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Abstract

Airspace design is subject to a multitude of constraints, which are mainly driven by the concern to keep the
risk of mid-air collision below a target level of safety. For that purpose, Monte Carlo simulation methods
can be applied to estimate aircraft conflict probability but require the accurate generation of artificial trajec-
tories. Generative models allow to generate an infinite number of trajectories for air traffic procedures where
only few observations are available. The generated trajectories must not only resemble observed trajectories
in terms of statistical distributions but they should stay flyable and consider uncertainty due to weather,
air traffic control, aircraft performances, or human factors. This paper focuses on the generation problem,
and its main contribution lies in the adaptation of the Variational Autoencoder structure to the problem of
4-dimensional aircraft trajectories modelling using Temporal Convolutional Networks and a prior distribu-
tion composed of a Variational Mixture of Posteriors (VampPrior). The proposed model has been trained
on trajectories in the Terminal Manoeuvre Area of Zurich airport, which have a particularly high degree of
variability as air traffic controllers often take actions that deviate aircraft from the nominal approach proce-
dure. The model has demonstrated great abilities to take into account such amount of uncertainty. Regarding
metrics that evaluate the estimation of the statistical distribution of the observed trajectories, and the flyabil-
ity of the generated ones, the proposed method outperforms traditional statistical methods by being able to
generate more complex and realistic trajectories.

Keywords: Air Traffic Management, Deep Generative Models, Multivariate Time-Series Generation,
Variational Autoencoder, Temporal Convolutional Networks.
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Abbreviations

ADS-B Automatic Dependent Surveillance-Broadcast
AE Autoencoder
ASMA Arrival Sequencing and Metering Area
ATC Air Traffic Control
CNN Convolutional Neural Network
CRM Collision Risks Model
DGM Deep Generative Model
DTW Dynamic Time Wrapping
ELBO Evidence Lower BOund
FCN Fully Connected Network
FCVAE Fully Connected Variational Autoencoder
ft feet
GAN Generative Adversarial Network
GMM Gaussian Mixtures Models
KL-divergence Kullback-Leibler Divergence
kts knots
LoS loss of separation
LSZH identifier for Zurich airport
MFA Mean Field Assumption
nm nautical miles
PCA Principal Component Analysis
RNN Recurrent Neural Network
SSPD Symmetric Segment-Path Distance
STAR Standard Terminal Arrival Route
TCN Temporal Convolutional Network
TMA Terminal Maneuvering Area
TCVAE Temporal Convolutional Variational Autoencoder
VAE Variational Autoencoder
VampPrior Variational Mixture of Posteriors

1. Introduction

Although the airspace over Switzerland is very busy because of its central location in Europe, it has
been built up over many decades through a series of ad-hoc and disparate modifications. This system of
modifications has reached its limits and is increasingly struggling to cope with the current needs of air
traffic. The Federal Office of Civil Aviation set up in 2016 the AVISTRAT-CH program 1, which aims
to address the issue with a more modern design of the Swiss Airspace, without compromising the safety
level. Air traffic controllers have to maintain specific horizontal and vertical separation distances between
aircraft. The violation of these minimum distances is called loss of separation (LoS) and is considered safety
critical. Consequently, it is essential to have efficient collision risk models (CRM) to accurately monitor the
probability of LoS occurrences to ensure that they are below the target level of safety, which specifies the
socially accepted level of safety.

The estimation of the probability of LoS events may be carried out based on Monte Carlo methods.
However, LoS occurrences are extremely rare, and thus a large number of simulations of pairs of trajectories

1https://www.bazl.admin.ch/bazl/en/home/themen/luftfahrtpolitik/avistrat.html
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must be conducted to observe only few of them. To be consistent, the set of simulations must be conducted
on a large set of trajectories in order to be able to observe a sufficiently high number of successes. But
the number of observed trajectories for given conditions is limited. For example, in order to collect 1 mil-
lion landing trajectories at Zurich airport, we would have to download about 10 years of data. However,
apart from the download and processing time, using such old data to estimate the current probability of LoS
events is not relevant because air traffic procedures and aircraft types have changed. Ideally, we would like
to work on 1 million trajectories that have been observed recently, under similar conditions. Generative
models allow generating an arbitrary large amount of trajectories based on the most recent observations, or
even procedures that are rarely used, but potentially dangerous. Consequently, previous research such as
Eckstein (2010), Henry et al. (2013), and Jacquemart and Morio (2013) developed different analytic gener-
ators of random aircraft trajectories to be used in conjunction with Monte Carlo simulations. Nevertheless,
the generation methods in the literature are often limited as they only generate simple or one-dimensional
trajectories, which confines the collision risk analysis to sub-problems. For instance, Jacquemart and Morio
(2013) generate trajectories to estimate collisions between en-route trajectories with constant altitude and
heading. Henry et al. (2013) create 1-dimensional altitude profiles for the study of airborne collisions be-
tween intersecting runways. The objective of this paper is to produce a more general approach by develop-
ing a generative process for synthetic 4-dimensional complex trajectories for Terminal Manoeuvring Area
(TMA), i.e. the controlled airspace surrounding a major airport where there is a high volume of traffic. Traf-
fic in TMA is particularly complex and diversified, as air traffic controllers often take actions that deviate
aircraft from the nominal approach procedure. We have defined four requirements that the proposed method
must meet: (i) real and synthetic trajectories should share the same statistical distribution, (ii) synthetic
trajectories should look realistic regarding the law of physics, (iii) the generation should provide a wide
diversity of trajectories, including some that might never be observed from an operational point of view, (iv)
the user should be able to select the general shape of the generated random synthetic trajectories. We hope
to be able to orient the generation process towards specific types of trajectories (e.g. the random generation
of approaches from the South with holding patterns).

To generate aircraft trajectories, the literature mentions both model-driven and data-driven approaches.
Model-driven methods are based on flight mechanic equations and emphasize the physical reality of the
generated trajectories (requirement ii) (Delahaye et al., 2014). However, introducing randomness into these
deterministic models is complicated, and it is difficult to capture the full amount of variability present in
complex flight patterns (requirements i and iii). Data-driven models (Krauth et al., 2021) mimic the distri-
bution of observed trajectories to produce synthetic trajectories that are identically distributed (requirement
i). Therefore, they are very effective in capturing the high uncertainty present in the trajectories (iii), but
generation may lack physical realism (requirement ii). In the context of Monte Carlo simulations, where
synthetic trajectories must render the uncertainty contained in observed trajectories, generative data-driven
models appear the most suitable. They allow drawing an arbitrary large amount of random synthetic tra-
jectories, without having to specify initial conditions, flight parameters, or atmospheric scenarios. To the
best of the authors’ knowledge, previous research on data-driven trajectory generation focuses exclusively
on basic statistical density estimation methods (Murça & de Oliveira, 2020), and/or confines itself to rather
simple case studies (Eckstein, 2010; Henry et al., 2013). Currently, existing generative data-driven meth-
ods struggle to produce 4-dimensional synthetic trajectories (latitude, longitude, altitude, time) for complex
flight operations, such as full approach procedures taking into account air traffic controller actions. While
Murça and de Oliveira (2020) address the issue with a similar approach, they model approach trajectories fo-
cusing more on their general shape than the specificity of each (shortcuts, loops, additional heading changes,
etc.). We take the idea further by better taking into account trajectories that do not follow standard approach
procedures, which guarantees a greater diversity in the generated trajectories.

