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On composition of torsors

Mathieu Florence, Diego Izquierdo and Giancarlo Lucchini Arteche

Abstract

Let K be a field, let X be a connected smooth K-scheme and let G,H be two

smooth connected K-group schemes. Given Y → X a G-torsor and Z → Y an

H-torsor, we study whether one can find an extension E of G by H so that the com-

posite Z → X is an E-torsor. We give both positive and negative results, depending

on the nature of the groups G and H .

MSC codes: 14M17, 14L99, 20G15.

Keywords: composition of torsors, towers of torsors, principal homogeneous spaces,

extensions of group schemes.

1. Introduction

Consider a field K, a smooth1 connected K-scheme X and two smooth connected K-
group schemes G and H. In the present article, we are interested in the following question
about compositions of torsors:

Question 1.1. Let Y → X be a G-torsor, and let Z → Y be an H-torsor. Can one find
an extension of K-group schemes

1 → H → E → G → 1,

together with an E-torsor structure on the composite Z → X, such that the following
holds.

• The action of E on Z extends that of H.

• The G-torsors Z/H → X and Y → X are isomorphic.

Of course, one does not expect to get a positive answer to this question in full generality.
The goal of the article is to give both positive and negative results, depending on the
nature of the groups G and H.

Particular cases of Question 1.1 have been considered in [HS05], [BD13], [BDLM20]
and [ILA21], as well as [Bri12], [Bri13] and [Bri20]. In [HS05], [BD13] and [ILA21],
compositions of torsors are used to study obstructions to the local-global principle and
to weak approximation over various arithmetically interesting fields, while in [BDLM20]
they are used to study invariants of reductive groups. In [Bri12], [Bri13] and [Bri20],
vector bundles (usual and projective) over abelian varieties, which are essentially com-
positions of torsors, are studied as interesting geometrical objects in their own right.

1In this article, we follow Hartshorne’s definition of smoothness, which in particular implies that the
scheme is of finite type (this is not an assumption taken by the Stacks Project, for instance).
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1 Introduction

In the present article, we study compositions of torsors in a systematic way, at least
in the case where K has zero characteristic. The main positive result in this direction
goes as follows.

Theorem 1.2. Let K be a field of characteristic 0. Let X be a connected smooth K-
scheme. Let G,H be smooth connected K-group schemes. Let Y → X be a G-torsor and
let Z → Y be an H-torsor. Assume one of the following:

• H is an abelian variety.

• H is a semi-abelian variety and G is linear.

Then there exists a canonical extension of K-group schemes

1 → H → E → G → 1,

together with a canonical structure of an E-torsor on the composite Z → X such that the
following holds.

• The action of E on Z extends that of H.

• The G-torsors Z/H → X and Y → X are isomorphic.

In order to prove this result, we first give in Section 2 an abstract statement (Theo-
rem 2.1) for torsors and groups satisfying certain technical conditions. In Section 3, we
prove that these conditions are met in the cases given in Theorem 1.2. In Section 4, we
present a weaker version of Theorem 1.2 that works over arbitrary fields (cf. Theorem 4.1).

Theorem 1.2 covers a certain number of the previously known results in the litera-
ture: [BD13, Lem. 2.13] deals with the case where H = Gm and G is linear, [BDLM20,
Thm. A.1.5] deals with the case where X = Spec(K), H is a special torus and G is re-
ductive, while [ILA21, Thm. A.1] deals with the case where H is a torus and Pic(Ḡ) = 0.
In [Bri12], [Bri13] and [Bri20], Brion studies homogeneous bundles over abelian varieties,
getting results that are related to our main theorem in the case where X = Spec(K)
and G is an abelian variety, although they do not deal directly with compositions of
torsors with such G (see however [Bri12, Cor. 3.2] and compare with our Theorem 2.1
and Proposition 2.6).

Theorem 1.2 does not cover all cases dealt with by Harari and Skorobogatov in [HS05,
Prop. 1.4], since they consider H to be of multiplicative type, and hence it may be non-
connected. However, using a variant of the abstract Theorem 2.1 (cf. Theorem 2.4), we
recover their result. Since they also provide an abstract result in their article (cf. [HS05,
Thm. 1.2]), we compare this result with ours at the end of Section 2 (cf. Remark 2.7).

Finally, in Section 5, we present a certain number of counterexamples to Question 1.1.
Table 1 summarizes both the positive and negative results we obtain in characteristic zero.

Acknowledgements. The authors would like to warmly thank Michel Brion for his
comments and suggestions, as well as two anonymous referees whose comments and ques-
tions helped us to improve the article. They also thank Ziyang Zhang, for his reading and
comments. The third author’s research was partially supported by ANID via FONDE-
CYT Grant 1210010.
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2 Abstract results

H
G

t. u. s.s. a.v.

t. X X X ✗

u. ✗ ✗ ✗ ✗

s.s. ✗ ✗ ✗ ✗

a.v. X X X X

t. : torus
u. : unipotent

s.s. : semisimple
a.v. : abelian variety
X : positive answer
✗ : negative answer

Table 1: Answer to Question 1.1 for several types of groups G and H over a field of
characteristic zero.

2. Abstract results

In this section, unless otherwise stated, K is an arbitrary field. For a K-scheme W ,
we denote by XW , YW , ZW ,HW , GW the W -schemes obtained by base change from
X,Y,Z,H,G respectively. We start by proving the following abstract theorem, which
will be the key tool to settle Theorem 1.2.

Theorem 2.1. Let K be a field. Let X be a smooth K-scheme. Let G,H be smooth
connected K-group schemes with H abelian. Let Y → X be a G-torsor and let Z → Y
be an H-torsor. Finally, let M be the sheaf over the small smooth site over K associated
to the presheaf given by (W 7→ H(YW )/H(W )). Assume the following:

(i) The class of ZΩ → YΩ in H1(YΩ,HΩ) is G(Ω)-invariant for every separably closed
field Ω/K.

(ii) The sheaf M is étale-locally isomorphic to the constant sheaf Zn for a certain
n ∈ N. In particular, it is representable by a K-group-scheme M .

