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AN ANALYTIC VIEWPOINT ON THE HASSE PRINCIPLE

VLERË MEHMETI

Abstract. Working on non-Archimedean analytic curves, we propose a geometric ap-
proach to the study of the Hasse principle over function fields of curves defined over a
complete discretely valued field. Using it, we show the Hasse principle to be verified
for certain families of projective homogeneous spaces. As a consequence, we prove that
said principle holds for quadratic forms and homogeneous varieties over unitary groups,
results originally shown in [9], [36] and [33].
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Introduction

History. Let K be a number field, and G/K a semisimple simply connected linear alge-
braic group. By results of Kneser ([21], [22]), Harder ([18], [19]) and Chernousov ([6]), we
know that the following Hasse principle holds: a torsor over G has a K-rational point if
and only if it has rational points over all the completions of K. It is worth mentioning here
that to this day there is no uniform proof of the Hasse principle in this setting: Kneser
proves it for classical groups, Harder for exceptional groups with the exception of E8, and
Chernousov for E8.

Later on, Harder ([20]) proved that a Hasse principle continues to hold if K is the
function field of a curve defined over a finite field, meaning it holds for all global fields.
The methods used in [20] involve yet again case-by-case considerations.

During the last couple of decades, similar questions are being studied over function
fields of curves which are defined over more general fields. In [16], Harbater, Hartmann
and Krashen introduced a new technique to the study of such questions: algebraic patch-
ing. Let F be the function field of a curve defined over a complete discretely valued field.
Let G/F be a linear algebraic group that is a rational variety. Through algebraic patching,
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the aforementioned authors showed that a local-global principle holds for projective ho-
mogeneous varieties X over G. This means there exist larger fields Fi, i ∈ I, such that X
has an F -rational point if and only if it has Fi-rational points for all i.

In terms of the Hasse principle in this setting, in [9], Colliot-Thélène, Parimala and
Suresh propose the following conjecture:

Conjecture 0.1 ([9, Conjecture 1]). Let k be a p-adic field. Let F be the function field
of a smooth projective geometrically integral curve defined over k. Let Ω denote the set of
discrete (rank 1) valuations on F which either extend the norm of k or are trivial on k.
Let X/F be a projective homogeneous space over a connected linear algebraic group G/F .
Then, X(F ) 6= ∅ ⇐⇒ X(Fv) 6= ∅ ∀v ∈ Ω, where Fv denotes the completion of F with
respect to v.

In [9], it is shown that the conjecture is true in the case of quadratic forms. Considerable
progress has been made toward Conjecture 0.1 for classical linear algebraic groups in [33],
[36], [34] and [15]. In [9] and [33], algebraic patching is a crucial ingredient. In [8], the
same technique is used to prove that a Hasse principle is verified if G is defined over k◦-the
valuation ring of k. The authors also provide a counterexample to the conjecture when k
is not a p-adic field.

In [29], we extend algebraic patching to Berkovich analytic curves, where it acquires
a very geometric form. Through it, we generalize the results of [16], and show that
Conjecture 0.1 is true if G is a rational linear algebraic group and provided we replace Ω
by the set of all (rank 1) valuations on F which either extend the norm on k or are trivial
there. The result in question does not depend on k being discretely valued. More precisely,
we show:

Theorem 0.2 ([29, Corollary 3.18]). Let k be a complete ultrametric non-trivially valued
field. Let F denote the function field of a normal irreducible projective algebraic curve C
defined over k. Let us denote by Ω the set of all (rank 1) non-trivial valuations v on F
such that v|k is either trivial or induces the norm on k.

Let X/F be a variety on which a rational linear algebraic group G/F acts strongly
transitively. Then

X(F ) 6= ∅ ⇐⇒ X(Fv) 6= ∅ ∀v ∈ Ω,

where Fv denotes the completion of F with respect to v.

We recall:

Definition 0.3. The linear algebraic group G/F is said to act strongly transitively on
the variety X/F if for any field extension L/F , either X(L) = ∅ or G(L) acts transitively
on X(L).

If G is reductive, then by [16, Remark 3.9], for any projective homogeneous F -variety X
over G, the action of G on X is strongly transitive.

A geometric approach. We see from Theorem 0.2 that in order to prove Conjecture 0.1
in the case of rational linear algebraic groups it suffices to show that

(A) X(Fv) 6= ∅ ∀v ∈ Ω =⇒ X(Fv) 6= ∅ ∀v ∈ Ω.

The points of a Berkovich analytic curve are in bijective correspondence to the valuations
in Ω (see [29, Proposition 3.15]). The set of points on the analytic curve corresponding
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to the discrete valuations (i.e. to the points of Ω) can be well described and has been
extensively studied in the theory of these analytic spaces.

From now on, we suppose that k is discretely valued. Following the notation of Theo-
rem 0.2, let Can denote the Berkovich analytification of the curve C. We denote by M

the sheaf of meromorphic functions on Can. By [1, Proposition 3.6.2], we know that
F = M (Can). Let val : Can → Ω denote the bijection constructed in [29, Proposition 3.15]
between the points of Can and the valuations in Ω. In [29, Corollary 3.17], we show that
for any x ∈ Can, X(Mx) 6= ∅ if and only if X(Fval(x)) 6= ∅. Theorem 0.2 is proved as a
corollary of the following equivalence:

X(F ) 6= ∅ ⇐⇒ X(Mx) 6= ∅ ∀x ∈ Can.

Set Sdisc := {x ∈ Can : val(x) is discrete}. Relation (A) is then equivalent to the
following:

(B) X(Mx) 6= ∅ ∀x ∈ Sdisc =⇒ X(Mx) 6= ∅ ∀x ∈ Can.

The study of relation (B) for any variety X/F provides a geometric approach to Conjec-
ture 0.1 when G is a rational variety, and is the topic of study of this manuscript.

We remark here that Sdisc is a dense subset of Can. Its points can be described topologi-
cally: we recall that a Berkovich analytic curve has the structure of a graph; Sdisc contains
all its branching points (i.e. the type 2 points) and some of its extreme points (i.e. some
of the type 1 points).

Main statements. In this manuscript we show that several groups of varieties satisfy
relation (B), and hence (A), above. Here is one of the main results we obtain:

Theorem 0.4 (Corollary 2.14, Proposition 2.19). Let k be a complete discretely valued
field. Let C/k be a smooth irreducible projective algebraic curve and Can its Berkovich
analytification. Set F := k(C). Let X/F be a smooth proper variety such that X(Fv) 6= ∅
for all v ∈ Ω.

(1) Let Q be a finite subset of Sdisc ⊂ Can. For any x ∈ Q, there exists a neighbor-
hood Vx of x in Can such that X(M (Vx)) 6= ∅. Set U := Can\⋃x∈Q Vx. If X has
a smooth proper model over the ring

O◦(U) := {f ∈ O(U) : |f(x)| 6 1 ∀x ∈ U},
then X(Fv) 6= ∅ for all v ∈ Ω.

(2) We can construct open virtual discs and open virtual annuli B1, B2, . . . , Bn
in Can depending on X such that if X has proper smooth models over
O◦(Bi), i = 1, 2, . . . , n, then X(Fv) 6= ∅ for all v ∈ Ω.

If, in addition, there exists a rational linear algebraic group G/F acting strongly tran-
sitively on X, then X(F ) 6= ∅.

The proof of part (1) (Corollary 2.14) of this statement is based on topological consid-
erations of the analytic curve Can, as well as the nature of the rings O◦(V ) for certain
open subsets V. The proof of part (2) (Proposition 2.19) is obtained as a consequence of
part (1) and the analytic structure of Can (using triangulations).

Let C be a proper model of the algebraic curve C/k over the valuation ring k◦ of k.
In [2], Berkovich constructed a specialization morphism π : Can → Cs, where Cs is the
special fiber of C. Using this, and a result of Bosch (see Theorem 1.2), we can interpret
Theorem 0.4 over models of C.
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Theorem 0.5 (Remark 3.18). Assume X(Fv) 6= ∅ for all v ∈ Ω. A regular proper model C

of C and closed points Q1, Q2, . . . , Qn ∈ Cs depending on X can be constructed such that:
if X has proper smooth models over the rings OC ,Qi

, i = 1, 2, . . . , n, then X(Fv) 6= ∅ for
all v ∈ Ω.

If in addition there exists a rational linear algebraic group G/F acting strongly transi-
tively on X, then X(F ) 6= ∅.

We start by showing there exists a non-empty subset U ( Cs such that if X has a
proper model over C which is smooth over U , then (A) and (B) are satisfied. The “finer”
the model, the smaller U has to be.

These smoothness results can also be interpreted over the residue fields of the comple-
tions of F (Theorems 4.10, 4.12).

By combining Theorem 0.4 above with a theorem of Springer, we prove that Conjec-
ture 0.1 is true for quadratic forms, a result originally shown in [9]. Recall that a quadratic
form defined over a field K is said to be K-isotropic if it has a non-trivial zero over K.
We continue using the same notations as in Theorem 0.4. Let us remark here that the
case of residue characteristic two remains unknown.

Theorem 0.6 (Theorem 5.7). Suppose char k̃ 6= 2, where k̃ denotes the residue field of k.
Let q be a quadratic form defined over F . Then q is Fv-isotropic for all v ∈ Ω if and only
if it is Fv-isotropic for all v ∈ Ω. Consequently, if dim q > 2, q is isotropic over F if and
only if it is isotropic over Fv for all v ∈ Ω.

More generally, if the variety satisfies such a Springer-type theorem, then by combining
it with Theorem 0.4, it should amount to a proof of Conjecture 0.1. In [25], such a
“Springer-type result” is shown for Hermitian forms. One can then show the following
(see Theorem 7.10 for the precise statement which includes some additional technical
conditions):

Theorem 0.7. Assume k is a local field with char k̃ 6= 2. Let A be a central simple algebra
over F with an involution of the second (resp. first) kind σ. Let h be a Hermitian form
on (A, σ). Let G := U(A, σ, h) be the unitary (resp. G = SU(A, σ, h)-the special unitary)
group associated to (A, σ, h). Let X/F be a projective homogeneous variety over G. Then
X(F ) 6= ∅ if and only if X(Fv) 6= ∅ for all v ∈ Ω.

We remark that this result was already shown in [36] and [33]. Here we merely translate
the proof to our setting by using the tools developed in loc.cit. and Theorem 0.4.

By relying heavily on the structure of Berkovich analytic curves, something can also be
said about the case of constant varieties.

Theorem 0.8 (Theorem 6.12). Suppose k is a complete non-trivially valued ultrametric
field. Let F be the function field of a smooth connected projective algebraic curve C/k.
Let X be a variety defined over k. Suppose there exists a rational linear algebraic group
G/F acting strongly transitively on the F -variety X ×k F . Under certain conditions on
the curve C, if X(Fv) 6= ∅ for all v ∈ Ω, then

(1) if the value group |k×| is dense in R>0, then X(F ) 6= ∅;
(2) if k is discretely valued, then X has a zero cycle of degree one over F .

The conditions on the curve C mentioned in the above statement are satisfied for ex-
ample by curves with semi-stable reduction over k (in the discretely valued case) and
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Mumford curves (in general). As for the zero cycles, there has been an extensive study
of varieties for which having a zero cycle of degree one is equivalent to having a rational
point. This is in particular true for quadratic forms.

Structure of the manuscript. For an easier reading we start with a section of prelimi-
nairies. Among other things, in it we include the construction and some of the properties
of the specialization morphism. We also include a result on the connection between mod-
els of an algebraic curve and certain finite subsets (called vertex sets) of its Berkovich
analytification.

In Section 2, we use the structure of the rings O◦(U) for certain opens U to prove a
result of local nature. Through it, we prove the main results of this part: Corollary 2.14
and Proposition 2.19.

In Section 3, we translate the results of Section 2 to the language of models of algebraic
curves. More precisely, we construct several models on which, under certain smoothness
hypotheses, the implications (A) and (B) are satisfied. We prove Theorems 3.6, 3.11
and 3.16.

In Section 4, we interpret the smoothness assumptions we encounter in the previous
sections over the residue fields of the completions of the function field F . The main results
we show in this section are Corollary 4.4 and Theorems 4.10, 4.12.

In Section 5, we use the techniques of Section 2 and a theorem of Springer to prove that
Conjecture 0.1 is true for quadratic forms (Theorem 5.7). We work here with sncd models
of curves.

In Section 6, we study Conjecture 0.1 for constant varieties. More precisely, we construct
isomorphisms of the analytic curve in order to prove that relation (B) is satisfied. The
techniques that are used are of different nature from those of the previous parts. The
main statement of this section is Theorem 6.12.

Finally, in Appendix 7, we add another example to which the techniques of Section 2 ap-
ply: homogeneous varieties over (special) unitary groups. This comes down to translating
to our setting the tools and proof of [36] and [33], where the result was first shown.

Acknowledgements. The author is grateful to Antoine Ducros, David Harari, and Jérôme
Poineau for insightful discussions during the preparation of this manuscript.

1. Preliminaires

Throughout this section, k will denote a complete ultrametric field (possibly trivially

valued). We will denote by k◦ the valuation ring of k and by k̃ its residue field.

1.1. On Berkovich analytic curves. Let C/k denote a k-analytic curve.

1.1.1. The completed residue field. For any x ∈ C, the local ring OC,x is endowed with a
semi-norm with kernel mx–the maximal ideal of OC,x (see [28, Lemma 1.4.21]). The com-
pleted residue field of x, denoted H(x) is the completion of the residue field κ(x) := Ox/mx

of x with respect to the norm induced on κ(x) from said semi-norm.

We remark that H(x) is a complete ultrametric field. We denote by H̃(x) its residue
field.

The completed residue field is constructed similarly for the points of a general k-analytic
space, not only a curve (see [1, Remark 1.2.2]).
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1.1.2. Classification of points (by [1]). For any x ∈ C, let

sx := deg tr
k̃
H̃(x), tx := dimQ |H(x)×|/|k×| ⊗Z Q.

By Abhyankar’s inequality, sx + tx 6 1 for all x ∈ C. The point x is said to be of:

(1) type 1 if H(x) ⊆ k̂ (remark that sx = tx = 0),
(2) type 2 if sx = 1,
(3) type 3 if tx = 1,
(4) type 4 if sx = tx = 0 and x is not of type 1.

In addition, if x is of type 1 and H(x)/k is a finite field extension, then x is said to be
a rigid point.

1.1.3. Branch issued from a point (by [10, 1.7]). By [10, Théorème 3.5.1], C has the struc-
ture of a “real graph” (see [10, 1.3.1] for a precise definition). This graph is said to be a
tree if it is uniquely arc-wise connected, meaning for any two points of C there exists a
unique injective path in C connecting them.

Let x ∈ C. A branch issued from x is an element of lim←−π0(V \{x}), where the projective
limit is taken with respect to open neighborhoods V of x in C which are trees. By (1.7.1)
of loc.cit., the set of branches issued from x is in bijection with π0(V \{x}) for any such V.

1.2. The specialization morphism. We will be using the notion of specialization mor-
phism in the sense of Berkovich (see [2, Section 1] and [3, Section 1]).

1.2.1. The affine case. Let X = Spec A be a flat finite type scheme over k◦. The formal

completion X̂ of X along its special fiber is Spf(Â), where Â is a topologically finitely
presented ring over k◦ (i.e. isomorphic to some k◦{T1, . . . , Tn}/I, where I is a finitely
generated ideal; see [2, pg. 541] for the definition of k◦{T1, . . . , Tn}). The analytic generic

fiber of X̂ , denoted by X̂η, is defined to beM(Â⊗k◦ k), whereM(·) denotes the Berkovich
spectrum (see [1, 1.2]).

There exists a specialization morphism π : X̂η → X̂s, where X̂s is the special fiber

of X̂ , which is anti-continuous, meaning the pre-image of a closed subset is open. We

remark that X̂s = Xs, where Xs := Spec(A ⊗k◦ k̃) is the special fiber of X . Let us
describe π explicitly.