The main contribution of this paper lies in the adaptation of the Variational Autoencoder (VAE) by
Kingma and Welling (2013) to the modelling of multivariate time-series with high temporal dependencies.
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Unlike model-driven approaches, the proposed data-driven method estimate the distribution of the underly-
ing data and then automatically takes into account sources of uncertainty as it mimics the variability observed
in approaching trajectories (requirements i and iii). It can generate random trajectories for different aircraft
types, incoming from all possible standard terminal arrival routes (STARs), and influenced by controllers’
actions which deviate flights from the standard procedure. Additionally, this paper shows that the use of
VAE improves significantly the estimation of the distribution of aircraft trajectories over classical multivari-
ate density estimation methods such as Gaussian Mixtures (requirement i). The generated trajectories are
then statistically closer to the observed ones (requirement ii). Similar to Murça and de Oliveira (2020) who
generate random trajectories around what the algorithm identifies as the main approach routes, our method
generates random trajectories around pseudo-inputs: artificially created trajectories that cover the distribu-
tion of observed trajectories, which allow selecting the form of trajectories to be generated (requirement iv).
Finally, once the VAE trained, the generation of new trajectories is instantaneous. The implementation can
be found on GitHub 2.

The remainder of this paper is structured as follows: the literature review in Section 2 highlights the main
generation methods for aircraft trajectories. Section 3 presents the case study in which the generation method
has been developed. Section 4 describes the VAE framework and improvements that have been made to deal
with multivariate time series. The results of Section 5 are divided into three parts. Section 5.1 highlights how
the proposed VAE architecture improves the learning efficiency for the problem of trajectory generation over
classical VAE architectures. Then, Section 5.2 analyses the quality of the generated trajectories in the light
of the goodness-of-fit with the underlying distribution of observed trajectories, and the realistic nature of the
trajectories generated. It compares the proposed VAE architecture with the data-driven generation method
from Murça and de Oliveira (2020). Finally, Section 5.3 exposes the generation process of the proposed
method. To conclude, a conclusion and future works are given in Section 6.

2. Literature Review

The literature presents a wide variety of trajectory generation methods, the efficiency of which depends
on the objective to be achieved. The bulk of the literature focuses on model-driven methods that often
consist of generating one aircraft trajectory that follows the flight dynamic equations, while optimizing a
given criterion, usually fuel consumption or flight time. It can also be constrained to avoid collisions with
static or moving obstacles (Delahaye et al., 2014; Koyuncu et al., 2016). However, each generated trajectory
requires precise knowledge of a multitude of input parameters, such as aircraft performance, or flight and
environmental conditions, which makes model-driven methods badly designed to capture uncertainty, and
to generate large random sets of diverse artificial trajectories, as stated by Henry et al. (2013, p.4). In model-
driven methods, randomness can be achieved by including variability in the inputs and/or the outputs. But
as sources of uncertainty are often not observed, the randomness introduced may be significantly different
from that observed in reality. This literature review first presents existing data-driven generation methods
for aircraft trajectories. Then, it highlights what are the current state-of-the-art generation methods in Deep
Learning called Deep Generative Models (DGM). Eventually, tools to evaluate the generated trajectories are
introduced.

Model-driven methods are well suited to determine trajectories under specific constraints but rather inef-
ficient to take into account uncertainty, whereas data-driven models are to be preferred. The latter are based
on the estimation of complicated statistical distributions to mimic the information contained in the observed
data. Jacquemart and Morio (2013) deduce from real observations a stochastic process for en-route aircraft
trajectories to be used with advanced Monte Carlo simulation schemes. The stochasticity represents the

2https://github.com/kruuZHAW/deep-traffic-generation-paper
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deviation from the initial line due to wind, tracking, navigation or control. However, it can only be applied
to simple 2-dimensional scenarios of LoS probability estimations (Jacquemart & Morio, 2016) between
straight trajectories with constant altitude and speed. Murça and de Oliveira (2020) cluster the approaching
trajectories in São Paulo Airport to identify the main trajectory patterns. Each of them is then modelled with
a component from a Gaussian Mixture distribution. Sampling in one of those components generates artificial
trajectories with a shape matching the corresponding operational pattern. Dimensionality reduction is also
a tool designed to improve the estimation of complex statistical distributions and reduce the impact of the
curse of dimension. For instance, Eckstein (2010) reduces the dimension of observed ground speed profiles
with a Principal Component Analysis (PCA) and generates synthetic profiles by sampling new points in the
latent space, before serving as input to the inverse linear operation. The same idea is presented in Henry
et al. (2013) and applied to collision risk modelling for converging runways. However, both articles only al-
low to consider one particular dimension (altitude or ground speed) of straight trajectories. Moreover, PCA
is a useful tool to project observed trajectories in a smaller space of representation, but there are no math-
ematical guarantees that a newly sampled point in the latent space will correspond to a relevant trajectory
once decoded. Jarry et al. (2020) extend the dimensionality reduction approach by considering trajectories
as continuous objects and using functional PCA, whereas the projection in the latent space allows to better
identify pattern similarities. The authors show that resorting to dimensionality reduction is a promising idea
to deal with 4-dimensional trajectories, but the method only allows to modify existing patterns, and not to
perform a proper generation, as PCA is not designed to decode points from the latent space that do not cor-
respond to observed trajectories. Krauth et al. (2021) apply dimensionality reduction for the sole purpose of
improving the probability density estimate of the observed trajectories. The trajectories are not represented
by their latitude and longitude anymore, but by their projection on fixed perpendicular lines. The operator
is deterministic, but only allows to consider 2-dimensional paths with simple patterns. Lazzara et al. (2022)
and Zhang et al. (2022) use autoencoders as a non-linear projection operator to extract information from
high-dimensional time-series in order to facilitate their analysis. Jarry et al. (2019) go further into the com-
plexity of the generation method by using Generative Adversarial Networks (GAN), which are capable of
reconstructing an aircraft trajectory from a random vector of a smaller dimension. However, the latent space
here does not give any insights into the organization of the observed trajectories, and the method was only
tested on very simple trajectory patterns.

Each method outlined above contains promising ideas in terms of dimensionality reduction and proba-
bility density estimation. However, most trajectory generation models use classical methods of estimation,
which do not seem sufficiently developed to handle distributions of complex 4-dimensional trajectories, with
patterns as complex as those found in TMAs. Finding ways to improve the goodness-of-fit is a core ques-
tion, and more powerful density estimation models seem to be required. Deep Generative Models (DGM)
are neural networks that are trained to approximate complicated and high-dimensional probability distri-
butions to describe the way the underlying data has been generated. They represent currently one of the
most important field of research in deep learning, and consequently benefit from active and recent studies;
whether it is for the generation of images, videos (Vondrick et al., 2016) or even sensitive data such as med-
ical data (Lenz et al., 2021). Different frameworks exist, and Jarry et al. (2019) already explored the use of
Generative Adversarial Networks (GAN) (Goodfellow et al., 2014). In this paper, we focus on Variational
Autoencoders (VAE) (Kingma & Welling, 2013). VAE are directly in line with the trajectory generation
methods presented previously. They perform dimensionality reduction thanks to their encoder/decoder ar-
chitecture, but also provide a mathematically justified framework for the generation. Moreover, compared
to the GAN from Jarry et al. (2019), VAE are more stable to train, and benefit from a better explainability.