Then there exists a canonical extension of K-group schemes

1 → H → E → G → 1,

together with a canonical structure of an E-torsor on the composite Z → X such that the
following holds.

• The action of E on Z extends that of H.

• The G-torsors Z/H → X and Y → X are isomorphic.

We start with a technical lemma, which might have an interest of its own.

Lemma 2.2. Let K be a field and let G be a connected (resp. smooth connected) K-
group scheme. Denote by K(G)/K the function field of G/K, and by Ω an algebraic
(resp. separable) closure of K(G). Let E be a contravariant group functor over the fppf
(resp. small smooth) site of K, equipped with a K-homomorphism π : E → G. Assume
the following:

(a) The functor E, on K-algebras, commutes with filtered direct limits.

(b) The arrow π(Ω) : E(Ω) → G(Ω) is surjective.

3



2 Abstract results

Then, the following hold.

(1) The arrow E(K̄) → G(K̄) is surjective, where K̄ is the algebraic (resp. separable)
closure of K.

(2) There exists a finite set I and an fppf (resp. smooth) cover (Vi → G)i∈I such that,
for each i ∈ I, the arrow Vi → G, considered as an element of G(Vi), lifts via
π(Vi) : E(Vi) → G(Vi). As a consequence, the arrow π : E → G is surjective.

Proof. We prove (1). To do so, we may change the base field from K to K̄, reducing us
to the case K = K̄. Pick a point g ∈ G(K) ⊂ G(Ω). Let e ∈ E(Ω) be a lift of g. Let
U0 = Spec(A0) be a non-empty affine open subscheme of G. Write Ω as the direct limit
(union) lim

−→
Aj , of its flat (resp. smooth) and finitely presented A0-subalgebras Aj . By

condition (a), e belongs to E(Aj) for some j. Since fppf (resp. smooth) morphisms are
open (cf. [SP18, Tag 01UA]), in geometric terms, there exists a non-empty affine open
U ⊂ U0 ⊂ G, and an fppf (resp. smooth) morphism V := Spec(Aj) → U , such that e
belongs to E(V ). Since V is a non-empty (resp. smooth) K-scheme of finite-type and
K = K̄, there exists a closed point v : Spec(K) → V . Then, the image of e via the
morphism E(V ) → E(K) induced by v is the desired lift of g.

We prove (2). Denote by g ∈ G(Ω) the generic point of G. Let e ∈ E(Ω) be a lift of g,
which exists by condition (b). The same limit argument used in (1), produces an affine
open U ⊂ G, and an fppf (resp. smooth) morphism V → U , such that the composite
V → U → G lifts via π, to an element of E(V ). Since G(K̄) is Zariski-dense in G, the
translates γ · V , for γ ∈ G(K̄), form an fppf (resp. smooth) cover of GK̄ , from which we
may extract a finite cover. Since these γ’s lift to E(K̄) by (1), there exists a finite (resp.
finite separable) field extension L/K, such that a cover of GL exists, with the required
property. Composing with the projection GL → G, which is finite (resp. finite separable)
and locally free, hence fppf (resp. smooth), gives such a cover over K.

For the last assertion, consider an arbitrary morphism of K-schemes (resp. smooth
K-schemes) φ : S → G and define the fppf (resp. smooth) cover (S ×G Vi → S)i∈I of S
by pullback. Since the map φi : S ×G Vi → G induced by φ factors through Vi → G,
which lifts to E(Vi), we see that φi lifts to E(S ×G Vi) and the surjectivity follows. ⌣̈

The following is an easy exercise given the actual literature, but we state it here since
it is used several times in what follows.

Lemma 2.3. Let K be a field and let G,H be K-group schemes. Let G0,H0 denote the
corresponding neutral connected components. Assume that G0,H0 are smooth and that
F := H/H0 is étale-locally isomorphic to Zn for some n ∈ N. Let

1 → H → E → G → 1,

be an exact sequence of sheaves over the fppf (resp. small smooth) site of K. Then E is
representable by a K-group scheme E.

Proof. Since H is normal in E and H0 is characteristic in H, we obtain that H0 is normal
in E . We may then quotient E by H0 in order to get an exact sequence

1 → F → E ′ → G → 1.

4



2 Abstract results

Since F is locally isomorphic to Zn we know by [SGA7, Exp. 8, Prop. 5.1] that every
F -torsor over any connected component of G is locally trivial, hence representable. In
particular, this is the case for E ′. Thus we have an exact sequence of K-group schemes

1 → F → E′ → G → 1,

which gives us the following exact sequence of sheaves

1 → H0 → E → E′ → 1. (1)

Now, by Chevalley’s Theorem (cf. [Con02, Thm. 1.1] or [BLR90, §9.2, Thm. 1]), there is
an exact sequence

1 → L → H0 → A → 1,

with L linear and A an abelian variety. Since L is a characteristic subgroup of H0 and
H0 is normal in E , we see that L is normal in E . We may then quotient E by L in order
to get an exact sequence

1 → A → E ′′ → E′ → 1.

Then E ′′ is representable by [Mil80, III, Thm. 4.3.(c)] since A is smooth, proper and
connected over K. Thus we have an exact sequence of K-group schemes

1 → A → E′′ → E′ → 1,

which gives us the following exact sequence of sheaves

1 → L → E → E′′ → 1.

