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Abstract

Dense subgraphs convey important information and insights about a graph structure. This explains
why dense subgraph mining is a problem of key interest that arises in several tasks and applications
such as graph visualization, graph summarization, graph clustering, and complex network analysis.
It is a hard problem that has been intensively addressed by the data mining community.

In this paper, we propose a deep learning approach that enumerates all occurrences of dense sub-
graphs in a graph without any constraints or limitations on their size. More precisely, we enrich
exiting structural node embedding with extra information, computed on node neighborhoods, to ef-
fectively capture their belonging to dense subgraphs. We evaluate our approach on several datasets
to attest its efficiency on two main applications: graph summarization and graph clustering.

1. Introduction

Dense subgraph search is a fundamental problem for graph mining and network analysis [11 [2].
It arises in many applications related to complex network analysis such as community detection
in social networks, large graph summarization, network visualization, biological network analysis,
etc. Given a graph G with n nodes and m edges, the problem of discovering dense subgraphs in
G can be defined as the problem of finding the subgraphs of G that have a remarkable density
independently from, or relatively to, the other subgraphs of G. Typical dense subgraphs are cliques
and quasi-cliques but the problem has several variants according to the definition of the density of
a subgraph and also according to the application in hand. Most of these problems are known to
be hard in general [3] and have been subject to several studies. Most existing works focus on the
problem of enumerating specific kind of dense subgraphs such as cliques, quasi-cliques or bipartites
with several approaches ranging from exact algorithms [4], approximations [5], and more recently
machine learning [6].
In this paper, we focus on enumerating four specific kind of dense subgraphs: cliques, quasi-cliques,
bipartites, and k—stars.
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For this, we propose to learn a graph representation, i.e., an node embedding, to detect dense
subgraphs. To our knowledge, it is a novel approach as no existing node embedding has been
proposed for this task.

There are few methods that use deep learning to detect particular substructures in a graph such

as the one described in [6]. However, this approach is designed to detect repeating small motifs
and consequently does not handle the problem of detecting all dense subgraphs. Our methodology
is also completely different as we will show in the following sections. To motivate our contribution
and show its usefulness, we rely on an incremental methodology where we first use existing node
embedding solutions and evaluate their ability to detect dense substructures. Then, we propose
a new node embedding that incorporates an additional dimension that gives more features to the
node vectors in order to capture the belonging of nodes to dense substructures.
To show the effectiveness of our approach, we carry-out several experiments considering various
datasets. We also, evaluate our approach on two applications that rely on dense subgraph mining:
graph summarization and graph clustering. Our results attest the efficiency of the proposed ap-
proach.

The remainder of the paper is organized as follows: Section [2| defines formally the problem
of dense subgraph mining and gives the notation used throughout the paper. Section [3] describes
related work to motivate this contribution. In Section [d] we test if existing node embedding methods
are able to mine dense subgraphs. Then, in Section[5} we describe our approach and methodology. In
Section [ we present the experiments we undertook to evaluate our approach. Section [7] concludes
the paper.

2. Preliminaries

A graph G(V, E) is defined as a structure made up of a set of nodes or vertices V and a set
of edges E. Fach edge links two nodes of the graph, which are not necessarily distinct. When an
edge exists between two vertices u and v, these vertices are said to be adjacent or neighbors. The
set of all neighbors of a vertex u € V' is denoted by N(u). The degree of a node is the number of
its neighbors, i.e., d(u) = |N(u)|. A directed graph is a graph with directed edges and a weighted
graph is a graph with weights on the edges.

A subgraph G’ is a graph contained in another graph G, i.e., the set of vertices of the subgraph G’
is a subset of the set of vertices of G and the set of edges of G’ is a subset of the set of edges of G.
More formally, we say that a graph G’ = (V'/, E’) is asubgraph of G = (V. E)if V' C V and E' C E.

A dense subgraph is a maximal subgraph which has a remarkable density. A dense subgraph of G
is maximal if it is not itself a subgraph of another subgraph of G that has the same density property.
Several definitions of density are considered in the literature [2]. The density of a subgraph can
be defined based either on the degree of the nodes of the subgraph, or the degree of the whole
subgraph. In the latter, the most common definition for an unweighted graph is given by I‘Vii‘l’
where |E’| is the number of edges of the subgraph G’ and |V’| is its number of nodes.