Evaluating the quality of the generated trajectories is of utmost importance, but the criterion of evaluation
may depend on the objective of the generation model. For instance, model-driven methods are designed to
generate trajectories that follow the flight dynamic equations. It is therefore relevant to evaluate them on
their ability to follow the distribution of observed trajectories. It is the opposite for data-driven methods, and
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it will be more suitable to evaluate them on their ability to produce physically realistic trajectories. Olive et
al. (2021) tackle the problem of the evaluation of generated trajectories and propose suitable metrics for each
type of generation method. In particular, the authors have developed a method for evaluating data-driven
models, based on a trajectory simulator, here BlueSky (Hoekstra & Ellerbroek, 2016).

3. Problem and Data

In this paper, we focus on air traffic in the TMA of Zurich airport. To guarantee optimal smooth oper-
ations throughout the year and in all climatic conditions, while respecting the political and environmental
constraints of the surrounding areas, the airport employs three operating concepts3 described in Figure 1.
The choice of the concept depends mainly on the time of day. As such, the North Operating Concept is
applied most, as it is usually active during the day. In this operating concept, aircraft land on runway 14.
Landing trajectories are significantly more complex than take-off trajectories, as they can approach from
all directions, and air traffic controllers heavily influence traffic to achieve an appropriate landing sequence.
Consequently, approaching trajectories might contain complex procedures that cannot be observed in other
situations, such as holding patterns, i.e. racetrack shapes for stacking aircraft, or a significant number of
heading changes in a short time (see Figure 2). Approach procedures in Zurich Airport are very represen-
tative of the pool of scenarios observable at most of the world’s major airports, with operational constraints
due to the surrounding terrain, noise abatement, or emission mitigation. The efficiency of a given algorithm
to generate synthetic trajectories based on data observed at Zurich airport is then expected to be represen-
tative of its performance on other airport data. Moreover, it is also expected to give satisfying results for
simpler patterns, such as en-route trajectories or departures.

A total of 14,000 landing trajectories on runway 14 in Zurich Airport (LSZH) were collected through
Automatic Dependent Surveillance-Broadcast (ADS-B) data from the OpenSky Network (Schäfer et al.,
2014) between 1 October and 30 November 2019. They are directly available in the traffic library (Olive,
2019) in Python. Trajectories are trimmed within 40 nautical miles from Zurich airport (Arrival Sequencing
and Metering Area, ASMA) and end 1.5 nm after the Final Approach Point of runway 14. Each trajectory is
then modified in such a way that they contain exactly 200 data points by using linear interpolation in order
to have a representation of trajectories which is smooth enough. In this way, trajectories have a consistent
representation and data points are close enough to prevent high gradients from one point to another. Ap-
proaches leading to go-arounds were excluded because very few were actually observed. The generation
of go-arounds would require to build a dedicated dataset on several years of observation. This was done
previously in (Krauth et al., 2021). The sample used for the study is represented on Figure 2. For each
point of the trajectory, values for the track (angle), the ground speed, the altitude, and the cumulative time
from the entry point are kept. We have selected track instead of latitude and longitude because it produces
smoother trajectories. The model does not have to learn complicated correlations between the latitude and
the longitude. As trajectories are processed in order to end at the same point, it is possible to retrieve the lat-
itude and longitude for each timestamp thanks to the track and the ground speed. As a result, one trajectory
is described by a matrix in R4×200.

4. Methodology

Generative modelling involves the estimation of the joint distribution over all the variables to mimic the
generation process of observed data. For aircraft trajectories described by (tracki, groundspeedi, altitudei, timei)
for i in [0, . . . n] with n = 200 observations, the model has to estimate a distribution in dimension 800, which

3https://www.flughafen-zuerich.ch/en/company/media-policy-and-investors/politics-and-business/operating-concepts
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Figure 1: Operating concepts at Zurich Airport

cannot be done with classical statistical methods such as marginal-copula decomposition, as applied in
Krauth et al. (2021). When it comes to the estimation of complex multivariate probability densities, resort-
ing to dimensionality reduction is often a good practice, as a high number of features often leads to weaker
goodness of fit due to the Curse of Dimensionality. However, dimensionality reduction techniques such as
PCA Eckstein, 2010; Henry et al., 2013 or Autoencoders (Olive et al., 2020) are used to represent observed
data, but do not offer the guarantee that a randomly drawn point in the latent space distribution will be
meaningful when decoded. The latent space should be endowed with the required properties for generation,
namely continuity and completeness. The former means that two close points in the latent space should
look alike once decoded, whereas the latter states that a point sampled within the latent space distribution
should be meaningful once decoded. Variational Autoencoders (VAE) are directly based on these concepts,
and have the advantage of: (i) being capable of estimating multivariate distributions that are far more com-
plex than traditional statistical methods, (ii) being fairly stable to train compared to generative adversarial
networks, and (iii) giving the explicit generative distribution in the latent space and thus enabling the setup
of Monte Carlo simulations. Overall, VAEs can be summarized by two main principles. First, they encode
data into a smaller dimensional latent space, and second, they regularize the distribution in this latent space
to ensure new samples can be generated.

4.1. Variational Autoencoder Framework
VAE was first introduced by Kingma and Welling (2013) and extensively explained in Kingma and

Welling (2019). As the name suggests, it has been built upon the framework of Bayesian Variational In-
ference, which uses a set of unobserved latent variables z to facilitate the estimation of the distribution of
the initial data p∗(x). We will use θ as a notation for the parameters of the models (such as neural network
weights). pθ is then the model parametrized by θ to estimate the real distribution p∗.

pθ(x) =
∫

pθ(x, z) dz (1)

The marginalization over an unknown set of variables makes the computation of the integral intractable
(the search space of z can be combinatorially large for instance). Nevertheless, the Bayes theorem yields to:

pθ(z | x) =
pθ(x, z)
pθ(x)

=
p(z)pθ(x | z)∫

pθ(x, z) dz
(2)

Indeed, pθ(x, z) is efficient to compute. Therefore, being able to infer pθ(z | x) enables the computation of
pθ(x). Variational Inference is the statistical method that estimates pθ(z | x) by using an approximate qϕ(z | x)
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Figure 2: Historical landing trajectories downloaded with OpenSky Network between 1st October and 30 November at Zurich
Airport for runway 14
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selected within a chosen family of distributions. The density qϕ(z | x) is called the variational posterior
distribution, pθ(z | x) the true posterior, and p(z) the prior. As the Gaussian distribution family are often
considered in VAEs, the density of a Gaussian distributionN(µx,Γx) of mean µx and covariance matrix Γx is
denoted f (· | µx,Γx) in the following. VAEs leverage the use of a Gaussian variational posterior distribution
to find a good estimate of pθ(x) through three components:

• the probabilistic encoder (or inference network) performs dimensionality reduction by mapping an
input trajectory x into parameters for the posterior distribution in smaller dimension M. Most of the
time, a Gaussian distribution N(µx,Γx) is considered for the posterior distribution. Thus, (µx,Γx) =
Eϕ(x), where Eϕ is the encoder neural network, and qϕ(z|x) = f (z | µx,Γx). One has to be aware that
each input data x is associated with a Gaussian distribution with a different set of parameters (µx,Γx).
Variational Inference frameworks often rely on the Mean Field Assumption (MFA) that states that the
posterior distribution can be factorized. Even it is not mandatory, it accelerates training by reducing
the estimation of the covariance matrix of the posterior to its diagonal. It also makes the dimensions
of the latent space independent, which enables the detection of the most important dimensions in the
latent representation (Asperti & Trentin, 2020).

