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Abstract

Let G be a minimal split Kac-Moody group over a valued field . Motivated by
the representation theory of GG, we define two topologies of topological group on G,
which take into account the topology on K.

Contents

1 Introduction 2
1.1 Motivation from representation theory . . . . . . .. ... ... ... ... 2
1.2 Topology on GG, masure and main results . . . . . .. .. ... .. ... .. 3

2 Kac-Moody groups and masures 5
2.1 Standard apartment of amasure . . . . . . ... ... ... L. 5
2.1.1 Root generating system . . . . . . . ... oL 6

2.1.2  Vectorial apartment . . . . . . . ... 6

2.2 Split Kac-Moody groups over fields . . . . . . ... .. ... ... ... 7
2.2.1 Minimal Kac-Moody groups over fields . . . . .. ... ... .. .. 7

2.2.2  The affine group scheme U4P™* . . . . ..o 8

2.2.3 Mathieu’s group & ..o oL 9
2.2.4  Minimal Kac-Moody group over rings . . . . . . . ... .. ... .. 11
2.3 Split Kac-Moody groups over valued fields and masures . . . . . . ... .. 11
2.3.1 Actionof Non A . . . . . ... 11
2.3.2 Affine apartment . . . . . .. ... 11
2.3.3 Parahoric subgroups . . . .. ... 12
234 Masure . . . . ..o 13
2.3.5 Retraction centred at a sector-germ . . . . . ... ... 14
2.3.6  Topology defined by a filtration . . . . . . . ... ... ... .. .. 14



3 Congruence subgroups 15

3.1 Definition of the congruence subgroup . . . . . . . . . . ... ... ... .. 15
3.2 On the decompositions of the congruence subgroups . . . . . . . .. .. .. 16

4 Definition of topologies on G 18
4.1 Subgroup V) . . . . .. 19
4.2 Filtration (Vo )neNs - -« « o o v vv e 21
4.3 Topology of the fixators . . . . . . . . . . ... 24
4.3.1 Definition of the topology . . . . . . . . . .. ... ... ... ... 24

4.3.2 Relation between gy and 7 . . . . ... 26

5 Properties of the topologies 29
5.1 Comparison with the Kac-Peterson topologyon G . . . . . . .. .. .. .. 29
5.2  Properties of usual subgroups of G for 7 and 5y, . . . . . ... 31
5.3 Compact subsets have empty interior . . . . . . ... ... ... ... ... 34
54 Example of affine SLy . . . . . . . . .. 35

1 Introduction

1.1 Motivation from representation theory

Let G be a reductive group over a nonArchimedean local field K. As G is finite dimen-
sional over K, G is naturally equipped with a topological group structure. Its admits a
basis of neighbourhood of the identity consisting of open compact subgroups. A complex
representation V' of GG is called smooth if for every v € V| the fixator of v in G is open. To
every compact open subgroup K of G is associated a Hecke algebra H g, which is the space
of K-bi-invariant functions from G to C which have compact support. Let V' be a smooth
representation of G. Then the space of K-invariant vectors V¥ is naturally equipped with
the structure of an H -module, and we can prove that this assignment induces a bijection
between the irreducible smooth representations of G admitting a non zero K-invariant
vector and the irreducible representations of H-.

Kac-Moody groups are infinite dimensional generalizations of reductive groups. For
example, if & is a split reductive group and F is a field, then the associated affine Kac-
Moody group is a central extension of &(F[u,u™]) x F*, where u is an indeterminate.
Let now G = &(K) be a split Kac-Moody group over K. Recently, Hecke algebras were
associated to G. In [BIK11] and [GR14], Braverman and Kazhdan (in the affine case) and
Gaussent and Rousseau (in the general case) associated a spherical Hecke algebra H; to
G, i.e an algebra associated to the spherical subgroup &(QO) of G, where O is the ring of
integers of K. In [BKP16] and [BGR16], Braverman, Kazhdan and Patnaik and Bardy-
Panse, Gaussent and Rousseau defined the Iwahori-Hecke algebra #H; of G (associated
to the Iwahori subgroup K; of G). In [AHI19], together with Abdellatif, we associated
Hecke algebras to certain parahoric subgroups of GG, which generalizes the construction of



the Iwahori-Hecke algebra of G. In [Hebh22b], [Heb21a] and [Heb21b], we associated and
studied principal series representations of H;.

For the moment, there is no link between the representations of G and the representa-
tions of its Hecke algebras. It seems natural to try to attach an irreducible representation
of G to each irreducible representation of H;. A more modest task would be to associate
to each principal series representation I, of H; a principal series representation I(7) of G,
which is irreducible when I is.

Let T' be a maximal split torus of G and Y be the cocharacter lattice of (G,T"). Let B
be a Borel subgroup of G containing 7. Let T¢ = Homg, (Y, C*) and 7 € T¢. Then 7 can
be extended to a character 7 : B — C*. Assume that G is reductive. Then the principal
series representation I(7) of G is the induction of 76'/2 from B to G, where 0 : B — R is
the modulus character of B. More explicitly, this is the space of locally constant functions
f : G — C such that f(bg) = 76Y2(b)f(g) for every g € G and b € B. Then G acts
on I(7) by right translation. Then I, := I(7)%7 is a representation of H;. Assume now
that G is a Kac-Moody group. T}EE we do not know what “locally constant” mean, but
we can define the representation I(7) of G as the set of functions f : G — C such that
f(bg) = 76Y2(b)f(g) for every g € G and b € B. Let g be a topology of topological
group on G such that K is open. Then

—

I(1) g, == {f € I(r) | f is locally constant for 7;} (1.1)

— K
is a subrepresentation of G containing () " Thus if we look for an irreducible represen-

— K

tation containing I(7) " it is natural to search it inside I (7). Moreover, the more .7 is
coarse, the smaller I(7)g, is. We thus look for the coarsest topology of topological group
on G for which K7 is open.

1.2 Topology on G, masure and main results

We now assume that I is any field equipped with a valuation w : £ — R U {400} such
that w(K*) D Z. We no longer assume C to be local, and w(K*) can be dense in R. Let
O be its ring of integers. Let & be a split Kac-Moody group (4 la Tits, as defined in
[Tit87]) and G = &(K). In [GRO8] and [Roul6], Gaussent and Rousseau associated to G a
kind of Bruhat-Tits building, called a masure, on which G acts (when G is reductive, Z is
the usual Bruhat-Tits building). They defined the spherical subgroup K as the fixator of
some vertex 0 in the masure (we prove in Proposition 3.1 that K, = &™"(QO), where ™
is the minimal Kac-Moody group defined by Marquis in [Marl8]). They also define the
Iwahori subgroup K as the fixator of some alcove Cy of Z. Then we define the topology
Trix on G as follows. A subset V' of G is open if for every g € V', there exists a finite
subset I’ of Z such that Gg.g C V, where G is the fixator of F' in G. Then we prove
that i, is the coarsest topology of topological group on G for which K is open (see
Proposition 4.14). However, it is not Hausdorff in general. Indeed, let Z C T be the center
of G and Zp = ZNT(O). Then Zy is the fixator of Z in G and when Zp is nontrivial
(which already happens for SLy(K)), Fiy is not Hausdorff.
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To address this issue, we define an other topology, .7, finer than 4, and Hausdorff.
Let A =Y ® R be the standard apartment of Z and & C A* be the set of roots of (G, T).
Then T = J,c¢9-A. Let us begin with the case where G = SL,,(K), for m € N..
Let @w € O be such that w(w) = 1. For n € N* let 1, : SLy(O) — SLy(O/@™O) be
the natural projection. Then a basis of the neighbourhood of the identity is given by
the (ker m,)pen+. Let UT = (%) and U~ = (19). Then one can prove that kerm, =
(Ut Nnkerm,).(U” Nkerm,).(T Nkerm,). Let a,—a be the two roots of (G,T). Let
To ta— (§¢)and z_y : a — (19). Then 2,(w"0) fixes {a € A | a(a) > —n} and
T_o(w"O) fixes {a € A | a(a) < n}. Therefore if A € A is such that a(\) = 1, we have

ker m, = (U* NFixg([—nA,nA)) . (U~ NFixg([—nA,nA])) (T Nker 7,).

We now return to the general case for G. We prove that the topology associated to
(ker 7, )nen+ is not a topology of topological group if G is not reductive (see Lemma 3.3).
Let (c;)ier be the set of simple roots of (G,T) and C} = {z € A | ay(x) > 0,Vi € I'}. Let
W? be the Weyl group of (G, T) and A € Y N[ |, ey w.CF. We define the following subset
Vox of G, for n € N*:

Var = (U NFixg([—nA,nA))) . (U™ N Fixg([—nA,nA]) (T Nker man(y),
where N(A\) = min{|a(N)| | a € & }. We prove the following theorem:
Theorem 1.1. (see Theorem 4.8, Lemma 4.2, Proposition 4.21 and Proposition 5.11):
1. Forn e N* and A € Y 0|, cppo w.CY, Vor is a subgroup of &™™(O).

2. The topology 7 associated with (Vo) )nen+ s Hausdorff, independent of the choice of
A and equips G with the structure of a topological group.

3. The topology 7 is finer than T and if K is Henselian, we have T = iy if and
only if 2o = {1}.

4. Every compact subset of G has empty interior (for T ).

Note that .7 and 5, induce the same topologies on Ut and U~. The main difference
comes from what happens in 7. As the elements of I(7)s and I(7)g,, are left T(O)-
invariant, these two spaces are actually equal (see Remark 4.22).

In [HKMI13], based on works of Kac and Peterson on the topology of &(C), Hart-
nick, Kéhl and Mars defined a Kac-Peterson topology on &(F), for any local field F
(Archimedean or not). Assume that K is local and let J p be the Kac-Peterson topology
on G. We prove that when G is not reductive, then .7 is strictly coarser than Jxp (see
Proposition 5.3) and thus .7 seems more adapted for our purpose.

Assume that & is affine SL, (with a nonfree set of simple coroots). Then G =

SLy(K[u,u™]) x K*. Up to the assumption that kerm, C (Hwno[“’MH =" Ofuu ] )

w"Olu,u™]  14+@™Ou,u™1]
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(1 + @w"O), for n € N*, we prove that the topology on G is associated to the filtration

_ Oty (wu=!)"] Ol() (wu=)" )
(HaJuere, where Ho = ker(ra) 0 (( SZ20 00 S(EE ) )

The paper is organized as follows. In section 2, we define Kac-Moody groups (as defined
by Tits, Mathieu and Marquis) and the masures.

In section 3, we define and study the subgroups ker m,, of &™1(0).

In section 4, we define the topologies 7 and 4, and compare them.

In section 5, we study the properties of .7 and Jgi: we prove that i p is strictly
finer than .7, we describe the topology in the case of affine SLy, and we prove that usual
subgroups of G (i.e T', N, B, etc.) are closed for 7.

Acknowledgements [ would like to thank Nicole Bardy-Panse and Guy Rousseau
for the very helpful discussions we had on the subject. I also thank Stéphane Gaussent,
Timothée Marquis and Dinakar Muthiah for useful conversations and suggestions.

2 Kac-Moody groups and masures

In this section, we define Kac-Moody groups and masures. Let K be a field. There are
several possible definitions of Kac-Moody groups and we are interested in the minimal one
&(KC), as defined by Tits in [T1t87]. However, because of the lack of commutation relations
in &(K), it is convenient to embed it in its Mathieu’s positive and negative completions
&Pme(K) and B™(K). Then one define certain subgroups of & (k) as the intersection
of a subgroup of &”™*(K) and &(K). For example if & is affine SLy (with a nonfree set
of simple roots and coroots), then &(K) = SLy(K[u, u™']), &P™(K) = SLy(K ((u))) and
&M (K) = SLy (K((u™))).

As we want to define congruence subgroups in our framework, we also need to work
with Kac-Moody groups over rings: if K is equipped with a valuation w and w is such
that w(w) = 1, then we want to define kerm, C &(0O), where 7, : (0) — &(0O/w"O)
is the natural projection. The functor defined by Tits in [Tit87| goes from the category
of rings to the category of groups. However the fact that it satisfies the axioms defined
by Tits is proved only for fields (see [1it87, 3.9 Theorem 1]) and we do not know if it
is “well-behaved” on rings, so we will consider it only as a functor from the category of
fields to the category of groups. In [Marls, 8.8], Marquis introduces a functor &™® which
goes from the category of rings to the category of groups and he proves that it has nice
properties (see |[Marlg, Proposition 8.128]), especially on Bézout domains. We will use
its functor ™. We have &™*(F) ~ &(F) for any field F. This functor is defined as
a subfunctor of &P so we first define Tits’s functor, then Mathieu’s functors and then
Marquis’s functor.

2.1 Standard apartment of a masure



2.1.1 Root generating system

A Kac-Moody matrix (or generalized Cartan matrix) is a square matrix A = (a; ;)i jer
indexed by a finite set I, with integral coefficients, and such that :

(@) ¥ (i,4) € I*, (i # ) = (ai; < 0);
(4ii) V (i,7) € I?, (a;; = 0) < (a;; = 0).

