

Cinnabar Inclusions in Ethiopian Opal

Féodor Blumentritt, Candice Caplan, Emmanuel Fritsch, Franck Notari

▶ To cite this version:

Féodor Blumentritt, Candice Caplan, Emmanuel Fritsch, Franck Notari. Cinnabar Inclusions in Ethiopian Opal. The Journal of Gemmology, 2022, 38 (3), pp.217-219. hal-04012002

HAL Id: hal-04012002 https://hal.science/hal-04012002

Submitted on 28 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Cinnabar Inclusions in Ethiopian Opal

Féodor Blumentritt^{1*}, Candice Caplan¹, Emmanuel Fritsch² and Franck Notari¹ ¹GGTL Laboratories Switzerland, Geneva, Switzerland ²IMN-CNRS and University of Nantes, France *(feodor.blumentritt@ggtl-lab.org)

The authors recently examined a 15.8 ct Ethiopian opal (Figure 4) that contained numerous red dendritic particles that each measured up to 70-100 μ m indiameter (Figure 5). The Ethiopian origin of the opal was confirmed by its physical properties (slight hydrophane character and rounded columnar structure) and its chemical composition (high Ba concentration; Rondeau *et al.* 2010). The inclusions were identified by Raman microspectroscopy as cinnabar (HgS). Energy-dispersive X-ray fluorescence (EDXRF) chemical analyses of the top surface of the sample confirmed the presence of Hg and S. Cinnabar and opal are associated in numerous localities, particularly in the western USA (Knopf 1915; Gettens *et al.* 1972; https://www.mindat.org/min-3004.html). However, cinnabar is only rarely mentioned as inclusions in opal (see, e.g., Gaillou 2015). Also known is an opalised or silicified cinnabar material known as myrickite, in which the high concentration of cinnabar inclusions induces an intense orange or red colour (Manutchehr-Danai 2009; Melero *et al.* 2019).

Figure 4: This 15.8 ct opal from Ethiopia was examined for this report. Photo by C. Caplan.

To the authors' knowledge, this is the first time that cinnabar inclusions have been documented in opal from Ethiopia. Their dendritic habit suggests relatively fast growth, whereas magnetite inclusions reported in Ethiopian opal have a well-formed octahedral habit (Rondeau *et al.* 2010), suggesting slow growth. This points to a vast domain of parameters possible (at least in terms of growth rate and chemistry) for the formation of

inclusions in Ethiopian opal, which perhaps reflects the expansive region over which those deposits occur.

Figure 5: (a) The opal contains red cinnabar inclusions across the top surface of the cabochon. (b) A closer look at one of these inclusions shows its dendritic form. Photomicrographs by F. Notari.

References

Gaillou, E. 2015. An overview of gem opals: From the geology to color and microstructure. *Thirteenth Annual Sinkankas Symposium—Opal*, Carlsbad, California, USA, 18 April, 10–19.

Gettens, R.J., Feller, R.L. & Chase, W.T. 1972. Vermilion and cinnabar. Studies in Conservation, 17(2), 45-69, https://doi.org/10.2307/1505572.

Knopf, A. 1915.
Some cinnabar deposits in western Nevada.
Contributions to Economic Geology, 1915. Part I. Metals and
Nonmetals Except Fuels,
U. S. Geological Survey Bulletin 620, 59-68, https://pubs.usgs.gov/bul/0620d/report.pdf.

Manutchehr-Danai, M. 2009. Dictionary of Gems and Gemology. Springer, Berlin and Heidelberg, Germany, 1, 037 pp., https://doi.org/10.1007/978-3-540-72816-0.

Melero, D., Lobato, B., Lopez-Anton, M. A. & Martinez-Tarazona, M. R. Identification of mercury species in minerals with different matrices and impurities by thermal desorption technique. *Environmental Science and Pollution Research*, 26(11), 10867-10874, 2019, https://doi.org/10.1007/s11356-019-04245-8.

Rondeau, B., Fritsch, E., Mazzero, F., Gauthier, J.-P., Cenki-Tok, B., Bekele, E. & Gaillou, E. Play-of-color opal from Wegel Tena, Wollo Province, Ethiopia. *Gems & Gemology*, **46**(2), 90–105, 2010, https://doi.org/10.5741/gems.46.2.90.