There are embeddings A →֒ Â →֒ (Â⊗k◦ k)◦, where (Â⊗k◦ k)◦ is the set of all elements f

of Â ⊗k◦ k for which |f(x)| 6 1 for all x ∈ M(Â ⊗k◦ k). Let x ∈ M(Â ⊗k◦ k). This
point then determines a bounded morphism A → H(x)◦, which induces an application

ϕx : A⊗k◦ k̃ → H̃(x). The specialization morphism π sends x to kerϕx.

Remark 1.1. In [1, 2.4], Berkovich constructs a reduction map r : M(Â ⊗k◦ k) →
Spec( ̂̃A⊗k◦ k); here ̂̃A⊗k◦ k := (Â ⊗k◦ k)◦/(Â ⊗k◦ k)◦◦, where (Â ⊗k◦ k)◦◦ is the set

of all elements f ∈ Â ⊗k◦ k such that for any x ∈ M(Â ⊗k◦ k), |f(x)| < 1. In [29,
Proposition 4.1], we show that if A is a normal domain, then the canonical morphism

φ : Spec( ̂̃A⊗k◦ k) → Spec(A ⊗k◦ k̃) is a bijection and π = φ ◦ r (see [29, 4.1] for more
details). In particular, this means that some of the properties shown for r in [1, 2.4] will
remain true for π.
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1.2.2. The proper case. The construction in the previous section has nice glueing prop-

erties. Let X be a finite type scheme over k◦, and X̂ its formal completion along the

special fiber. Then, the analytic generic fiber X̂η of X̂ is the k-analytic space we obtain

by glueing the analytic generic fibers of an open affine cover of the formal scheme X̂ . In

general, X̂η is a compact analytic domain of the Berkovich analytification X an of X . If

X is proper, then X an = X̂η (see [30, 2.2.2]).

Similarly, there exists an anti-continuous specialization morphism π : X̂η →Xs, where
Xs is the special fiber of X . In particular, if X is proper, then we have the specialization
morphism π : X an →Xs.

1.3. The Theorem of Bosch.

1.3.1. The sheaf of bounded functions. LetX be a k-analytic space. We define the subsheaf
O◦
X of OX as follows: for any open U of X, let

O◦
X(U) = {f ∈ OX(U) : |f |x 6 1 ∀x ∈ U}.

When there is no risk of ambiguity, we will simply write O◦.

1.3.2. The statement. Let C be a flat normal irreducible proper k◦-analytic curve. Let
us denote by C its generic fiber, and by Cs its special fiber. Also, let k(C) denote the
function field of C. The specialization morphism constructed in Section 1.2 gives us an
anti-continuous morphism π : Can → Cs, where C

an denotes the Berkovich analytification
of C.

Theorem 1.2 ([4, Theorem 5.8], [27, Theorem 3.1]). Let P ∈ Cs be a closed point. Then

ÔC ,P = O◦(π−1(P )), where ÔC ,P is the completion of the local ring OC ,P with respect to
its maximal ideal.

We remark here that as P is a closed point and π is anti-continuous, π−1(P ) is an open
subset of Can. For a proof of Theorem 1.2 in this setting, see [29, Proposition 4.5].

Remark 1.3. By [29, Lemma 4.3], if x ∈ Cs is the generic point of an irreducible compo-
nent of Cs, then π

−1(x) is a single type 2 point of Can. Moreover, by the proof of loc.cit.,
the valuation on k(C) determined by x is the same as that determined by π−1(x).

1.4. Vertex sets and models of curves. Let C/k be a proper normal irreducible alge-
braic curve. We denote by Can its Berkovich analytification.

Definition 1.4.

(1) A non-empty finite set of type 2 points of Can is said to be a vertex set of Can.
(See [10, 6.3.17].)

(2) A connected k-analytic curve X/k is said to be an open virtual disc (resp. open

virtual annulus) if X ×k k̂ is a finite disjoint union of open discs (resp. annuli)

over k̂-the completion of an algebraic closure of k. One can similarly define closed
virtual discs and closed virtual annuli over k. (See [10, pg. 210], [11, Section 3].)

(3) A triangulation of Can is a vertex set S of Can such that each connected component
of Can\S is either an open virtual disc or an open virtual annulus. (See [10, 5.1.13].)

By [10, Théorème 5.1.14], if C generically smooth, then there exists a triangulation
of Can.
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Remark 1.5. Let C be a proper flat normal model of C over k◦. Let Gen(Cs) denote
the set of generic points of the irreducible components of the special fiber Cs of C . By
Remark 1.3, SC := π−1(Gen(Cs)) is a vertex set of Can, where π is the specialization
morphism Can → Cs.

Theorem 1.6 ([11, Theorem 4.3], [10, 6.3.14]). The map C 7→ SC induces a bijection
between the following two partially ordered sets:

(1) the isomorphism classes of flat normal proper models of C over k◦, ordered by
morphisms of models,

(2) the vertex sets of Can, ordered by inclusion.

Furthermore, for a flat normal proper model C of C with special fiber Cs, the corresponding
specialization morphism π induces a bijection:

{closed points on Cs} ∼= {connected components of Can\SC }
P 7→ π−1(P )

If P ∈ Cs is a closed point, then the boundary of π−1(P ) consists precisely of the preimages
by π of the generic points of the irreducible components of Cs containing P .

As a consequence, thanks to Hironaka’s resolution of singularities:

Corollary 1.7. Let T be a finite set of type 2 points of Can. There exists a proper regular
model C of C over k◦ such that T ⊆ SC . The same remains true when replacing “regular”
with “sncd” (see Remark 5.2(3)).

1.5. Strongly transitive action. We recall the following definition, originally introduced
in [16].

Definition 1.8. Let K be a field. Let X be a K-variety and G a linear algebraic group
over K. We say that G acts strongly transitively on X if G acts on X, and for any field
extension L/K, either X(L) = ∅ or G(L) acts transitively on X(L).

Remark 1.9. By [16, Remark 3.9], if X/K is a projective homogeneous variety over a
lineau algebraic group G/K, then G acts strongly transitively on X. We also remark that
if X is a G-torsor (i.e. a principal homogeneous space), then G acts strongly transitively
on X.

In [29], we show that the statement of Theorem 0.2 in the Introduction is true if G acts
strongly transitively on X.

2. A smoothness criterion over analytic curves

We will be using the following notation throughout this section.

Notation 2.1. (1) Let k be a complete discretely valued field. We will denote by k◦ its

valuation ring, and k̃ its residue field. Let us also fix a uniformizer t of k.
(2) Let C/k be a proper normal irreducible k-analytic curve. Set F = M (C), where

M denotes the sheaf of meromorphic functions on C (see [28, 1.7] for the definition of M

and some of its properties).
(3) We will denote by Cal the unique projective k-algebraic curve whose Berkovich an-

alytification is C (see [10, Théorème 3.7.2]). By [1, Proposition 3.4.3, Theorem 3.4.8(iii)],
Cal is normal and irreducible. Moreover, k(C) = F ([1, Proposition 3.6.2]).
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(4) We denote by V (F ) the set of rank 1 non-trivial valuations on F such that for any
v ∈ V (F ), v|k either induces the norm on k or is trivial. For any v ∈ V (F ), we denote
by Fv the completion of F with respect to v.

Moreover:

Hypothesis 1. Let X/F be a smooth proper variety such that X(Fv) 6= ∅ for all discrete
valuations v ∈ V (F ).

Remark 2.2. (1) By [29, Remark 3.14], for any x ∈ C, the field Mx of germs of mero-

morphic functions on x is endowed with a norm. We will denote by M̂x its completion.
(2) We recall that by [29, Proposition 3.15], there is a bijective correspondence

val : C ←→ V (F ) between the points of C and the valuations in V (F ). Moreover, if

x 7→ vx, then M̂x = Fvx . By the proof of loc.cit., the map val induces a bijection between
the rigid points of C and the valuations v in V (F ) such that v|k is trivial.

(3) The canonical morphism C → Cal maps (bijectively) rigid points to Zariski closed
points (see [1, Theorem 3.4.1]). If x ∈ C is a rigid point, the discrete valuation val(x)
on F is the same as the one induced by the (unique) corresponding Zariski closed point
on Cal.

If x ∈ C is a type 2 point, then |H(x)×|/|k×| is a finite group, so H(x) is also discretely
valued. Hence, val(x) is a discrete valuation on F which extends the norm on k.

(4) We have established that both rigid and type 2 points determine (uniquely) discrete

valuations on F . Consequently, Hypothesis 1 implies that X(M̂x) 6= ∅ for all x ∈ C either
a rigid or type 2 point. By [29, Corollary 3.17], this in turn is equivalent to the hypothesis
that X(Mx) 6= ∅ for all rigid or type 2 points x ∈ C.

Remark 2.3. Let Y/F be a smooth variety. As a consequence of Remark 2.2(2) and [29,
Corollary 3.17], the following are equivalent:

(1) Y (Mx) 6= ∅ for all x ∈ C,
(2) Y (Fv) 6= ∅ for all v ∈ V (F ).

Remark 2.4. We recall that as C is proper, strict affinoid domains (meaning affinoid
domains with only type 2 points in their boundaries) form a basis of neighborhoods of C.
This implies that for any variety Y/F , if z ∈ C is such that Y (Mz) 6= ∅, then there exists
a strict affinoid neighborhood Vz of z such that Y (M (Vz)) 6= ∅.
Lemma 2.5. Assume V is a strict affinoid domain of C. If X(M (V )) 6= ∅, then X(Mx) 6= ∅
for all x ∈ V .

Proof. The statement is clearly true for any x ∈ Int V. As V = ∂V ∪ Int V (see [28,
Corollary 1.8.11]), it only remains to prove it for points x ∈ ∂V . This follows immediately
from Remark 2.2(4), seeing as ∂V contains only type 2 points. �

In what follows, we will make use of the subsheaf O◦ of O (see Subsection 1.3.1).

Theorem 2.6. Let x ∈ C. Suppose there exists a connected open neighborhood Tx of x
in C such that ∂Tx contains only type 2 and 3 points, and X has a proper smooth model
X → Spec O◦(Tx). Then there exists a neighborhood Ux ⊆ Tx of x such that X(M (Ux)) 6= ∅.
In particular, X(Mx) 6= ∅.
Remark 2.7. In the statement of Theorem 2.6, we assume that ∂Tx contains only
type 2 and 3 points because otherwise it might not make sense to speak of a model of X
over O◦(Tx). More precisely, it could be possible for F to not be contained in Frac O◦(Tx).
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(1) For example, if we take C = P1,an
k , Tx = A1,an

k , then the meromorphic function T

on P1,an
k is not contained in Frac O◦(A1,an

k ).
(2) If ∂Tx contains only type 2 and 3 points, then F ⊆ Frac O◦(Tx). To see this,

let Tx denote the closure of Tx in C. By assumption, ∂Tx contains (only) type 2
and 3 points, and thus Tx 6= C. Let y ∈ C\Tx. For any z ∈ Tx, let Uz be an
affinoid neighborhood of z such that y 6∈ Uz (recall C is separated). By compacity,
there exists a finite number of points z ∈ Tx such that Tx ⊆

⋃
z Uz; moreover

Tx ⊆ V :=
⋃
z Uz 6= C. By [28, Theorem 1.8.15(2)], V is an affinoid domain of C.

For any a ∈ F ⊆ M (V ), there exist b, c ∈ O(V ) such that a = b
c . The functions

b, c are bounded on V . Hence, for a large enough n, tnb and tnc are bounded by 1
in V . Consequently, they are bounded by 1 in Tx, implying a ∈ Frac O◦(Tx).

Proof of Theorem 2.6. Let Vx ⊆ Tx be a strict affinoid neighborhood of x, so that ∂Vx is
a finite set of type 2 points. We remark that X has a proper smooth model over O◦(Vx).
Let C be a proper regular model of Cal over k◦ corresponding to a vertex set S of C
containing ∂Vx (see Corollary 1.7). We denote by Cs its special fiber and by π the cor-
responding specialization morphism C → Cs. If x ∈ S, then clearly X(Mx) 6= ∅. Let us
assume that x 6∈ S.

Set Px := π(x). This is a closed point of Cs (see Remark 1.5). By Theorem 1.6,
Ux := π−1(Px) is a connected component of C\S. In particular, Ux ∩ S = ∅.
Lemma 2.8. The following is satisfied: Ux ⊆ Vx.
Proof. Assume that there exists y ∈ Ux\Vx. As Ux is connected, there exists an injective
path [x, y] connecting x and y which is entirely contained in Ux. But as x ∈ Vx and y 6∈ Vx,
[x, y] ∩ ∂Vx 6= ∅. This implies that Ux ∩ S 6= ∅, contradiction. �

As a consequence of Lemma 2.8, X has a proper smooth model over O◦(Ux), which we

will continue to denote by X . We recall that by Theorem 1.2, ÔC ,Px
= O◦(π−1(Px)). In

particular, this means that O◦(Ux) is a complete regular local ring of dimension 2.

Lemma 2.9. The following is satisfied: X (O◦(Ux)) 6= ∅.
Proof. Let (α, β) be the maximal ideal of O◦(Ux) such that the generators α, β form a
regular set of parameters (see Remark 5.2(1)). Then the localization O◦(Ux)(α) is a discrete
valuation ring with uniformizer α ([35, Tag 0AFS]). As F ⊆ Frac O◦(Tx) ⊆ Frac O◦(Ux)

(see Remark 2.7(2)), we obtain that the completion Frac ̂O◦(Ux)(α) of Frac O◦(Ux)(α) is a
complete discretely valued field containing F . Moreover, by Remark 2.11, it either extends

the norm on k or is trivial there. Consequently, by assumption, X(Frac ̂O◦(Ux)(α)) 6= ∅,
and so X (Frac ̂O◦(Ux)(α)) 6= ∅.

By the valuative criterion of properness, X ( ̂O◦(Ux)(α)) 6= ∅. By taking the residue field,
we obtain X (O◦(Ux)(α)/(α)) = X (Frac O◦(Ux)/(α)) 6= ∅. Again, O◦(Ux)/(α) is a discrete
valuation ring (with uniformizer β, see [35, Tag 00NQ]), so by applying the valuative
criterion of properness, X (O◦(Ux)/(α)) 6= ∅.

As the local ring (O◦(Ux), (α, β)) is complete, it is also complete with respect to the
topology induced by the ideal (α). In particular, (O◦(Ux), (α)) is a Henselian couple.
Seeing as X is smooth over O◦(Ux), by applying the Hensel lifting property (see [14,
Théorème I.8]), we obtain that X (O◦(Ux)) 6= ∅. �
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Consequently, X(Frac O◦(Ux)) 6= ∅, so X(M (Ux)) 6= ∅ and X(Mx) 6= ∅. �

Remark 2.10. If the point x in the statement of Theorem 2.6 is rigid or of type 2, then
X(Mx) 6= ∅ without any additional hypotheses (see Remark 2.2(4)).

Remark 2.11. In the setting of Lemma 2.9, let α, β be generators of the maximal
ideal of O◦(Ux). The localizations O◦(Ux)(α),O◦(Ux)(β) are discretely valued rings. As
k◦ ⊆ O◦(Ux), depending on whether the uniformizer t of k◦ is in (α) (resp. (β)) or not, the
restriction of the discrete valuation on O◦(Ux)(α) (resp. O◦(Ux)(β)) to k◦ either induces
the norm on k or is trivial, respectively.

Remark 2.12. (1) We recall that the variety X has good reduction on a Zariski open
subset of the algebraic curve Cal. Hence, there are only finitely many points in
Cal on which X has bad reduction, and they are Zariski closed.

(2) We also recall that the canonical analytification morphism C → Cal induces a
bijection between the rigid points of C and the Zariski closed points of Cal. More-
over, if s 7→ s′ via this map, then the residue fields of s and s′ are isomorphic. By
an abuse of terminology and notation, we will identify the rigid points of C with
the Zariski closed ones of Cal (see [1, Theorem 3.4.1]).