\

A root generating system is a 5-tuple S = (A, XY, ()ier, (o) )icr) made of a Kac-
Moody matrix A indexed by the finite set I, of two dual free Z-modules X and Y of
finite rank, and of a family («;);e; (respectively (o );er) of elements in X (resp. Y') called
simple roots (resp. simple coroots) that satisfy a; ; = a;(«;’) for all 4, j in I. Elements
of X (respectively of Y') are called characters (resp. cocharacters).

Fix such a root generating system S = (A, X, Y, («;)ier, (o )ier) and set A :=Y @ R.
Each element of X induces a linear form on A, hence X can be seen as a subset of the
dual A*. In particular, the a;’s (with ¢ € ) will be seen as linear forms on A. This allows
us to define, for any i € I, a simple reflection r; of A by setting r;.v := v — «;(v)ay for
any v € A. One defines the Weyl group of S as the subgroup W¥ of GL(A) generated
by {r; | i € I}. The pair (W, {r; | i € I}) is a Coxeter system, hence we can consider the
length ¢(w) with respect to {r; | i € I} of any element w of W".

The following formula defines an action of the Weyl group W" on A*:
VoeehweW’ achA* (wa)lr):=alw ).

Let ® := {w.a; | (w,i) € WY x I} (resp. ®¥ = {w.op) | (w,i) € WY x I}) be the set
of real roots (resp. real coroots): then ® (resp. ®Y) is a subset of the root lattice
Q = @Zai (resp. coroot lattice Q¥ = @, ; Za;'). By [Kum02, 1.2.2 (2)], one has
iel
Ra¥ N®Y = {£a'} and RaN ® = {£a} for all ¥ € &V and o € P.
We define the height ht : Q — Z by ht(>",.; i) = >, s, for (n;) € Z7.
2.1.2 Vectorial apartment

As in the reductive case, define the fundamental chamber as C} := {v € A | Vi €
I, a;(v) > 0}.

Let T := U w.C be the Tits cone. This is a convex cone (see [Kum02, 1.4]).

weWv

For J C I, set F'(J) ={z € A| oj(x) =0, Vj € Jand aj(x) >0, ¥j € I\ J}. A
positive vectorial face (resp. negative) is a set of the form w.F"(J) (—w.F"(J)) for
some w € WY and J C I. Then by [Rém02, 5.1 Théoréme (ii)], the family of positive
vectorial faces of A is a partition of 7 and the stabilizer of F*(J) is W; = (J).

One sets Yt =Y N ?}ﬁ and YT =Y NT. An element of YT is called regular if it
does not belong to any wall, i.e if it belongs to | |,y w.C}.
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Remark 2.1. By [Kac9/, §4.9] and [Kac9/, § 5.8] the following conditions are equivalent:
1. the Kac-Moody matriz A is of finite type (i.e. is a Cartan matriz),
2. A=T
3. W is finite.

2.2 Split Kac-Moody groups over fields
2.2.1 Minimal Kac-Moody groups over fields

Let & = &g be the group functor associated in [Tit87] with the root generating system S,
see also [Rem02, 8|. Let K be a field. Let G = &(K) be the split Kac-Moody group
over K associated with §. The group G is generated by the following subgroups:

e the fundamental torus 7' = T(K), where ¥ = Spec(Z[X]),

e the root subgroups U, = i,(K), for a € @, each isomorphic to (K, +) by an isomor-
phism x,,.

The groups X and Y correspond to the character lattice Hom(%¥, G,,) and cocharacter
lattice Hom(G,,,, ¥) of T respectively. One writes U* the subgroup of & generated by the
Uy, for a € * and U+ = Y*(K).

By a simple computation in SLy, we have for o € ® and a,b € K such that ab # —1:

T_o(b)xo(a) = zo(a(l + ab)™Ha" (1 + ab)x_q(b(1 + ab)™)

= za(a(l 4 ab) ™ Ha_o(b(1 + ab))a (1 + ab), (2.1)

where oY = w.af if @« = w.«, for i € [ and w € W".
Let 91 be the group functor on rings such that if %’ is a ring, (%) is the subgroup of
&(#') generated by T(Z') and the r;, for i € I, where

i = Zay (D, (~ 1), (1). (2.2)

Then if Z' is a field with at least 4 elements, M(Z#’) is the normalizer of T(Z') in &(X').
Let N = M(K) and Aut(A) be the group of affine automorphisms of A. Then by
[Rou06, 1.4 Lemme], there exists a group morphism ¥ : N — GL(A) such that:

1. for ¢ € I, v¥(7;) is the simple reflection r; € W?,
2. kerv' =T.

The aim of the next two subsubsections is to define Mathieu’s Kac-Moody group. This
group is defined by assembling three ingredients: the group "™ which corresponds to a
maximal positive unipotent subgroup of &P  the torus ¥ and copies of SL,, one for each
simple root «;, i € 1.



2.2.2 The affine group scheme "¢

In this subsubsection, we define U™, Let g be the Kac-Moody Lie algebra over C associ-
ated with S (see [Kum02, 1.2]) and Uc(g) be its enveloping algebra. The group U™ (C),
will be defined as a subgroup of a completion of Uc(g). As we want to define 4P (%), for
any ring Z, we will also consider Z-forms of g and Uc(g).

The Lie algebra g decomposes as g = @, 8o, Where A C @ is the set of roots
and g, is the proper space associated with «, for a € A (see [Kum02, 1.2]). We have
A=A, UA_, where Ay = AN and A_ = —A,. We have & C A. The elements of
® = A,. are called real roots and the elements of A;,, = A\ ® are called imaginary
roots.

Following | Tit&87, 4] one defines U as the Z-subalgebra of Uc(g) generated by egn) :

il—;,l, fi(") = %, (Z), fori € I and h € Y (where the e;, f; are the generators of g, see [Kum02,
1.1]). This is a Z-form of Uc(g). The algebra Uc(g) decomposes as Uc(g) = D.cqUc(9)a
where we use the standard @-graduation on Uc(g) induced by the @Q-graduation of g (for
i €1, deg(e;) = ay, deg(f;) = —ay, deg(h) =0, for h € Y, deg(xy) = deg(z) + deg(y) for
all x,y € Uc(g) which can be written as a product of nonzero elements of g). For o € @,
one sets Uy, = Uc(g)a NU and Uy, 5 = U, @ Z.

For a ring #Z, we set Uy = U ®R7 %. One sets U+ = Ha€Q+ U, and Q}Z =11
This is the completion of U™ with respect to the (), -gradation. R

If (ua) € [Tacq, Uam, We write 3 uq the corresponding element of Uy,. A sequence

(Xacq., uS) e converges in Uy if and only if for every o € A, the sequence (ul”),ey is

stationary. R
Let (E,<) be a totally ordered set. Let (ul®) € (Uz)”. For e € E, write u =

ZQGQ+ u,(f), with v € Upz, for a € Q4. We assume that for every a € Q4, {e € F |
ul?) # 0} is finite. Then one sets [, u'® = > acq, Uas Where

Uy = Z Z u(;ll) . u(ﬁik) € U2,

B1npp)e@ ), (L ekl B

Bi+...+Br=a

Z/{a,%’ .

acQ 4

for « € A, . This is well-defined since in the sum defining u,, only finitely many nonzero
terms appear.

Let A = @,cq, Uas, where Uy denotes the dual of U, (as a Z-module). We have a

natural Z-modules isomorphism between a} and Homg_y, (A, Z), for any ring Z (see
[Marlg, (8.26)]) and we now identify these two spaces. The algebra A is equipped with a
Hopf algebra structure (see [Marl8, Definition 8.42]). This additional structure equips

ypma (e@) = HomZ_Alg (A, %)

with the structure of a group (see |[Marl8, Appendix A.2.2]). Otherwise said, A is the
representing algebra of the (infinite dimensional in general) affine group scheme P™® : 7Z-
Alg — Grp.



Let « € AU{0} and z € g,z An exponential sequence for z is a sequence (z"),,ey
of elements of U such that 2 = 1, 2/ = z and 2! e U, for n € Z>, and satisfying the
conditions of [Marl8, Defiintion 8.45|. By [Roul6, Proposition 2.7] or [Marl8, Proposition
8.50], such a sequence exists. Note that it is not unique in general. However, if o € &,
the unique exponential sequence for z is (#(™),en = (£2") by [Roul6, 2.9 2)]. For r € Z,
one then sets

lexp](r Zx”]@)r €U+
neN
This is the twisted exponential of 7z associated with the sequence (™), ex.

We fix for every a € A, a Z-basis B, of goz 1= go NU. Set B = Ua€A+ B,. We fix
an order on cach B, and on Ay. Let @ € A;. One defines X, : goz @ Z — W (XZ) by
Xo(Xsen, Ao-t) = [luep, lexplAs.z, for (A;) € ZP*. When o € ., we have goz = Zeq,
where e, is defined in [Marl8, Remark 7.6]. One sets x,(r) = [exp](rey), for r € Z. One
has X, (ga.z) = o(Z) = Uo(Z). By |Marl8, Theorem 8.5.1|, every g € U™ (Z) can be

written in a unique way as a product

g = H Xal(ca), (2.3)

where ¢, € goz @ Z, for a € A, where the product is taken in the given order on A, .
Let ¥ C A,. We say that ¥ is closed if for all o, § € U, for all p,q € N* pa+qB € A,
implies pa + ¢ € V. Let ¥ C A, be a closed subset. One sets

Uy (%) = [[ Xa(@oz ® #) C 8™ (%).

aev

This is a subgroup of U”™* which does not depend on the chosen order on A, (for
the product). This is not the definition given in [Roul6| or [Marl8, page 210], but it is
equivalent by [Marl8, Theorem 8.51].

2.2.3 Mathieu’s group &"¢

The Borel subgroup (it will be a subgroup of &) is B = Bs = Ts x U™ where T
acts on UP™ as follows. Let Z be aring, a € Ay, t € T(XZ), r € #Z and z € g, %,

tlexp](rz)t ™t = [exp](a(t)rz). (2.4)
In particular, if « € ¢, we have
teg (r)t™ = zo(a(t)r).

For ¢ € I, let ﬂY be the reductive group associated with the root generating system
((2), X, Y, ay, ). For cach i € I, Mathieu defines an (infinite dimensional) affine group
scheme B, = ilai X XY 4,y (SeC [A\Lu 18, Definition 8.65] for the definition of the action of

U, on YR ()



We do not detail the definition of &P™* and we refer to [Mat89], [Marl8, 8.7] or
[Roul6, 3.6]. This is an ind-group scheme containing the 9B; for every i € I. Let
w € WY and write w = 7, ...7;,, with &k = f(w) and 4y,...,i; € I. Then the multi-
plication map B;, x ... x P;, — &P™* is a scheme morphism, and we have & (%) =

(e Red(W?) = {(i1,...,ix) € I™ | (ri, . ..13) = k).
Let w e W? i €I and a = w.c;. One sets U, = w.4,, . w™ ', where

=7 T (2.5)

ifw=mr; ...r, isareduced decomposition of w. There is an isomorphism of group schemes
To : Gy — U, (see [Marl8, page 262|). The & is generated by the B;, i € I. Moreover,
if i € I, then B, is generated by T, Uy, and 7; = 4, (1)z_q,(1)x4,(1). Thus &P is
generated by UP™* T $[_, and the 7;, for 7 € I and thus we have:

B = (4™ T 8, o€ D). (2.6)

There is a group functor morphism ¢ : & — &P such that for any ring Z, 14 maps
Zo(r) to xo(r) and ¢ to t, for each « € &, r € Z, t € T(Z). When Z is a field, this
morphism is injective (see [Roul6, 3.12] or [Marl8, Proposition 8.117]).

Proposition 2.2. Let % and #' be two rings and o : # — X' be a ring morphism.
Let fU' U} — U}, and f, - &™(Z) — &"™(R') be the induced morphisms. Then
ff;ﬁ (Urme(g)) C U (') and we have:

1. For every (r,) € %5, fg+ (TT,eslexp)(roz)) = [T, cplexpl(@(ra)z).

2. Fora € Ay and (\;) € Z5, we have ¢ (Xo(X,cpn. M) = Xa (3 ,c5, ¢(A\2)z).

3. We have f,(u) = fg+(u) for uw € YN ZR), fo(xa(r)) = xale(r)), for a € O and
reZ, and f,(x(r)) = x(p(r)), forx €Y and r € Z*.

4. 1If @ is surjective, then f, is surjective.

Proof. (1), (2) By definition, we have

fZWZ Y ua;@r) =D > ey @p(ry)

a€QT jE€EJa aeQt jEJa

if J, is a finite set and (r;) € #Z7> and u,; € Uy, for every a € Q. Thus p commutes
with infinite sums and product, which proves (1) and (2).

(3) Let ¢ € I. Then the morphism P;(Z) — PBi(#') induced by ¢ satisfies the formula
above. Using the fact that z, = wr_,w ™!, for a = —w.ay, with w € W?, i € I and w
defined as in (2.5), we have (3).