The problem of searching or enumerating dense subgraphs, is a hot research topic. It fact, dense
subgraphs give insights into the structure of a graph and help analyze complex networks.

The main dense subgraphs for unweighted graphs are cliques and quasi-cliques, k—stars and

bipartite graphs defined as follows:
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A clique is a complete graph, i.e., a graph in which any pair of disjoint nodes (v;,v;) is
connected by an edge e;;.

A quasi-clique generalizes the notion of clique. Given a constant y € [0, 1], a graph G = (V| E)
is a y-quasi-clique, if for all v; € G, d(v;) > v(|]V| — 1). For example, if v = 0.5 then every
node of the quasi-clique is connected to at least half of all other nodes in the quasi-clique.

A k—star is a structure composed of a central node ¢ and a set of k neighboring nodes
{v1, v, ..., v} called spokes with the constraint that no edges exist between the spokes. These
structures become interesting, i.e., storing the list of nodes takes less spece than storing the
edges of the star, when k >= 3.

A graph is said to be bipartite if its set of vertices can be divided into two disjoint subsets V3
and V5 such that each edge has one end in the set V; and the other in the set V5. When all
the vertices of V; are connected to all vertices of V5, it is called a complete bipartite graph.

In this paper, we propose to deal with dense subgraph enumeration using deep learning, i.e., we

learn a latent node representation that is capable of predicting if the node belongs to a particular
type of dense subgraphs or not. Our goal is to significantly reduce the time complexity of this task.
In fact, neural networks are known for their ability to make temporal complexity constant once
trained which is interesting for dense subgraph search because the algorithms can be computation-
ally intensive.

To do so, we follow an incremental methodology by first surveying existing latent node representa-
tions and their suitability for dense subgraph mining. Then, we introduce a new node representation
enriched with information capturing the structural properties that allow to know if a node belongs
to a dense subgraph or not.

So, we address this problem within two steps:

In the first step, we deal with a simple classification problem that aims to distinguish the
nodes that belong to a particular kind of dense subgraphs from those that do not. We achieve
this classification for each desired type of dense subgraphs, i.e., clique, k—star, ..., etc.

Problem: Given a graph G = (V, E), how to distinguish the subset of nodes S C V belonging
to a particular type ¢ of dense subgraphs from the subset of nodes which do not belong to
this particular kind of dense subgraphs.

Thus, the problem of, whether a node belongs to a particular kind of dense subgraphs or not,
is defined as a multi-class classification as follows:

1, if v; belongs to a dense

Vv, € V class(v;) = subgraph of type t

0, otherwise

This step is the main contribution of this paper.

In the second step, we have a list of subsets of nodes S, Ss, ---, S, where each subset S
1 <t < k belongs to a distinct type t of dense subgraphs. The problem is then to construct
the dense subgraphs of type ¢ formed by the nodes in each S;. This step is easy to achieve in
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practice even if the corresponding problem is hard because we know that all the nodes, in a
given set, belong to a given kind of subgraphs. For k—stars, high degree nodes are considered
as centers and low degree nodes are considered as spokes. For cliques and complete bipartites,
we rely on the practical efficiency of Bron and Kerbosch algorithm [4] guided by the degree
of the nodes. For quasi-cliques, the heuristic of Sanei-Mehri et al. [5] is fast in this particular
case.

3. Related work

Dense subgraph mining (DSGM) is a fundamental task encountered in many real-word applica-
tions related to graph and network analysis. This motivated several research work especially in the
graph mining and graph algorithms communities. A detailed survey of existing approaches that
address this problem and its multiple variants can be found in [2]. The problem has been studied
in various aspects (enumeration, top-k, etc.), with exact algorithms as well as approximations, we
review here the main variants and approaches to solve them. Several works focus on enumerating
the main dense subgraphs such as cliques. Particularly, maximal cliques enumeration has been
shown to be hard but efficient implementation of exact solutions have been proposed in [7] even if
the worst-case complexity remains exponential 0(3"/ 3).