• the latent space represents the space in smaller dimension in which inputs are projected, and is dis-
tributed according to the aggregated approximate posterior distribution:

1
Card(X)

∑
x∈X

qϕ(z | x), (3)

where X is the training dataset and Card(X) its cardinality. The training loss of the VAE encourages
all approximate posteriors qϕ(z | x) to be close to the prior p(z). In a perfect world, the approximate
posterior qϕ(z | x) matches both the real posterior p(z | x) and the prior p(z). In this case, the Bayes’
rule states that pθ(x) = pθ(x | z), which is exactly what is expected from a generative model, namely
being able to deduce exactly the unknown distribution of x from the one of z. Sampling a point from
the aggregated posterior leads to the reconstruction of an existing trajectory. Alternatively, sampling
a point from the prior leads to generating a new trajectory. The larger the dimension M of the latent
space is, the less information is lost during encoding, but also, the more difficult it is to match the
aggregated posterior and the prior.

• the probabilistic decoder (or generative network) maps one point sampled from f (z | µx,Γx) for a
given x into parameters for the likelihood pθ(x | z). The type of likelihood depends on the type of
the initial data. For binary input data, a Bernoulli distribution is often used. For continuous data, the
likelihood is a Gaussian distribution with a spherical covariance: Dθ(z) = (µz, cI), where Dθ is a neural
network, and pθ(x | z) = f (x | µz, cI), with I the identity matrix. The scalar c can be tuned to balance
the VAE reconstruction and generation abilities according to Dai and Wipf (2019). If the decoder is
well-trained, a point sampled from pθ(x | z) should look like the input that constructed the posterior
which z has been drawn. To allow for the back-propagation of the gradient despite the random draw
of z ∼ N(µx,Γx), the reparametrization trick is used. A random vector ζ is sampled from a standard
Gaussian ζ ∼ N(0, I), and z is formed with z = µx + Γ

1/2
x × ζ using the Cholesky decomposition. As

a result, the use of a Gaussian posterior distribution is mandatory. The full architecture of the VAE is
summarized on Figure 3.

The VAE Objective: Evidence Lower BOund (ELBO). The VAE framework relies on the Variational In-
ference, which seeks to find the best approximate qϕ(z | x) of pθ(z | x). In other words, the VAE aims to
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Figure 3: Basic architecture of a Variational Autoencoder

minimize the Kullback-Leibler divergence DKL
[
qϕ(z | x) ∥ pθ(z | x)

]
= Ez∼qϕ

[
log qϕ(z | x)

pθ(z | x)

]
. One can show that

this equality implies a lower bound on the desired log-likelihood log pθ(x):

log pθ(x) ≥ Ez∼qϕ
[
log pθ(x | z)

]
− DKL

[
qϕ(z | x) ∥ p(z)

]
= ELBO (4)

Optimizing ELBO takes into account two phenomena:

• maximizing the decoder log-likelihood Ez∼qϕ
[
log pθ(x | z)

]
over the observed data x, which ensures a

reliable reconstruction.

• minimizing the divergence between the latent distributions and the prior DKL
[
qϕ(z | x) ∥ p(z)

]
to be

sure that the latent space distribution given by the encoder is as close as possible to the prior.

4.2. Model Improvements

As it will be exposed in Section 5.2, the sole use of a VAE architecture is not sufficient to provide an
efficient estimation method for the distribution of observed aircraft trajectories. Each structural component
of the VAE has to be adapted to the generation of multivariate time-series with strong correlations from one
data point to another. First, we present how information embedding through the dimensionality reduction
has been improved with Temporal Convolutional Networks, and then how to adapt the generation process to
these modifications with a Variational Mixture of posteriors.

4.2.1. Temporal Convolutional Networks
In the VAE architecture, dimensionality reduction is carried out thanks to the encoder and the decoder.

The challenge is to find the best encoder/decoder functions that both reduce the dimension while keeping the
loss of information minimal; i.e, being able to accurately reconstruct a sample from its embedding. In the
context of aircraft trajectories, it is essential to be able to take into account the time dependency. Sequence
modelling refers to the analysis of time series in Deep Learning. Suppose X = (x0, x1, . . . , xt, . . . , xT ) ∈
Rdx×T a dx-dimensional time-dependent input sequence of length T , such as the 3-dimensional position of
an aircraft. Sequence modelling aims to capture the temporal dependencies within data in order to predict
features Y = (y0, y1, . . . , yt, . . . , yT ) ∈ Rdy×T , where yt only depends on previous observations x0, . . . , xt. The
vector yt is here the latent representation features that embody the temporal component of the sequence.
While the Recurrent Neural Network (RNN) architecture is applied for sequence modelling in most cases
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(Goodfellow et al., 2016; Lazzara et al., 2022), Bai et al. (2018) suggest that CNN should also be con-
sidered a legitimate option due to many reasons: they are less complicated, less exposed to exploding or
vanishing gradients, allow for parallel computation of outputs (unlike RNN), and can achieve cutting-edge
performance. The authors exhibit a family of architectures called Temporal Convolutional Networks (TCN)
that adapt general CNN for sequence modelling tasks.

TCNs are based on two fundamental principles: X and Y should have the same lengths T (but not
necessarily the same number of channels dx and dy), and no information from the future can be used to
predict the past. These principles are achieved through the use of causal convolutional layers with an
adapted zero-padding. A convolutional layer is said to be causal if the output element of index t is convolved
only from input elements of time t and earlier, as illustrated in Figure 4(a).

Figure 4: Architectural elements of a TCN. (a) represents a 1-dimensional convolutional layer with a kernel size of 3. (b) represents
4 1-dimensional convolutional layers with a kernel size of 3 and a dilatation factor of 2, called a TCN block. (c) represents the full
structure of a TCN residual block, which is the base architectural element of a TCN.