(4) Assume ¢ is surjective. By (2.3) and (1), the restriction of f, to 4™*(%) is
surjective. By (3), the restriction of f, (U (Z)) = U (#') and [, (T(Z)) = T(#'). We
conclude by using the fact that &”"* is generated by UP™, 8~ and T (see (2.6)). O
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2.2.4 Minimal Kac-Moody group over rings

For ¢ € I, there is a natural group morphism ¢; : SLy — ilz;.
For a ring Z, one sets

B"( %) = (pi (SLa(R)) . X)) C & ().

This group is introduced by Marquis in [Mar18, Definition 8.126]. By [Marl&, Proposition
8.129], it is a nondegenerate Tits functor in the sense of [Marl8&, Definition 7.83] and we
have ™" (%) ~ &(Z), for any field Z.

Note that if ¢ is a ring morphism between two rings #Z and #’, the induced morphism
BPmU(R) — BPM(R') restricts to a morphism ™ (Z) — S™N(Z).

Let Z be a semilocal ring, i.e a ring with finitely many maximal ideals, then by [HO89,
4.3.9 Theorem]|, SLy(Z) is generated by (§ %) and (4 9). Therefore,

SN R) = (Uso, (Z),T(R) |i € 1) C & (R). (2.7)

2.3 Split Kac-Moody groups over valued fields and masures

We now fix a field K equipped with a valuation w : K — R U {+00} such that A := w(K*)
contains Z. Let O = {x € K | w(z) > 0} be its ring of valuation. We defined Mathieu’s
positive completion &P, Replacing A, by w.A,, for w € W', one can also define a
group &P Replacing A, by A_ or by w.A_, for w € W', one can also define """ or

@yma,w

We set G — @(K), Gpma — @pma(lc) and Gnma — Q5nma(lc)

2.3.1 Action of N on A

Let N = 9(K) and Aut(A) be the group of affine automorphism of A. Then by [Roul6,
4.2], there exists a group morphism v : N — Aut(A) such that:

1. for ¢ € I, v(7;) is the simple reflection r; € W it fixes 0,

2. for t € T(K), v(t) is the translation on A by the vector v(t) defined by x(v(t)) =
—w(x(t)), for all y € X.

3. we have v(N) = W' x (Y ® A) := Wjy.

2.3.2 Affine apartment

A local face in A is the germ F(z, FV) = germ,(z+ F") where z € A and F" is a vectorial
face (i.e, F'(z, F") is the filter of all neighbourhoods of = in x+ F"). It is an a local panel,
positive, or negative if F* is. If F'" is a chamber, we call F(z, FV) an alcove (or a local
chamber). We denote by Cj the fundamental alcove, i.e, Cj” = germo(CY).

A sector in A is a subset q = 2+ C", for x a point in A and C" a vectorial chamber. Its
sector germ (at infinity) is the filter Q = germa(q) of subsets of A containing another
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sector x + y + C", with y € C". It is entirely determined by its direction C". This sector
or sector germ is said positive (resp. negative) if C" has this property. We denote by +oo
the germ at infinity of +C¥.

For € A and k € AU {400}, we set D(a, k) ={z € A | a(z)+k > 0}. A set of the
form D(a, k), for « € A and k € A is called a half-apartment.

2.3.3 Parahoric subgroups

In [Roul6] and [GRO8|, the masure Z of G is constructed as follows. To each x € A is
associated a group P, = G,. Then T is defined in such a way that G, is the fixator of z
in G for the action on Z. We actually associate to each filter €2 on A a subgroup Gg C G
(with Gzy = G, for x € A). Even though the masure is not yet defined, we use the
terminology “fixator” to speak of G, as this will be the fixator of Q2 in G. The definition
of Gg involves the completed groups GP™* and G™".

If Q is a non empty subset of A we sometimes regard it as a filter on A by identifying
it with the filter consisting of the subsets of A containing 2. Let (2 C A be a non empty
set or filter. One defines a function fo: A — R by

faola)=inf{reR|QC D(a+r)}=inf{r e R|a(Q)+r C[0,+oo[},

for « € A. For r € R, one sets K>, = {z € L |w(x) >r}, Koop = {z € K |w(z) =1}
If © is a set, we define the subgroup U5™ = [[,cn, Xa(8az ® Kuzfo) C GP™.
Actually, for a € ' = Af | X, (00,2 @ Kusfoa) = Za(Ku>fo(@) = Uan. We then define

re’
UR™ = UPM NG = UR™ N U,

see [Roul6, 4.5.2, 4.5.3 and 4.5.7]. When Q is a filter, we set UY™ := Ugeq U™ and
Ut =0 naG

We may also consider the negative completion G"* = &""*(K) of GG, and define the
subgroup Ug"™ = [loea_ Xa(8az @ Kuzfo(a)- For a € 7 = AL, Xo(gaz © Kuzfo() =
To(Ko>fo(a)) = Uan. We then define Uy"™ = UG NG =U3"" NU".

Let W be a closed subset of A,. One sets Ug (V) = Uy NUL™ . By the uniqueness in the
decomposition of the elements of UP™* as a product, we have Ug (V) =[], cq Xa(Ku>fo())-
We define Uq(—V) similarly.

Let €2 be a filter on A. We denote by Ng the fixator of © in N (for the action of N on
A). If Q is not a set, we have No = |Jgc Vs. Note that we drop the hats used in [Roul0)].
When (2 is open one has Ng = Ny = T(O) := T(K,>0) = T(Kqo)-

If v € A, we set G, = UP™t.UM~.N,. This is a subgroup of G. If Q C A is a set,
we set Go = [,eq G» and if Q is a filter, we set G = (Jgeq Gs. Note that in [Roul6],
the definition of GG, is much more complicated (see [Roul6, Définition 4.13|). However it
is equivalent to this one by [Roul6, Proposition 4.14].

A filter is said to have a “good fixator” if it satisfies [Roul6, Définition 5.3]. There are
many examples of filters with good fixators (see [Roul6, 5.7]): points, local faces, sectors,
sector germs, A, walls, half apartments, ... For such a filter €2, we have:

Go = UE"".U5™ Ng = U™ .US™ Ng. (2.8)
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We then have:
U£m+ = GQ N U+ and Ugm_ = GQ N U_, (29)

as U NUT.N=U+tNN = {1}, by [Roul6, Remarque 3.17] and [R¢m02, 1.2.1 (RT3)]

When = Cj = germg(C%) is the (fundamental) positive local chamber in A, K :=
Gq is called the (fundamental) Iwahori subgroup. When Q) is a face of C , Gq is called
a parahoric subgroup.

For Q2 a set or a filter, one defines:

Up=(Usalac® | Us=U,NU* and U:* = (Usq | @ € ®*). Then one
has U3 Cc Ug C U£m+, but these inclusions are not equalities in general, contrary to the
reductive case (see [Roul6, 4.12.3 a and 5.7 3)]).

Lemma 2.3. Let (uy,u_,t), (v ,u_,t") € Ut x U~ xT. Assume that uitu_ = v/, t'u" or
upu_t = v ut" or tuju_ :tu+u_. Thenu_ =u", uy =/, andt =1
Proof. Assume ujtu_ = v/ t'u’_. We have (v ) 'uit = t'u_(u_)"'. As ¢ normalizes U™,

we deduce the existence of u” such that (u/ ) tuitt’™! =”. By [Rou06, Proposition 1.5
(DR5)] (there is a misprint in this proposition, Z is in fact T'), we deduce (u/,) tuitt’™t =1
and hence v/, = u; and t = t'. Therefore u_ = u’. The other cases are similar. O

By [Roul6, 4.10] and (2.4), we have the following lemma.

Lemma 2.4. Let Q2 be a filter on A, t € T and VU be a closed subset of A.. Then
HUE™ Y = U AURT (W = UPR (D), (U5 (0) = UP (W),

2.3.4 Masure
We now define the masure Z = Z(8, K, w). As aset, Z = G x A/ ~, where ~ is defined as

follows:
Y(g, ), (h,y) € G x A, (g,2) ~ (h,y) & 3In €N |y=rv(n)eand g 'hn € G,.

We regard A as a subset of Z by identifying = and (1,z), for z € A. The group G acts
on Z by g.(h,z) = (gh,x), for g,h € G and x € A. An apartment is a set of the form
g.A, for g € G. The stabilizer of A in G is N and if x € A, then the fixator of z in G
is G,. More generally, when 2 C A, then Gg is the fixator of Q in G and G permutes
transitively the apartments containing ). If A is an apartment, we transport all the notions
that are preserved by Wy (for example segments, walls, faces, chimneys, etc.) to A. Then
by [Heb22a, Corollary 3.7], if (y)ier and (o) );e; are free, then Z satisfies the following
axioms:

(MA II) : Let A, A’ be two apartments. Then AN A’ is a finite intersection of half-
apartments and there exists g € GG such that g.A = A" and ¢ fixes AN A"

(MA III): if R is the germ of a splayed chimney and if F'is a local face or a germ of a
chimney, then there exists an apartment containing R and F'.

13



We did not recall the definition of a chimney and we refer to [Roul 1] for such a definition.
We will only use the fact that a sector-germ is a particular case of a chimney-germ.
We also have:

e The stabilizer of A in G is N and N acts on A C Z via v.

e The group U,, = {z,(u) | u € K,w(u) > r}, for « € &,r € A, fixes the half-
apartment D(c,r). It acts simply transitively on the set of apartments in Z contain-
ing D(a, 7).

Remark 2.5. In 2.1.1, we did not assume the freeness of the families («;)icr and (o) )ier,
since there are interesting Kac-Moody groups, which do not satisfy this assumption. For
example, G := SL,(K[u,u™]) x K* is naturally equipped with the structure of a Kac-Moody
group associated with a root generating system S having nonfree coroots. This group is
particularly interesting for examples, since it is one of the only Kac-Moody groups in which
we can make explicit computations. In [Héb22a], we proved that if (o;)ier and (o )ier are
free families, then the masure associated with G satisfies (MA II) and (MA I1I). Without
this assumption we do not know. In [Roul6, Théoréme 5.16/, Rousseau proves that T
satisfies the axioms (MA2) to (MA5) of [Roull]. We did not introduce these axioms since
they are more complicated and a bit less convenient. However it is easy to adapt the
proofs of this paper to use the axioms of [Roull] instead of those of [Hcb22a], for example,
retractions are already available in [Roull].

2.3.5 Retraction centred at a sector-germ

Let Q be a sector-germ of A. If = € Z, then by (MA III), there exists an apartment A of Z
containing 9 and z. By (MA II), there exists g € G such that g.A = A and g fixes ANA.
One sets pa(z) = g.o € A. This is well-defined, independently of the choices of A and g,
by (MA II). This defines the retraction pg : Z — A onto A and centred at . When
Q = 400, we denote it pi . If ¥ € Z, then py(x) is the unique element of UT.x N A.

2.3.6 Topology defined by a filtration

A filtration of G by subgroups is a sequence (V},),en of subgroups of G such that
Vo1 C V,, for all n € N*. Let (V},) be a filtration of G by subgroups. The associated
topology .7 ((V,,)) is the topology on G for which a set V' is open if for all g € V| there
exists n € N* such that ¢g.V,, C V. N

Let (V,,), (V,) be two filtrations of G by subgroups. We say that (V},) and (V},) are
equivalent if for all n € N, there exist m,m € N such that V,, C \7” and \7@ C V,,. This
defines an equivalence relation on the set of filtrations of G' by subgroups. Then (V},) and
(V) are equivalent filtrations, if and only if .7 ((V,)) = 7 ((\7”))

We say that (V},) is conjugation-invariant if for all g € G, (gV,,g ') is equivalent to
(V). Then .7 ((V,,)) equips G with the structure of a topological group if and only if (V},)
is conjugation invariant, by [Marl8, Exercise 8.5].
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3 Congruence subgroups

In this section, we define and study the congruence subgroups. They will be a key tool
in order to define the topology .7 in section 4. We prove however that the filtration
(ker 7, )pen+ 18 nOt conjugation-invariant. We also study how they decompose.

3.1 Definition of the congruence subgroup
Proposition 3.1. The fizator Gy of 0 in G is the group &™(0).

Proof. Fori € I, z,,(0), z_,,(0) and T(O) fix 0. Therefore by (2.7), 8™*(O) C Gy.
By [Roul6, Proposition 4.14]

Go = UZ™ U™ Ny, (3.1)
where Ng = {n € N | n.0 =0}. By [BHR22, 2.4.1 2)], we have
U™ = Ui = (zo(u) |a € ®,uc O)NUT C &™*(0O)

and .
Up™™ = Uy = (za(u) |0 € ®,u € O)NU~ C 6™(0).