(3) If the hypotheses of Theorem 2.6 are satisfied, then C\Tx will contain the rigid
points on which X has bad reduction. To see this, assume s ∈ Tx is a rigid point
on which X has bad reduction. The map O◦(Tx)→ OC,s, induces O◦(Tx)→ κ(s),
where κ(s) denotes the residue field of s. But thenX has a smooth model over κ(s),
meaning it has good reduction over the point s, contradiction.

Before giving a similar global criterion for checking that X(Mx) 6= ∅, let us start by
proving an auxiliary result.

Lemma 2.13. Let Vi, i = 1, 2, . . . , n, be strict affinoid domains of C. Let A be a finite set
of type 2 points in C. Set D := C\(A ∪⋃n

i=1 Vi). Then D is an open subset of C and ∂D
is a finite set of type 2 points contained in A ∪⋃n

i=1 ∂Vi.

Proof. As affinoid domains are closed, Vi, i = 1, 2, . . . , n, are closed. As C is separated, its
points are closed, so A is a closed subset. Consequently, D is an open subset of C. As it
is open, D ∩ ∂D = ∅, so ∂D ⊆ ⋃n

i=1 Vi ∪ A. Suppose there exists i′ ∈ {1, 2, . . . , n} such
that ∂D ∩ Int Vi′ 6= ∅. Let η ∈ ∂D ∩ Int Vi′ . There exists a neighborhood Uη of η in C
such that Uη ⊆ Vi′ . But as η ∈ ∂D, Uη ∩ D 6= ∅, so Vi′ ∩ D 6= ∅, contradiction. Thus,
as Vi = ∂Vi ∪ IntVi for any i ∈ {1, 2, . . . , n} (see [28, Corollary 1.8.11]), we obtain that
∂D ⊆ ⋃n

i=1 ∂Vi ∪A, meaning ∂D contains only type 2 points. Moreover, as
⋃n
i=1 ∂Vi ∪A

is finite (see [29, Proposition 2.5]), so is D. �

The following is a consequence of Theorem 2.6. We recall the notion of strongly transitive
action in Definition 1.8 (see also Remark 1.9).

Corollary 2.14. Let Q be a finite set of rigid and type 2 points of C. For any z ∈ Q,
let Vz be a strict affinoid neighborhood of z in C such that X(M (Vz)) 6= ∅. Set U :=
C\⋃z∈Q Vz (see Figure 1 below for an illustration). If there exists a smooth proper model

X → Spec O◦(U) of X, then X(Mx) 6= ∅ for all x ∈ C. Equivalently, X(Fv) 6= ∅ for all
v ∈ V (F ).

Moreover, if there exists a rational linear algebraic group G/F acting strongly transi-
tively on X, then X(F ) 6= ∅.
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Proof. By Lemma 2.13, U is an open subset of C and ∂U is a finite set of type 2 points.
By Theorem 2.6, for any x ∈ U , we have that X(Mx) 6= ∅. On the other hand, by
construction, for all z ∈ Q, X(M (Vz)) 6= ∅, so for any x ∈ ⋃

z∈Q Vz, X(Mx) 6= ∅ (see

Lemma 2.5). Thus, X(Mx) 6= ∅ for all x ∈ C. By Remark 2.3, X(Fv) 6= ∅ for all
v ∈ V (F ). We can now conclude by [29, Corollary 3.18]. �

Figure 1. Q,Vz, z ∈ Q,U

Remark 2.15. (1) In the statement of Corollary 2.14, if the hypotheses are satisfied,
we can show, using the same arguments as in Remark 2.12(3), that

⋃
z∈Q Vz con-

tains the rigid points on which X has bad reduction. Consequently, without loss
of generality, we may assume that Q contains the bad-reduction points of X.

(2) We remark that since U does not contain the bad reduction points of X, the latter
has a proper smooth model over the ring O(U). However, as the ring O(U) is in
general substiantially larger than its subring O◦(U), the assumption of smoothness
over O◦(U) is stronger. In the next section, we will interpret it as a smoothness
assumption over parts of the special fiber of a model of Cal.

We can show a result similar to Corollary 2.14 by also removing any finite set of type 2
points (such as any vertex set) of C from consideration.

Corollary 2.16. With the notations of Corollary 2.14, let A be a finite set of type 2 points
on C. Set V = C\(⋃z∈Q Vz ∪A). If there exists a smooth proper model X → Spec O◦(V )

of X, then X(Mx) 6= ∅ for all x ∈ C. Equivalently, X(Fv) 6= ∅ for all v ∈ V (F ).
Moreover, if there exists a rational linear algebraic group G/F acting strongly transi-

tively on X, then X(F ) 6= ∅.
Remark 2.17. By Lemma 2.13, ∂V contains only type 2 points in its boundary. By
Remark 2.7(2), this means that F ⊆ Frac O◦(V ).

Proof of Corollary 2.16. By Remark 2.2(4), for any z ∈ A, there exists a strict affinoid
neighborhood Vz of z in C such that X(M (Vz)) 6= ∅. Then U ′ := C\⋃z∈A∪Q Vz is an open

subset of C. As U ′ ⊆ V , we obtain that X has a proper smooth model over O◦(U ′). By
Remark 2.3, X(Fv) 6= ∅ for all v ∈ V (F ). We can now conclude by [29, Corollary 3.18]. �

As proven by the following remark and proposition, it suffices to show that X has a
smooth model over O◦(U) for a finite number of open subsets U ⊆ C, which are consid-
erably smaller than V from the statement of Corollary 2.16.

Remark 2.18. With the same notation as in Corollary 2.14, let S be any vertex set of C
such that

⋃
z∈Q ∂Vz ⊆ S. As it contains only type 2 points, for any s ∈ S, X(Ms) 6= ∅.
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Hence, there exists a neighborhood Us of s in C such that X(M (Us)) 6= ∅. Without loss
of generality, we may assume that Us has finite boundary in C.

There exist only a finite number of connected components of C\S not entirely contained
in

⋃
s∈S Us: if that were not the case, as S is finite, there exists s0 ∈ S such that there

are infinitely many connected components of C\S not contained in
⋃
s∈S Us and inter-

secting Us0 . Then, they all intersect the boundary of Us0 , implying the latter is infinite,
contradiction.

Let A1, A2, . . . , An be the connected components of C\S not contained in
⋃
s∈S Us. If

S is a triangulation, then Ai is an open virtual disc or open virtual annulus. We remark
that ∂Ai ⊆ S. For any i ∈ {1, 2, . . . , n}, set Bi := Ai\

⋃
z∈Q Vz. This implies that

∂Bi ⊆ ∂Ai ∪
⋃
z∈Q ∂Vz . Hence, Bi is an open subset of C and ∂Bi ⊆ S ∪ ⋃

s∈S ∂Us
(meaning it is a finite set of type 2 points). See Figure 2 for illustrations of such data.

Figure 2. S, Us, s ∈ S,Ai
Proposition 2.19. If X has proper smooth models over the rings O◦(Bi), i = 1, 2, . . . , n,
then X(Mx) 6= ∅ for all x ∈ C. Equivalently, X(Fv) 6= ∅ for all v ∈ V (F ).

If, moreover, there exists a rational linear algebraic group G/F acting strongly transi-
tively on X, then X(F ) 6= ∅.
Proof. If x ∈ ⋃

s∈S Us∪
⋃
z∈Q Vz, then clearlyX(Mx) 6= ∅.Otherwise, suppose x ∈ ⋃n

i=1Bi.

Let C be a proper regular model of Cal over k◦ corresponding to a vertex set S′ such that
S ∪⋃s∈S ∂Us ⊆ S′ (see Corollary 1.7). In particular,

⋃n
i=1 ∂Bi ⊆ S′. We denote by Cs its

special fiber and by π the corresponding specialization morphism C → Cs. Set Px := π(x)
and Ux := π−1(Px). The proof of Lemma 2.8 can be applied mutatis mutandis to show
that Ux ⊆ Bi, meaning X has a proper smooth model over O◦(Ux). By Theorem 2.6,
X(Mx) 6= ∅. By Remark 2.3, X(Fv) 6= ∅ for all v ∈ V (F ). We can now conclude by [29,
Corollary 3.18]. �

Let us illustrate how strong the hypotheses of Corollary 2.16 or Proposition 2.19 are
with an example where the variety X is determined by a quadratic form.

Example 1. Let q be a quadratic form defined over the field F . Let us assume that q is
diagonal with coefficients a1, a2, . . . , am ∈ F. Let Q be a finite closed subset of C which
contains all the zeroes and poles of a1, a2, . . . , am in C. We use the same notation as in
Remark 2.18. Let i ∈ {1, 2, . . . , n}.

By multiplying with a high enough power of t (this does not change the Weil divisors
of a1, a2, . . . , am in C), we may assume that a1, a2, . . . , am ∈ O◦(Bi). Moreover, we may
assume (by changing to an equivalent quadratic form if necessary) that t−2aj 6∈ O◦(Bi)
for all j ∈ {1, 2, . . . ,m}.
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The quadratic form q is smooth over O◦(Bi) if and only if for any maximal ideal M of
O◦(Bi) and any j ∈ {1, 2, . . . ,m}, aj 6∈ M . Consequently, aj ∈ O◦(Bi)

× for all such j.
This implies that for any x ∈ Bi and any j, |aj|x = 1.

In Section 5, by using the techniques of this section and a theorem of Springer, we prove

a general result for quadratic forms (provided char k̃ 6= 2).

Remark 2.20. An argument similar to that of Example 1 can be applied to a general
variety X. As the smoothness of X is checked by the non-vanishing of minors ǫ of a certain
matrix, it suffices to show that for any i ∈ {1, 2, . . . , n}, there exists a model of X over
O◦(Bi) with corresponding minors ǫi satisfying |ǫi|x = 1 for all x ∈ Bi.
Example 2. Let k = Qp, C = P1,an

Qp
, and F = Qp(T ). Let q be the quadratic form

X2
1 − (1 + pT )X2

2 + TX2
3 − (T + p)X2

4 . The bad reduction points of the corresponding
quadric are those for which |T | = 0, |T | =∞, |T + p| = 0 or |1 + pT | = 0.

By taking X1 =
√
1 + pT , X2 = 1, and X3 = X4 = 0, we obtain a zero of q defined on

a neighborhood N of the point |T | = 0 (referred to as 0). We remark that N is a disk
centered at 0 and of radius the radius of convergence of the series expansion of

√
1 + pT .

The latter is > 1, so said zero is defined over the open unit disk D (i.e. D ( N). Remark
that the point |T + p| = 0 is also in D.

On the other hand, by taking X1 = X2 = 0, X3 =
√

1 + p
T and X4 = 1, we obtain a

solution of q = 0 on a neighborhood of the point |T | = ∞ (referred to as ∞). Similarly,
this solution is defined on the open disk D∞ centered at ∞ and of radius 1. We remark
that D∞ contains the point |1 + pT | = 0.

Let U be a connected component of P1,an
Qp
\(D ∪D∞). Then, by Theorem 1.2, the ring

O◦(U) is local with maximal ideal (p, P (T )), which is a maximal ideal of Zp[T ] (seeing
as U 6= D∞). Since U 6= D, P (T ) 6= T . Consequently, the rank of q does not change in
O◦(U)/(p, P (T )), meaning the quadric defined by q is proper and smooth over O◦(U).

A crucial point here is that the Weil divisors in P1
Zp

of the coefficients of q are not

vertical. See also Section 3.
We remark that, in this particular case, as N ∪ D∞ = P1,an

Qp
, q = 0 has non-trivial

solutions over Mx for all x ∈ P1,an
Qp

, so it has a non-trivial solution over Qp(T ).

3. A smoothness criterion over fine models of algebraic curves

We will use notations similar to those of Section 2.

Notation 3.1. (1) Let k be a complete discretely valued field. We will denote by k◦ its

valuation ring, and k̃ its residue field. Let us also fix a uniformizer t of k.
(2) Let C/k be a proper normal irreducible k-algebraic curve. Set F = k(C).
(3) We will denote by Can the proper analytic curve that is the Berkovich analytifica-

tion of C. By [1, Proposition 3.4.3, Theorem 3.4.8(iii)], Can is normal and irreducible.
Moreover, M (Can) = F, where M denotes the sheaf of meromorphic functions on Can

([1, Proposition 3.6.2]).
(4) We denote by V (F ) the set of rank 1 non-trivial valuations on F such that for any

v ∈ V (F ), v|k either induces the norm on k or is trivial. For any v ∈ V (F ), we denote
by Fv the completion of F with respect to v.

Moreover:
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Hypothesis 2. Let X/F be a smooth proper variety such that X(Fv) 6= ∅ for all discrete
valuations v ∈ V (F ).

Let Z ⊆ C be a Zariski closed subset such that X has good reduction over C\Z. We
remark that Z need not be the smallest such subset of C.

We will now use Bosch’s theorem to interpret over a model of the algebraic curve C the
hypotheses we encoutered in the main statements of Section 2. They translate to asking
for good reduction of the variety X over certain parts of a nicely chosen model of C. In
what follows, we show that the “finer” the model, the “smaller” said parts have to be.

Let us start with a local statement.

Lemma 3.2. Let C be a proper regular model of C over k◦. Let Cs denote its special fiber
and π the corresponding specialization morphism Can → Cs. Let P ∈ Cs be a closed point.
If X has a smooth proper model over OC,P , then X(M (π−1(P ))) 6= ∅. In particular, for
any x ∈ π−1(P ), X(Mx) 6= ∅.
Proof. By Theorem 1.6, U := π−1(P ) is a connected open subset of Can, and its boundary
contains only type 2 points. By assumption, X has a proper smooth model X over

O◦(U) = ÔC,P (Theorem 1.2). By the proof of Lemma 2.9, X (O◦(U)) 6= ∅, implying
X(M (U)) 6= ∅, and so for all x ∈ π−1(P ), X(Mx) 6= ∅. �

Let us show that if z ∈ C is such that X has bad reduction over z, then the hypothesis
of Lemma 3.2 is never satisfied for P := π(z). We start with an auxiliary result. Recall

that for any closed point z ∈ C, the closure {z} of {z} in C is some set {z, Pz}, where Pz
is a closed point of Cs (see [26, Definition 10.1.31]).

Lemma 3.3. We use the same notation as in Lemma 3.2. Let z ∈ C be a Zariski closed
point and let us also denote by z its corresponding rigid point in Can. Then π(z) = Pz,
where {z, Pz} is the Zariski closure of {z} in C.
Proof. Let V = Spec A be an open neighborhood of Pz and π(z) in C (such a neighborhood

exists by [12, 2.2]). As V is a curve over k◦, A is a two-dimensional ring. Since {z} =
{z, Pz}, this means that z ∈ V . Then, as z is a point of V , but not a closed one, it
corresponds to a principal prime ideal (a) of A. Also, the point Pz corresponds to the

unique maximal ideal m of A containing (a). We recall that the radical ideal
√

(t, a) of
(t, a) is

⋂
(t,a)⊆I I, where the intersection is taken over prime ideals I of A. As (a) ( I, we

obtain that I is a maximal ideal. Hence, I = m, and
√
(t, a) = m is the ideal corresponding

to the closed point Pz.
On the other hand, let us denote P ′

z := π(z). By Remark 1.5, P ′
z is a closed point

of Cs. By [2, pg. 541], π−1(P ′
z) ⊆ V̂η, where V̂η denotes the analytic generic fiber of V. The

restriction of π to V̂η induces the specialization map V̂η → Vs corresponding to V. The

point z ∈ Can induces a morphism Â⊗k◦k →H(z). As A ⊆ (Â⊗k◦k)◦, this in turn induces

a morphism A → H(z)◦, and thus one fz : A/(t) → H̃(z). Then π(z) = ker fz = P ′
z and

this is a maximal ideal of A. As z is the point corresponding to |a| = 0 in V an, we have

that (t, a) ⊆ ker fz. Consequently, we obtain that ker fz =
√

(t, a), implying Pz = P ′
z. �

Remark 3.4. If X has a proper smooth model over OC,P for some closed point P ∈ Cs,
then it has a proper smooth model over some open neighborhood N of P in C. If z ∈ C is
any Zariski closed point for which {z} = {z, P}, meaning P = π(z) by Lemma 3.3, then
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clearly z ∈ N , so X has a proper smooth model over κ(z). This means that X has good
reduction over z. This is why the bad reduction points of X in C will automatically be
excluded in Lemma 3.2.

