than 95% even with very few samples per class
in the database. However, the performance between the con-
fidence indexes is significantly different. The RD-index is
noticeably higher and more stable with the increasing number
of samples. On the contrary, the NB-KDE index is close to
50% even with a database of maximal size. This poor petfor-
mance is also reflected in the Log-Loss curve in Figure 15b
when compared to the red dashed baseline.

These curves confirm the results obtained in the previous
sections. The optimal size of the database is close to 20 sam-
ples per class, and the RD-index is the most reliable confidence
index compatred to the NB-KDE index.
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TABLE 4  Real data results with a synthetic signature database

Database Test set

Class size size Precision Recall Fl-score NB-KDE RD
Al 20 35 94.87 100 97.37 25.58 86.860
A2 20 157 100 98.72  99.36 66.80 92.84
B1 20 - - - - - -

B2 20 90 100 100 100 87.96 90.01
C1 20 9 100 100 100 75.24 80.17
Cc2 20 - - - - - -

D 20 94 100 100 100 8.32 74.02
Total 140 385 98.97 99.74  99.34 52.78 84.78
6.2 | Results

The reference signature database is composed of 20 synthetic
voltage sag events per class or 140 events in total for 7 classes.
The synthetic dataset is randomly split into five balanced sets of
140 events; each set is used once as a database. The final results
correspond to the average. The test set consists exclusively of
experimental measurements.

The obtained results are presented in Table 4. For three out
of the five classes, the accuracy, recall, and Fl-score are maxi-
mal. Only two events of class A2 are misclassified in class Al.
The overall results of the classification are satisfactory. How-
ever, the mean values for the NB-KDE and RD confidence
indexes are lower than those obtained with the synthetic data.
This is especially true for the NB-KDE index, which is much
lower for classes A1 and D. Nevertheless, the RD index is mote
stable even when used with field data.

6.3 | Accuracy analysis

In this section, we analyze the classification errors leading to
the total accuracy of the classifier. Two voltage sags of the real
dataset belonging to class A2 were misclassified in class Al, as
illustrated in the confusion matrix in Figure 16. If we analyze the
relative distance-based confidence index of all the voltage sags,
we observe that only seven events out of 385 were classified
with a confidence index lower than 60%, as shown in Figure 17.
Among these events, two correspond to misclassification
errors.

The two events, classified in class Al have an RD index of
46.89% and 44.11%, respectively. These values are significantly
lower than the mean RD index for this class, close to 86%.

In addition to this, the classification error appears between
two classes that only differ on the balanced /unbalanced nature
of the event. Classes Al and A2 cortespond to voltage sags due
to upstream line faults. The consequences of this error could
even be seen as minor.

Finally, we can define a threshold at 60% for the RD-index.
A classification output with a confidence index below this value
would trigger an alert for further analysis by a human expert.
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FIGURE 16 Confusion matrix of results on real data with a synthetic
signature database
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FIGURE 17  Analysis of misclassified events with the real dataset: (a)
Plotbox of RD confidence index, 7 events raise an alert due to low confidence
index, with two of them corresponding to the misclassification errors. (b)
Detailed RD values for the events raising an alert

7 | CONCLUSION

This paper has presented a method based on voltage and
current waveforms analysis to classify the causes of voltage
sags in LV industrial power networks. The proposal is based
on four-dimension time series signatures, extracted after a
pre-processing stage using STFT and Fortescue transform. A
database composed of these signatures and a distance-based
classification approach are used for the identification stage.
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The performance of the method has been analyzed in
terms of class separability, classification efficiency (accuracy and
robustness to noise), and sensitivity to fundamental frequency
variations. The results have proved that the proposal is resilient
regarding noise levels up to 15dB and fundamental frequency
variations up to € = +0.5 Hz. Two confidence indexes, the NB-
KDE and RD index, have been proposed and compared. The
RD index proved to be more robust and stable. The information
provided by such an index increases the reliability on the classi-
fication process by alerting when classification results with low
confidence scores are obtained while maintaining a high degree
of automation in the analysis.

Using a reference database composed entirely of synthetic
data, we evaluated the algorithm with synthetic data at first, and
finally with field data collected from three industrial sites rep-
resenting five of the seven defined classes. In both cases, the
classification metrics reach high values: 100% for synthetic data
and higher than 99% for experimental ones.

The main advantages of the proposed method are (1) the
reduced amount of data necessary for building the database
and (2) its generalization capabilities. Such an algorithm
could be easily implemented in industrial applications with
no previous recordings needed since the database can be
entirely composed of synthetic data and still provide accurate
classification results in different industrial sites regardless
of their variety. Other advantages include the (3) electri-
cal interpretability of the signatures and the (4) confidence
index associated with the classification output. These char-
acteristics could ease the troubleshooting process and the
general interpretability of the algorithm. This is particularly
interesting for industrial applications since understanding the
algorithm decision-making process is essential for reliability
issues.

Future work will include the analysis of voltage sags’ effects
and consequences on industrial sites. The objective is to esti-
mate the proportion of self-disconnected load types following a
voltage sag using the electrical data of a single monitoring device
installed at the main MV /LV transformer.
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