Fori € I, set 73 = 24, (1)2_0,(—1)24,(1) € &™(O). We have N = (T(K),7; | i € I). Let
n € Ny. Write v¥(n) = w € W*, where v” was defined in 2.2.1. Write w = r;, ...r;,, with
k = {l(w) and iy,...,i € I. Let n’ =75, ...75, € Ny. By [Roul6, 1.6 4)] v¥(n’) = w and
t:=n""'n € T Nker(v). By [Roul6, 4.2 3)|, t € T(O). Therefore

No = (i |i € I).%T(0). (3.2)
and in particular, Ny C &™(0). Proposition follows. O

Recall that we assumed that A = w(K*) D Z. If w(K*) is discrete, we can normalize w
so that A = Z. We fix w € O such that w(w) = 1.

For n € N*, we denote by 7™ : &P"*(Q) — BP"*(O/w™O) and 7" : ""(O) —
& (O /w"O) the morphisms associated with the canonical projection O — O/w"O. We
denote by m,, the restriction of 72 to &™*(0). By Proposition 2.2, 7, is also the restric-
tion of 7™ to &™n(O) (it is also the restrictions of 72w : P () — P (O /" O)
and 7]mew s MM () — GV (O/w"O), for w € WY). By Proposition 2.2 and (2.7),

T, TP and w1 are surjective. Their kernels are respectively called the n-th congru-

ence subgroups of ™*(0), &"™*(O) and &""*(O).

The family (ker 7, ),en+ is a filtration of G. We prove below that it is not conjugation-
invariant when W is infinite, which motivates the introduction of other filtrations (V) nen-,
for A € Y regular, in section 4.

Lemma 3.2. Let x € A be such that a;(x) > 0 for alli € I. Suppose that W? is infinite.
Then for all n € N*, there exists g € ker(m,,) such that g.x # x.

15



Proof. Let n € N*. As ®* is infinite, there exists § € ®* such that ht(g) > m

Then S(z) > n. Let g = x_g(w") € kerm,. Then the subset of A fixed by ¢ is {y € A |
—B(y) +n > 0}, which does not contain z. 0

Lemma 3.3. Assume that W? is infinite. Then (ker(m,))nen+ is not conjugation-invariant.

Proof. Suppose that (ker(m,)) is conjugation-invariant. Then the topology 7 ((ker(7,))
equips G with the structure of a topological group. We have ker(r;) C &™(0) = Gy and
in particular Go = U ¢, 9. ker(m) is open. Let A € Y™ be such that a;(A) = 1 for all
i€l andt €T be such that .0 = A\. Then H := tGyt~! is open (since G is a topological
group). As 1 € H, we deduce the existence of n € N* such that ker(w,) C H. As H fixes
A, this implies that W is finite, by Lemma 3.2. O

3.2 On the decompositions of the congruence subgroups

Let m = {z € O | w(z) > 0} be the maximal ideal of O and k = O/m. Let 1 : 8™*(O) —
&™(k) be the morphism induced by the natural projection @ — k. When w(K*) = Z
Tk =— Tq.

In this subsection we study ker m,: we prove that it decomposes as the product of its
intersections with U~, UT and T (see Proposition 3.5), using the masure Z of G. We also
describe U~ Nker m, and U™ Nker m, through their actions on Z and we deduce that ker 7
fixes Cf U C,. It would be interesting to prove similar properties for ker m, instead of
ker 7y, for n € N*. The difficulty is that when w is not discrete or n > 2, O/w"O is no
longer a field and very few is known for Kac-Moody groups over rings.

Let C,C" be two alcoves of the same sign based at 0. By [Héb20, Proposition 5.17],
there exists an apartment A containing C' and C’. Let g € G be such that g.A = A and
g.C = Cy. Then ¢.C" is an alcove of A based at 0 and thus there exists w € W? such that
g.C" = w.C{. We set V" (C,C") = w, which is well-defined, independently of the choices
we made (note that in [BCR16, 1.11] the “W-distance” d"" is defined for more general
pairs of alcoves). Then dV" is G-invariant.

Y

Lemma 3.4. Let C be a positive alcove of  based at 0 and w € W*. Write w =1, ...7;,,
with k = 0(w) and iy, ..., i, € I. Let By = oy, Po = Ti,-Quy, -« oy B =14y .. 74 _,.i, . Then
Bi,..., Be € 1 and we have pyo(C) = w.C if and only if there exists ay,...,a;, € O
such that C' = xg, (ay) ... xp, (ax). 75 ... 7:,.Cq

Proof. As xp,(0)..... 25, (0) fixes 0, an element of x5, (0)...25 (0).F;, ...7;,.Ci is a
positive alcove based at 0. The fact that f;,...,0r € @, follows from [Kum02, 1.3.14
Lemmal. Thus zg (O)..... 25,(0).1, ... 75,.Cy C Ut w.Cy and we have one implication.

We prove the reciprocal by induction on £(w). Assume w = 1. Then p,(C) = C{ .
Let A be an apartment containing +o0o and C'. Let ¢ € G be such that g.A = A and ¢
fixes AN A. Then C = g~'.C;", by definition of p, .. Moreover, A contains 0 and +oco
and thus it contains conv(0, +0c) D C. Therefore C = Cf and the lemma is clear in this
case. Assume now that (w) > 1.
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Let Cf = Cy, Cy =r,.Cf, ..., Cl. =1y ...1;,.Cf = C'. Let C be a positive alcove
based at 0 and such that p . (C) = C}. Let A be an apartment containing C' and +oc.
Let ¢ € G be such that g.A = A and g fixes AN A. Set C; = ¢g7'.C!, for i € [0,k].
Then ¢ fixes 400 and hence p;o(z) = g.x for every x € A. Therefore p,(C;) = CI,
for i € [0,k]. In particular, p;o(Cr—1) = C}_;. By induction, we may assume that
there exist aj,...,a;_1 € O such that Cy_; = uv.Cy, where u = x4, (a1) ... 2, (ax_1) and
U ="y ...7;_,. Moreover we have

AV (Cror, Cr) = dV (O, OF) =1y = AV (TG, umLCy) = dYT (0.CF, uThCy)

Let P be the panel common to .Cy and u='.Cy. Then P C $3,'({0}). Let D be
the half-apartment delimited by B;'({0}) and containing Cy_;. Then as Sx(Cy_1) =
Tiy oo Tip_y -, (13, ..., .Cg) > 0, D contains +oo. By |Roull, Proposition 2.9], there
exists an apartment B containing D and u~'.C}. Let ¢’ € G be such that ¢".B = A and ¢
fixes AN B. We have ¢'.u™'.C), = p, o (Ci) = C}. By [Roul6, 5.7 7)], ¢’ € T(O)Ug, o and
as T(O) fixes A, we can assume ¢’ € Ug, o = x5, (0). Write ¢’ = xg, (—ay), with a; € O.
Then Cy = u.wg, (ay).Cy = xg,(a1) ... xp, (ag).7;, .. .75, .Cy, which proves the lemma. [

Proposition 3.5. 1. We have UJ'"" = U~ Nker(m) and UP™ = Ut Nker(my).
0

—CSL -
2. We have ker(my) = (ker(m) NUT) . (ker(m) NU™) . (ker(me) NT(O)).
3. We have ker(m) C Geryer--

Proof. 2) Let u € U/t~ By definition, there exists Q € Cy such that w € U3™ . Let

0
r € CyNQ. Then u € [[en Xa(8a.z ® Ku>—a()) NGo. As —a(x) > 0 for every a € A_,
Proposition 2.2 implies:
Ugg”_ C ker(my). (3.3)
Let g € ker(m,) C &™"(0). Then g fixes 0 and ¢g.Cy is a positive alcove based at
0. Write pio(9.Cf) = w.Cy", with w € W°. Write w = ry, ... 7, with m = {(w) and
iyeeoyim € 1. Let n =1y, ...75, € NK). By Lemma 3.4, there exists u € (x3(0) | 5 €
®,) such that g.Cy" = un.Cy. Then g = uii, with i € Go+. As Cf has a good fixator
([Roul6, 5.7 2)]), we have (by (2.8):

_ rrpmt+grrmm—

As every element of Cj" has non empty interior, Nt = T(0). Moreover, Ug;er = Uy

and 7(O) normalizes UY™" and UZT™. Therefore,
0
Gor = T(O).Ungr.Ug(’)f‘.
Write i = tu u_, with t € T(O), uy € UY™" and u_ € U
0
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Therefore by (3.3), we have
me(g) = 1 = me(untusu-) = me(w)me(nt)me(up )me(u-) = e (w)me(18) me (ur ).

By [Roul6, 3.16 Proposition] or [Marl8, Theorem 8.118],
(BPme(k), N(k), U (k), U (k), T(k), {r; | i € I}) is a refined Tits system. By [Roul6,
3.16 Remarque|, we have the Birkhoff decomposition

67 (k) = | | o (k)netm (k).
neN(k)
As mp(u) € Ut (k), m(nt) € N(k) and 7 (uy) € UP™*(k), we deduce m(nt) = 1.

By [Rou06, 1.4 Lemme and 1.6], there exists a group morphism v : (k) — W such
that v(r;) = r; for i € I and 1)(T(k)) = 1. Then v (nt) = w = 1. Therefore w = 1 and

g = utuyu_ = u'tu_, for some v’ € UY™", since t normalizes UY™". By Lemma 2.3 and by
symmetry of the roles of U™~ and UP™", we have u’ € Upgi. By (3.3) applied to U*mgi,
—cy e

we have 7 (g) = 1 = m(u)mi(t) me(u—) = m(t) and thus
g€ Uf@of.(T N ker ) UZH™ = Uf’g;.Uggf—.(T N ker 7y,).

By (3.3), we deduce 2).

pm+ pm—+ nm— __ nm—
3) We have U_C0+ = U—cgu(); C Geru—cit UC0+ = UCJU_C}} C Gegygr and T'N

ker m, C T'N Gy C Gy, which proves 3).

1) We already proved one inclusion. Let u € kerm, NU~. Then by what we proved
above, u € Uf"gf.(T M kerm).USY™. By Lemma 2.3, u € U™, and the proposition
follows. ’ ’ ’ O

Corollary 3.6. Let n € N*. Then kerm, C Ufrgi.‘z((’)).UgT_.
0 0

Remark 3.7. Letu € U Nkerm, = Ug". Writeu = [[cn Xa(va), where vy, € gaz@0,
for everya € A_. Definew : gozQK — RU{+0o0} byw(v) =inf{z e R|v € g020Ku>s},
forv € gaz®K. Let X\ € Y be such that a;(\) =1 for everyi € I. Let Q € Cf be such that
ue Uy" andn € RY be such n\ € Q. Then uw € UG™™ implies w(vy) > |a(nA)| = nht(a)
for every ac € A_. In particular, w(v,) goes to +00 when —ht(a) goes to +o0.

4 Definition of topologies on G

In this section, we define two topologies 7 and Ji, on Z and compare them. For the
first one, we proceed as follows. We define a set V), for every regular A € Y. We prove
that it is actually a subgroup of &™"(0) (Lemma 4.2) and we define 7 as the topology
associated with (V,)nen+. We then prove that 7 does not depend on the choice of A and
that it is conjugation-invariant (Theorem 4.8) and thus that (G, .7) is a topological group.
We then introduce the topology iy associated with the fixators of finite subsets of Z and
we end up by a comparison of .7 and Fpiy.
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4.1 Subgroup V)
For n € N*, we set T, = kerm, N T C T(O). For A € Y regular, we set

N(\) = min{|a(N)] | @ € @} € N and Yy = U501 Tongy)-
By (2.9), we have
Y\ = (U+ N G[_A,)\]).(U_ N G[_A,)\]).(T N kel'ﬂ'QN()\)) C Gy (4.1)

The 2N ()) appearing comes from z_,(w"O0).x,(w"O) C x4(w"O)x_o(w"O)a¥ (1 +
@) for a € ® and n € N*, which follows from (2.1). To prove that Vy is a group, the
main difficulty is to prove that it is stable by left multiplication by U [”_TK_/\] If G is reductive,
we have U = U7, = (zala) [ € @_,a € K,w(a) = [a(A)[). By induction, it then
suffices to prove that z_,(cw!®*MIO)Vy C V), for a € ®,. When G is no longer reductive,
we have Uy € U1 in general (see [Roul6, 4.12 3)]). The group U/}, is defined as
a set of infinite products and so its seems difficult to reason by induction in our case. We
could try to use the group U_, ,; := (za(a) | @ € ®,a € K,w > |a(a)|) NU™ since it is
sometimes equal to U["_";’_A] (for example when A € CY, U["_";\;\} =U"" =U, = U[__/\’)\] by
[BHR22,2.4.12)]). However it seems difficult since if & € &, the condition w(a)+a(A) > 0
allows elements with a negative valuation. In order to overcome these difficulties, we use

the morphisms 7, for n € N.
By definition,

U =G0 ] Xa (802 @ Kesgaqan) CGN ] Xa (802 @=¥NO).

OLEA+ OCEA+

By Proposition 2.2 we deduce U, [p_ ";Jt\] C ker (my(y)). Using a similar reasoning for U, A
we deduce
V)\ C kel"(’]TN()\)). (42)

For n € N and o € ®V, one sets T,v, = a¥(1 + @"0) C T(0).

Lemma 4.1. Let A € Y be reqular and o € ®. Then Ua,j=x 0 -U—a=xaxn-Tav any) @5 @
subgroup of G.