Then E is representable by [Mil80, III, Thm. 4.3.(a)] since L is affine.
Finally, note that Milne’s results [Mil80, III, Thm. 4.3.(a),(c)] are stated over the

fppf site. However, if we are over the small smooth site, since H0 is smooth and E is an
H0-torsor (cf. sequence (1)), we deduce that it corresponds to a unique H0-torsor over
the fppf site (cf. [Gro68, Thm. 11.7.1, Rem. 11.8.3]), which is then representable. This
implies the representability of E over the small smooth site (by the same K-scheme). ⌣̈

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. For a K-scheme W , consider the group AutHXW
(ZW ) of XW -auto-

morphisms ϕ of ZW that are compatible with the action of H in the sense that the
following diagram commutes:

H × ZW
aW

//

id×ϕ
��

ZW

ϕ

��

H × ZW
aW

// ZW ,

where a denotes the morphism defining the action of H on Z and aW the corresponding
morphism after base change. The functor W 7→ AutHXW

(ZW ) defines a group presheaf
over the small smooth site over K. Denote by AutHX(Z) the corresponding sheaf and con-
sider the subsheaf AutHY (Z) defined by taking the subgroup AutHYW

(ZW ) of AutHXW
(ZW )

5



2 Abstract results

for each W . Since every element in AutHXW
(ZW ) induces an XW -automorphism of YW ,

we have an exact sequence of sheaves

1 → AutHY (Z) → AutHX(Z)
π
−→ AutX(Y ),

where AutX(Y ) denotes the sheaf of X-automorphisms of Y .
Note that G is naturally a subgroup of AutX(Y ). Taking the pullback via π, we get

an exact sequence of sheaves
1 → A → E ′ π

−→ G,

where A = AutHY (Z). Now, the functor V/Y 7→ AutHV (Z ×Y V ) over the small smooth
site of Y is represented, as a Y -scheme, by HY (cf. for instance [Gir71, III.§1.5]). In
other words, A(W ) = AutHYW

(ZW ) = H(YW ) and hence M = A/H. Thus, by (ii), we
get an exact sequence of group sheaves over K

1 → H → A → M → 1,

where M is a K-group scheme that is étale-locally isomorphic to Zn for some n ∈ N. By
Lemma 2.3, it follows that A is represented by a K-group scheme A. Moreover, since H
is connected, it corresponds to the neutral connected component of A. In particular, H
is a characteristic subgroup of A.

On the other hand, since X, Z, H and G are of finite type over K, the functor
E ′ ⊂ AutK(Z) commutes with direct limits. Moreover, by (i), if we set Ω := K(G), we
know that ZΩ is isomorphic to g∗ZΩ as an H-torsor over GΩ for every g ∈ G(Ω), and
thus the arrow E ′(Ω) → G(Ω) is surjective. Then, by Lemma 2.2, we get that the arrow
π : E ′ → G is surjective. In particular, we get an exact sequence of sheaves

1 → A → E ′ π
−→ G → 1.

And since M = A/H is locally isomorphic to Zn by (ii), we see by Lemma 2.3 that E ′ is
representable. Thus we have an exact sequence of K-group schemes

1 → A → E′ π
−→ G → 1. (S)

Since A is normal in E′ and H is characteristic in A, we obtain that H is normal in E′.
We may then quotient by H in order to get an exact sequence

1 → M → F
π̄
−→ G → 1. (S̄)

Since M is discrete and torsion-free by (ii), and since G is connected, we see that the
neutral connected component F 0 ⊂ F , is mapped isomorphically to G by π̄. This provides
a canonical splitting of extension (S̄). As a consequence, extension (S) is the pushout of
an extension of group schemes (obtained as a pullback via the canonical splitting)

1 → H → E → G → 1.

As a subgroup of AutHX(Z), it acts on Z, and it is immediate to check then that Z →
X is an E-torsor, which enjoys the required properties. To conclude, note that the
construction above is canonical. ⌣̈

In the previous theorem, the assumptions that H is abelian and that G and H are
both connected can be removed when M is the trivial group. In that way, one gets the
following result, which implies [HS05, Prop. 1.4].

6



2 Abstract results

Theorem 2.4. Let K be a field. Let X be a smooth K-scheme. Let G,H be smooth
K-group schemes. Let Y → X be a G-torsor and let Z → Y be an H-torsor. Assume
the following:

(i) The class of ZΩ → YΩ in H1(YΩ,HΩ) is G(Ω)-invariant for every separably closed
field Ω/K.

(ii’) The sheaf of sets M over the small smooth site over K associated to the presheaf
given by (W 7→ H(YW )/H(W )) is trivial.

Then there exists a canonical extension of K-group schemes

1 → H → E → G → 1,

together with a canonical structure of an E-torsor on the composite Z → X such that the
following holds.

• The action of E on Z extends that of H.

• The G-torsors Z/H → X and Y → X are isomorphic.

Proof. The proof starts exactly as the one above, except for the following modification.
Instead of considering the groups AutHXW

(ZW ) and AutHYW
(ZW ) for smooth W → K and

the corresponding sheaves AutHX(Z) and AutHY (Z), we consider the groups AutH
′

XW
(ZW )

and AutH
′

YW
(ZW ) and the corresponding sheaves AutH

′

X (Z) and AutH
′

Y (Z), where H ′ is
the Y -group scheme obtained by twisting HY by the torsor Z → Y (H ′ is actually HY

when H is abelian). This group scheme acts naturally on Z on the left compatibly with
the right action of H (cf. [Gir71, III.§1.5]). In particular, we still have the equality
AutH

′

YW
(ZW ) = H(YW ) by loc. cit. and an exact sequence

1 → A′ → E
π
−→ G → 1,

with A′ = AutH
′

Y (Z), where the surjectivity of π is given once again by Lemma 2.2. The
assumption (ii’) on the sheaf M tells us then that A′ is actually H, and hence the exact
sequence becomes

1 → H → E → G → 1.

Thus E is an H-torsor, which is then representable by a K-group scheme E by Lemma
2.3. And again, since E is by definition a subgroup of AutHX(Z), it is immediate to check
that E acts on Z and that Z → X is an E-torsor. The fact that the construction is
canonical is once again easy to see. ⌣̈

Remark 2.5. As a referee pointed out, the proofs of Theorems 2.1 and 2.4 do not use
the fact that Y → X is a G-torsor, but rather that G acts on the X-scheme Y . One may
extend thus the statements of both theorems to a more general setting (for instance, one
can consider projective bundles or Severi-Brauer schemes over X, which have natural
actions by forms of PGLn). However, we were not able to come up with new applications
in this setting.