The receptive field r of a causal convolutional layer describes both the memory of the layer and how
far an output is affected by the past, and generally a full history coverage is desirable. Therefore, the
output t should depend on all previous inputs 0, . . . , t. Dilatation is then required to achieve a long effective
history while keeping a reasonable amount of layers. The basic block architecture of the TCN displayed
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in Figure 4(b) consists of stacking several causal convolutional layers with an increasing dilatation factor
until the full history coverage is obtained. Eventually, Bai et al. (2018) combine the TCN block with the
residual architecture developed by He et al. (2016) to reduce the risk of exploding and vanishing gradients.
This way, residual block outputs o = activation( f (x) + x) instead of o = activation( f (x)), where f is the
neural network. To be able to compare x and f (x) which have the same lengths, but not necessarily the same
number of channels, an optional 1×1 convolution is added to the TCN block to ensure the final element-wise
addition receives terms of the same shape. The usage of a residual architecture does not change the approach
conceptually, but shows significant performance gains for deep networks. The final TCN residual block is
given by Figure 4(c). Subsequently, the proposed VAE encoder and decoder are built with a superposition
of TCN residual blocks.

TCN are a simple and efficient alternative to RNN to capture the temporal dependencies of timeseries.
As shown in Section 5.1, TCN reduce by far the loss of information during dimensionality reduction and
allow for a finer representation of trajectories in the latent space and a better reconstruction. However, the
aggregated posterior distribution in the latent space becomes significantly more complex. It is therefore
imperative to choose an adequate prior distribution in order to keep the generation abilities for new samples
acceptable.

4.2.2. Variational Mixtures of Posteriors
It is common practice to use a standard Gaussian of dimension M as the prior distribution of the VAE

as it makes the calculation of ELBO easier. However, such a simplistic prior might not be sufficient for the
generation of satisfying results, since complexity was introduced in the latent space by using TCN encoders
instead of Fully Connected Networks (FCN). Moreover, according to Hoffman and Johnson (2016), the
training process is ruled by the following trade-off:

• the reconstruction term of ELBO forces the VAE to behave like a regular autoencoder (AE) by over-
fitting points in the latent space. The variational posterior distributions qϕ(z | x) tend to have well-
separated means and small variances to avoid overlaps from one distribution to another. Thus, it is
easier for the decoder to reconstruct inputs.

• the regularization term of ELBO encourages overlaps between variational posteriors qϕ(z | x) by forc-
ing them to approach the standard Gaussian prior. A regularization which is too weak forces the
VAE to tend towards a simple AE, where all distributions of the latent space are practically point-like.
Therefore, the generation with a continuous distribution is no longer relevant. In contrast, a regular-
ization which is too strong collapses all the distributions to the same standard Gaussian prior, and thus
no distinction can be made between trajectories in the latent space.

Consequently, the VAE must construct a latent space that is both diverse enough in the organization to
allow for good reconstruction and also simple enough to be well covered by the prior. A Gaussian prior is not
sophisticated enough to draw points in a latent space with a complex shape induced by the TCN encoder.
The generated points are too far away from real embedded data, which leads to a rather poor generation
behaviour. As suggested in Hoffman and Johnson (2016, p. 4), multimodal priors could ”meet halfway”
to satisfy both objectives of the trade-off. Subsequently, latent space can have a complex organization for
reconstruction, while guaranteeing that the prior can still generate points in the right areas. It appears then
that building a multimodal prior based on outputs from the encoder might allow for better coverage of the
latent space while ensuring that points sampled within the prior are decodable. This idea is developed by
Tomczak and Welling (2018) who present a new type of prior, called the Variational Mixture of Posteriors
(VampPrior). It consists of setting the prior distribution as a Gaussian Mixture whose components are
given by posterior distributions conditioned on learnable pseudo-inputs. In other words, an additional fully
connected network learns the best inputs xpseudo

i for i = 1 . . .K, where K is the number of pseudo-inputs to
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feed the encoder. Their corresponding posterior distributions in the latent space qϕ(z | x
pseudo
i ), i = 1 . . .K,

are used as components for the prior. K should be chosen so that it is large enough compared to the size of
the training dataset to cover the latent space efficiently, but also reasonably small to avoid a long learning
time. Then, the prior probability distribution function is:

p(z) =
1
K

K∑
i=1

qϕ(z | x
pseudo
i ) =

1
K

K∑
i=1

f (z | µVP, i, σ
2
VP, i) (5)

where µVP, i, σ
2
VP, i are the parameters of the i-th Gaussian component in VampPrior. The prior distribution is

no longer specified before but learned during the training of the VAE through the pseudo-inputs generator,
which is updated in such a way that the encoder will output the best component parameters to minimize the
regularization term in ELBO.

4.3. VampPrior Temporal Convolutional Variational Autoencoder for Trajectory Generation

The detailed architecture of the proposed temporal convolutional variational autoencoder (TCVAE) is
shown in Figure 5, and can be found on GitHub 4. The latent space dimension M, which is the size of each
vector µpost, i, σpost, i (corresponding to one posterior) and µVP, i, σVP, i (corresponding to one VampPrior
component) has been set to M = 64. The number of pseudo-inputs is set to K = 1000. Despite M and K
are hand-tuned parameters, those values might work for most airport configurations as approach procedures
at Zurich airport are rather complex. If the training trajectories have simpler shapes, one might want to
reduce training time by setting a lower value of M as a latent space of smaller dimension could be sufficient.
K corresponds more to the number of different procedures. For airports with less diverse trajectories, one
might want to set a lower value for K. The model has been trained on 1000 epochs, using an Adam optimizer
with a learning rate of 0.001 that is being halved every 200 epochs. The batch size has been set to 500. Data
are normalized with a MinMax scaler to get values between -1 and 1. The training on a computer without
GPU takes about 14 hours. However, once the model is trained, the generation is instantaneous.

Figure 5: Structure of the proposed VampPrior TCVAE. µVP, σVP stand for the VamPrior parameters, and µpost, σpost for the ones of
the posteriors.

4https://github.com/kruuZHAW/deep-traffic-generation-paper
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In addition to improving VAE learning, VampPrior also allows controlling the type of samples to be
generated. Once decoded, the pseudo-inputs represent synthetic trajectories whose shape is representative
of the region in which they are located in the latent space. Thus, by drawing new points around a particular
pseudo-input, we obtain resembling trajectories:

• the mean, µVP, i, defines the region of the latent space in which the selected i-th VampPrior compo-
nent simulates points. Once decoded, the mean represents a synthetic trajectory having the shape of
observed trajectories located in the same area of the latent space.

• the variance, σ2
VP, i (which is also diagonal here), defines how far from µVP i the associated Gaussian

component draws points. A small variance leads to the simulation of points close to the mean in the
latent space, and their associated decoded trajectories will be very similar to the decoding of µVP i.
Alternatively, a bigger variance leads to a greater diversity of the synthetic trajectories around the
mean, sometimes at the cost of degradation in the realism of the generated synthetic trajectories.

Therefore, the generation process of synthetic trajectories is done in three steps: (i) the identification
of the region of the latent space where the trajectories have the characteristics we want to generate, (ii) the
search in the selected region for a pseudo-input, (iii) the random draw of latent points in the correspond-
ing component of VampPrior, N

(
µVP, i, σ

2
VP, i

)
. Once decoded, they provide random synthetic trajectories

around the selected pseudo-input.