Proof. Set Q = [=\,Al. Set H = Uy0.U_q0.Tov on(ny. It suffices to prove that H is
stable under left multiplication by U,q,U_qq and Tivonny. The first stability is clear
and the third follows from Lemma 2.4 and the fact that T,,v onny C T(O) fixes A. Let
u_,u_ € U_qq, uy € Uyq and t € Ty oneny. Write um = z_4(a_), u- = z_,(a_) and
Uy = xolay), for a_,a_,ar € K. We have w(a_),w(a-),w(ay) > |a(A)| > N(A). Then by
(2.1), we have

Uusu_t =1, (ay(1+a_ay) ) ao_a (@ (1+a_ar) " +a) (1 +a_ap)t.

Asw(l+a_ay) =1, we deduce that u_u,u_t € H, which proves the lemma. O
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Let w € W and €2 be a filter on A. Recall that ™" and """ are the completions
of & with respect to w.A; and w.A_ respectively. One defines U5™ (w.A,) and U™ (w.A_)
similarly as UF™" and U4™™ in these groups.

Lemma 4.2. Let A € YT be reqular. Set Vy = Up"f\J;] ur 73_)\] Toneyy. Then
1. V) = Up";r)\] (w.A4). UL (w.AZ). Toney for every w € W,
2. Vy is a subgroup of G.

Proof. (1) This follows the proof of [GR0S, Proposition 3.4]. Set Q = [\ A]. Let i € T
and o = ;. By [GR0O8, 3.3.4)] and Lemma 4.1,

Ay \{a}).U"(A-\{a}).Uso.U-aq. Tonen
Ay \{a}). U™ (AN {a}>’U—a,Q-Ua,Q-T2N (\)
AL\ {a}).U_a.Us" (A \{a}).UsoTon
7. AL ).UG™ (1. AZ) Ton

N
= UB"
= U
= UE"

~~ —~ —~

Therefore V), does not change when A, is replaced by w.A,, for w € WY, which proves

<1).Let w € W7 be such that A € w.C}. By (1) we have
Vi = U5 (w.AL). UG (w.AZ). Ton(y-
Let t € T' be such that t.0 = A. By Lemma 2.4, we have
tUS"™ (w. A )t = Ul (w.Ay) = Uiy (w.Ay) = Ug™ (w.Ay).

Similarly, tU§™ (w.A_)t™! = U™ (w.A_). As T is commutative, we also have tToy ™! =
Ton(ny- In order to prove (2), it suffices to prove that

H = tU§" (w. AL UG (w.AZ) Tonpyt™ = U™ (w.A)Us™ (w. A ) Ton

is a subgroup of G. It suffices to prove that H is stable under left multiplication by
U™ (w.AL), U (w.AZ) and Thy (. The first stability is clear and the third follows from
Lemma 2.4.

First note that by [Roul6, 5.7 1)],

Glon = U™ (w. AU (w.A)T(0) (4.3)

is a subgroup of G.

Let u_,u_ € U™(w.A_), uy € U™ (w.Ay), t € Ton(ny. Let us prove that u_uju_t €
H. We have @_uy = uy(ui't_uy). By Proposition 2.2, Ul™(w.A_) C ker mon(y). By
Proposition 3.1, u; € &™(0) and we have u;'tu_u, € Glo,2a Nker mon(n). Therefore (4.3)
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implies that we can write u'tu_u, = ujujt;, where ui € U™ (w.A,), u M (w.AL)
and t; € T(O). We have

Tonoy (Ui upty) = 1 = monoy (U t1) = manoy () many (G).

AsB(O /NN O) = (O )NV )xﬂpm“w(O/sz NO) and as man(y (T(0)) € T(O/=*NNO)
and mon(y (WM (0)) C Wmer (O /NN O), we deduce man(y (uf) = Tany () = 1 and
ty € Ton(yy). We have

U_usu_t = ujuiuytiu_t

and as Toy(n) normalizes U™ (w.A_), u_uju_t € H, which proves the lemma.
U

Remark 4.3. 1. Note that if \ € YT is reqular, then Up"j\J;]U N )\]TQN()\)H is not a sub-
group of G. Indeed, take o € ®F such that |a(\)] = N(N). Then x_o(w¥ Nz, (VW) =
To (VN (1 —l—wZN(A))_l)x_a(wN()‘)(l + @)V (1 4+ @MV and by Lemma 2.8,

this does not belong to U[p_rr)b\:i;\]U[n_rK;\}T2N()\)+l

2. For every k € [0,2N(N)], UfmT; UM Te = Va1 is a subgroup of G, since T
normalizes Up"j\t\] and U[Ti";\7A by Lemma 2.4. Note that for the definition of a topology,
we could also have taken the filtration (Up";)f Ul nn) Ten) Jnene s for any k(n) €
[0,2nN(N)] such that k(n) — +oc.

—+00

3. As V) = V/\_l and by Lemma 2.4, we have V) = U"”; )\]U /\)\]TQN()\)

4.2 Filtration (V,))nen-

Let Q be a filter on A. One defines cI*(2) as the filter on A consisting of the subsets (/
of A for which there exists (k,) € [],cn Aa U {400} such that Q' D () . D(a, ka) D Q,
where A, = A if @ € ® and A, = R otherwise. Note that cI* is denoted cl in [Roull] and
[Roul6]. By definition of U5"™" and US™™, we have

Ug™" = U = UL, and Uy™™ = Uy"™ = UlZ, . (4.4)

for any filter €’ such that Q C ' C cl®(Q).
Lemma 4.4. Let A € C} and w € W". Then d?([~w.\, w.\]) D (—w.)\+w.C’_}’) N(w.A\—
w.CY).

f

Proof. As A and ® are W'-invariant, we have w.cl®(Q) = cI®(w.Q) for every w € W?.
Thus it suffices to determine c1®([—\,A]). Let (k,) € [[,en Ao U {+00} be such that
MNoea D(a, ko) D [=A A Let o« € A Write o = ), n;q;, with n; € N for i € I. Then
ko > a(X) = e niai(N). Let o« € A_. We also have k_, > Y., nia;(N).
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Let v € (=A+ CF) N (A = C}). Then —a;()\) < a;(r) < a;(N) for every i € I. Then
ko <3 iernici(x) < ko and thus kg + o(x) > 0 and k_, — a(x) > 0. Consequently,
r € (Npen D(a, ky) and thus

(A +CHN(A=Cp) c () Dl ka),
acA
which proves the lemma. O

The following lemma will be crucial throughout the paper. This is a rewriting of
[BHR22, Lemma 3.2 and Lemma 3.5|. Although w is assumed to be discrete in [BHR22],
the proofs of these lemma do not use this assumption.

Lemma 4.5. 1. Let a € A and g € U*t. Then there exists b € a — C} such that
g—lUng-i-g C Ué)m+_

2. Lety € . Then there exists a € A such that UP™ fizes y.

3. Let A € YT be reqular and y € Z. Then for n € N large enough, U[”_TZK”/\] fizes y.

Proof. By |[BHR22, Lemma 3.2 and 3.5|, we have 1) and 2). Let A € Y* be regular. Write
A =w AT, with AT € C} and w € W". Let a € A be such that U™ fixes y. For n € N*,

we have cl®([—n\, nA]) D n ((—w At + w.CY) N (wAt —w.CY)), which contains a, for

n > 0. So for n > 0, we have U[p_"x ay C UE™, which proves 2). O

Lemma 4.6. Let A\, u € Yt be reqular. Then (Vo )nen+ and (Vo )nen+ are equivalent.

Proof. Write pp = v.p™*, where v € W¥ and ™ € C}. For m € N, set
Qe = (=mp+0.CF) O (mp — w.CY).

By Lemma 4.4, Q,,, C ClA([—m,u,m,u]). Let n € N*. As Q,,, = m{), and (2, contains
0 in its interior, there exists m € Zs, such that Q,,, D [-nA,nA]. Moreover, by (4.4),

U g = Ut C UL s since @ = UG s decreasing for €. With the same
reasoning for U™, we deduce V,,, C V,\. By symmetry of the roles of A and p, we
deduce the lemma. O

The end of this subsection is devoted to the proof of the fact that for every A € Y
regular, (V,))nen+ 1S conjugation-invariant.

Lemma 4.7. Let o« € ® and a € K. Let A € Yt be reqular. Then (x4(a). Vox-Za(—a))nen-
is equivalent to (Vpx)nen: -
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Proof. Let € € {—,+} be such that a € ®.. Let w € W be such that ew™'.« is simple.
By symmetry, we may assume that e = +. By Lemma 4.6 we may assume that A € w.CY.
Let n € N*. By Lemma 4.2, we have

Vi U[m?u nA| (w'A-F)U[n—T?LA,nA} (w.AZ)Tann(n)-
= UP\(w. A U (w. A ) Tonn -
Write o = w.qy;, for ¢ € I. By Lemma 4.5,
Tw.a (@) UL\ (WAL )Ty o, (—a) C UZT (w0 AL, (4.5)

for m > 0.
By [Roul6, Lemma 3.3], UM y(w.A2) = UMy (w. (A \ {=ai})).U—w.aq[-nani
and U_, a, [-nany DOrmalizes U_n)\m)\]( w.(A_\ {—a;})).
By [Kum02, 1.3.11 Theorem (b4)], r;.(A_\ {—«a;}) = A_\ {—«;} and thus for m € N,
we have
Ul ma (W-(A-\ {=ai})) = UZ o (wri(A-\ {—ai}))
= U™ (wri(A-\ {=ai})) N UL oy (wrin A,

Moreover,
Tu.a, (@)U (wri( A\ { =i })) w0, (—a) = U (wri(A\ {—as})), (4.6)

by [Roul6, Lemma 3.3| (applied to wr;.(A_ \ {—a;}) C wr;.A_). By Lemma 4.5, for
m > 0,

Tap.; (UL g3 mx) (Wi A )Ty 0, (—a) C ULy (wri A, (4.7)
Combining (4.6) and (4.7), we get
Tw.oi (U x ) (WA N A =i }) 2w 0, (—a) C U o (0. (AN {=ai})), (4.8)

for m > 0.
For b € I such that 1+ ab # 0, we have

T (A)T .0 (D) T, (—A) = Ty 0, (b(l + ab)_l) a” (14 ab)wy.q,(—a®b(1 4+ ab)™).
Therefore if m > 0, Zy.a,(@)U—w.a;, [—mrmATw.a; (—@) C Vo Combined with (4.8) we get
T, (@) UL\ (0. A )2y 0, (—a) C Vi, (4.9)

for m > 0, since V), is a group.
Let m € N* and t € T5,,. Then:

T ()0, (—) = tTya, (a (w.ou(t) — 1))

Therefore if m > nN(\) and w (a (w.c;(t71) — 1)) > w(a) + 2mN()\) is greater than
lw.ci;(nA)|, then .4, (@ (w.a;(t71) = 1)) € Vo and g0, (a)tTy.a,(—a) € V,n. Com-
bined with (4.9) and (4.5), we get z4(a).Viyr-Ta(—a) C Vyy, for m > 0. Applying this
to (zo(—a).Vir-Zo(a))ken+, we get the other inclusion needed to prove that (V,,) and
(2a(a).Vor-za(—a)) are equivalent. O
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Theorem 4.8. Let A € Y ' be reqular. For n € N*, set V,\ = Uf)_r?LJ,(nA]-UﬁTL;n,\}-TzN(A)-
Then (Vuy) is conjugation-invariant. Therefore, the associated topology 7 ((Vny)) equips
G with the structure of a Hausdorff topological group.

Proof. We need to prove that for every g € G, g(V,\)g~ ! is equivalent to (V,,). Using

Lemma 4.6, we may assume A € C}. By [Rou06, Proposition 1.5, G is generated by 7" and
the z,(a), for @« € ® and a € K. By Lemma 4.7, it remains only to prove that if t € T,
then (tV,at™')nen- is equivalent to (V). Let t € T and m € N*. Then by Lemma 2.4,

Vot = ULt U e gt Tonn
= Upm+m)\) t.mA] U[:tLT:mA),t.mA] T2nN()\)

Set 2 = (—)\+C’_}’) N (A —?}’) Then by Lemma 4.4, cl®([—mX, mA]) D mQ. Moreover,
A2 ([t.(—mA), t.mA]) = t.c®([=mA,mA]) D t.mQ. Let n € N*. Then as Q contains 0 in
its interior, t.mQ D nQ for m > 0. Therefore (by (4.4)) UIZTerA)tm,\] C Uf” oy and
U"m_ yemy C U[TZ;M} for m > 0. Consequently, tV,,\t™' C V. for m > 0, which
proves that (Vn)\) is conjugation-invariant.

It remains to prove that 7 ((V,y)) is Hausdorff. For that it suffices to prove that
Mpens Var = {1}. Let g € MN,ens Vr- Let n € N* Then as [—nA,nA] has a good

fixator ([Roul6, 5.7 1)] and (2.8)) g € Gl—nrny = U[ Ul -2 (0), so we can write
g = wlu, t,, with (w) u, t,) € UWTLK”)\] Uy X F(0). By Lemma 2.3, uy. = uj; does
not depend on n and thus u™ € (), . Uf’_f; A = U™ = {1}. Similarly, v~ = u, = 1.