We will now give similar, but global, versions of Lemma 3.2. In order to be able to
also deal with the points on Can where the variety X has bad reduction, we will need to
construct and work on “fine enough” models of the curve C.

3.1. Removing a finite set of the special fiber from consideration. We use No-
tation 3.1 and Hypothesis 2. We also recall the notion of strongly transitive action in
Definition 1.8 (see also Remark 1.9), which we will use several times throughout this
section.

Construction 1 (The model C1). By Remark 2.4, for any z ∈ Z, there exists a strict
affinoid neighborhood Vz of z in Can such that X(M (Vz)) 6= ∅. We remark that as Vz is a
strict affinoid domain, ∂Vz is a finite set of type 2 points. Let C1 denote a proper regular
model of C over k◦ corresponding to a vertex set S of Can such that

⋃
z∈Z ∂Vz ⊆ S. We

will denote by C1,s its special fiber and by π1 the corresponding specialization morphism.

See Figure 3 below for a couple of illustrations of C1,s and π1, where the bijection of
Theorem 1.6 associates to ηi ∈ S the irreducible component Ii of C1,s.

Remark 3.5. Let Z ′ ⊆ C be any Zariski closed subset. If, for any z ∈ Z ′, there exists
an affinoid neighborhood V ′

z of z in Can such that X(M (V ′
z )) 6= ∅, and

⋃
z∈Z′ V ′

z = Can,
then for any x ∈ Can, X(Mx) 6= ∅ (see Lemma 2.5), and equivalently X(Fv) 6= ∅ for all
v ∈ V (F ). Hence, without loss of generality, we may assume that

⋃
z∈Z Vz 6= Can.

π1−→

η1

η2

η3
η4

I1

I2

I3

I4

π1−→

Figure 3. Z, π1(Z), Vz, z ∈ Z, ηi ∈ S

η1

η5η3

η2

η4

I1

I2

I3

I4 I5

Theorem 3.6. If there exists a proper model X → C1 of X/F which is smooth over
C1,s\π1(Z), then X(Mx) 6= ∅ for all x ∈ Can, and, equivalently, X(Fv) 6= ∅ for all
v ∈ V (F ).

Furthermore, if there exists a rational linear algebraic group G/F acting strongly tran-
sitively on X, then X(F ) 6= ∅.
Remark 3.7. Let P be any closed point of C1. As OC1,P and OC1,s,P are local rings with
the same residue field, the respective base change of X is smooth over OC1,P if and only
if it is smooth over OC1,s,P .
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Proof of Theorem 3.6. If x ∈ ⋃
z∈Z Vz ∪ S, then clearly X(Mx) 6= ∅ (see Remark 2.2(4)

and Lemma 2.5). Otherwise, let x ∈ Can\(⋃z∈Z Vz ∪ S). We will show that the closed
point Px := π1(x) ∈ C1,s satisfies Px 6∈ π1(Z). Let us assume that there exists z0 ∈ Z

such that Px = π1(z0). Set Ux := π−1
1 (Px). Then z0 ∈ Ux. By Theorem 1.6, Ux is a

connected component of Can\S. By its connectedness, there exists an injective path [x, z0]
connecting x and z0 that is entirely contained in Ux. As x 6∈ Vz0 , the path [x, z0] must
intersect ∂Vz0 , meaning [x, z0]∩S 6= ∅. As a consequence, Ux ∩S 6= ∅, which is impossible.
Thus, Px 6∈ π1(Z).We can now conclude via Lemma 3.2 that X(Mx) 6= ∅. We have shown
that X(Mx) 6= ∅ for all x ∈ Can. By Remark 2.3, X(Fv) 6= ∅ for all v ∈ V (F ). We can
now conclude by [29, Corollary 3.18]. �

Remark 3.8. In light of Remark 3.4, we can take Z to be any Zariski closed subset
of C, and then the hypothesis of Theorem 3.6 will imply that π−1

1 (π1(Z)) contains the
rigid points of Can over which X has bad reduction. We thus assumed, without loss of
generality, that Z itself contains them.

3.2. Almost removing irreducible components from consideration. Let us now
explore how by further refining the model C1 from Section 3.1, we can forget more points
from the special fiber in the statement of Theorem 3.6. We will do this in two steps, the
first of which consists of being more restrictive when constructing the neighborhoods Vz
of z ∈ Z.

We recall Notation 3.1 and Hypothesis 2, which we will be using here.

Hypothesis 1. From now on, throughout this section, we will assume that the curve C
is smooth. (This is stronger than normal when k is not a perfect field.)

Remark 3.9. In practice, we only need C to be smooth at the points of the subset Z.
This is needed to insure the existence of certain special neighborhoods of these points in
the analytic curve Can.

See Subsection 1.1.3 for some elements from the branch language of [10, 1.7] that we
use here.

Lemma 3.10. Let N be a closed virtual disc in Can. Then

(1) ∂N is a single type 2 point {τ},
(2) there exists a unique branch b issued from η in Can not contained in N .

If z ∈ Can is a rigid point, then there exists a neighborhood N of z which is a virtual closed
disc, and

(3) X(M (N)) 6= ∅.
Proof. By [10, Théorème 4.5.4], open (and hence closed) virtual discs form a basis of
neighborhoods of z in Can. Hence, as type 2 points are dense in Can, there exists a neigh-
borhood N–a closed virtual disc–of z satisfying conditions (1) and (3) of the statement. It

only remains to show that a closed virtual disc in Can satisfies condition (2). Let k̂ denote

the completion of an algebraic closure of k. Then N̂k
:= N ×k k̂ is a finite disjoint union

of closed discs. Let D be one of those closed discs, which is, by construction embedded in

Can
̂k

:= Can ×k k̂. As it is a disc, it can also be embedded in P1,an
̂k

. Let us denote by ω its

unique boundary point.
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By [10, 1.7.2], it suffices to show that there exists a unique branch issued from ω in Can
̂k

that is not contained in D. By [10, 4.2.11.1], the number of such branches is the same as

the number of branches issued from ω in P1,an
̂k

and not contained in D. Thus, there is a

unique such branch, meaning condition (2) is also satisfied. �

Construction 2 (The model C2). For any point z ∈ Z, let Nz denote an affinoid neigh-
borhood of z in Can satisfying the conditions of Lemma 3.10. As in Remark 3.5, without
loss of generality, we may assume that

⋃
z∈Z Nz 6= Can. Let s0 ∈ Can be a type 2 point

such that s0 6∈
⋃
z∈Z Nz. Set T :=

⋃
z∈Z ∂Nz.

Let C2 be a proper sncd model of the curve C over k◦ such that the corresponding vertex
set S of Can satisfies T ∪{s0} ⊆ S (see Corollary 1.7). We denote by C2,s the special fiber
of C2, and by π2 : C

an → C2,s the corresponding specialization morphism.

We recall that the correspondence given in Theorem 1.6 is such that there is a bijection
between the points y of S and the irreducible components Iy of C2,s. See Figure 4 below
for an illustration of C2,s and π2. We now proceed with a statement analogous to that of
Section 3.1.

π2−→

Figure 4. Z, π2(Z), Nz, z ∈ Z,S

η

s0

Is0

Iη

Theorem 3.11. If there exists a proper model X → C2 of X/F which is smooth over(⋃
s∈S\T Is

)
∪
(⋃

i 6=j∈T Ii ∩ Ij
)
, then X(Mx) 6= ∅ for all x ∈ Can, and, equivalently,

X(Fv) 6= ∅ for all v ∈ V (F ).
Furthermore, if there exists a rational linear algebraic group G/F acting strongly tran-

sitively on X, then X(F ) 6= ∅.
Recall Remark 3.7.

Proof of Theorem 3.11. Let x ∈ Can.
(a) If x ∈ ⋃

z∈Z Nz ∪ S, then X(Mx) 6= ∅ (see Remark 2.2(4) and Lemma 2.5).

(b) Suppose x 6∈ ⋃
z∈Z Nz ∪ S. Set U := Can\(⋃z∈Z Nz ∪ S). Let us denote by Ux the

connected component of C\S containing x. By Theorem 1.6, π2(Ux) =: {Px}, where Px
is a closed point of C2,s, and π

−1
2 (Px) = Ux. By loc.cit., ∂Ux ⊆ S, and so depending on

whether Px is a double point or not, ∂Ux consists either of two points or one. Let us show

that Px ∈
(⋃

s∈S\T Is

)
∪
(⋃

i 6=j∈T Ii ∩ Ij
)
.

(1) Assume Px is a double point, meaning ∂Ux consists of two points. In this case,

there is nothing to check as the set
(⋃

s∈S\T Is

)
∪
(⋃

i 6=j∈T Ii ∩ Ij
)

contains all

the double points of C2,s.
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(2) If ∂Ux is a singleton, meaning Px is a non-double point of C2,s, then Px ∈
⋃
i∈T Ii

if and only if ∂Ux ∈ T (by Theorem 1.6). Assume this is the case. Let z0 ∈ Z be
such that ∂Ux = ∂Nz0 =: {η}. There are three possibilities:
(a) Nz0 ∪ Ux = Can, in which case S\{η} ⊆ Nz0 , meaning s0 ∈ Nz0 , which is in

contradiction with the choice of s0;
(b) Ux ⊆ Nz0 , in which case x ∈ Nz0 , contradiction;
(c) Nz0∪Ux 6= Can and Ux 6⊆ Nz0 ; let a ∈ Can\(Nz0∪Ux); let us denote by [a, η) an

injective path in Can connecting a and η (but without containing η); the path
[a, η) intersects a branch issued from η, and as such, by Lemma 3.12 below,
intersects either Ux or Nz0 ; both of these possibilities amount to a contradic-
tion, seeing as then [a, η) would intersect either ∂Ux or ∂Nz0 , respectively,
meaning η ∈ [a, η).

Thus, we must have ∂Ux 6∈ T. Consequently, Px ∈
⋃
s∈S\T Is.

Lemma 3.12. Suppose Nz0 ∪ Ux 6= Can and Ux 6⊆ Nz0. The unique branch issued from η
in Can not contained in Nz0 is contained in Ux.

Proof. Let b be the branch issued from η that is not contained in Nz0 . Suppose b ( Ux,
meaning b ∩ Ux = ∅. Let [c, η) be an injective path in Ux connecting c and η, with-
out containing η. This path intersects a branch issued from η and is not contained in
Nz0 (otherwise ∂Nz0 ∩ [c, η) 6= ∅, impossible). Consequently, [c, η) ⊆ b, contradiction.
Thus, b ⊆ Ux. �

To resume, we have shown that π2(x) = π2(Ux) = Px ∈
(⋃

s∈S\T Is

)
∪
(⋃

i 6=j∈T Ii ∩ Ij
)
.

This means that for any x ∈ U , X has a proper smooth model over OC2,Px
, hence by

Lemma 3.2, X(Mx) 6= ∅.
By combining points (a) and (b) above, we obtain that X(Mx) 6= ∅ for all x ∈ Can. By

Remark 2.3, X(Fv) 6= ∅ for all v ∈ V (F ). We can now conclude by [29, Corollary 3.18]. �

Remark 3.13. Let us briefly explain why, in order to apply the techniques of this manu-
script, the point s0 in Construction 2 is necessary. Let us look at the example illustrated
in Figure 4. If S := {η} = T instead of {s0, η}, then C1,s would contain a unique irre-
ducible component Iη, making the hypothesis of Theorem 3.11 empty, and the technique
of proof non-applicable. If we took s0 ∈ Nz, then the hypothesis insures good reduction
of X over Is0 , but the points in Can\Nz all map to Iη\Is0 via π2, meaning we can’t apply
the technique to them, hence they remain unaccounted for.

π2−→

Figure 5. T = {η2, η3}, S = T ∪ {η1}, Nz, z ∈ Z

η2

η3

η1

Iη1
Iη2

Iη3
A

Remark 3.14. Considering the double points in the statement of Theorem 3.11 is neces-
sary. To see this, let us consider the illustration of C2,s and π2 in Figure 5 above. If we
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assume that X has good reduction only over Iη1 , then all the points of Can that map to
the point A via π2 remain unaccounted for.

3.3. Removing irreducible components from consideration. We now show that
by blowing up at some of the double points of the special fiber C2,s in the statement of
Theorem 3.11, we can get rid of them.

Recall Notation 3.1 and Hypothesis 2, which we will be using. We also adopt Hypoth-
esis 1.

Construction 3 (The model C3). For any point z ∈ Z, let Nz denote an affinoid neigh-
borhood of z in Can as in Lemma 3.10. Without loss of generality, we may assume⋃
z∈Z Nz 6= Can (see Remark 3.5). Set T :=

⋃
z∈Z ∂Nz. This is a finite set of type 2 points.

For any a, b ∈ T , and any injective path [a, b] in Can connecting a and b, let c denote a
type 2 point in [a, b]\{a, b}. By [28, Proposition 1.8.14], there are only finitely many such
paths [a, b] in Can, so the set T1 of all such points c, for any a, b ∈ T , is a finite set of
type 2 points.

Let C3 be a proper sncd model of C over k◦ corresponding to a vertex set S on Can such
that T ∪ T1 ⊆ S (see Corollary 1.7). We denote by C3,s the special fiber of C3, and by π3
the corresponding specialization morphism.

For any s ∈ S, we denote by Is the unique irreducible component of C3,s which corre-
sponds to it (Theorem 1.6). We remark that C3 is finer than the model C2, which is in
turn finer than the model C1 of the curve C. See Figure 6 for an illustration of an example
of C3,s and π3.

π3−→

Figure 6. T = {η2, η3}, S = T ∪ {η1, η4}, Nz , z ∈ Z

η2

η3

η1

η4

Iη1

Iη3 Iη2

Iη4

Remark 3.15. To see why S was constructed this way, let us go back to the illustration
in Figure 5. By Remark 3.14, one needs good reduction over the double point A as well
as the irreducible component Iη1 .

Theorem 3.16. If there exists a proper model X → C3 of X/F which is smooth over⋃
s∈S\T Is, then X(Mx) 6= ∅ for all x ∈ Can. Equivalently, X(Fv) 6= ∅ for all v ∈ V (F ).

Furthermore, if there exists a rational linear algebraic group G/F acting strongly tran-
sitively on X, then X(F ) 6= ∅.

Recall Remark 3.7.

Proof of Theorem 3.16. Let x ∈ Can.
(a) If x ∈ ⋃

z∈Z Nz ∪ S, then clearly X(Mx) 6= ∅ (see Remark 2.2(4) and Lemma 2.5).

(b) Let x ∈ Can\(⋃z∈Z Nz ∪ S). Set Px := π3(x) and Ux := π−1
3 (x). We will show that

Px ∈
⋃
s∈S\T Is. By Theorem 1.6, ∂Ux consists of two points if Px is a double point of C3,s

and is a singleton otherwise. Let us consider these cases separately.
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(1) Let ∂Ux =: {α, β}. Then Px 6∈
⋃
s∈S\T Is if and only if α, β ∈ T . Suppose this is

the case. There exists an injective path (α, β) in Ux that connects its border points
α and β (without containing them). But then, by the construction of the vertex
set S, we have S∩(α, β) 6= ∅, so S∩Ux 6= ∅, contradiction. Hence, Px ∈

⋃
s∈T\S Is.