5. Results and Discussion

5.1. VAE architecture improvements

This section highlights how the architecture modifications of the VAE have improved its learning phase
for trajectory modelling task. First, results show that the TCVAE presents improved reconstruction abilities
compared to a FCVAE (Fully Connected Variational Autoencoder). Although not the main focus of the
study, reconstruction is an important component to consider. The reconstruction gives insight about how well
the information is encoded from the initial trajectory to its latent space representation. If the reconstruction is
poor, the VAE is not able to capture the characteristics of aircraft trajectories because too much information
is lost during the reduction of dimension. We also analyse the organizational differences in the respective
latent spaces. Then, the examination of ELBO show the significant improvements provided by VampPrior
TCVAE over basic VAE architectures.

5.1.1. Contribution of Temporal Convolutional Networks
It is important to note that FCVAE and TCVAE are difficult to compare. As such, the two architectures

are comparable neither in their number of parameters nor in their learning time. The comparison presented
hereafter is based on getting the best possible optimization of ELBO in a reasonable learning time. The
encoder of the FCVAE is composed of an FCN of three layers (218, 128, 64) and the TCVAE encoder has 4
residual blocks with 64 output channels each, which ensures that full history coverage is met. Both have a
latent space dimension of 64, trained on 1000 epochs, and their decoders have the same architectures as the
encoders but are reversed. It is obvious that TCVAE has a much better reconstruction performance, and can
handle not only simple straight trajectories but also more complex ones than FCVAE, as illustrated with an
example in Figure 6 (which will be confirmed by the analysis of ELBO in Section 5.1.2).

The reconstruction abilities differences between TCVAE and FCVAE are also highlighted in Figures 7
and 8. They represent the latent space clustering associated with the corresponding reconstructed trajectories
for FCVAE and TCVAE respectively. It is obvious that FCVAE in Figure 7 strongly struggles to reconstruct
accurately the observed flows of trajectories compared to the TCVAE 8. Moreover, TCVAE seems to take
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Figure 6: Reconstruction of FCVAE and TCVAE for a complex trajectory with a holding pattern

into account more refined characteristics of trajectories whereas FCVAE groups trajectories mostly on direc-
tion of arrival. For instance, purple points for TCVAE in Figure 8 represent direct approaches from the east,
whereas green ones correspond to complex approaches from the same direction. Moreover, the TCVAE
latent space contains more clusters than the one of FCVAE. It suggests that the projection axes provided
by the TCVAE are much more efficient to render non-obvious intrinsic characteristics of trajectories, and
contain way more information to enable an accurate reconstruction.

Figure 7: Gaussian clustering made in the PCA projection of latent space of observed trajectories for the FCVAE

5.1.2. Learning improvements of VampPrior TCVAE compared to basic VAE architectures
Table 1 compares the training loss ELBO defined in Eq. 4 for different VAE architectures. To this end,

the resulting reconstruction term (which should be maximized) and the KL-divergence (which should be
minimized) are listed in the table. FCVAE is much less efficient than TCVAE in terms of reconstruction,
but shows a good match between the aggregated posterior and the Gaussian prior. This is because FCNs
might not be able to render the complicated characteristics of trajectories in their latent representations.
Thus, the organization of the latent space is more elementary, and a simple Gaussian prior distribution is
sufficient to have good coverage of the aggregated posterior distribution. However, the loss of information
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Figure 8: Gaussian clustering made in the PCA projection of the latent space of observed trajectories for the TCVAE

during dimensionality reduction is significant, and trajectories cannot be reconstructed properly. TCVAE
significantly improves the reconstruction ability, but also provides a more complex latent space organization.
Consequently, a simple Gaussian prior is unable to cover the latent space properly anymore, and points
generated with the prior are not located in the same areas as points from the aggregated posterior. Thus,
they cannot be handled by the decoder. This results in the generation of synthetic trajectories which are not
realistic. Using VampPrior overcomes this difficulty; it keeps the reconstruction power of the TCVAE while
improving the match between the latent space distribution and the prior. Consequently, points generated in
the latent space are closer to the aggregated posterior and can be decoded efficiently through the decoder to
give realistic trajectories.

Table 1: ELBO metrics comparison for VAE architectures after 1000 epochs

VAE Architecture Reconstruction term KL-divergence ELBO

Fully Connected encoder, Gaussian Prior 963 32 931
Temporal Convolutional encoder, Gaussian Prior 2413 217 2196
Temporal Convolutional encoder, VampPrior 2438 169 2269

Table 1 clearly states that the use of a basic VAE architecture is not sufficient to solve this generation
problem. Moreover, only improving the reconstruction ability with TCN encoder and decoder tends to
significantly impair VAE learning by increasing the KL-divergence. To counter this phenomenon, a more
complex prior distribution such as VampPrior must be used.

5.2. Evaluation of the Generated Trajectory Quality

In Section 5.1, we demonstrated that the proposed VampPrior TCVAE architecture significantly im-
proves the learning performances compared to a basic FCVAE architecture for the modelling of 4-dimensional
aircraft trajectories. We now analyse the quality of the generated trajectories. The VampPrior TCVAE is
compared with other generative models, such as Gaussian Mixtures mentioned in Murça and de Oliveira
(2020), on its ability to estimate the distribution of observed trajectories and to produce realistic synthetic
trajectories. We propose here to analyse the quality of the generated synthetic trajectories regarding the

16



two following criteria: the preservation of the statistical properties of the observed trajectory dataset and the
flyability of the generated trajectories. For this purpose, we compute the following metric for all trajectories,
considering both criteria and all four trajectory generation methods.

Table 2 summarizes the e-distance between observed and synthetic trajectory flows. Introduced in
Székely, Rizzo, et al. (2004), the e-distance provides a measure of the distance between the respective
distributions of two sets of random vectors. It tends towards a positive constant if the two samples are
identically distributed, and tends to infinity otherwise. Therefore, e-distance can be used here to determine
which generation method produces the synthetic trajectories whose distribution is closest to the observed
one. It has been applied to two sets of observed and synthetic trajectories. These sets each consist of 3000
trajectories that are described with vectors of 800 features. The results have been averaged over 100 retrials
for each generation method.

The Gaussian mixture model (GMM) presented in Murça and de Oliveira (2020) represents the baseline
against which VAEs are compared. The poor results shown by FCVAE are the direct consequences of the
shortcomings outlined in the analysis of Table 1. Despite a good match between the aggregated posterior
and the prior, it does not have the necessary reconstruction power to produce realistic trajectories, and thus
to estimate accurately the target distribution. The use of a VAE is only of significant interest if it has been
specifically adapted for the trajectory generation problem. VampPrior TCVAE overcomes this difficulty,
while guaranteeing satisfying generation performances. First, its architecture can reconstruct trajectories
very well, but its prior is also complex enough to guarantee that synthetic points in the latent space are
similar to true points. Moreover, the VAE is based on a significantly larger number of parameters to describe
the distribution to be estimated. Thus, it provides a much more complex and refined parametric model than
the one given by GMM. As a result, VampPrior VAE is by far the most accurate method presented here to
estimate the statistical distribution of observed trajectories, by improving by a factor of 6 the results obtained
for the GMM. VAE constitutes real improvements for the generation of multivariate trajectories only when
all model assumptions have been reviewed and adapted to the problems encountered.