Therefore t € T N(),,en- Ker m,. Let (Xi)iep,m) be a Z-basis of Y. Write ¢t = [, xi(a;),
with a; € O*, for i € [1,m]. Let n € N. Then m,(¢t) = [[~; xi(mn(a;)) = 1 and thus
a; € Nyen- @"O = {0}. Consequently, t = 1 and g = 1. Therefore (), o Var = {1} and
T ((Vna)) is Hausdorft. O

We denote by .7 the topology .7 ((V,y)), for any A € Y+ regular.

Corollary 4.9. Assume that W is infinite. Then the filtrations (ker m,), and (Vo )nen-
are not equivalent.

Proof. This follows from Lemma 3.3 and Theorem 4.8. O
Remark 4.10. 1. Ifn € N*, then ker m, is open for 7, by (4.2).

2. The Twahori subgroup GCO+ = Kj 1s open. Indeed, if A € Y N CY, then V\ C Ky by
(4.1). In particular, ™ (O) D K is open.

4.3 Topology of the fixators
4.3.1 Definition of the topology

Recall that if F'is a subset of Z, we denote by G its fixator in GG. In this subsection we
study the topology i, which is defined as follows. A subset V' of GG is open if for every v
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in V, there exists a finite subset I of Z such that v.Gp C V. Note that Gy = &™*(0) is
open for this topology.

We begin by constructing increasing sequences of finite sets of vertices (F,,) = (F,(\))nen-
such that i is the topology associated with (Gg, )nen.

We fix A\ € YT regular. We set Fy = @. For n € N*, we set

F,=F,(A) ={n\, —nA} U{z,,(w ™).0|i €I} UF, ;. (4.10)

Let n € N*. By [Roul6, 5.7 1), [-nA,nA] has a good fixator. Therefore
GFn C G[_n)\,n)\} = Uf)_n;;n)\]U[n_n:L;’nMS(O) (411)

We chose F), as above for the following reasons. We want that when x € Z and n > 0,
an element of G, fixes z. By Lemma 4.5, if u € U™ (resp. U™), and if u fixes —nA\ (resp.
nA), for some n large, then u fixes x. However, if ¢t € T, as T(O) fixes A, we need to
require that ¢ fixes elements outside of A, and the choice of x,,(ww").0 is justified by the
lemma below.

Lemma 4.11. Let i € I, n € N and t € T. Then t fizes x,,(w™™).0 if and only if
w(a(t)—1) > n.

Proof. We have t.z,,(@w™").0 = z,,(™").0 if and only if z,,(—@w ")z, (a;(t)w™™).t.0 = 0.
We have pyoo(Ta, (—w ") o, (a;(t)w™™).£.0) = t.0 and thus if t.z,,(w™™).0 = 24, (@™ ").0,
we have t.0 = 0. Thus t.z,, (w™™).0 = x4,(w™™).0 if and only if z,, ((c;(t) — 1)w™™).0 =0
if and only if w(a;(t) — 1) > n. O

Forn e N*, weset T, o ={t €T | w(a;(t) — 1) >n,Vie I}.
Lemma 4.12. Let y € Z. Then there exists M € N such that Th o fizes y.

Proof. By the Iwasawa decomposition ((MA III)), y € U*.z, where z = pyoo(y). Write
y =g (a1)...28 (ar).2, with k € Nand fy,...,0, € ;. Let t € T. We have t.y if and
only if
z =g (—ag) ...z (—ar)trs (a1) ... xp, (ar).2
= xg,(—ak) ... xg,(—a2)tzg, (1 — Bi(t™"))ar) zp,(a2) ... g, (ar).2

Let M € N*. Assume that o;(t) — 1 € @™O for every i € I.

Write 81 = >, mia;, with m; € N for every ¢ € 1. Then 5i(t) = [[,c; 07" (%).
Therefore f1(t) € 1 +@™O. For M > 0, zg, ((1 — f1(t71))ar) fixes xp,(az) ... x5, (ar).2,
by Lemma 4.5. By induction on k& we deduce that ¢ fixes z for M > 0. O

Lemma 4.13. 1. Let F' be a finite subset of Z. Then there exists n € N* such that Gp,
fizes F'.

2. Let \,u € Y be reqular. Then the filtrations (Gp,(x))nens and (Gp,(u))nen- are
equivalent.
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3. The topology Ty is the topology associated with T ((Gg, )nen)-

Proof. 1) It suffices to prove that if y € Z, then G, fixes y for n > 0. Let n € N*. Then
F, D [-nA,nAl.

By Lemma 4.5, there exists n; € N such that UpmJ; A and U["’Z;n/\ fix y, for n > ny.
Let n > ny. Let ng = ny(n) > n be such that for every i € I, <Uf”:;r/\n2/\ Ul amsn)
fixes 4, (cw™").0 for every i € I. Let g € G,,. Using (4.11), we write g = uyu_t, with
(uy,u_,t) € UP’Z; o3 XU man X T(O). Then g fixes y if and only if ¢ fixes y. Moreover,
uyu_t fixes F,, and thus t fixes F,,. By Lemma 4.11, we deduce w((c;(t) —1) > n for every
1 € I. By Lemma 4.12 we deduce that ¢ fixes y, for n > 0. Thus GFnQ(n) fixes y for n. > 0.

2) Follows from 1) by applying to F' = F,,,(u) and F,, = F,(\), for m,n € N* and by
symmetry of the roles of A\ and pu.

3) As F), is finite for every n € N*, .7 ((Gp,)) is coarser than Jgi. But by 1), Jpix is
coarser that (Jg,, ). O

Proposition 4.14. The topology Ty is the coarsest topology of topological group on G
such that &™"(Q) is open.

Proof. For n € N*, Gg, C &™"(0) and thus ™" () is open for Fpj,.

Let now .7’ be a topology of topological group on G such that &™(0) is open. Let
n € N*. Then for every element a of F),, there exists g, € G such that ¢g,.0 = a. Then
Gr, = Ncr, Ga- 8™ (0).g, ! is open in G. Proposition follows. O

4.3.2 Relation between %, and .7

In this subsection, we compare i, and 7. We prove that 7 is finer than %;,. When
KC is Henselian , we prove that .7 = gy if and only if the fixator of Z in G is {1} (see
Proposition 4.21).

Let A € Yt be regular. For n € N, we define F,, = F,,(\) as in (4.10).

Forn € N, one sets T, 0 = {t € T | ay(t) € 1 + @"O,Vi € I}. Let Z = (), oy Tn,e and
Zo=2N0%(0). Then Z={t € T | a;(t) = 1,Vi € I} is the center of G by [R¢m02, 8.4.3
Lemme|.

Lemma 4.15. The fizator Gz of T in G is Zo and [ = Zp.

nGN* Fn

Proof. We have Gz C Gy = T(0), by [Roul6, 5.7 5)]. By Lemma 4.11, Gz C T,, s N T(O)
for every n € N and thus Gz C Zp. Let 2z € Zp and z € Z. Write x = g.a, with a € A.
Thenzx—gza—ga—xandzEGz.

Now let g € (,,cn+ GF,- Then by Lemma 4.13, g fixes Z, which proves the lemma. [

Lemma 4.16. There exists an increasing map M : N — N whose limit is 400 and such
that for every m € N,
Gpn C Vm)\.(TM(n)7cI> N ‘Z(O)),

for m,n € N* such that M(n) > m and n > m.
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Proof. Let n € N*. Let M(n) € N be maximum such that U}y ), Uf’_ﬁ;n/\}, fix Fui(n).
By Lemma 4.5, M(n) — +oo. Let g € Gp,. Using (4.11) we write g = uju_t, with
uy € U[p_";;m], u- € UMYy and t € T(O). Let m' = M(n). Then m’ <n and u., u_ fix
F,v. As g fixes F,,y we deduce t fixes F,,y. By Lemma 4.12, t € T,y 4 N T(O). Therefore
9 € Vor-(Thimy,e N F(O)), which proves the lemma. O

Lemma 4.17. Let A* = X @R, Q' = (P,.; Qa;) N X C A* and d be the dimension of Q'
as a Q-vector space. Then there exists a Z-basis (x1,...,xe) of X such that (x1,...,Xa)
is a Z-basis of Q.

Proof. Let x € X and n € Z\ {0}. Assume that nx € '. Then x € Q'. Therefore X/’
is torsion-free. Let (eqy1,...,e) € (X/Q)¢ be a Z-basis of X/Q'. For j € [d + 1,/],
take x; € X whose reduction modulo Q' is e;. Choose a Z-basis (x1, ..., xq) of X’. Then
(X1, ---,Xe) satisfies the condition of the lemma. O

Lemma 4.18. Assume K to be Henselian. Let a € O and m € N*. Assume w(a™—1) > 0.
Then we can write a = b+ ¢, with b € O such that b™ =1 and w(c) > 0.

Proof. Let k = O/m be the residual field and m; : O — O/m be the natural projection.
Let p be the characteristic of k. If p = 0, we set m’ = m and k = 0. If p > 0, we write
m = pFm/, with k € N and m’ € N prime to p. We have m,(a™) = m(a)™ = m(1). We
have (m(a)™ — 1)** = 0 and thus m(a)™ = m(1). Let Z be an indeterminate. We have
Zm —1=(Z — a)Qx, where the bar denotes the reduction modulo m[Z] and Qy € k[Z] is
prime to Z — a. As O is Henselian, we can write Z™ — 1 = (Z — b)Q, where b € O is such
that m.(b) = m.(a) and Q € O[Z] is such that Q = Q. Then m(b— a) = 0 and we get the
lemma, with ¢ = b — a. O

The following lemma was suggested to me by Guy Rousseau.

Lemma 4.19. Assume K to be Henselian. Let m € N*. Then there exists K € N*, K’ € N
such that for every n € N* and a € O such that w(a™ — 1) > n, we can write a = b+ ¢,
with b,c € O such that b =1 and w(c) > n/K — K.

Proof. We first assume that K has characteristic p > 0. Let n € N* and a € O be
such that w(a™ — 1) > n. Write m = m/pF, with ¥ € N and m’ € N prime to p.
We have ™ — 1 = (a™ — 1)*" and thus w(a™ — 1) = w(a™ — 1)/pF > n/pF > 0. By
Lemma 4.18, we can write a = b + ¢, with b,c € O, b™ = 1 and w(c) > 0. We have
a™ —1=mb" e+ 27;/2 (”;.L,)cibm_i, where 7 is the image of z in K, if x € Z. As m/ is

prime to p, m’ is a root of 1 and thus we have w(m/) = 0. As o™ = 1, w(b) = 0. Therefore

w(c) = w(m'b™ te) < w((")b™ =) for i € [2,m']. Consequently w(a™ — 1) = w(c) and
w(a™ —1) = pPw(a™ — 1) = p*w(c) > n. This proves the lemma in this case, with K’ =0
and K = p".

We now assume that K has characteristic 0. Then by [Gre66, Theorem 1] and [Rou77,
Annexe A4] (for the case where w(K*) is not discrete) applied with F' = {Z™ — 1} (where
Z is an indeterminate), there exist K € N*, K’ € N such that for every n € N*, for every
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a € O such that w(a™ — 1) > n, we can write a = b+ ¢, with b,c € O, ™ = 1 and
w(c) > n/K — K', which proves the lemma in this case. O

Lemma 4.20. Assume K to be Henselian. There exist K, € R}, L € N such that for
every n € Zsr, The NT(0) C Z0.T,/k, -

Proof. We keep the same notation as in Lemma 4.17. Let (x},...,x)) € Y* be the dual
basis of (x1,...,x¢). Fori € I, we write oy; = Z§:1nj,ina with n;; € Z for all i,j. We

have n;; = 0 for j € [d+1,/]. Set t = H§=d+1 x; (x;(t)) € (O). Then a,(t) = 1 for every
i €I and thus t € Zp.

For j € [1,d], write x; = >,c; mi 04, with m;; € Q for every i € I. Take m € N*
such that mm; ; € Z for every (i,5) € I x [1,d]. Let j € [1,d]. We have

d
xi(t)™ =)™ € 1+ =0

J=1

Using Lemma 4.19 we can write x;(t) = b; + ¢;, with b;,¢; € O such that 07" = 1 and
w(cj) = n/K — K', with the same notation as in Lemma 4.19. Set ¢ = cjbj_l € 0. As
bj is a root of 1, we have w(b;) = 0 and thus w(c;) = w(cj) > n/K — K'. We have
bj + C; = b](l + C;)

Set t' = H;lzl X (bj) and " = H?=1 X; (1 +c}). Then x;(t') = b; and x;(t") = 1+ ¢,
for j € [1,d]. For i € I, we have o;(t) = a;(t')ou(t")ou(t) = ou(t)a;(t") and ay(t") €
1+ @E-K'O (when n/K — K' ¢ N, @"X-K'0 is just a notation for Ky, /x_x). As
a;(t) € 1+ @ E=K'O we deduce oy(t') € 1+ @ K=K'O (replacing K by K +1if K <1).