In Theorems 2.1 and 2.4, the G(Ω)-invariance of the HΩ-torsor ZΩ → YΩ is, in a
wide variety of cases, a strictly necessary hypothesis in order to get a positive answer to
Question 1.1. More precisely:

7



2 Abstract results

Proposition 2.6. Let K be an algebraically closed field of characteristic 0. Let

1 → H → E → G → 1,

be an extension of smooth K-group schemes with G connected. Assume that the unipotent
radical of H is trivial. Let X be a smooth K-scheme, let Z → X be an E-torsor and let
Y := Z/H, so that Z → Y is an H-torsor and Y → X is a G-torsor. Then the class of
Z → Y in H1(Y,H) is G(K)-invariant.

Proof. Define C to be the centralizer of H in E. We claim that C surjects onto G via
the projection. Since C is the kernel of the natural arrow E(K) → Aut(H) given by
conjugation, the claim amounts to proving that the induced morphism G(K) → Out(H)
is trivial, where Out(H) := Aut(H)/Inn(H).

By Lemma 3.3, which we prove in the following section and uses the hypothesis
on the characteristic of K, we know that G(K) is generated by its infinitely divisible
elements, while Out(H) has no such elements. Indeed, this group is finite for reductive
groups (cf. [Dem65, Thm. 5.2.3]), while it is a subgroup of GLn(Z) for abelian varieties
(as follows from [Mil86, Thm. 10.15]). In the general case, our hypothesis on H and
Chevalley’s Theorem (cf. [Con02, Thm. 1.1]) ensure that H is an extension

1 → L → H → A → 1,

of an abelian variety A and a reductive linear group L. Since L is a characteristic
subgroup of H and scheme morphisms from an abelian variety to a linear group are
constant, one easily sees that Aut(H) is isomorphic to a subgroup of Aut(L)×Aut(A).
We deduce the same property for Out(H), which implies the claim.

Now consider g ∈ G(K) and let us prove that the torsor g∗Z → Y , defined as the left
vertical arrow of the fiber product

g∗Z //

��

Z

��

Y
g

// Y,

is isomorphic to the torsor Z → Y . Let c ∈ C(K) ⊂ E(K) be a preimage of g. Then we
have a commutative square

Z

��

c
// Z

��

Y
g

// Y.

Then, by the universal property of the fiber product, we get a Y -morphism Z → g∗Z,
which we claim it is H-equivariant. This is a straightforward computation that uses the
fact that c ∈ C(K) commutes with H. This proves that the class of Z → Y is g-invariant
and hence G(K)-invariant. ⌣̈

Remark 2.7. A result similar to Theorem 2.4 can be found in [HS05, Thm. 1.2]. How-
ever, the assumptions are slightly different:

Harari and Skorobogatov assume that every morphism ZK̄ → HK̄ is trivial. This is
easily seen to imply the triviality of M and hence our assumption (ii’).

8



3 Proof of Theorem 1.2

On the other hand, they assume that every automorphism of YK̄ given by an element
g ∈ G(K̄) can be lifted to an automorphism of ZK̄ . Our assumption (i) implies this, of
course, but it is not clear whether they are equivalent assumptions, even though ours
seems to be always necessary, as it can be seen from Proposition 2.6.

In any case, assumption (ii’) of Theorem 2.4 is met for instance when H is affine,
G is anti-affine and X is connected and proper. Indeed, in this case O(Y ) = K and
hence H(Y × W ) = H(W ) for geometrically integral W by [Bri21, Lem. 5.2]. This
implies the triviality of M. These are milder hypotheses than those considered by Harari
and Skorobogatov in [HS05, Prop. 1.4], who deal for instance with the case of H of
multiplicative type and Y proper.

3. Proof of Theorem 1.2

It will suffice to prove that the assumptions (i) and (ii) of Theorem 2.1 are met un-
der each of the hypotheses of Theorem 1.2. We fix then a field K of characteristic 0
and keep the other notations as above: X is a connected smooth K-scheme; G,H are
smooth connected K-group schemes; Y → X is a G-torsor and Z → Y is an H-torsor;
M is the sheaf over the small smooth site over K associated to the presheaf given by
(W 7→ H(YW )/H(W )).

We prove (ii) first. By étale descent, we may assume that K is algebraically closed
and we need to prove that M is representable and isomorphic to Zn. This is a direct
consequence of a result of Rosenlicht, which we prove in the appendix in the context of
separably closed fields (cf. Lemma A.1).

We are then left with the proof of (i), which is clearly implied by the following result.

Proposition 3.1. Let K be an algebraically closed field of characteristic 0. Let G and
H be smooth connected K-algebraic groups and make one of the following assumptions:

(a) H is an abelian variety.

(b) G is linear and H is a semi-abelian variety.

Let X be a smooth K-scheme and let Y → X be a G-torsor. Then the action of G(K)
on H1(Y,H) is trivial.

Proof of Proposition 3.1.(a). According to [Ray70, Cor. XIII.2.4, Prop. XIII.2.6], the
group H1(Y,H) is torsion. Hence, given an element a ∈ H1(Y,H), it comes from
H1(Y,H[n]) for some n > 0. By [BD13, Th. 5.2], we deduce that a is fixed by G(K). ⌣̈

We prove now Proposition 3.1.(b). For that purpose, we first need to prove some
lemmas on the structure of the groups involved. In all of them, we keep the notations of
Proposition 3.1.

Lemma 3.2. Let A be an abelian variety over K. Then the group H1(Y,A) is torsion
of cofinite type, i.e. its m-torsion subgroup is finite for every m ∈ N.

Proof. As it was already noted in the proof of Proposition 3.1.(a), the group H1(Y,A)
is torsion. Moreover, by [SGA4, Th. 5.2 of Exp. XVI], for each integer n > 0, the group
H1(Y,A[n]) is finite, and hence so is its quotient H1(Y,A)[n]. ⌣̈

9



3 Proof of Theorem 1.2

Lemma 3.3. The group G(K) is spanned by its divisible subgroups.

Proof. Write G = GaffGant where Gaff is the largest connected affine subgroup of G and
Gant is the largest anti-affine subgroup of G (cf. [BSU13, Thm. 1.2.4]). Every element g
of Gaff(K) can be written as:

g = su1...ur

where s is a semisimple element of Gaff(K) and each ui is contained in a subgroup of Gaff

isomorphic to Ga. Hence Gaff(K) is spanned by its divisible subgroups. Moreover, the
anti-affine group Gant is connected commutative (cf. [BSU13, Thm. 1.2.1]), and hence
Gant(K) is a divisible group. We deduce that G(K) is spanned by its divisible subgroups.