(2) Let ∂Ux be a singleton. Then Px ∈
⋃
s∈T Is is not possible by part (2) of the proof

of Theorem 3.11. Consequently, Px ∈
⋃
s∈S\T Is.

Finally, we have shown that X has a smooth model over OC3,Px
, so by Lemma 3.2,

X(Mx) 6= ∅.
By combining points (a) and (b) above, we obtain that X(Mx) 6= ∅ for all x ∈ Can. By

Remark 2.3, X(Fv) 6= ∅ for all v ∈ V (F ). We can now conclude by [29, Corollary 3.18]. �

Remark 3.17. If T = ∅, meaning Z = ∅, then the variety X/F has good reduction
over all points of the curve C. In that case, in the statements above (Theorems 3.6, 3.11
and 3.16), we have to check that X has a proper smooth model over the entire special fiber
C3,s of the model C3 of C. Hence, this condition is directly related to the uniformizer t
of k◦. More precisely, we check smoothness of X via the nonvanishing of certain minors ǫ
of a matrix defined over F . As ǫ doesn’t vanish anywhere on the proper curve C, it is a
constant, meaning defined over k. Then checking whether X has a model that is smooth
over C3,s comes down to checking whether ǫ is invertible in k◦, or equivalently, whether it

is non-zero on the residue field k̃ of k.

π−→

Figure 7. Z,Nz, z ∈ Z,S,Us, s ∈ S,Qi = π(Ai)

A3

A2
A1

Q3

Q1

Q2

Remark 3.18. Let us go back and use the notations of Remark 2.18. By Theorem 1.6,
we may assume that the vertex set S of Can corresponds to a regular proper model C

over k◦ of the algebraic curve C. Let us denote by Cs its special fiber and by π the
corresponding specialization morphism Can → Cs. By loc.cit., for any i ∈ {1, 2, . . . , n},
π(Bi) = π(Ai) =: {Qi}, where Qi is a closed point of C . By Theorem 1.2, ÔC ,Qi

=
O◦(Ai) ⊆ O◦(Bi). Hence, by Proposition 2.19, if X has proper smooth models over
the rings OC ,Qi

, then X(Mx) 6= ∅ for all x ∈ Can, and, equivalently, X(Fv) 6= ∅ for
all v ∈ V (F ). See Figure 7 above for an illustration.

4. A smoothness criterion over residue fields of completions

We recalled the notion of the completed residue field H(·) in Subsection 1.1.1. As

mentioned there, it is a complete ultrametric field. We will denote by H̃(·) its residue
field.
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4.1. Over the analytic curve. We will use Notation 2.1 and Hypothesis 1 in this sub-
section.

Remark 4.1. Let l be a complete ultrametric field (not necessarily discretely valued),
and C ′/l an analytic curve. Then, for any open U of C ′ and any point x ∈ U , we have

maps O◦(U)→ H̃(x). This is a direct consequence of the definition of the sheaf O◦, which
gives us a map O◦(U)→H(x)◦, where H(x)◦ denotes the valuation ring of H(x).

As in Section 2, we start by proving a local statement.

Proposition 4.2. Let x ∈ C. Suppose there exists a strict affinoid neighborhood N of x

in C such that X has a proper model X → Spec O◦(N) which is smooth over H̃(y) for all
but a finite number of

(1) rigid points, or
(2) type 2 points

y of N . Then there exists a neighborhood Ux ⊆ N of x such that X(M (Ux)) 6= ∅, and
hence X(Mx) 6= ∅.
Proof. By Remark 4.1, it makes sense to consider the model X of X (by applying the

appropriate base change) over H̃(y), y ∈ N. By restricting to a smaller neighborhood of x
if necessary, as C is separated, we may assume without loss of generality that X is smooth

over H̃(y) for all rigid (resp. type 2) points y of N .
Let C be a proper regular model of Cal over k◦ corresponding to a vertex set S of C

such that ∂N ⊆ S (see Corollary 1.7). We denote by Cs its special fiber and by π the
corresponding specialization morphism C → Cs. Set Px := π(x) and Ux := π−1(Px). The
point Px is closed in Cs and the open Ux is connected in C. Moreover, ∂Ux ⊆ S, so ∂Ux
contains only type 2 points. By the proof of Lemma 2.8, Ux ⊆ N , and so for any rigid
(resp. type 2) point η ∈ Ux, the model X of X (meaning its respective base change) is

smooth over H̃(η).
By [1, 2.4, pg. 35] (see also Remark 1.1), the specialization map π induces an embedding

κ(Px) →֒ H̃(η). Consequently, X is smooth over κ(Px), and thus over ÔC ,Px
= O◦(Ux).

We can now conclude by Lemma 2.9 that X(M (Ux)) 6= ∅, and hence that X(Mx) 6= ∅. �

Remark 4.3. As we can see from the proof, the hypotheses of Proposition 4.2 can be
relaxed to: for any neighborhood M of x there exists a rigid (resp. type 2) point yM ∈M
such that X is smooth over H̃(yM ).

Let us now give a similar global version of Proposition 4.2 akin to Corollary 2.14. We
recall the notion of strongly transitive action in Definition 1.8.

Corollary 4.4. Let Q be a finite set of rigid and type 2 points of C. For any z ∈ Q, let Vz
be a strict affinoid neighborhood of z in C such that X(M (Vz)) 6= ∅. Set U := C\⋃z∈Q Vz.

If X has a proper model X → Spec O◦(U) such that at least one of the following conditions
is satisfied:

(1) X is smooth over H̃(x) for all but a finite number of rigid points x ∈ U,
(2) X is smooth over H̃(x) for all but a finite number of type 2 points x ∈ U ,

then X(Mx) 6= ∅ for all x ∈ C, and, equivalently, X(Fv) 6= ∅ for all v ∈ V (F ).
If, moreover, there exists a rational linear algebraic group G/F acting strongly transi-

tively on X, then X(F ) 6= ∅.
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Proof. By Lemma 2.13, ∂U is a finite set of type 2 points, so by Remark 2.7(2), F ⊆
Frac O◦(U). By Remark 4.1, we can take a base change of X → Spec O◦(U) to the

fields H̃(x), x ∈ U, thus obtaining a model of X over these fields. By Proposition 4.2,
for all x ∈ U , X(Mx) 6= ∅. By construction, for any x ∈ ⋃

z∈Q Vz, X(Mx) 6= ∅. Thus,

X(Mx) 6= ∅ for all x ∈ C. Equivalently, X(Fv) 6= ∅ for all v ∈ V (F ) by Remark 2.3. We
can now conclude by [29, Corollary 3.18]. �

Remark 4.5. One can show the same result (akin to Corollary 2.16) for
U := C\(⋃z∈Q Vz ∪A), where A ⊆ C is a finite set of type 2 points.

As proven by the following remark and proposition, it suffices to show that for a finite
number of fixed open subsets U ⊆ C, there exists xU ∈ U a rigid or type 2 point, such that

X has a proper model over O◦(U) which is smooth over H̃(xU ). Moreover, U depends on
the variety X.

Remark 4.6. With the same notation as in Corollary 4.4, let S be any vertex set of C
corresponding to a proper regular model C of Cal and such that

⋃
z∈Q ∂Vz ⊆ S (see

Corollary 1.7). As it contains only type 2 points, for any s ∈ S, X(Ms) 6= ∅. Hence, there
exists an open neighborhood Us of s in C such that X(M (Us)) 6= ∅. By Remark 2.18,
there exist only finitely many connected components A1, A2, . . . , An of C\S which are not
entirely contained in

⋃
s∈S Us. Recall also an illustration given in Figure 2.

Proposition 4.7. If for any i ∈ {1, 2, . . . , n} there exists a rigid or type 2 point xi ∈ Ai
such that X has a proper model X → Spec O◦(Ai) which is smooth over H̃(xi), then
X(Mx) 6= ∅ for all x ∈ C. Equivalently, X(Fv) 6= ∅ for all v ∈ V (F ).

If, moreover, there exists a rational linear algebraic group G/F acting strongly transi-
tively on X, then X(F ) 6= ∅.
Proof. If x ∈ ⋃

s∈S Us ∪
⋃
z∈Q Vz, then X(Mx) 6= ∅. Otherwise, suppose there exists

i0 ∈ {1, 2, . . . , n} such that x ∈ Ai0 . By Theorem 1.6, π(Ai0) = π(x) = π(xi0) =: Pi0 ∈ Cs,
where Cs is the special fiber of C and π the corresponding specialization morphism.

By [1, 2.4, pg. 35] (see also Remark 1.1), π induces an embedding κ(Pi0) ⊆ H̃(xi0),
where κ(Pi0) is the residue field of the point Pi0 , hence the residue field of the lo-

cal ring O◦(Ai0) = ÔC ,Pi0
. Consequently, X (or rather, its respective base change) is

smooth over κ(Pi0), meaning X is smooth over O◦(Ai0). By Lemma 2.9, this implies that
X (O◦(Ai0)) 6= ∅, hence that X(Mx) 6= ∅. By Remark 2.3, X(Fv) 6= ∅ for all v ∈ V (F ).
We can now conclude by [29, Corollary 3.18]. �

4.2. Over a model of the algebraic curve. Given the connection between points of a
Berkovich curve and the valuations on its function field, the results of Section 4.1 can also
be stated over models and using valuations.

We will use the same notation as in Section 3, see Notation 3.1 and Hypothesis 2.

Remark 4.8. Let v be a discrete valuation on F such that v|k is trivial. The residue

field κ(v) = F̃v is a finite field extension of k. In particular, it is uniquely endowed with
a discrete valuation extending that of k. As a consequence, it makes sense to look at its

residue field, which we will call the double residue field of Fv and denote by
˜̃
Fv.

Remark 4.9. Let v be a discrete valuation on F . Let xv ∈ Can be the unique point
corresponding to the valuation v. By the proof of [29, Proposition 3.15], if v extends the
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norm on k, then Fv = H(xv), so F̃v = H̃(xv). If, on the other hand, v is trivial on k, then

by loc.cit., F̃v = H(xv), so ˜̃
Fv = H̃(xv).

For the next statement only, we will use the setting and notation of Section 3.1. In
particular, we work over the model C1 of the curve C (see Construction 1).

Theorem 4.10. Let X → C1 be a proper model of X. If either of the following hypotheses
is satisfied:

(1) X → ˜̃
Fv is smooth for all but a finite number of discrete valuations v on F such

that v|k is trivial and with center cv satisying π1(cv) ∈ C1,s\π1(Z),
(2) X → F̃v is smooth for all but a finite number of discrete valuations v on F such

that v|k induces the norm on k and with center cv satisfying cv ∈ C1,s\π1(Z),
then X(Fv) 6= ∅ for all v ∈ V (F ).

Furthermore, if there exists a rational linear algebraic group G/F acting strongly tran-
sitively on X, then X(F ) 6= ∅.
Remark 4.11. We recall that if v is a discrete valuation on F which is trivial on k, then
it corresponds to a unique rigid point xv of Can (i.e. to a Zariski closed point of C), and
by [26, Remark 8.3.19], cv = xv. On the other hand, if v is a discrete valuation on F
which extends the norm of k, then by loc.cit., cv = π1(xv) (see also Lemma 3.3).

Proof of Theorem 4.10. Let us start by showing that a base change of X → C1 over
˜̃
Fv

(resp. F̃v) makes sense. For any point P ∈ C1,s, the morphism X → C1 gives rise (by a
base change) to a morphism X → Spec OC1,P , hence to a morphism X → Spec κ(P ). For
any x ∈ Can, by [1, 2.4, pg. 35] (see also Remark 1.1), the specialization morphism π1

induces an embedding κ(Px) ⊆ H̃(x), where Px := π1(x). As a consequence, X gives rise

(by a base change) to a model over H̃(x) for all x ∈ Can. By Remark 4.9, this implies the

existence of such a model over all the fields
˜̃
Fv (resp. F̃v) in the statement.

By Remark 2.3, it suffices to show that X(Mx) 6= ∅ for all x ∈ Can. This is true
for any x ∈ ⋃

z∈Z Vz ∪ S by construction (see the notation in Construction 1). Let

x ∈ Can\(⋃z∈Z Vz ∪ S). Set Px := π1(x) ∈ C1,s, and Ux := π−1
1 (Px). We recall that

by Theorem 1.6, Ux is a connected open subset of Can and ∂Ux ⊆ S. By the proof of
Theorem 3.6, Px 6∈ π1(Z), so for all but a finite number of rigid (resp. type 2) points

y ∈ Ux, the model X is smooth (after a base change) over the field H̃(y). Hence, by
Proposition 4.2, X(Mx) 6= ∅. By Remark 2.3, X(Fv) 6= ∅ for all v ∈ V (F ). We can
conclude by [29, Corollary 3.18]. �

For the next statement only, we use the setting and notation of Section 3.2 (resp.
Section 3.3). In particular, we work over the model C2 (resp. C3) of the curve C (see
Construction 2, resp. Construction 3).

Theorem 4.12. Let X → C2 (resp. X → C3) be a proper model of X. If either of the
following hypotheses is satisfied:

(1) X → ˜̃
Fv is smooth for all but a finite number of discrete valuations v on F such that

v|k is trivial and with center cv satisying π2(cv) ∈
(⋃

s∈S\T Is

)
∪
(⋃

i 6=j∈T Ii ∩ Ij
)

(resp. π3(cv) ∈
⋃
s∈S\T Is),
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(2) X → F̃v is smooth for all but a finite number of discrete valuations v
on F such that v|k induces the norm on k and with center cv satisfying

cv ∈
(⋃

s∈S\T Is

)
∪
(⋃

i 6=j∈T Ii ∩ Ij
)
(resp. cv ∈

⋃
s∈S\T Is),

then X(Fv) 6= ∅ for all v ∈ V (F ).
Furthermore, if there exists a rational linear algebraic group G/F acting strongly tran-

sitively on X, then X(F ) 6= ∅.
Proof. The proof of Theorem 4.10 can be applied mutatis mutandis by replacing the
reference of Theorem 3.6 with Theorem 3.11 (resp. Theorem 3.16). �

5. The case of quadratic forms

We will now use the techniques from Section 2 to show a Hasse principle for quadratic
forms in non-dyadic residue characteristic. This is a result originally shown in [9, Theo-
rem 3.1].

We use the following notation.

Notation 5.1. (1) Let k be a complete discretely valued field. We will denote by k◦ its

valuation ring, and k̃ its residue field. Let us also fix a uniformizer t of k.
(2) Let C/k be a proper normal irreducible k-algebraic curve. Set F = k(C).
(3) We will denote by Can the Berkovich analytification of C. It is a proper, normal

and irreducible k-analytic curve. Moreover, M (Can) = F, where M denotes the sheaf of
meromorphic functions on Can (see Notation 3.1(3)).

(4) For a valuation v on F , we denote by Fv the completion of F with respect to v.

Remark 5.2. Let us recall a couple of notions whose properties we will explicitely use
for the proof of Theorem 5.7 below.

(1) Let (R,m) be a regular local ring. A minimal set of generators a1, a2, . . . , an for the
maximal ideal m will be called a regular system of parameters. In that case, dimR = n
(see [35, Tag 00NN] for a more detailed account).

(2) Let D be a strict normal crossings divisor (from now on abreviated to sncd) on
a locally Noetherian scheme Y defined through the invertible ideal sheaf ID. We recall
that this means that for any x ∈ D: (a) OY,x is a regular local ring with maximal
ideal mx; (b) there exists a regular system of parameters f1, f2, . . . , fm ∈ mx such that
if x is contained in r irreducible components of D, then r 6 m and ID,x = f1f2 . . . frOY,x
(see [35, Tag 0BI9]).

(3) A model C over k◦ of the curve C is said to be sncd if its special fiber is a sncd
divisor of C. In particular, we remark that an sncd model of C is always regular.