Table 2: e-distance between observed and synthetic trajectories

Estimation method e-distance

Gaussian Mixture 24 components 0.0590
Fully connected encoder, Gaussian prior, VAE 0.9265
Temporal convolutional encoder, VampPrior VAE 0.0103

We have shown that the VampPrior TCVAE is the method that produces synthetic trajectories whose
statistical distribution is closest to the observed trajectories. Even though the goodness-of-fit is satisfying,
we also have to ensure that the generated synthetic trajectories can be flown by an actual aircraft. In this
context, Olive et al. (2021) present a framework to assess the quality of synthetic trajectories by replaying
them in a simulator, which takes flight mechanics equations into account. We replayed our generated tra-
jectories in the open-source air traffic simulator BlueSky (Hoekstra & Ellerbroek, 2016). A given synthetic
trajectory is considered physically realistic if the distance between a trajectory and its replayed counterpart
is small. We compute nine trajectory distances implemented in the traj-dist Python library5. Figure
9 shows the cumulative distribution of the Dynamic Time Wrapping (DTW) (Besse et al., 2015) and the
Symmetric Segment-Path Distance (SSPD) (Berndt & Clifford, 1994) between synthetic trajectories, and
their simulator-generated version. More precisely, trajectories were divided into segments in which the air-
craft are aligned with existing navigational beacons as well as flying at a constant speed and altitude. Then,

5https://github.com/bguillouet/traj-dist
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BlueSky generates the corresponding ATC instructions to recompute each trajectory. This metric heavily
relies on the assumption that BlueSky is efficient enough to exactly recompute observed trajectories. That is
not necessarily the case, as Bluesky is not able to handle runway alignment or self-intersecting trajectories.
To compensate for this deficiency, a reference metric is also calculated on observed samples. A generation
method is then considered realistic if its scores are close to those obtained on the reference.

Figure 9 illustrates that the VampPrior TCVAE is the generation method that produces the most realistic
trajectories, whereas the basic FCVAE leads to the weakest results. This is consistent with the observations
made on the e-distance. Indeed, the method that produces the most statistically distant trajectories produces
also the least realistic ones. Moreover, as simulated trajectories have been recomputed based on ATC in-
structions, Figure 9 also shows that the VampPrior TCVAE generates the most relevant trajectories from an
operating point-of-view. The GMM gives results slightly better than the FCVAE, but significantly weaker
than the TCVAE. In their analysis, Murça and de Oliveira (2020) the generated trajectories were evaluated
by experts (ATC, pilots, etc.), and most of them couldn’t tell the difference between a true trajectory and a
synthetic one. Mathematically speaking, our VampPrior TCVAE produces trajectories that are even closer
to reality.

Figure 9: Cumulative distribution for DTW and SSPD between synthetic trajectories and their simulated versions in Bluesky

5.3. Air traffic modelling with VampPrior TCVAE

5.3.1. VampPrior within the latent space of the VampPrior TCVAE
Section 5.2 shows that the VampPrior TCVAE outperforms other density estimation methods in terms of

goodness-of-fit and quality of the generated samples. Subsequently, this section provides an analysis of how
trajectories are encoded in the VampPrior TCVAE latent space. Figure 8 depicts that clustering of the latent
space organization is possible to group trajectories by upcoming directions and shape. Thus, one can select
the type of trajectories to generate by focusing on a specific cluster in the latent space. For instance, a point
sampled in the green region of Figure 8 will correspond to a synthetic trajectory approaching runway 14 of
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Zurich Airport from the west with a non-direct approach, whereas the purple region describes trajectories
coming from the west with a rather straight-in approach.

To ensure a realistic generation behaviour, the points drawn in the prior must be located close to the
points drawn in the aggregated posterior, representing the observed trajectories. In Figure 10, generated
points from the prior seem to be distributed identically to points from the posterior distribution. In Figure
11, we detail how the VampPrior components cover the latent space. The left part of Figure 11 displays
the location of each mean µVP, i, i = 1 . . .K of the VampPrior components (equivalently called pseudo-
inputs) in the latent space. The colour of the points indicates the variance of the components. A yellow
point represents a VampPrior component with high variance, whereas a dark blue point represents a small
variance. The right part of Figure 11 depicts the decoding of the VampPrior means. The VampPrior covers
well the whole latent space and respects the densities of the regions, as there are more pseudo-inputs in
denser areas. Furthermore, it seems that the pseudo-inputs can be classified according to their variance. The
ones in denser areas, such as the orange pseudo-input, have lower variances and are mostly associated with
simple types of trajectories, just as suggested by the analysis of the latent space in Figure 8. As a result,
points sampled in these components are close to the mean, and then should look very similar to the decoded
pseudo-input. On the contrary, in sparser regions, the variance is usually larger to cover a wider area. Points
can be sampled far away from the mean, and thus can lead to the generation of trajectories significantly
different from the pseudo-input.

Figure 10: Point sampled in the aggregated posterior (grey) and in the prior (blue) in the latent space

5.3.2. Generation with VampPrior TCVAE
Figure 12 displays the generation of synthetic points in two specific VampPrior components. The orange

flow corresponds to a component located in a dense area, whereas the blue flow corresponds to a component
in a sparser area. The former is associated with an arrival trajectory which is flown in a rather straightforward
way, i.e. without holding patterns and with very limited influence of air traffic control. In this region of the
latent space, the VampPrior component does not cover any empty area. Consequently, generated synthetic
trajectories are realistic, even though a wide diversity is observed. It is conceivable that this generated flow
corresponds to a type of approach, where the pseudo-input describes the ideal path, and other trajectories
contain high levels of uncertainties such as aircraft type or weather. The blue flow is associated with an
arrival trajectory which is flown both with a holding pattern and with a substantial influence of air traffic
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Figure 11: Left: Pseudo-inputs representing the Gaussian mixture components of VampPrior. The location of the point represents
the mean, and the colour the variance. Right: Decoding of the VampPrior pseudo-inputs.

control. The considered region of the latent space is less dense, and the VampPrior component covers
some empty areas. Generated points can be isolated, and the closest observed points can correspond to
very different types of trajectories. As a result, these kinds of VampPrior components generally generate
complex trajectories with self-intersecting points, that can be very disparate. This great diversity may lead
to certain trajectories being less realistic from an operational point of view. Loops or turns can be located
at different locations with varying sizes and curvatures, which means that certain of these configurations are
very unlikely to be observable in reality, but still interesting to generate.

Trajectories with complex shapes are relatively rare and different from most other trajectories. As the
dimension of the latent space is large, points located in sparse regions are very distant. Thus, the VampPrior
components that cover these locations must have high variances, at the risk of producing points in deserted
parts of the latent space where no posterior distribution is close. Consequently, once decoded, these points
give unusual trajectories, which often look physically realistic, but can be far from the actual aircraft op-
erations observed in reality. Indeed, as the region is sparse, a generated point can be found between very
different observed trajectories. Subsequently, as the latent space is continuous, it inherits the characteristics
of its nearest neighbours, even if the result is operationally very unlikely. Reducing the size of the latent
space can decrease the effect of the spacing between points. However, it will also reduce the ability of the
decoder to reconstruct trajectories well.