⌣̈

Lemma 3.4. Let Γ be a profinite group. Then, Γ has no non-trivial infinitely divisible
elements.

Proof. The statement is clear if Γ is finite. It thus also holds for inverse limits of finite
groups. ⌣̈

Proof of Proposition 3.1.(b). We have an exact sequence:

0 → T → H → A → 0,

where T is a torus and A is an abelian variety. It induces a cohomology exact sequence:

H1(Y, T )
f
−→ H1(Y,H)

g
−→ H1(Y,A),

whose arrows are clearly G(K)-equivariant since the action is on Y . Put M := im(g)
and N := im(f), so that we have the exact sequence of G(K)-groups

0 → N → H1(Y,H) → M → 0.

By Lemma 3.2, H1(Y,A) is torsion of cofinite type, and hence so is M . Moreover, by
Proposition 3.1.(a), the group G(K) acts trivially on H1(Y,A), and hence on M . On the
other hand, note that H1(Y, T ) ∼= Pic(Y )dim(T ). Since G is linear, a result of Sumihiro
(cf. [Bri18, Thm. 5.2.1]) tells us that the action of G(K) on H1(Y, T ) is trivial, hence
also its action on N .

Thus, the action of G(K) on H1(Y,H) corresponds to a morphism from G(K) to
Hom(M,N). The abelian group M is torsion, and hence Hom(M,N) = Hom(M,Ntors).
Moreover, M is of cofinite type, and so is the group Ntors since it is isomorphic to a
quotient of Pic(Y )dim(T ). We can therefore write:

M ∼=
⊕

p

(Fp ⊕ (Qp/Zp)
rp) ,

Ntors
∼=
⊕

p

(
F ′

p ⊕ (Qp/Zp)
r′p
)
,

where p runs through the set of all prime numbers, Fp and F ′

p are finite abelian p-groups
and rp, r

′

p ≥ 0. It follows that Hom(M,Ntors) is a profinite group. Hence, it has no non-
trivial infinitely divisible elements by Lemma 3.4. Thus, every morphism from G(K) to
Hom(M,Ntors) is trivial by Lemma 3.3. We deduce that the action of G(K) on H1(Y,H)
is trivial. ⌣̈
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We finish this section with an example that shows that one really needs to assume K to
be algebraically closed in Proposition 3.1.(b) (and hence separably closed in assumption
(i) of Theorems 2.1 and 2.4).

Example 3.5. Let K be a field and let L/K be a separable quadratic field extension such
that the norm NL/K : L× → K× is not surjective. Consider the extension of algebraic
K-groups

1 → R1
L/K(Gm) → RL/K(Gm)

NL/K
−−−−→ Gm → 1,

where RL/K denotes Weil scalar restriction and NL/K is the norm of L/K. Set G =
Y := Gm, H := R1

L/K(Gm) and X := Spec(K). The extension above provides a class

x0 := [RL/K(Gm) → Gm] ∈ H1(Y,H).

This class is not invariant under the action of G(K). Indeed, the action of G(K) is
described as follows:

λ · x = x+ p∗δ(λ),

where λ ∈ G(K), x ∈ H1(Y,H), p : Y → K is the structure morphism and δ : G(K) →
H1(K,H) is the connecting map in Galois cohomology. In particular, since the arrow

p∗ : H1(K,H) → H1(Y,H),

is injective, we have λ · x = x if and only if λ ∈ NL/K(L×), which does not hold in
general.

4. Positive characteristic

In this section, we present a weaker version of Theorem 1.2 that works in positive char-
acteristic.

Theorem 4.1. Let K be a field. Let X be a connected smooth K-scheme. Let G,H be
smooth connected K-group schemes. Let Y → X be a G-torsor and let Z → Y be an
H-torsor. Assume one of the following:

• H,G are abelian varieties and X is proper.

• H is a torus and G is linear.

Then there exists a canonical extension of K-group schemes

1 → H → E → G → 1,

together with a canonical structure of an E-torsor on the composite Z → X.

Proof. The proof of this result is given once again by Theorem 2.1, which is valid over
an arbitrary field. We need to prove then that assumptions (i) and (ii) of Theorem 2.1
are met. The proof of (ii) is exactly as before: By étale descent, we may assume that K
is separably closed and we need to prove that M is representable and isomorphic to Zn.
This is a direct consequence of Lemma A.1, which is valid over separably closed fields.

Thus, we are only left with (i). In the second case, this is a direct consequence of
Sumihiro’s result we used before (cf. [Bri18, Thm. 5.2.1]). In the first case, (i) is implied
by Proposition 4.2 here below. ⌣̈
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Proposition 4.2. Let K be an separably closed field. Let X be a smooth proper K-
scheme. Let G and H be abelian varietes and let Y → X be a G-torsor. Then the action
of G(K) on H1(Y,H) is trivial.

Proof. Without loss of generality, we can assume that X (and hence Y ) is connected.
Moreover, since H is smooth, we may and do assume that K is algebraically closed.
Note that H1(Y,H) is torsion by [Ray70, Cor. XIII.2.4, Prop. XIII.2.6]. As in the proof
of Proposition 3.1, [BD13, Th. 5.2] implies that G(K) acts trivially on the q-primary
part of H1(Y,H) for every prime q 6= p. It is therefore enough to prove that G(K) also
acts trivially on H1(Y,H)[pn] for every n ∈ N. We proceed by induction on n.

For n = 1, we know that H1(Y,H)[p] is a quotient of H1
fppf(Y,H[p]) and H[p] ∼=

(Z/pZ)a × (µp)
b × (αp)

c for some integers a, b, c (cf. [Sha86]). It is therefore enough to
prove that the action of G(K) on H1

fppf(Y,Z/pZ) and H1
fppf(Y, µp) and H1

fppf(Y, αp) is
trivial.