We will now prove a few (standard) results which deal purely with sncd models of
curves. To that end, let us introduce some complementary notations.

Notation 5.3. (1) Let C denote a proper sncd model of the curve C over k◦. We will
denote by Cs its special fiber, and by ICs the invertible ideal sheaf of OC defining Cs.

(2) For a ∈ F×, we will denote by [a] the Weil divisor associated to a in C, and by
div(a) the Weil divisor associated to a in C. We remark that div(a) ∩ C = [a].

(3) For a ∈ F×, we will denote by [a] the Zariski closure of [a] in C.
In the following lemma, the role of D from Remark 5.2 is played by the special fiber Cs

of the model C, and that of ID by ICs .
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Lemma 5.4. Let P ∈ Cs be a closed point. Let a ∈ F× such that P 6∈ [a]. If a ∈ OC,P ,
then either a ∈ ICs,P or a ∈ O×

C,P .

Proof. Suppose a 6∈ ICs,P . Then it suffices to show that P 6∈ div(a). Suppose P ∈ div(a)
and let I be an irreducible component of div(a) containing P . If I ∩ C = ∅, then I ⊆ Cs,
which is impossible seeing as a 6∈ ICs,P . Hence, I ∩ C 6= ∅, so there exists a Zariski closed
point z ∈ C such that z ∈ div(a). We remark that then z ∈ [a]. If the Zariski closure
of {z} in C is {z,Q} (see [26, Definition 10.1.31]), then {Q} ( {z,Q} ⊆ I, so by an

argument of dimension: {z,Q} = I and P = Q. As then I ⊆ [a], this is in contradiction

with the assumption that P 6∈ [a]. �

Lemma 5.5. Let P ∈ Cs be a closed point. There exists a regular system of parameters
α, β ∈ OC,P such that for any a ∈ F× for which a ∈ OC,P and P 6∈ [a]:

(1) if P is not a double point of Cs, then either ICs,P = αOC,P or ICs,P = βOC,P , and

there exist n ∈ N ∪ {0}, u ∈ O×
C,P such that a = uαn, resp. a = uβn;

(2) if P is a double point of Cs, then ICs,P = αβOC,P , and there exist m ∈ N ∪ {0},
v ∈ O×

C,P such that a = vαmβm.

Proof. That either ICs,P = αOC,P or ICs,P = βOC,P (resp. ICs,P = αβOC,P ) is immediate
from Remark 5.2. For (1), let us assume, without loss of generality, that ICs,P = αOC,P .
Then there exist n ∈ N ∪ {0} and b ∈ OC,P (resp. m ∈ N ∪ {0} and c ∈ OC,P ) such that
a = bαn (resp. a = cαmβm) and b 6∈ ICs,P (resp. c 6∈ ICs,P ).

As Frac OC,P = F, one obtains b ∈ F× (resp. c ∈ F×). Assume P ∈ [b]. Then there
exists z ∈ [b] such that the closure of {z} in C is {z, P}. As b, α ∈ OC,P ⊆ OC,z, neither b
or α have poles on z, implying b has a zero on z which is not a pole of α. This means that
z ∈ [a], contradiction because then P ∈ [a]. Hence, P 6∈ [b]. (One can show using the same

arguments that, when applicable, P 6∈ [c]). By Lemma 5.4, b ∈ O×
C,P (resp. c ∈ O×

C,P ). �

Corollary 5.6. Let P ∈ Cs be a closed point. There exists a regular system of parameters
α, β ∈ OC,P such that for any a ∈ F× satisfying P 6∈ [a]:

(1) if P is not a double point of Cs, then there exist n ∈ Z, u ∈ O×
C,P such that either

a = uαn or a = uβn;
(2) if P is a double point of Cs, then there exist m ∈ Z, v ∈ O×

C,P such that a = vαmβm.

Proof. As a ∈ F = Frac OC,P , there exist b, c ∈ OC,P such that a = b/c. Moreover, as OC,P

is a regular local ring, it is a unique factorization domain, so without loss of generality,
we may assume that b, c have no common prime divisors. Let us show that P 6∈ [b] ∪ [c].

Assume on the contrary that there exists z ∈ [b]∪ [c] such that its closure in C is {z, P}.
As [a] = [b]− [c], and by assumption z 6∈ [a], we obtain that z ∈ [b]∩ [c]. This implies that
b, c ∈ mC,z–the maximal ideal of OC,z. Let mC,P denote the maximal ideal of OC,P .

As z is the generic point of {z, P}, there exists a canonical embedding OC,P →֒ OC,z.
As t 6∈ mC,z, OC,P ∩mC,z is a prime, non-maximal, ideal of the two-dimensional ring OC,P .
As such, it is principal; let us denote OC,P ∩mC,z =: qOC,P . Consequently, b, c ∈ qOC,P ,
which is impossible seeing as b and c were assumed to be coprime.

We have shown that P 6∈ [b]∪[c].We can now conclude by Lemma 5.5, seeing as a = b/c.
�

Let R be a commutative unitary ring, and q a quadratic form defined over R. We recall
that q is said to be R-isotropic if it has a non-trivial zero over R.
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Theorem 5.7. Suppose char k̃ 6= 2. Let q/F be a quadratic form which is isotropic
over Fv for all discrete valuations v on F such that v|k is either trivial or induces the
norm on k. Then q is isotropic over Fv for all v ∈ V (F ). Furthermore, if dim q 6= 2,
then q is F -isotropic.

Proof. By Witt decomposition ([24, I.4.1]), q = qt⊥qr, where qr is a regular quadratic form
over F and qt a totally isotropic one. If qt 6= 0, then clearly q is isotropic over F , so we may
assume that qt = 0, meaning q is a regular quadratic form. Since char F 6= 2, we may also
assume that q is a diagonal quadratic form with (non-zero) coefficients a1, a2, . . . , an ∈ F.
By Remark 2.2(4), q is Mx–isotropic for all rigid and type 2 points x ∈ Can. By Remark 2.3,
it suffices to show that q is Mx–isotropic for all x ∈ Can.

Let Z ⊆ C be a Zariski closed subset such that
⋃n
i=1[ai] ⊆ Z. We identify Z with a

finite set of rigid points in Can (see [1, Theorem 3.4.1]). For any z ∈ Z, let Vz be a strict
affinoid neighborhood of z in Can such that q is M (Vz)–isotropic. Let C be a proper sncd
model of C over k◦ corresponding to a vertex set S of Can such that

⋃
z∈Z ∂Vz ⊆ S (see

Corollary 1.7). We denote by Cs its special fiber and by π : Can → Cs the corresponding
specialization morphism. (This is the model C1 constructed for the smooth projective
variety X determined by q; see Construction 1.)

Let x ∈ Can. If x ∈ ⋃
z∈Z Vz ∪ S, then q is isotropic over Mx by construction (see Re-

mark 2.2(4) and Lemma 2.5). Suppose x 6∈ ⋃
z∈Z Vz ∪ S. Set π(x) =: Px and π

−1(x) =: Ux.
By the proof of Theorem 3.6, Px 6∈ π(Z). Let α, β ∈ OC ,Px

be a regular system of param-
eters. Then mC ,Px

= (α, β). By Lemma 3.3, Z ∪ π(Z) is the Zariski closure of Z in C . As

Px 6∈ Z ∪ π(Z), we obtain that Px 6∈
⋃n
i=1 [ai]. Let a ∈ {a1, a2, . . . , an}. By Corollary 5.6,

there exist n ∈ Z and ua ∈ O×
C ,Px

such that a = uaα
n or a = uaβ

n if Px is not a double

point of Cs, resp. a = uaα
nβn if Px is a double point of Cs.

By Theorem 1.2, O◦(Ux) = ÔC ,Px
. Consequently, the quadratic form q is isomorphic

over F to a quadratic form q′ := q1⊥αq2⊥βq3⊥αβq4, where q1, q2, q3, q4 are diagonal

quadratic forms defined over O×
C ,Px

⊆ O◦(Ux)
×. As Frac ̂O◦(Ux)(α) is a complete discretely

valued field ([35, Tag 0AFS]) and contains F , the quadratic form q, and hence q′, is

Frac ̂O◦(Ux)(α)–isotropic. Without loss of generality, we may assume that q′ is isotropic

over the complete discrete valuation ring ̂O◦(Ux)(α). We note here that α is one of its
uniformizers.

By a theorem of Springer (see [24, VI, Proposition 1.9]), q′ is isotropic over ̂O◦(Ux)(α) if
an only if q1⊥βq3 or q2⊥βq4 is isotropic over O◦(Ux)(α)/(α) = Frac O◦(Ux)/(α). Without
loss of generality, we may assume that q1⊥βq3 is isotropic over O◦(Ux)/(α). By the same
theorem of Springer, as O◦(Ux)/(α) is a discrete valuation ring with uniformizer β ([35,
Tag 00NQ]), q1 or q3 is isotropic over (O◦(Ux)/(α))/(β) = O◦(Ux)/(α, β). Without loss
of generality, we may assume that q1 is isotropic over O◦(Ux)/(α, β). As q1 is defined
over O◦(Ux)

×, the projective variety determined by it is smooth over O◦(Ux). Hence,
by Hensel’s Lemma, q1 is isotropic over O◦(Ux), implying q′ is isotropic over O◦(Ux).
Consequently, q is isotropic over M (Ux), and hence over Mx.

Thus, q is Mx–isotropic for all x ∈ Can. If, in addition, dim q 6= 2, then by [29, Theo-
rem 3.12], q is F -isotropic. �

Remark 5.8. In the proof of Theorem 5.7, if Px is not a double point, then q′ is of
the form q1⊥αq2⊥βq3 and, in general, both applications of the Theorem of Springer are
necessary.
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However, if Px is a double point, then the quadratic form q′ is of the kind q1⊥αβq2, so
the first application of the Theorem of Springer is enough to conclude.

6. The case of constant varieties

The techniques and approach presented in this section are different from those of the
previous sections. Let C/k be an analytic curve. Set F = M (C), and let X/F be a
variety such that X(My) 6= ∅ for some fixed point y. For a suitably chosen x ∈ C, we
construct an isomorphism ϕ of the curve C such that x 7→ y, with the purpose of showing
that X(Mx) 6= ∅. To insure such an implication, as ϕ does not fix F , we have to assume
that X is defined over the smaller field k. See Remark 6.4 for more precise details.

We recall that if K is a complete ultrametric field, for a ∈ K and r ∈ R>0, the map

ηa,r : K[T ]→ R>0,∑

n

bn(T − a)n 7→ max
n
{|bn|rn},

defines a multiplicative semi-norm on K[T ], meaning ηa,r is a point of P1,an
K . See Defini-

tion 2.2 and Proposition 2.3 of [29] for more details.
The following is a well-known auxiliary result.

Lemma 6.1. Let K be a complete ultrametric field. For α ∈ K and s > 0, let

D := {x ∈ P1,an
K : |T − α| < s}

be the open disc centered in α and of radius s. Let β, γ ∈ K.
(1) If, for some r > 0, ηβ,r ∈ D, then ηβ,0 ∈ D.
(2) For any two rigid points ηβ,0, ηγ,0 ∈ D, |β − γ| < s.

(3) If ηβ,0 ∈ D or equivalently, |α− β| < s, then D = {x ∈ P1,an
K : |T − β|x < s}.

Proof. (1) If ηβ,r ∈ D, then |T −α|ηβ,r
= max(|α−β|, r) < s, so |T − α|ηβ,0

= |β − α| < s,
implying ηβ,0 ∈ D.

(2) As ηβ,0 ∈ D, we have that |T − α|ηβ,0
= |α − β| < s. Similarly, for ηγ,0 we obtain

|α− γ| < s. Consequently, |β − γ| 6 max(|α− β|, |α − γ|) < s.
(3) Let x ∈ D, meaning |T − α|x < s. Then |T − β|x 6 max(|T − α|x, |α − β|) < s. It

is shown similarly that if y ∈ P1,an
K satisfies |T − β|y < s, then |T − α|y < s. �

Throughout this section we will use the following:

Notation 6.2. (1) Let k be a complete non-trivially valued ultrametric field.

(2) We denote by k an algebraic closure of k, and by k̂ its completion with respect to
the unique norm extending that of k.

(3) For a k-analytic space Y and any valued field extension l/k (meaning l is a complete
valued field with a norm extending that of k), we denote by Yl the l-analytic space Y ×k l.

(4) We denote by MY (or simply M when there is no risk of ambiguity) the sheaf of
meromorphic functions on the k-analytic space Y (see [28, 1.7] for the definition and some
details on M ).

Remark 6.3. By [10, 3.4.24], for any b ∈ k̂, there exists a canonical retraction db : P1,an
̂k
→ Γb

such that |T − b|u = |T − b|db(u) for any u ∈ P1,an
̂k

. Moreover, for any u, u′ ∈ Γb, u 6= u′,
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by loc.cit., |T − b|u 6= |T − b|u′ . Here Γb := [ηb,0,∞] is the unique injective path in P1,an
̂k

connecting ηb,0 and ∞.

In other words, T − b is strictly increasing on Γb and locally constant on P1,an
̂k
\Γb.

In Definition 1.4, we briefly recall the notions of virtual discs and virtual annuli.

Remark 6.4. Let X/k be a variety. Let L/k be an open virtual disc or open virtual

annulus that can be embedded in P1,an
k . Let y ∈ L be such that X(My) 6= ∅. In what

follows, we construct isomorphisms of L which send a random point x to a point like y,
with the purpose of then obtaining that X(Mx) 6= ∅.
Proposition 6.5. Let L/k be an open virtual disc that is embedded in P1,an

k . Let X/k be
a variety. Assume that there exists an open neighborhood U in L of the end ω of L such
that X(M (U)) 6= ∅. Then for any m ∈ N, there exists a finite field extension l/k such
that ([l : k],m) = 1 and X(MLl,x) 6= ∅ for all x ∈ Ll.

If |k×| is dense in R>0, then one can take l := k.

Proof. Let us fix the positive integer m. Let p : P1,an
̂k
→ P1,an

k denote the projection

morphism. By [1, Corollary 1.3.6], the Galois group G := Gal(k/k) acts on P1,an
̂k

in such

a way that p induces an isomorphism P1,an
̂k

/G ∼= P1,an
k . As L is an open virtual disc

embedded in P1,an
k , the preimage p−1(L) is a finite disjoint union

⊔
i∈I Di of open discs Di.

By loc.cit., the restriction of p to L̂k
= p−1(L), which we will continue to denote by p,

induces an isomorphism L̂k
/G ∼= L.

For any i ∈ I, let αi ∈ k̂ and si ∈ R>0 be such that Di = {x ∈ P1,an
̂k

: |T − αi|x < si}.
We remark that the action of G on

⊔
i∈I Di (which permutes the Di) implies that for any

i′, i′′ ∈ I, si′ = si′′ =: s. We remark also that p−1(ω) consists of the unique boundary
points ωi of Di, and that ωi = ηαi,s for all i ∈ I.

As U is an open neighborhood of ω, p−1(U) is a disjoint union of open neighborhoods
Ui of ωi in Di, i ∈ I. As such, ∂Di

Ui is a finite set of points of type 2 or 3 of Di. By [29,

Proposition 2.3], for any z ∈ ∂Di
Ui, there exists αz ∈ k̂ and rz > 0 such that z = ηαz ,rz .