Let F ={£ € O|&™ =1}. Then F is finite. Let L' = max{w(¢ —1) | & € F\ {1}}.
Let L € N be such that L/K — K' > L'. For n € Z>y, we have n/K — K' > L/,
we have «;(t') = 1 for i € I and ' € Zp. Maybe increasing L, we can assume that
K, :=1/K —K'/L > 0. Then for n > L, we have n/K — K' > n(1/K — K'/L) > nK,.

Consequently, for n € Zsy and t € T, ¢, we have t = t'tt”, with t't e Zoand " € To/k:,
which proves the lemma. O

Proposition 4.21. The topology 7 is finer than Jpi. If K is Henselian, then we have
T = T if and only if Zo = {1} if and only if Ty is Hausdorff.
Proof. Let x € Z and m € N*. Then by Lemma 4.5, U[p_":;\’m)\] and UﬁTn_/\’m)\] fix x, for
m > 0. By Lemma 4.12, T5,,n(y) fix x and thus V,,) fixes x for m > 0. Thus if n € N*,
Via C Gg, for m > 0 and 7 is finer than Jgy,.

If 7 = Jpix, then by Theorem 4.8, Fp;y is Hausdorff. Therefore (), . G, = Z0 = {1}
by Lemma 4.15.

Assume K is Henselian. Let m € N*. Then by Lemma 4.16 and Lemma 4.20, there
exist Ky € R} and L € N such that

Gr, CVmr-Z20.Trwm) /Ky s
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for n > min(m, L), with M(n) — +oo. Therefore if Z» =1 we have

n——+00
Gr, CVorx-Tum)r, C Vi,

for n such that M(n)/K > 2mN (), and thus (V,,)) and (G, ) are equivalent, which proves
the proposition. O

Remark 4.22. 1. If («;)ier is a Z-basis of X, then T = Trix. Indeed, assume that
(a)ier is a Z-basis of X. Let (x})icr be the dual basis. Let n € N* and t € T, ¢ N
T(O). Write t = [[.c; X/ (a;), with a; € O* fori € 1. Then m,(t) = [[;c; X/ (mn(ai))
and m,(t) = 1 if and only if m,(a;) =1 for alli € I. Now o;(t) = a; and thust € T),
if and only if t € T,,. Therefore Zo =), .n T = {1}.

neN -1

2. Note that by Lemma 4.16, the set of left T(O)-invariant open subsets of G are the
same for Tpix and 7. Indeed, let V- C G be a non empty left T(O)-invariant open
subset of G for Fgi. Then for everyv € V, there exists n € N* such that Gg,.v C V.
By Lemma 4.16, T(O).Gg, C Vaa and thus V is open for 7.

3. Assume that IC is local. By 2), if T € Home, (Y, C*), then I(7)7 = I(7) 2., (see (1.1)
for the definition). Indeed, 6> and T are maps from' Y = T/Z(O) to C* and thus

their extensions to B are left T(O)-invariant. Therefore any element of 1(1) is left
T(O)-invariant.

5 Properties of the topologies

In this section, we study the properties of the topologies .7 and 5. In 5.1, we prove
that when G is not reductive, .7 is strictly coarser than the Kac-Peterson topology on G
(Proposition 5.3). In 5.2, we prove that certain subgroups of G are closed for .. In 5.3, we
prove that the compact subsets of G have empty interior. In 5.4, we describe the topology
in the case of affine SLy, under some assumption.

5.1 Comparison with the Kac-Peterson topology on G

In [KP83], Kac and Peterson defined a topology of topological group on &(C). This
topology was then studied in [HIXM13] and generalized in [HIXM 13, 7]: Hartnick, Kéhl and
Mars define a topology of topological group on &(F) for F a local field (Archimedean or
not), taking into account the topology of F. The aim of this section is to prove that the
topologies we defined on G = &(K) are strictly coarsest than the Kac-Peterson topology
on GG, unless G is reductive. As 5, is coarser than .7 it suffices to prove that .7 is strictly
coarser than J p. To that end, we prove that the topologies induced on G by .7 and T p
on B :=TUT are different using the description of Jxp|p as a colimit.

Lemma 5.1. Let w € WY, Assume that wr; < w for everyi € I (for the Bruhat order on
W?). Then W" is finite.
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Proof. By [Kum02, 1.3.13 Lemma|, we have w.a; € ®_ for every i € I. Let A € C}. Then

a(w™t\) < 0 for every i € I and thus w™'. A € —C%. Thus \ € TN —7. By [Kum02
1.4.2 Proposition| we deduce that ® is finite and thus W is finite. O

We equip W with the right weak Bruhat order =: for every v,w € W' v < w
if £(v) 4+ (v 'w) = ¢(w). We assume that W is infinite. By Lemma 5.1, there exists a
sequence (w;)ien € (W)Y such that wy = 1, (w;y1) = £(w;) + 1 and w; < wy,, for every
e N.

For w € W", one sets Inv(w) = {a€¢+|w‘ o€ o} Let U, = (U, | a €
Inv(w)}. By [CRO9, Lemma 5.8|, if w = .1, with k& = f(w) and 4y,...,4 € I, then
Uy Ual1 Un1 iy U"i1~~~%71-°‘% and every element of U,, admits a unique decomposition
in this product. By [HKM13, Proposition 7.27]|, as a topological space, B is the colimit
lim_, TU,, (note that (W¥,=<) is not directed). Let U’ = |J,cy Uw,. Then the topology
induced on TU’ by Jkp is the topology of the direct limit lim_, TU,, : a subset V of TU’
is open if and only if V NTU,,, is open for every n € N.

For n € N, write w,, 41 = w,r;, where i € I. Set f[n] = w,.c;. Then Inv(w,) = {B[i] |
i € [1,n]}, by [Kum02, 1.3.14 Lemma).

By [HIKM13, Lemma 7.26|, the map m = m,, : T'x(K)* — TU,,, defined by m(¢,ay,...,a,) =
txgn)(ar) - . 25m)(an) is a homeomorphism, when 17U, for Jxp|ru,, -

Recall that 7 = .7 ((V,a)) for any A € Y™ N C}.

Define ht : Q4 = @, Za; — Z by ht(>-,c; i) = Y, i, for (n;) € Z7.

Lemma 5.2. Assume that W* is infinite. For n € N*, set V,, = T [, zp(w™PD'O)
and set V. =, cny Vo Then V' is open in (TU', Tip) but not in (TU’, 9) [n particular,
T and T p are different.

Proof. Let n € N*. Let v € V. NTU,, and choose k € N* such that v € V.. If k£ < n, then
v €V, CV,. Suppose now k > n. Write v = tHle T[] (w(ht(ﬁi)!ai), with ay,...,a;, € O
and t € T. By [HKMI3, Lemma 7.26|, we have a; = 0 for every i € [n + 1, k] and thus
v € V,,. Therefore VNTU,, = V,. By [HKMI13, Lemma 7.26], V,, is open in TU,,, and
thus V' is open in (TU’, Txp).

Let A € C3NY be such that a;(A) = 1 forevery i € I. Let us prove that for every n € N¥,
U'NUP™Y is not contained in V. For k,n € N*, set 2 ,, = [[, 2 (@™™P) € U'NUPTY.
By [HKM13, Lemma 7.26|, if 2, € V, then nht(5[:]) > (ht(5[d]))!, for every ¢ € [0, k:]]
As ht(B[i]) T oo there exists k € N such that z;,, € U' N U\ V and thus,

U nurry gZ V. Using Lemma 2.3 we deduce that there exists no n € N* such that
V2. NTU" C V and thus V is not open for 7. O

We equip SLy(K) with the topology associated to (ker 52),,en+, where 7552 : STy (O) —
SLy(O/w™O) is the natural projection. We denote by x, (resp. z_) the morphlsm of
algebraic groups a — (¢) (resp. a+— (19)) for a in a ring Z. Using Corollary 3.6, it is
easy to check that

ker m" = 2 (@"0).2x_(="O). (7759 . 2o) NSLy(K)),
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and thus (V31?) is equivalent to (ker 75"2) for any regular A € Y,

We equip T" with its usual topology, via the isomorphism 7" ~ (K*)™, for m the rank of
X. This is the topology 7 ((ker 7,|7)nen). Note that by Lemma 2.3, this is the topology
induced by 7 on T.

Proposition 5.3. 1. Let o € ;. and ¢, : SLy(K) — G be the group morphism defined
by Qo © Tx = Tag. Fiz a basis (xY,...,x)) of Y and define v : (K*)* =5 T C G by
t((ar, ... ap)) = xi(a1)...x) (), for ay,...,ap € K*. Then the @, a« € ® and ¢
are continuous when G is equipped with 7 .

2. If ® is infinite, the topology 7 is strictly coarser than Jxp.

Proof. (1) Let @« € ® and A € YT be regular. Let g € ©,'(V)\). By [Roul6, 3.16] and
[Rem02, 1.2.4 Proposition|, we have the Birkhoff decomposition in SLy(K) (where Ngp, is
the set of monomial matrices with coefficient in £*) and G-

SLy(K) = |_| . (K)nz_(K) and G = |_| UtnU~.

TLGNSL2 neN

Let n € Ngp, be such that g € z (K)nax_(K). If n ¢ Tsp,, then p,(g) € Utpa(n)U™
and v”(¢.(n)) acts as the reflection with respect to & on A. Then ¢, (g) ¢ UTTU~ which
contradicts Corollary 3.6. Therefore n € T. Write g = x4 (ay)nx_(a_), with a,,a_ € K.
Then by Lemma 2.3, we have z,(a;) € U[p_"f\;], T_ala-) € Uy and wu(n) € Ton.
Consequently, w(a),w(a_) > |a(N)| and

te TSL2,2N()\) = (1+w2(1]V(A)O 1+w29\f(>‘)(9> M SLQ(]C)
Therefore o '(Va) C 24 (Kuzja)) TsLs2v ()T - (Kusja))- Conversely, po(z—(Kuzjam))),
a4 (Kozjam)), Pal(TsLyany) € Vaand thus o ' (Va) = 24 (Kuxjam)) TsLa2ev ) T— (Kuzjay))
is open in SLy(KC). Therefore ¢, is continuous.
Let n € N*. Then :~4(T;,) = (1 + @"O)* and thus ¢ is continuous.
(2) By [HEKMI13, Proposition 7.21] and (1), .7 is coarser than Jxp. By 5.2, .7 is
different from J p, which concludes the proof. O

5.2 Properties of usual subgroups of GG for .7 and Zpi,

In this subsection, we prove that many subgroups important in this theory (such as B, T,
Uy, o € ®, etc.) are open or closed. We have Trix C T and thus every subset of G open
or closed for Triy is open or closed for 7. As the Kac-Peterson topology Jx p is finer than
7, this improves the corresponding results of [HIKXM13]. Note that we consider B = BY
and U™, but the same results hold for B~ and U™, by symmetry.

If g € G, we say that g stabilizes (resp. pointwise fixes) +o00 if g. + 0o = +00 (resp.
if there exists () € +oo such that g pointwise fixes )). We denote by Stabg(+00) the
stabilizer of +o00 in G.
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By [Heb18, 3.4.1], Stabg(+00) = B := TU*. We denote by Ch(9Z™) the set of positive
sector-germs at infinity of Z. For ¢ € Ch(0Z") and = € Z, there exists an apartment A

containing x and c¢. We denote by
T+c (5.1)

the convex hull of z and ¢ in this apartment. This does not depend on the choice of A, by
(MA II). Fix A\g € C}. For r € Ry, we set C, = {c € Ch(9Z") | [0,7.A\¢] C 0+ c}. This set
is introduced in [CMR20, Definition 3.1] where it is denoted Uy, or U, .

Proposition 5.4. 1. The subgroup B is closed in G for 7 and Fyiy.
2. The subgroup U of G is closed for . It is closed for Fyiy if and only if T = Tpix.

Proof. 1) Let g € G\ B. Then g.(+00) # +oo. By [CMR20, Lemma 7.6, (e, Cr =
{+00}. Thus there exists n € N* such that g7'. + co & C,. Then V,,, fix [0,n)\]. Let
v € Vyy,- Then

v.(04+00) =v.0+ (v. +00) = 0+ (v. + 00) D v.[0,nA] = [0, RN

Therefore V,,y,.(+00) C C,. Consequently, g7'.(+00) & V5, + 00 and thus gV,,. + 0o Z
+00. Thus g.V,», C G\ B, which proves that G \ B is open for Zi,.

2) Let g € G\UT. If g € G\ UTT, then by 1), there exists V € T such that
gV Cc G\UTT c G\ U". We now assume g € UTT \ U. Write g = uyt, with u, € U™
and t € T\ {1}. Let A € Y N C} and assume that gV, N U™ # @. Then there exists
(W ,u,t) € Uf)_n;t\} x U™y % Tangy such that uytu u’ t' = o, where v/ € UT. As't

normalizes U and U™, we can write tu/ v/ = uf)u(_g)t, for some uf) € U+,u(_3) e U™

Then we have

u PP =1,

By Lemma 2.3 we deduce tt' = 1. Therefore t € Toy(n). Thus if X is sufficiently dominant,
g NUT =@ and gV, C G\ UT. We deduce that G\ U™ is closed for 7.