Since Y is proper over K, [Mil80, Cor. VI.2.8] ensures the finiteness of H1
fppf(Y,Z/pZ),

which implies the triviality of the action in this case.
Now by Kummer theory, we have an exact sequence:

0 → K[Y ]×/(K[Y ]×)p → H1
fppf(Y, µp) → Pic(Y )[p] → 0.

Using the properness of Y once more, we have K[Y ] = K, and hence the quotient
K[Y ]×/(K[Y ]×)p is trivial. Moreover, the group Pic(Y )[p] is always finite. Hence
H1

fppf(Y, µp) is finite, which implies the triviality of the action in this case.
We deal now with H1

fppf(Y, αp). Let A be a K-algebra. Then H0(YA,OYA
) = A and

H1(YA,OYA
) = H1

fppf(Y,OY )⊗K A, so that, after taking cohomology of the extension of
fppf sheaves (over YA)

0 → αp → Ga
Frob
−−−→ Ga → 0,

we get an exact sequence

0 → A/Ap → H1
fppf(YA, αp) → H1(Y,OY )⊗K A.

Taking A = K, we get an inclusion of finite-dimensional K-vector spaces

H1
fppf(Y, αp) ⊂ H1(Y,OY ).

It then suffices to show that G(K) acts trivially on H1
fppf(Y,OY ). To do so, observe that

the G-action on Y , induces an action of the abstract group G(A) on the A-scheme YA,
and hence an A-linear action of G(A) on H1

fppf(Y,OY ) ⊗K A. Being functorial in A, it
arises from a morphism of algebraic K-groups ρ : G → GL(H1

fppf(Y,OY )), which is trivial
because G is an abelian variety. This concludes the proof for n = 1.

Consider now the following exact sequence

0 → H1(Y,H)[p] → H1(Y,H)[pn+1] → H1(Y,H)[pn],

and let I be the image of the rightmost arrow. By the inductive assumption, the
group G(K) acts trivially on H1(Y,H)[p] and on I. Hence the action of G(K) on
H1(Y,H)[pn+1] corresponds to a morphism G(K) → Hom(I,H1(Y,H)[p]). But this
morphism is trivial since G(K) is divisible and Hom(I,H1(Y,H)[p]) is p-torsion. We
deduce that G(K) acts trivially on H1(Y,H)[pn+1], as wished. ⌣̈
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5. Counterexamples

In this section, we provide examples of towers of torsors that do not admit a torsor
structure under an extension of the two involved groups. We treat every negative case
considered in Table 1.

5.1 Examples where H is a torus

As it is suggested by Lemma A.1, when H is a torus, assumption (ii) of Theorem 2.1
is satisfied in all generality. According to Table 1, it is then assumption (i), on the
G(Ω)-invariance of the H-torsor Z → Y that must fail in order to get counterexamples.

Example 5.1. Assume that K is algebraically closed of characteristic 0, X = Spec(K),
G = Y is an elliptic curve, and H = Gm. Then the group G(K) acts on H1(Y,H) =
Pic(G) via the following formula:

Q · [D] = [D] + deg(D) · ([Q]− [O]), Q ∈ G(K), [D] ∈ Pic(G).

This action is not trivial, and hence one can find a class in Pic(G) that is not G(K)-
invariant. By Proposition 2.6, this class represents an H-torsor Z → Y such that the
composition Z → K is not a torsor under an extension E of G by H.

5.2 Examples where H is unipotent

We continue with the case in which H is unipotent. The following example covers the
cases in which G is either a torus, a unipotent group or a semisimple group.

Example 5.2. Let H = Ga, X an elliptic curve over an algebraically closed field K of
characteristic zero and Y the trivial G-torsor with G either Ga, Gm or SLn (with n ≥ 2).

On the one hand, by Künneth’s formula we have

H1(Y,Ga) = H1(X,Ga)⊗K O(G) = O(G),

which is an infinite-dimensional K-vector space.
On the other hand, every extension E of G by Ga is split by the basic theory of

linear groups. Even more, if G = Ga or G = SLn, then the extension is simply the direct
product, while if G = Gm, then it corresponds to the semi-direct product Ek := Ga⋊kGm

with Gm acting on Ga by a character of the form

χk : Gm → Aut(Ga) = Gm,

x 7→ xk,

for some k ∈ Z. In particular, these extensions are parametrized by Z.
Thus, in the former two cases (where G = Ga or G = SLn), we get that E-torsors

lifting Y → X are classified by the one-dimensional vector space H1(X,Ga), while H-
torsors Z → Y are classified by the infinite dimensional vector space H1(X,Ga)⊗KO(G).
This tells us that there exist H-torsors Z → Y such that the composite Z → Y → X is
not a torsor under an extension of G by H.

In the latter case where G = Gm and Ek = Ga⋊kGm, we have a split exact sequence:

1 → H1(X,Ga) → H1(X,Ek) → H1(X,G) → 1.

13
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Since the torsor Y → X is trivial, we deduce that Ek-torsors lifting Y → X are classified
by the one-dimensional vector space H1(X,Ga). Consider then the composite

H1(X,Ga) → H1(X,Ek) → H1(Y,Ga),

where the first arrow is induced by the injection Ga ⊂ Ek and the second is the arrow
that sends an Ek-torsor Z → X to the Ga-torsor Z → Z/Ga = Y . One can easily
check that its image in H1(Y,Ga) = O(G) is the one-dimensional subspace generated
by χk. We deduce that H-torsors over Y that may be lifted to an Ek-torsor over X for
some k ∈ Z correspond, inside H1(Y,Ga) = O(G), to the union of the one-dimensional
subspaces generated by the different χk ∈ O(G). In particular, there exist H-torsors
Z → Y such that the composite Z → Y → X is not a torsor under an extension of G by
H.

This example leads to a more general construction for towers of Ga-torsors over curves
of genus ≥ 2.

Example 5.3. Let X/K be a smooth projective curve, of genus g ≥ 2. Then, the K-
vector space H1(X,OX ) is g-dimensional. Let Y → X be a non-trivial Ga-torsor, whose
class in H1(X,Ga) we denote by y. Using the correspondence between Ga-torsors over
X and extensions of vector bundles of OX by itself (both objects are classified by the
group H1(X,Ga) = H1(X,OX ) by étale descent), Y corresponds to an extension

E : 0 → OX
s
−→ E

π
−→ OX → 0.