Nevertheless, both blue and orange generations presented in Figure 12 seem to have realistic altitude and
ground speed profiles, as displayed in Figure 13. The VampPrior TCVAE can take into account non-trivial
behaviours, such as non-monotonic ground speed and altitude profiles, which is one of the limitations of the
GAN suggested by Jarry et al. (2019). The model even learns by itself that there is a speed limit of 250 kts
under 10,000 ft. Besides that, ground speeds for the orange generation are even divided into two different
types of approaches at the beginning of the profile, which might be associated with different aircraft types.
Finally, the TCVAE is also capable of generating trajectories with different durations and lengths, making
it very suitable to render observed approaches in various environmental conditions. In summary, Figures
12 and 13 show that the VampPrior TCVAE can generate a wide diversity of physically realistic trajectories
that can have complex behaviour patterns. However, this great diversity might be sometimes associated with
a lack of operational realism, for example by generating holdings in unlikely places.

The quality of the generated synthetic trajectories heavily relies on the quality of the considered pseudo-
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Figure 12: Generation of synthetic trajectories within two pseudo-input components

input. As such, pseudo-inputs can be classified into three groups. The first one, observed on Figure 12
is composed of pseudo-inputs located in the denser areas of the latent space. They are by far the most
numerous and are surrounded by observed trajectories with simple patterns. In these regions, the posterior
distributions are largely overlapping, which results in a compact latent space. VampPrior components can
cover the area more easily, and points drawn within these components are very similar to points sampled
in the aggregated posterior. The corresponding decoded synthetic trajectories are then very realistic from
a physical and operational point of view, while still maintaining a fair amount of variability. The second
group is composed of pseudo-inputs located in sparser areas of the latent space, where complex trajectories
with loops and holding patterns are observed. An example is given with the orange flow on Figure 14. The
size of this group is way smaller than the first one, but it still represents a significant part of the pseudo-
inputs. In the dataset of observed trajectories, self-intersecting trajectories are rare and can take many forms.
Consequently, the corresponding regions of the latent space are way sparser. Additionally, the distance from
one point to another can be substantially larger (especially in high dimensions because distances are dilated).
Corresponding VampPrior components have more difficulties to cover properly these areas. Moreover, they
might generate points rather far away from the aggregated posterior. As a result, pseudo-inputs have the
characteristics of surrounding points but might present defects. Some corresponding synthetic trajectories
might be unlikely from an operational point of view, even though most of them stay physically relevant.
However, this is not necessarily a drawback, especially when we study the influence of an unusual trajectory
on how traffic is organized in the airspace. Finally, the third group is composed of non-realistic pseudo
inputs. And example is the blue flow on Figure 14. It is located in a very sparse area, and the corresponding
VampPrior component has a very large variance. They are the consequences of the optimization of the
VAE objective, since they are created to have the best match between the aggregated posterior and the prior
according to the KL-divergence. Even though the third group of pseudo-inputs is mathematically relevant,
it generates non-realistic trajectories both from a physical and from an operational perspective, because of
the missing constraints on their shapes.

6. Conclusion and Outlook

We deconstructed the structural elements of the VAE to come up with a novel data-driven approach to
generate synthetic trajectories. Such generative model is of great interest as it allows creating an arbitrarily
large trajectory dataset from procedures where only a limited amount of observations is available. The TC-
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Figure 13: Altitude and ground speed profiles of the generated trajectories from pseudo-input 1 (blue) and pseudo-input 2 (orange)

VAE architecture is powerful enough to synthesize the temporal information from trajectories with complex
characteristics in a latent space of smaller dimension. Coupled with VampPrior that enhances the generation
abilities of the VAE by providing a more accurate prior distribution, the model can mimic the distribution of
observed 4-dimensional trajectories to generate synthetic ones. The model fulfils all expectations mentioned
in the introduction:

• Real and synthetic trajectories share the same statistical distribution, as suggested by the e-distance
evaluation.

• Synthetic trajectories look realistic from a physical point of view according to the metric developed
in Olive et al. (2021).

• We show that the generation process can provide a wide diversity of trajectories, including some that
might never be observed from an operational point of view. This reflects the ability of the VAE to
account for the uncertainty present in trajectories due to weather, aircraft performance, ATC actions
or human factors. The means of each component of VampPrior represent the nominal behaviour
of the route, whereas covariance matrices represent deviations due to uncertainty. The greater the
covariance of a pseudo-input is, the more uncertainty we can expect from this router, and thus, the
more diversified are the generated trajectories. On the contrary, a pseudo-input with a small covariance
correspond to routes with few uncertainty. Although uncertainty is well rendered, we cannot identify
its origin. It is possible to generate trajectories with unusual behaviour, but impossible to attribute it
to a specific source such as weather or ATC. An important limitation of our model is that we cannot
generate two trajectories that we know are subject to the same sources of uncertainty.

• By selecting the appropriate VampPrior component of the Gaussian mixture prior, it is possible to
control the type of synthetic trajectories to be generated, i.e. their direction, shape, etc., and to filter
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Figure 14: Generation of synthetic trajectories from low quality pseudo-inputs

unrealistic generated trajectories.

Unlike most previous methods that focus on simple one or two-dimensional patterns (Eckstein, 2010;
Henry et al., 2013; Jacquemart & Morio, 2013), the proposed model is capable of providing fully described
trajectories in 4 dimensions. Moreover, it outperforms the GMM estimation from Murça and de Oliveira
(2020). The model has been trained on a particularly complex set of approaching procedures at Zurich
airport, and it makes no doubt that the VampPrior TCVAE will perform equally well on other airports by
changing the training dataset. It can also be directly applied to other types of trajectories such as departures,
en-route or even missed-approaches. However, missed-approaches studies might require a special treatment
as they are rarely observed. Krauth et al. (2021) treated the problem by specifically constructing a dataset
of go-around trajectories. One might also want to use the dataset provided by Monstein et al. (2022). A
limitation of our method is that it is probably not able to randomly generate go-arounds among regular
approaches. Finally, the distribution of observed trajectories is explicitly described in the latent space by the
aggregated posterior. As a result, it is possible to evaluate the likelihood of a newly generated point. This
information can be useful when using Monte Carlo methods for collision risk estimation such as Importance
Sampling (Tokdar & Kass, 2010) or Subset Simulation (Au & Beck, 2001).

As mentioned in Section 4, the Mean Field Assumption is more than just a simplification to speed up the
learning phase. It makes the dimensions of the latent space orthogonal and allows the empirical deduction of
the role of each of the dimensions by modifying them independently. For example, by varying only the first
component of the latent representation of a trajectory, it is possible to change the direction of arrival. This
can be viewed as a very primary form of disentanglement, which focuses on controlling the decomposition
of trajectories in the latent space. However, the encoder acts as a black box and one cannot choose in
advance the linkage between the characteristics of a trajectory and the digits of its latent representation.
To perform proper disentanglement, Chen et al. (2018) change the functional form of ELBO to force the
algorithm to focus on the Total-Correlation term that influences how dimensions are correlated in the latent
space. Karaletsos et al. (2015) introduce a similarity metric between inputs to identify what the essential
latent dimensions should be. Disentanglement learning is nowadays a rather popular topic, and using it in
future works could allow us to have even stronger control over the type of synthetic trajectories one wishes
to generate.
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