Suppose now 7 # Fgi. Then by Proposition 4.21, Z» # {1}. Then every non empty
open subset of G for Tgi, contains Zp. Take z € Zp \ {1}. As 2z € T(0), z € G\ U™.
Moreover, for any non empty open subset V' of G, 2V 5 1 € UT. Therefore G\ U™ is not

open, which completes the proof of the proposition.
U

Proposition 5.5. 1. Let x € Z. Then the fizator G, of x in G is open (for Trix and
T ). In particular, &™"(O) is open in G.

2. Let E CZ. Then the fixator and the stabilizer of E in G are closed for Ty and T .

Proof. 1) By Lemma 4.13, G, C G, for n > 0, which proves 1).

2) Let g € G\ Gg. Let x € E be such that g.x # z. Then ¢.G, C G\ Gg and hence Gg
is open. Let g € G\Stabg(F). Let x € E be such that g.x ¢ E. Then g.G, C G\Stabg(E)
and hence Stabg(F) is closed.

U

32



Corollary 5.6. The subgroups N and T are closed in G for Tpix and T .

Proof. By Proposition 5.5, N = Stabg(A) is closed. We have T' = Stabg(+00) N N.
Indeed, it is clear that T C Stabg(+00) N N. Conversely, let g € Stabg(4+00) N N. Let
w € W? and A € A be such that g.x = A+ w.x for every x € A. Then w.C} = C} and
thus w = 1. Therefore g acts by translation on A and hence g € T. This proves that
T = Stabg(400) N N and we conclude with Proposition 5.4. O

Remark 5.7. 1. The firator K; of C; is open for Fpi. Indeed, let \ € CiNY. Then
G = Go NGy is open for T and G\ C K.

2. For x,y € I, one writes x < y if there exists g € G such that g.x,g.y € A and
gy —92 €T =Upew w.Cy. By W@-invariance of T, this does not depend on the
choice of g and by [Roull, Théoreme 5.9/, < is a preorder on . One sets

Gt={geG|g.0>0}.

This is a subsemigroup of G which is crucial for the definition of the Hecke algebras
associated with G (when KC is local), see [BK11], [BKP16], [GR1]] or [BGR16]. Then
GT D Gy = &™) and thus G is open in G.

Lemma 5.8. Let g € G. Then there exists n € N such that g.a = n.a for every a €
Ang A,

Proof. Let h € G be such that hg.A = A and h fixes A N g.A, which exists by (MA II).
Then n := hg stabilizes A and thus it belongs to N. Moreover, hg.a = n.a = g.a for every
a € AN g LA, which proves the lemma. O

Lemma 5.9. Let a € ®. Write a = ew.ay;, forw € WY, e € {—,+} and i € I. Let Q be
the sector-germ at infinity of —ewr;(C}). Then U,T = Stabg(w.c00) N Stabg(Q).

Proof. There is no loss of generality in assuming that w = 1 and € = +. Let u € U,,.
Then u fixes a translate of a; ' (R, ). Therefore TU,, stabilizes Q and +oc. Conversely, let
g € Stabg(+00)NStabg(Q). Then there exist z, 2" € A such that g.(z+C%) = 2’4+C}. Then
by Lemma 5.8, there exists n € N such that g.2” = n.2” for every 2”7 € ANg='.A. Then n
fixes +o0o and thus n € T' (by the proof of Corollary 5.6). Then n~'g.x = x. Considering
n~lg instead of g, we may assume that g pointwise fixes +00. Therefore g pointwise fixes
Q. There exists a,a’ € A such that g fixes a + C} and g fixes a’ — r;(C}). Let A = g.A.
Then AN A is a finite intersection of half-apartments by (MA II) and thus either A = A
or ANA is a translate of a; (R, ). Moreover, g fixes AN A since it fixes an open subset of
ANA. By [Roul6, 5.7 3)], g € Uy, T(O). Consequently Stabg(+00) N Stabg(Q) C U, T,
and the lemma follows. O

Proposition 5.10. Let o € ®.

1. The group U,T is closed for T and Tgix.
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2. The group U, is closed for T.
3. If T # Tpiy, then U, is not closed for Tpiy.

Proof. 1) Let Q be a sector-germ of Z (positive or negative). Then by Proposition 5.4
(or the similar proposition for B~ if Q is negative), Stabg(Q) is closed in G for Jrix. By
Lemma 5.9 and Proposition 5.5, we have 1).

2) We have U, = U, T NUT, by Lemma 2.3 and thus 2) follows from 1) and Propo-
sition 5.4. The proof of 3) is similar to the proof of the corresponding result of Proposi-
tion 5.4. U

5.3 Compact subsets have empty interior

By [AH19, Theorem 3.1], for any topology of topological group on G, GCO+ or Gy are not
compact and open. In particular, Gy and GCO+ are not compact for 7. With a similar
reasoning, we have the following.

Proposition 5.11. Assume that W is infinite.
1. Letn € N* and A € Y reqular. Then Vn)\/V(n-i-l))\ is infinite.
2. Every compact subset of (G,.7) has empty interior.

Proof. 1) Set H = G_pxm+1)a) C G. Then H D Vi,y1ya, by (4.1). Thus |Var/Visa| >
Voar/(H NV,)| and it suffices to prove that V,\/(H N V,,) is infinite. We have V,\ =
Loev, , saev,y) V-(H N Vax). Moreover if v,0" € Vyy, then v.((n + 1)A) = v'.((n + 1)A) if
and only if v'.(Grs1a N Vor) = 0.(Gga N Vo).

Let us prove that G,41)x N Vux = H N V. Let g € Gug)a N Vor. Then by (4.1), g
fixes [-nA,nA] and (n+1)A. Then g.A is an apartment containing [—nA, nA\]U{(n+1)A}.
As g.AN A is convex, ¢g.A contains [—nA, (n 4+ 1)A]. By (MA II), there exists h € G such
that g.A = h.A and h fixes AN g.A. Then h='g.A = A and h~!g acts on A by an affine
map. As h7lg fixes [-n\, n)|, it fixes [-nA, (n + 1)A]. Therefore g fixes [—nA, (n + 1))
and thus g € H. Therefore G(,,41)» N Von = H NV,5. Consequently,

Vor.(n+1)A) = || {o.o+ DA} and [Vor/(H 0 V)| = Var- (n+ DA |.
vEVnA/(HNVpy)

Let (5;) € (®4)" be an injective sequence. Write 8, = >°.; ml(-e)ai, with ml(-e) €N
for £ € N. Then B,(\) > (Zielmgz))(minigai()\)) . Too. Let { € N. For k €
—00
[Be(nA), Be((n+ 1)A) — 1], x_p, (") € Uiy © Vaa- Set
zp = 1_p,(").((n 4+ 1A) € Var.((n + 1)N).

Let k' € [Be(nA), Be((n + 1)A) — 1]. Then xy = zp if and only if z_g,(@").((n + 1)\) =
z_g,().((n + 1)) if and only if z_g, (=" — @).((n + 1)A) = (n + 1)\ if and only if
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w(w® — ) > (n+1)Be(N\) if and only k = k’. Therefore [V,x.((n+1)A)| > By()). As this
is true for every ¢ € N, |V,\.((n + 1)A)| if infinite, which proves 1).

2) Let V be a compact subset of G and assume that V' has non empty interior. Consid-
ering v~1.V instead of V', we may assume 1 € V. Then there exists A\ € YN C such that
V\ C V, and we have Vo) C V. As V), is closed, it is compact. By 1), V\/Vs) is infinite.
Therefore V) = |—|v€VA Fon v. Vs, is a cover of V, by open subsets from which we can not
extract a finite subcover: we reach a contradiction. Thus every compact subset of G has
empty interior.

O

5.4 Example of affine SL,

In this subsection, we determine an explicit filtration equivalent to (V,,) in the case of
affine SLy (quotiented by the central extension).

Let Y = Za&Y @ Zd, where &Y, d are some symbols, corresponding to the positive
root of SLy(K) and to the semi-direct extension by K* respectively. Let X = Za @ Z9,
where &, 0 : Y — 7Z are the Z-module morphisms defined by a(a") = 2, a(d) = 0,
d(aY) =0and 0(d) = 1. Let 9y =0 —a, a; = &, af = —a"” and of = &”. Then
S=((2%7%).X,Y.{ao, o}, {o,)}) is a root generating system. Let & be the Kac-
Moody group associated with & and G = &(K). Then by [[Kum02, 13] and [Marlg, 7.6],
G = SLy (K[u,u™"]) x K*, where u is an indeterminate and if (M, z), (M, z;) € G, with

M= (a(w,u) b(wyu)> M, = (al(w’“) bl(w’“)) we have

c(w,u) d(w,u) c1(w,u) di(w,u)

(M, 2).(My, 1) = (M (2Z20 0= o), (5.2)

Note that the family (o, ) is not free. We have ® = {a+kd | a € {xa}, k € Z} and
(v, ) s a basis of this root system. We denote by ®* (resp. @) the set N (Neyy+Nay)
(resp —®,). For k € Z and y € K, we set za145(y) = ((1%¥),1) € G and z_s145(y) =

01
((uty1).1) €G.
Let f,g € K be such that w(f) = w(g) = 0. Let £,n € Z. Then ((ﬁoﬂe f*l(;*l> ,gw")

acts on A by the translation of vector —¢&" — nd. For p = (a¥ +nd € Y, we set

t, = ((w(;l 12() ,w_”), which acts by the translation of vector p on A. We set A = &V + 3d.

We have ap(A) =1, ay(A) =2 and thus A € C7.

By [Roul6, 4.12 3 b], UP™ = (( o H?}g}[u]) ,1> N G and similarly

Ug)@m— _ (( I+u O™ w O™ }) 7 1) NnaG.

Ou=1] 1+u~tO[u~?!

We make the following assumption:

Vn € N*, ker 7, C (igiggﬁg:} izzgtzj}) X (14 @"0). (5.3)
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If for any n € N*, we have &(0O/w"O) =~ ((8;2:8%2 Z:H Eg;gzg;{z Z*H) X (O/w"O)*

and T, is the canonical projection, then the assumption is satisfied. However we do not
know if it is true. In [Marlg, 7.6], & is described only on fields and in [Kum02, 13|, only
on C. )
% o O(wu)”,(wu=1)"] O(wu)™,(wu %
For n € N*, we set H,, = ker(m,) N <<0[(wu)”,(wu*1)"} 0[(wu)”,(wu*1)"]> K )
Proposition 5.12. If (5.3) is true, then the filtrations (H,)nen< and (Vox)nen= are equiv-
alent.

Proof. Let n € N*. By Lemma 2.4, we have Uf’_ﬁ;n/\} = U =t Uy t,n. We have
tox = thavtang. We have

. anu anu anu
t—3ndUg +t3nd C <1—é_;3nu)()9([97ﬂ[3nu]} 1+(w(§7[bu) ] ) {1}

We have
o (0|2, Y s (1))
C (ot 1+;§n<1&;:siu]) < {1})
c ((Mmae LS ) x 1)
C SLy(O[w"u]) x {1} C SLy(Ofw™u, w"u"') x {1}.
Similarly, U3\ € SLa(Ol@w™u, @w"u™"]) x {1}.

As Ty, C SLo(Olw"u, w"u)) X {1+ w"O}, we deduce V,\ C H,, since V,, C ker(m,).
Now let M € SLy(O[w* u, w*"u~']) Nker(my,) and a € K*. Using (5.3), we write
e (1 - aow "+ i alw2 T e D T aiwzn‘i‘uf )

cow®" + > jij>1 GiT 2nlilyi 1+ doww? + D> diwr iy
with a;, b;, ¢;, d; € O, for all ©. Then
(T aem™ + 35 a;m" =yt pom? 4 Yo ;0" @Dy

na(M, a)tna = << o™ + Yz @1 4 o™ + Z@Zldiw"(Qi_i)“i) a) '
Therefore
t—nav—nd(M, a)tn@&v 1a)

1+ apw?™ + D> a; ™A=yt o (hy? + D> a;c"Cli1=0y)

- ((w_2n (0™ + s @0t} 14 do?® + 3, digo @0 ) ”‘)
€ SLy(O[u,u™']) x O*.

By [BHR22, Lemma 6.10], Hs, fixes n)\, where X' = @" + d. Similarly, it fixes —n\'.
Therefore Hs,, C G[—n)\’,n)\’} N ker my,,. We have G[_n)\/’n)\/ U[ n—;’ SUE U[mz;, A" S(O), by
(2.8). Using the inclusion (Up nJ;, n}\,],U["":L;, n/\,}> C kerm,, we deduce that G,y n\ N
kerm, C Vun. As (V) and (me) are equivalent, we deduce that (H,,) and (V) are
equivalent. O
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