More precisely, we have

Y = Spec

(
lim
−→
n

SymnE

)
,

where the transition morphisms SymnE → Symn+1E are given by mulitiplication by s,
and hence

H1(Y,OY ) = H1(X, lim
−→
n

SymnE) = lim
−→
n

H1(X,SymnE).

Now, to compute this direct limit, one can use the symmetric powers of E :

SymnE : 0 → Symn−1E
×s
−−→ SymnE

πn

−→ OX → 0,

where
πn(e1 ⊗ . . .⊗ en) := π(e1) . . . π(en).

Denote by yn ∈ H1(X,SymnE) the class of SymnE . We have a commutative diagram of
extensions

0 // Symn(E)
×s

//

πn

��

Symn+1(E)
πn+1

//

g

��

OE

×(n+1)

��

// 0

0 // OE
s

// E
π

// OE
// 0,

where g is given by the formula

g(e0 . . . en) =
n∑

0

π(e0) . . . π̂(ei) . . . π(en)ei,
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where ̂ denotes an omitted variable. Since E is non-split, and since (n + 1) ∈ K×,
we get that (the class of) SymnE does not belong to the image of H1(X,Symn−1E) →
H1(X,SymnE); in particular, it is non-split.

Now, the cohomology exact sequence associated to SymnE gives:

K → H1(X,Symn−1E)
sn−→ H1(X,SymnE) → H1(X,OX ) → 0,

where the image of the leftmost arrow is precisely the subspace generated by the class
of SymnE . This tells us that, if we set Vn := H1(X,SymnE)/〈yn〉, we have an exact
sequence

0 → Vn → Vn+1 → H1(X,OX )/〈y〉 → 0.

Since dim(H1(X,OX )) = g ≥ 2, we see that the direct limit of the Vn’s has infinite
dimension, so that the same holds for H1(Y,OY ) = lim

−→n
H1(X,SymnE).

Assume now, that for every Ga-torsor Z → Y , we can find an extension of X-group
schemes

1 → Ga → Γ → Ga → 1,

such that Z → X can be equipped with the structure of a Γ-torsor. Since K has
characteristic zero, Γ is the affine space of a vector bundle F over X, fitting into an
extension of vector bundles over X

F : 0 → OX
s
−→ F

π
−→ OX → 0.

Using the same computation as above, we get that H1(X,F ) is (2g − 1)-dimensional.
Thus, the moduli space of torsors under extensions of Ga by itself is (3g−1)-dimensional.
This contradicts the fact that H1(Y,OY ) is infinite-dimensional.

Remark 5.4. Note that in Examples 5.2 and 5.3 the base scheme X is always proper.
On the opposite side, when the base is affine, we get a particular case where the answer
to Question 1.1 is positive with H unipotent as follows:

Assume that H is a split unipotent group, that G is linear and that X is affine. Let
Y be a G-torsor over X and let Z be an H-torsor avec Y . Then Y is affine, and hence
H1(Y,Ga) = 0. We deduce that H1(Y,H) is trivial, so that Z = Y ×H. In particular,
Z is a (G×H)-torsor over X.

In contrast with the last remark, if G is not linear, we can also provide an example
in which the base scheme X is not proper over K.

Example 5.5. Let G = A be an abelian variety, H = Ga and let X be the spectrum
of a function field L over K. Then Ext(A,Ga) ≃ H1(A,OA) by [Ser75, VII.17, Thm. 7],
which is a K-vector space for group extensions over K and an L-vector space of the
same dimension if we do the corresponding base change (and the restriction arrow is the
obvious injection). This tells us immediately that there are extensions of A by Ga over
L that do not come from extensions over K. In particular, these extensions are towers
of torsors over L that cannot have a torsor structure under an extension defined over
K (if an extension were a torsor under another extension, they would have the same
underlying variety and hence define the same element in H1(A,OA)). Obviously, these
extensions can be built over a suitable (smooth affine) K-scheme with function field L,
if one wants X to be more than just a single point.
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5.3 Examples where H is semisimple

We finish this section with examples in which H is semisimple. This completes the study
of all cases in Table 1.

Example 5.6. Let H = PGLn with n ≥ 2 and let G be either Gm
a , Gm

m, PGLm, or
an abelian variety A. Consider an H-torsor Z → G, and the trivial G-torsor G → K
below it. If Question 1.1 had a positive answer for this tower, then Z would be an
E-torsor for some extension E of G by H. However, in all four cases for G (assuming
n ≫ m if G = Gm

a and assuming K algebraically closed if G = A) we have that the
only possible extension is the direct product E = G × H. Indeed, the first three cases
are elementary results from the theory of linear groups, and the case G = A comes from
[BSU13, Prop. 3.1.1]. This implies in particular that the class in H1(G,H) of Z → G
must come from H1(K,H). Thus, any class in H1(G,H) which does not come from
H1(K,H) gives a negative answer to Question 1.1. Now, recall that classes in H1(G,H)
classify Azumaya algebras over G, which correspond also to classes in the Brauer group
Br(G) (cf. for instance [CTS21, Thm. 3.3.2]).

Assume that G = Gm
a and that Br(K) 6= 0. Then by [OS71, Prop. 2], there exist

non-constant Azumaya algebras over G2
a. These correspond to elements in H1(G,H)

that do not come from H1(K,H).
Assume that G = Gm

m. Then a simple computation using residue maps with respect
to the irreducible divisors in PmrGm

m (cf. for instance [CTS21, Thm. 3.7.2]) tells us that
Br(G)/Br(K) 6= 0. A class in Br(G) r Br(K) corresponds then to a class in H1(G,H)
which does not come from H1(K,H).

Assume that G = PGLm and that H1(K,Z/mZ) 6= 0. Since the subgroup of algebraic
classes in Br(G)/Br(K) is isomorphic to H1(K,Z/mZ) (cf. [San81, Lem. 6.9(iii)]), one
can find non-constant classes as well in this case.