For z ∈ ∂Ui
Di, let γz denote the unique path in Di connecting the point ηαz ,0 to

ωi, meaning γz = {ηαz ,c ∈ Di : c > 0} (see [28, Remark 1.8.26]). We recall that it is
homeomorphic to the open interval (0, s). As Ui is connected, γz ∩ Ui is a connected
subset of γz. As Ui is an open neighborhood of ωi, we obtain that γz ∩ Ui = {ηαz ,c ∈ Di :
c > rz} ⊆ Ui, and for any t 6 rz, ηαz ,t /∈ Ui.
Lemma 6.6. Let i ∈ I. For any two points z, z′ ∈ ∂Di

Ui, rz < |αz − αz′ |.
Proof. Suppose on the contrary that rz > |αz − αz′ |. Then ηαz ,rz = ηαz′ ,rz . As z 6= z′,
rz 6= rz′ . If rz < rz′ , then ηαz′ ,rz′ = ηαz ,rz′ , which implies that ηαz′ ,rz′ ∈ γz ∩ Ui ⊆ Ui,
contradiction. Similarly, if rz′ < rz, then ηαz ,rz = ηαz′ ,rz ∈ γz′ ∩ Ui ⊆ Ui, contradiction.
Hence, rz < |αz − αz′ |. �

By Lemma 6.1, parts (1) and (2), for any z, z′ ∈ ∂Di
Ui, |αz − αz′ | < s. Let a, b ∈ R>0

be such that maxi∈I maxz,z′∈∂Di
Ui
(|αz − αz′ |) < a < b < s.

Lemma 6.7. There exists a finite field extension l/k such that ([l : k],m) = 1 and ∃w ∈ l
with |w| := r ∈ (a, b) (with respect to the unique norm on l extending that of k).
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If |k×| is dense in R>0, then one can take l = k.

Proof. The statement is immediate if |k×| is dense in R>0. Let us assume this is not the
case. Then k is a discretely valued field, and let us denote by π a uniformizer.

Seeing as the divisible closure
√
|k×| of the value group |k×| is dense in R>0, there

exists a large enough integer h such that (h,m) = 1 and for which (a, b) ∩ h
√
|k×|. Here

h
√
|k×| := {r ∈ R>0 : r

h ∈ |k×|}. Let r ∈ (a, b) ∩ h
√
|k×|, meaning there exists n ∈ Z such

that rh = |π|n.
Set P (X) := Xh − π ∈ k[X]. By Eisenstein’s criterion of irreducibility, P (X) is an

irreducible polynomial over k. Set l := k[X]/(P (X)). Then [l : k] = h. Clearly, l contains
a root α of P (X), implying that |α| = |π|1/h. As a consequence, r ∈ |l×|, meaning there
exists w ∈ l such that |w| = r ∈ (a, b). �

From now on, let l/k, w ∈ l and r be as in Lemma 6.7.

Lemma 6.8. Let i ∈ I. For any z ∈ ∂Di
Ui, {y ∈ Di : |T − αz + w|y < r} ⊆ Ui.

Proof. Suppose there exists y ∈ Di such that |T − αz + w|y < r, but y /∈ Ui. We remark
that |T −αz|y = max(|T −αz+w|y, |w|) = r, implying dαz(y) = ηαz ,r (see Remark 6.3). If
y /∈ Ui, then the unique injective path [y, ηαz ,r) in Di connecting y and ηαz ,r (without con-
taining ηαz ,r) intersects ∂Di

Ui at a single point ηαz′ ,rz′ . As dαz(y) = dαz (ηαz ,r) = ηαz ,r and
ηαz′ ,rz′ ∈ [y, ηαz ,r), by Remark 6.3, dαz (ηαz′ ,rz′ ) = ηαz ,r. Consequently, |T −αz|ηα

z′
,r
z′

= r.

At the same time, |T−αz|ηα
z′

,r
z′

= max(|αz−αz′ |, rz′), so by Lemma 6.6, |T −αz|ηα
z′

,r
z′

=

|αz − αz′ |. Thus, r = |αz − αz′ |, which is in contradiction with the choice of r. �

A base change of the isomorphism l[T ] → l[T ], T 7→ T + w, induces an isomorphism

ψ : P1,an
̂k
→ P1,an

̂k
which sends ηγ,c to ηγ+w,c for any γ ∈ k̂ and any c > 0. Since for any

i ∈ I, |T −αi|x < s if and only if |T −αi+w|ψ(x) < s, seeing as |αi− (αi −w)| = |w| < s,
by Lemma 6.1(3), ψ(Di) = Di. This means that ψ (and hence the map T 7→ T + w)
induces an isomorphism Di → Di for i ∈ I, meaning an isomorphism L̂k

→ L̂k
, which we

will continue to denote by ψ.
Let x ∈ L\U . Let x′ ∈ p−1(x). There exists j ∈ I such that x′ ∈ Dj . Moreover, seeing

as x /∈ U, we have x′ /∈ Uj .
Lemma 6.9. The point ψ(x′) is in Uj .

Proof. Let [x′, ωj) ⊆ Dj be the unique injective path connecting x′ to ωj . As x′ /∈ Uj,
[x′, ωj) intersects ∂Dj

Uj at a single point ηαz ,rz . We remark that ηαz ,rz ∈ [x′, ωj) =
[x′, ηαz ,rz ] ∪ (ηαz ,rz , ωj).

Set v := |T − αz|x′ . By Lemma 6.1(3), Dj = {x ∈ P1,an
̂k

: |T − αz|x < s}. Its boundary
point ωj coincides with ηαz ,s. Assume v > rz. Then ηαz ,v ∈ (ηαz ,rz , ωj) ⊆ [x′, ωj). This
implies that ηαz ,rz ∈ [x′, ηαz ,v) ⊆ [x′ωj).

By Remark 6.3, dαz (x
′) = ηαz ,v, so [x′, ηαz ,v) ∩ Γαz = ∅, where [x′, ηαz ,v) ⊆ [x′, ωj). This

is a contradiction, seeing as ηαz ,rz ∈ [x′, ηαz ,v) ∩ Γαz .
Consequently, v 6 rz < r. Since |T − αz +w|ψ(x′) = |T − αz|x′ = v < r, by Lemma 6.8,

ψ(x′) ∈ Uj. �

Let us denote by πl the projection πl : Ll → L. Let us denote by G′ = Gal(k/l).

We remark that G′ is a subgroup of G. Seeing as the isomorphism ψ : P1,an
̂k
→ P1,an

̂k
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is defined over l, it is G′-equivariant, meaning it induces a G′-equivariant isomorphism
L̂k
→ L̂k

. Consequently, we obtain an isomorphism ϕ : L̂k
/G′ → L̂k

/G′. By [1, Corollary

1.3.6], L̂k
/G′ ∼= Ll, meaning we have constructed an isomorphism ϕ : Ll → Ll, whose

base change l ⊆ k̂ induces ψ. Hence, if we denote by q the projection L̂k
→ Ll, then the

diagram (C) is commutative.

(C)

L̂k
L̂k

Ll Ll

ψ

q q

ϕ

Let x ∈ Ll\Ul. Then for any y ∈ q−1(x), y 6∈ q−1(Ul) =
⋃
i∈I Ui. Let j ∈ I and

y ∈ q−1(x) such that y ∈ Dj. By Lemma 6.9, ψ(y) ∈ Uj, implying q(ψ(y)) ∈ Ul. As
q(ψ(y)) = ϕ(q(y)) = ϕ(x), we obtain that ϕ(x) ∈ Ul. The isomorphism ϕ induces an
isomorphism of fields MLl,x

∼= MLl,ϕ(x) (which fixes l but not F , which is why we ask
of X to be defined over the base field k rather than the function field F ). As ϕ(x) ∈ Ul,
πl(ϕ(x))) ∈ U, so ML(U) ⊆ ML,πl(ϕ(x)) ⊆ MLl,ϕ(x). By assumption, X(ML(U)) 6= ∅, so
X(MLl ,ϕ(x)) 6= ∅. As MLl,ϕ(x)

∼= MLl,x, we obtain X(MLl,x) 6= ∅. We have thus shown
that for any x /∈ Ul,X(MLl ,x) 6= ∅.

If x ∈ Ul, then ML(U) ⊆ ML,πl(x) ⊆ MLl,x, implying X(MLl,x) 6= ∅, thus concluding
the proof. �

Proposition 6.10. Let L/k be an open virtual annulus that is embedded in P1,an
k . Let us

denote its ends by ω1 and ω2. Let X/k be a variety. Assume that there exists an open
neighborhood U in L of the end ω1 of L such that X(M (U)) 6= ∅. Then for any m ∈ N,
there exists a finite field extension l/k such that ([l : k],m) = 1 and X(MLl,x) 6= ∅ for all
x ∈ Ll.

If |k×| is dense in R>0, then one can take l := k.

Proof. Let p : P1,an
̂k
→ P1,an

k denote the projection corresponding to the base change k̂/k.

Then L̂k
= p−1(L) is a finite disjoint union

⊔
i∈I Li of open annuli Li. For any i ∈ I, there

exist αi ∈ k̂ and ri, si ∈ R>0 such that Li = {x ∈ P1,an
̂k

: ri < |T − αi|x < si}. As the

action of G := Gal(k/k) on
⊔
i∈I Li permutes the Li, for any i

′, i′′ ∈ I, ri′ = ri′′ =: r and
si′ = si′′ =: s. We remark that the ends of Li are the points ω1,i := ηαi,s and ω2,i := ηαi,r.
The action of G on L̂k

permutes the sets {ω1,i}i∈I and {ω2,i}i∈I . Consequently, p({ω1,i}i∈I)
is a single point which is also an end of L; let us assume it is the point ω1 (we can

always reduce to this case by a change of coordinate on P1,an
̂k

if necessary). Similarly,

p({ω2,i}i∈I) = ω2.

For any i ∈ I, let Di := {x ∈ P1,an
̂k

: |T − αi|x < s}. This is an open disc satisfying

Li ⊆ Di. We will now show that for any i′, i′′ ∈ I, if i′ 6= i′′, then Di′ ∩ Di′′ = ∅.
Otherwise, as Di′∩Di′′ is open, it contains a rigid point ηγ,0 for some γ ∈ k. Consequently,
|αi′ − γ| < s and |αi′′ − γ| < s, implying |αi′ − αi′′ | < s. But then, for any x ∈ Di′ ,
|T −αi′′ |x 6 max(|αi′−αi′′ |, |T −αi′ |x) < s, implying x ∈ Di′′ , hence Di′ ⊆ Di′′ . Similarly,
Di′′ ⊆ Di′ , so Di′ = Di′′ . But then Li′ ∩ Li′′ 6= ∅, contradiction.
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Moreover, G acts on
⊔
i∈I Di, meaning D := p(Di) = p(

⋃
i∈I Di) is an open virtual disc

defined over k and with end ω1. By construction, L ⊆ D. Let us fix the integer m. By
Proposition 6.5, there exists a field extension l/k such that ([l : k],m) = 1 and for any
x ∈ Dl := D ×k l, we have X(MDl,x) 6= ∅. Since Ll ⊆ Dl, the proof is concluded. �

Remark 6.11. We recall that if S is a triangulation of a k-analytic curve C, then the
connected components of C\S are open virtual discs and open virtual annuli. There is, a
priori, no embedding of an open virtual disc or an open virtual annulus into the projective
analytic line.

We recall the notion of strongly transitive action in Definition 1.8 (see also Remark 1.9).

Theorem 6.12. Let C/k be a proper normal geometrically connected and generically
smooth analytic curve. Set F := M (C). Assume C has a triangulation S such that all

of the connected components of C\S can be embedded in P1,an
k . Let X be a k-variety.

Suppose there exists a rational linear algebraic group G/F acting strongly transitively on
the variety XF . If X(Ms) 6= ∅ for all s ∈ S, then

(1) if |k×| is dense in R>0, then X(F ) 6= ∅;
(2) if k is discretely valued, then X has a zero cycle of degree one over F .

Proof. Let s ∈ S. As X(Ms) 6= ∅, there exists a neighborhood Us of s in C such that
X(M (Us)) 6= ∅. Without loss of generality, we may assume that the boundary of Us is a
finite set of points (which are always of type 2 and 3). At the same time, C\S is a disjoint
union of open virtual discs and open virtual annuli. Since

⋃
s∈S ∂Us is finite, there are

only finitely many connected components of C\S not entirely contained in
⋃
s∈S Us (see

also Remark 2.18). Let us denote them by L1, L2, . . . , Ln.
(1) If |k×| is dense in R>0, then by Propositions 6.5 and 6.10, X(MC,x) 6= ∅ for all

x ∈ C, so by [29, Theorem 3.11], X(F ) 6= ∅.
(2) By loc.cit., there exists a finite field extension l1/k for which X(ML1,l1

,x) 6= ∅ for all
x ∈ L1,l1 . Set [l1 : k] = m1. For i ∈ {2, 3, . . . , n}, let li/k be a finite field extension such

that ([li : k],Π
i−1
j=1mj) = 1, where mi−1 := [li−1 : k], and X(MLi,li

,x) 6= ∅ for all x ∈ Li,li .
Let l/k be the composite of l1, l2, . . . , ln in k. By construction,

m := [l : k] = Πni=1[li : k] = m1m2 · · ·mn. Set Cl := C ×k l. Then M (Cl) = F ⊗k l =: E.
As C is geometrically connected, [E : F ] = [l : k] = m. Let us denote by p the
projection Cl → C. By assumption, for any x ∈ C\⋃n

i=1 Li, X(MC,x) 6= ∅. Hence, for
any x ∈ Cl\

⋃n
i=1 p

−1(Li), we obtain that X(MCl ,x) 6= ∅. On the other hand, for any
x ∈ ⋃n

i=1 Li, by construction, as for any i ∈ {1, 2, . . . , n}, MCli
,x ⊆MCl,x, we obtain that

X(MCl
, x) 6= ∅. Hence, X(MCl ,x) 6= ∅ for all x ∈ Cl, implying by [29, Theorem 3.11] that

X(M (Cl)) 6= ∅.
By Propositions 6.5 and 6.10, there exists a finite field extension l′1/k with ([l′1, k],m) = 1,

and X(ML
1,l′

1

,x) 6= ∅ for all x ∈ L1,l′
1
. Set m′

1 = [l′1 : k]. For i ∈ {2, 3, . . . , n}, let l′i/k be

a finite field extension such that ([l′i : k],mΠi−1
j=1m

′
j) = 1, where m′

i−1 := [l′i−1 : k], and

X(MLi,l′
i
,x) 6= ∅ for all x ∈ Li,l′i .

Let l′/k be the composite of l′1, l
′
2, . . . , l

′
n in k. Set m′ := [l′ : k]. Then (m′,m) = 1 and

as in the case of l, X(MCl′ ,x) 6= ∅ for all x ∈ Cl′ . By [29, Theorem 3.11], the latter implies
that X(M (Cl′)) 6= ∅. Moreover, E′ := MCl′

(Cl′) satisfies [E
′ : F ] = m′.

Thus, X(E) 6= ∅ and X(E′) 6= ∅, where ([E : F ], [E′ : F ]) = 1, so X has a zero cycle of
degree one over F . �
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Remark 6.13. In the proof of Theorem 6.12, we only used the fact that a finite number
of the connected components of C\S can be embedded in P1,an

k . They depend on the
elements of the set X(Ms), s ∈ S.

Remark 6.14. The case C = P1,an
k satisfies trivially the assumptions of Theorem 6.12

with respect to any triangulation or vertex set. By [11, 4.4], if S is a vertex set of C
corresponding to a model C of Cal over k◦ that is semi-stable, then the assumptions of
Theorem 6.12 are satisfied. Another example is given by Mumford curves, which can be
locally embedded in A1,an

k .

Remark 6.15. There are several families of varieties for which the existence of zero cycles
of degree one implies the existence of a rational point (e.g. see [31]). In particular, by a
theorem of Springer ([24, VI, Proposition 1.9]), this is true for quadratic forms (the case
of residue characteristic 2 included by [13]).

Corollary 6.16. Using the same notation as in Theorem 6.12, let q be a quadratic form
defined over k. If q is isotropic over Ms for all s ∈ S, then q is isotropic over F .

Remark 6.17. By Remark 2.2, in the statement of Theorem 6.12, X(Ms) 6= ∅ is equiva-
lent to X(Fv) 6= ∅, where Fv is the completion of F with respect to the discrete valuation v
corresponding to s (which extends the norm on k).

7. Appendix: other examples

Remark 7.1. In the case of quadratic forms in Section 5, we used a theorem of Springer
([24, VI, Proposition 1.9]) to reduce to a case where we can apply the results of Section 2,
and thus obtained Theorem 5.7–a Hasse principle for quadrics. Essentially, Springer’s
theorem allows us to reduce to quadrics which satisfy some strong smoothness assump-
tions over models of the curve. The latter are precisely the assumptions we encounter in
Section 2.

By the same principle, the results of Section 2 should apply to any variety for which we
can show a Springer-type theorem.

7.1. Unitary groups (by [36] and [33, Sect. 12]). In [25], Larmour showed a Springer-
type theorem for Hermitian forms. By Remark 7.1, it is expected that said theorem, in
combination with the results of Section 2, gives rise to a Hasse principle for homogeneous
varieties under unitary groups. To obtain this, we want to mimic the proof of Theorem 5.7.
We recall that Hermitian forms are defined over division algebras, or, more generally,
central simple algebras. Hence, a natural starting point is studying whether valuations
on a field K (for us K = Frac O◦(Ux), see the proof of Theorem 5.7) extend “well” to a
division algebra over K.

This has already been studied in [36] under some restrictions. The results were then
generalized using the same approach in [33]. In both cases, the authors show a Hasse
principle for homogeneous varieties under unitary groups. We give here a brief summary
of the interpretation of these results in our setting, without any claim to originality, start-
ing with some background information. In a recent manuscript (see [15]), the authors
generalize the main theorem (Theorem 7.10) in certain special cases.

For a detailed account on involutions on central simple algebras, see [23].
We will use Notation 3.1 throughout this section. Assume, moreover, that char k 6= 2.
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7.1.1. Homogeneous spaces under unitary groups. Let L := F (
√
λ) be a quadratic field

extension over F . Let A be a central simple algebra over L. Let σ be an involution of the
second kind on A such that Lσ = F . Let (V, h) be a Hermitian form over (A, σ). We will
denote by G := U(A, σ, h) the associated unitary group (which is defined over F ). By [5,
Prop. 2.4], G is a rational reductive linear algebraic group.

We will say that h is isotropic over F if there exists v ∈ V \{0} such that h(v, v) = 0.

Definition 7.2. (1) The degree of A, denoted degA, is
√
dimLA. The index of A, denoted

ind A, is the degree of the division algebra Brauer equivalent to A. Both degA and ind A
are integers.

(2) Let W be a finitely generated A-module. The reduced dimension rdimA(W) of W
over A is defined to be dimLW/degA. By [23, pg. 6], rdimA(W) ∈ N.

(3) Let W be an A-submodule of V . Then W is totally isotropic if for all x ∈ W , one
has h(x, x) = 0.

(4) Let 0 < n1 < n2 · · · < nr < degA be integers. Let Xh(n1, n2, . . . , nr) be the
projective F -variety such that for any field extension K/F ,

Xh(n1, n2, . . . , nr)(K) = {(W1,W2, . . . ,Wr) :

0 (W1 (W2 · · · (Wr ⊆ VK ,Wi is totally isotropic, rdimAK
Wi = ni ∀i},

where AK := A⊗F K,VK := V ⊗F K.
The varieties Xh(n1, n2, . . . , nr) are precisely the homogeneous spaces under G. More-

over, for a field extension K/F , there exists a simplified criterion for checking that
Xh(n1, n2, . . . , nr)(K) 6= ∅.
Theorem 7.3 ([36, §2], [33, Thm. 12.1]). (1) For any projective homogeneous F -variety X
under G there exists an increasing sequence of integers 0 < n1 < n2 · · · nr 6 degA/2 such
that X ∼= Xh(n1, n2, . . . , nr).

(2) Let K/F be a field extension. Then Xh(n1, n2, . . . , nr)(K) 6= ∅ if and only if the
two following conditions are satisfied:

(A) Xh(nr)(K) 6= ∅,
(B) ind A divides ni for all i ∈ {1, 2, . . . , r}.
(3) Let D be the division algebra Brauer equivalent to A. Then σ induces uniquely on D

an involution of second kind τ ; the Hermitian form (V, h) induces uniquely a Hermitian
form (V ′, h′) on (D, τ).

(4) There exists a bijection X 7→ X0 between the projective homogeneous F -varieties
under U(A, σ, h) and the projective homogeneous F -varieties under U(D, τ, h′). Moreover,
for any field extension K/F , X(K) 6= ∅ ⇐⇒ X0(K) 6= ∅.
Remark 7.4. Similar results exist if σ is an involution of the first kind andG = SU(A, σ, h)-
the special orthogonal group (see [36, Sect. 2]). See also Subsection 7.2.

Hypothesis 2. From now on, we assume that the base field k is a local field.

Proposition 7.5. Let X := Xh(n1, n2, . . . , nr) be a homogeneous space un-
der G = U(A, σ, h). Assume X(Fv) 6= ∅ for all v ∈ V (F ) discrete. Then ind A divides ni
for all i ∈ {1, 2, . . . , r}.
Proof. By Theorem 7.3 (2), for all v ∈ V (F ) discrete, ind(A⊗F Fv) divides ni for all i. By
[16, Thm. 5.5] and [32, Prop. 5.10] (see also first paragraph of proof for [33, Thm. 12.2]),
then ind A also divides ni for all i. �
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7.1.2. Maximal orders on division algebras (by [33, Sect. 10]). Let R be a complete regular
local ring of dimension 2 (in the setting of Section 2, the rings O◦(Ux) will play the role

of R). Set K := Frac(R). Let us denote by K̃ the residue field of R. Assume that K̃

is a finite field and that char K̃ 6= 2. Let ω, δ be a regular system of parameters of R.

We remark that R(ω) and R(δ) are discrete valuation rings. We will denote by R̂(ω), resp.

R̂(δ), their completions.

Let λ ∈ R be such that either λ = u or λ = uω for u ∈ R×. Set L := K(
√
λ). Let S

denote the integral closure of R in L. Then S is also a regular local ring of dimension 2.
Moreover, a regular system of parameters for S is given by ω1, δ, where ω1 = ω if λ = u
and ω1 =

√
uω otherwise.

Let D be a division algebra defined over L. Let τ be an involution on L of the second
kind such that Lτ = K. Assume D is unramified (see [33, pg. 4] for a definition) on S
except possibly on (ω1) and (δ).

Theorem 7.6 ([36, Lemma 3.7], [33, Lemma 9.3]). Assume that (degD, char K̃) = 1.
There exists an R-maximal order Λ in D such that τ(Λ) = Λ, and

(1) there exist ωD, δD ∈ Λ such that τ(ωD) = ω and τ(δD) = δ;
(2) if a ∈ Λ is such that τ(a) = a and NrdD(a) = uωrδs for u ∈ R×, r, s ∈ Z>0,

then, up to a square factor in Λ, a = uωǫ1D δ
ǫ2
D , where {ǫ1, ǫ2} ∈ {0, 1}. Here ǫ1 ≡ r

mod 2 and ǫ2 ≡ s mod 2.

We recall that the reduced norm on D is a multiplicative map NrdD : D → K (see [23,
pg. 5]).

Remark 7.7. (1) Remark that if h =< a1, a2, . . . , an > is a Hermitian form over (D, τ),
then τ(ai) = ai for all i ∈ {1, 2, . . . , n}.

(2) If h is such a Hermitian form, then by Theorem 7.6, h ∼= h1⊥ωDh2⊥ωDh3⊥ωDδDh4,
where hj =< bj1, · · · , bjmj > with bjs ∈ Λ× for all s ∈ {1, 2, . . . ,mj} and all j ∈ {1, 2, 3, 4}.

The following is a consequence of the Springer-type theorem of Larmour ([25]) for
Hermitian forms.

Theorem 7.8 ([33, Cor. 9.5]). Let h be a Hermitian form over (D, τ). If h is isotropic

over Frac(R̂(ω)) or Frac(R̂(δ)), then it is isotropic over K.

Remark 7.9. Thanks to Theorem 7.3(2), we translate the existence of rational points
on X := Xh(n1, n2, . . . , nr) to questions of isotropy of the Hermitian form h. By Re-
mark 7.7(1) and Theorem 7.8 (compare also with the proof of Theorem 5.7), we can reduce
to particular Hermitian forms h (i.e. ones of the type < a1, . . . , an >, where ai ∈ Λ×).
Then the corresponding variety X will satisfy the smoothness hypotheses of Section 2 (see
also the proof of Theorem 7.10).

7.1.3. The Hasse principle for G. We continue using the same notation as in Subsect. 7.1.1.

Additionally, we assume that k is a local field (Hypothesis 2). Let us denote by k̃ its residue
field. Let X/F be a projective homogeneous variety under G = U(A, σ, h).

Theorem 7.10 ([36, Thm. 4.4], [33, Thm. 12.3]). Suppose (2ind(A), char k̃) = 1. Ad-
ditionally, if A = L, then assume the rank of the Hermitian form h is at least 2. If
X(Fv) 6= ∅ for all v ∈ V (F ) discrete, then X(F ) 6= ∅.
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Proof. By Theorem 7.3, there exists a strictly increasing sequence of integers 0 < n1 <
· · · < nr < degA such that X ∼= Xh(n1, n2, . . . , nr). By loc.cit. and Proposition 7.5, we
may assume that X = Xh(nr). It suffices to show Xh(nr)(F ) 6= ∅.

Let Z ⊆ Can be a set of rigid points containing the ramification locus of A. For any
z ∈ Z, let Vz ⊆ Can be a strict affinoid neighborhood of z such that Xh(nr)(M (Vz)) 6= ∅
(Remarks 2.2(4) and 2.4). Let C be a proper sncd model of C corresponding to a vertex
set S such that

⋃
z∈Z ∂Vz ⊆ S (Theorem 1.6). Let Cs be the special fiber of C and

πC : Can → Cs the specialization morphism.
Let x ∈ Can\(⋃z∈Z Vz∪S). Set Px := πC (x) (a closed point of Cs) and UC ,x := π−1

C
(Px)

(a connected open subset of Can). By Theorem 1.2, ÔC ,Px
= O◦(UC ,x), so O◦(UC ,x) is a

complete regular local ring of dimension 2. Let ω, δ ∈ O◦(UC ,x) be a system of regular
parameters satisfying the conditions of Corollary 5.6. Set FC ,x := Frac O◦(UC ,x).

Remark that L⊗F FC ,x
∼= FC ,x[

√
λ]. For a fine enough model C (or, equivalently, large

enough S), we may assume that:

(a) up to multiplication by a square, λ ∈ O◦(UC ,x) is either of the form u or uω, where
u ∈ O◦(UC ,x)

× ([36, Lemma 4.2]);

(b) the integral closure R′ of O◦(UC ,x) in FC ,x[
√
λ] has regular parameters ω1, δ, where

ω1 = ω if λ = u and ω1 =
√
uω if λ = uω ([33, Sect. 9]);

(c) A is unramified on R′ except possibly at (ω1) and (δ) (Corollary 5.6).

We remark that for any model C1 of C refining C , UC1,x ⊆ UC ,x, so FC1,x ⊆ FC ,x.
As in the proof of [33, Thm. 12.2], we prove by induction on ind(A ⊗F FC ,x) the

existence of a proper sncd model C1 of C refining C such that Xh(nr)(FC1,x) 6= ∅.
1) Suppose C is a proper sncd model of C satisfying the conditions (a), (b), (c) above.

If ind(A⊗F FC ,x) = 1, h corresponds to a quadratic form qh over FC ,x, and one is isotropic
if and only if the other is. One reduces to a question of isotropy of the quadratic form qh
over FC ,x (see proof of [33, Thm. 12.2]). Then, by [17, Cor. 4.7], Xh(nr)(FC ,x) 6= ∅.

2) Let s ∈ N be such that s > 2. Let C be a proper sncd model of C satisfying properties
(a), (b), (c) above, and ind(A⊗F FC ,x) < s. Assume then that there exists a proper sncd
model C1 refining C such that Xh(nr)(FC1,x) 6= ∅.

3) Let C be a proper sncd model of C satisfying conditions (a), (b), (c) above and
such that ind(A ⊗F FC ,x) = s. Let Dx be the division algebra Brauer equivalent to
A ⊗F FC ,x over FC ,x. Then degDx > 2. Let (Dx, τx, hx) be the structure induced on Dx

by (A⊗F FC ,x, σ, h) (Theorem 7.3(3)). By Theorem 7.3(4), there exists Xhx(m)/FC ,x ho-
mogeneous under U(Dx, τx, hx) such that Xhx(m)(K) 6= ∅ ⇐⇒ Xh(nr)(K) 6= ∅ for all
field extensions K/FC ,x.

Let Λx, ωx, δx be as in Theorem 7.6. Let < a1, a2, . . . , an > be a diagonal form of hx
with ai ∈ Λx. Then τ(ai) = ai for all i. Set bi := NrdDx(ai) ∈ F×

C ,x. Let C1 be a proper

sncd model refining C constructed via [36, Lemma 4.3] for b1, b2, . . . , bn. We may assume
that it still satisfies conditions (a), (b), (c) from above. By Theorem 1.6, C1 corresponds
to a vertex set S1 ⊇ S of Can. We know that UC1,x ⊆ UC ,x and FC1,x ⊆ FC ,x.

By construction, O◦(UC1,x) has a regular system of parameters ω1,x, δ1,x such that bi =
NrdDx(ai) = uiω

ri
1,xδ

si
1,x, ui ∈ O◦(UC1,x)

×, ri, si ∈ Z, i ∈ {1, 2, . . . , n}.
If Dx ⊗FC ,x

FC1,x is not a division algebra, then ind(A⊗F FC1,x) < ind(A⊗F FC ,x), so
we may conclude by the inductive assumption that there exists a proper sncd model C2

of C refining C1 such that Xh(nr)(FC2,x) 6= ∅.
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If Dx ⊗FC ,x
FC1,x is a division algebra, h′x :=< a1, a2, . . . , an > is the Hermitian

form induced by hx, and now the ai satisfy the properties of Theorem 7.6(2). Let
Xh′x(m

′)/FC1,x be the homogeneous variety corresponding to Xhx(m) ×FC ,x
FC1,x. Set

F1 := Frac( ̂O◦(UC1,x)(ω1,x)) and F2 := Frac( ̂O◦(UC1,x)(δ1,x)). These are both complete dis-
cretely valued fields containing F . Moreover, the restriction of the valuation on k is either
trivial or discrete (Remark 2.11). Hence, Xhx(m)(Fj) 6= ∅, implying Xh′x(m

′)(Fj) 6= ∅ for
j = 1, 2.

Using an induction argument (see proof of [33, Thm. 12.2]), the problem is reduced to
one of isotropy of h′x. By assumption, h′x is isotropic over Fj , j = 1, 2, so, by Theorem 7.8,
it is isotropic over FC1,x. Hence Xh′x(m

′)(FC1,x) 6= ∅. Consequently, Xhx(m)(FC1,x) 6= ∅,
so Xh(nr)(FC1,x) 6= ∅.

We have shown that there exists a proper sncd model C of C satisfyingXh(nr)(FC ,x) 6= ∅.
As FC ,x ⊆Mx, we obtain that Xh(nr)(Mx) 6= ∅.

Hence, for all x ∈ Can, X(Mx) 6= ∅. By [29, Thm. 3.11], this implies Xh(nr)(F ) 6= ∅.
�

7.2. Special unitary groups (by [36]). If we let A be a central simple algebra with an
involution σ of the first kind, and h a Hermitian form on (A, σ), then the group SU(A, σ, h)
is a rational reductive linear algebraic group ([7, Lemma 5]). By using techniques very sim-
ilar to those in the case of unitary groups (the difference being that now L = F = Z(A)),
one can prove the Hasse principle holds also for homogeneous spaces under special unitary
groups. This was done in [36]. We refrain from translating this case to our setting as it
would amount to repeating the arguments from Subsection 7.1.
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