Finally, assume that G = A and that K is algebraically closed. Then it is well-known
that Br(A)/Br(K) is non-trivial in general (cf. [Ber72, p. 182]). We conclude as before.

Remark 5.7. Given that all the examples above use the adjoint group H = PGLn, one
could wonder whether Question 1.1 has a positive answer when H is semi-simple and
simply connected. This question remains open.

A. An elementary proof of Rosenlicht’s Lemma

We prove the following lemma, due to Rosenlicht in the case of an algebraically closed
field (cf. [Ros61]).

Lemma A.1. Let H be a semi-abelian variety over a field K. Let V and W be geomet-
rically integral K-varieties. Then, the following holds.

1. The abelian group H(W )/H(K) is finitely generated and free.

2. If K is separably closed, the sequence

0 → H(K)
h 7→(h,−h)
−−−−−−→ H(V )×H(W )

π∗

V +π∗

W−−−−−→ H(V ×K W ) → 0,

is exact, where

π∗

V : H(V ) → H(V ×K W )

h 7→ h ◦ πV .
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Proof. In both statements, W and V can be replaced by a non-empty open subvariety. In
particular, by generic smoothness, we can thus assume that V and W are smooth over K.

Let us prove the first assertion. Denoting by K̄ a separable closure of K, the natural
arrow

H(W )/H(K) → H(W̄ )/H(K̄)

is injective, so that we may assume K = K̄. By definition, there is an exact sequence

1 → T → H
π
−→ A → 1,

with T a torus and A an abelian variety. Since K is separably closed and T is smooth,
the snake lemma gives an exact sequence

1 → T (W )/T (K) → H(W )/H(K)
π
−→ A(W )/A(K).

It will suffice then to treat the cases H = A, or H = Gm.
Up to shrinking W , we can assume there is a smooth K-morphism W → U of relative

dimension one and with geometrically connected fibers, where U = D(f) is a principal
open subset of some affine space. Denote by K ′ = K(U) the field of functions of U , and
set W ′ := W ×U K ′. Then W ′ is a smooth K ′-curve, and there is an exact sequence

0 → H(U)/H(K) → H(W )/H(K) → H(W ′)/H(K ′).

Thus, the problem is further reduced to two particular cases: W = D(f) is a principal
open subset of some affine space, or W is a smooth curve over K. The first case is
trivial for abelian varieties (a morphism from a rational variety to an abelian variety is
constant). For Gm, it is dealt with by a straightforward direct computation. It remains
to treat the case of a smooth affine curve W/K. The case H = Gm is once again a
straightforward computation, using the smooth proper curve C compactifying W and
the fact that H(C) = H(K). For H an abelian variety, using [Mil86, Thm. 6.1], the
statement is equivalent to Homgp(Jac(C),H) being a free abelian group of finite rank,
which holds by [Mil86, Thm. 10.15].

In order to establish the second assertion, we only need to check the surjectivity of
π∗

V + π∗

W . Pick rational points v0 ∈ V (K) and w0 ∈ W (K), which exist since K is
separably closed and V,W are smooth over K. For f ∈ H(V ×K W ), set

f̃(v,w) := f(v,w)− f(v0, w) − f(v,w0) + f(v0, w0).

Then, the composite
π ◦ f̃ : V ×K W → A

vanishes on {v0} ×K W and on V ×K {w0}. Using [Mil86, Thm. 3.4], we get π ◦ f̃ = 0.
In other words, f̃ takes values in T . Thus, in order to conclude, it suffices to prove
the exactness when H = Gm. Fix f ∈ H(V ×K W ) = O×

V×KW . Replacing f by
(v,w) 7→ f(v,w)f(v0, w)

−1, we may assume that f = 1 on {v0} ×K W . To conclude, we
have to prove that f factors through the projection πV : V ×W → V , i.e. that f does
not depend on W . Using that the smooth K-variety W is covered by smooth K-curves
(for instance, by Bertini’s Theorem), we easily reduce to the case where W is a curve.
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If W is an open subset of Gm, this is once again a straightforward computation. In
general, for a given v1 ∈ V (K), set

g1 : W → Gm,

w 7→ f(v1, w).

We have to show that g1 is constant. Assume it is not. Then, it is finite of degree
d ≥ 1 over its image. Up to shrinking W , we may assume that g1 is a composite arrow
W → W ′ → U ⊂ Gm with W → W ′ purely inseparable and W ′ → U finite and étale.

Assume first that W = W ′. Denote by W̃ → U the Galois closure of g1. There is a
commutative diagram

O×

V×W

ρ1
//

N
��

O×

W

N
��

O×

V ×U

ρ1
// O×

U ,

where N is the (multiplicative) norm with respect to the finite étale morphism g1 and
ρ1 denotes the restrictions to the fiber above v1 (in particular, it maps f to g1). We
claim that N(f) ∈ O×

V×KU is trivial on {v0} × U . Indeed, we have N(f) = f1f2 . . . fd,
where f = f1, f2, . . . , fd are the images of f with respect to the different embeddings of
OV×KW in OV×KW̃ . These are trivial on {v0} × W̃ , whence the claim. Since we know
the conclusion of the Lemma for W = U , we get that N(f) ∈ O×

V×U does not depend on
U . Using commutativity of the diagram above, we compute:

ρ1(N(f)) = N(g1) = gd1 .

Thus, gd1 is constant. Hence so is g1, which finishes the proof when W = W ′. In general,
for a finite purely inseparable morphism of degree pr, the norm is given by N(x) = xp

r
,

so that a straightforward variant of the proof above applies. ⌣̈

Remark A.2. The second statement of Lemma A.1, over a non-separably closed K, is
false in general. Indeed, surjectivity fails when V = W is a non-trivial H-torsor. This is
essentially the only counterexample, as surjectivity holds whenever H1(K,H) = 0 (e.g.
for H = Gm).

Remark A.3. When H is a torus, the proof of the second statement of Lemma A.1 that
we provide above uses affine geometry, combined with a norm argument. In this sense,
it is an “inner” proof. This is a more elementary approach than the use of a normal
compactification of W in Rosenlicht’s original proof.
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