Quasi-clique enumeration is also well known to be difficult, as the associated decision problem is

also NP-hard and have already been studied a lot trough several aspects: exhaustive enumeration
[8], top-k enumeration [9], etc. The densest subgraph problem, that aims to find a subgraph with
maximum average degree in a weighted graph, has also received a lot of interest and can be solved
in polynomial time, when the weights are not negative, by solving a maximum flow problem and
even in linear time with a 1/2—approximation [10].
DSGM is also tightly related to community detection where several algorithms are proposed [I1].
Here a dense subgraph has also a constraint on the density of its links with the nodes that are outside
the subgraph. Among existing solutions, we can cite Louvain [I2], which detects communities by
optimizing modularity, defined as the fraction of edges of a graph G that are within the same
community minus the expected value of the fraction with randomly placed edges [I3]. Louvain puts
in the same community two neighbors if this produces the maximum modularity. Metis [14] is also
a community detection approach that first coarsens the input graph by iteratively grouping nodes
into supernodes in a way that preserves edge cuts. The main drawback of this algorithm is that it
needs the user to specify the number of dense components the graph should be broken into.

Several works also consider dense subgraphs as seeds for clustering methods [I5]. To the best
of our knowledge, there are no approaches based on learning for dense subgraph mining.

4. Are Existing Node Embedding Able to Mine Dense Subgraphs?

In this section, we focus on the first step of our framework which is a classification task, that
given a type t of dense subgraphs, will classify the nodes of the input graph as belonging or not
to a dense subgraph of this type. To do so, we propose to train a neuronal network to achieve
this classification. For this, we first need a vector representation for each node that contains
sufficient information about the node. Such node representation is called a node embedding. A
good embedding should capture as much relevant information as possible about the graph topology,
node-to-node relationship, subgraphs, etc. Some node embedding methods focus solely on capturing
structural properties of the nodes but others include also attributes. As belonging to a structural
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dense subgraph, such as a clique or a bipartite, is a pure structural property of nodes, we rely
on three main node embedding methods known to capture this kind of properties hoping that the
information contained in the vectors computed by them is sufficient to recognize the nodes belonging
to a dense subgraph. These methods are:

e DeepWalk [I6]: This is one of the first approaches proposed to compute node embedding.
From each node, random walks are launched. Every walk is considered as a short sentence
in a special language and a node is a word is this language. Then, Deepwalk applies the
skip-gram model [I7] to generates embedding for nodes that maximize their co-occurrence in
the same walks by analogy to words in sentences.

e Node2vec [I8]: This approach extends DeepWalk by adding a breadth component into the
walks. In fact, a naive random walk explores the graph in depth first. Node2vec introduces
two hyperparameters p and g respectively defined as weights in the probability for going either
depth first or breadth first in the next step of the walk.

e Line [I9]: Contrary to the first two embeddings, Line does not rely on random walks. It
rather defines a proximity relationship between nodes. The first-order proximity represents
the local proximity and can be described as the weight of the edge connecting two nodes.
The second-order proximity represents how similar are two nodes based on the proportion
of common neighbors. Line preserves both first and second order proximities and scales well
with large networks.

To evaluate the ability of these embedding to detect dense subgraphs, we first construct a dataset
to train a neural network on this task. So, we generate a set of synthetic graphs containing specific
dense subgraphs of various sizes. To generate a graph containing dense subgraphs, we first generate
a random graph G = (V, E) using Erds-Rnyi graph model. Then, we construct a number of dense
subgraphs of various sizes. Finally we add the dense subgraphs to G by removing as many vertices
from G as the number of vertices in all the generated dense subgraphs, together with their edges,
and replacing them by the vertices and edges of the dense subgraphs. These vertices are then linked
to the rest of the graph by adding random edges.

Once the graphs are generated, we divide them into training, validation, and test subsets.

We construct node embedding for the three subsets using the embedding methods described
in the beginning of the section. Then, we train a neural network to recognize each type of dense
subgraph separately.

We used a shallow neural network with two hidden layers and the sigmoid activation function. The
imputs are the embedding of the nodes and the output is a probability used to make predictions
about the class, i.e. the type of dense structure, of the input node.

To train this classifier, we use the mean squared error (MSE) loss function with stochastic gradient
descent to adjust the parameters of the model. However, when testing these neural networks, we
found that they have not learn to properly classify nodes and assign them the class to which they
belong, as shown in Fig. |[I} with a test data accuracy decreasing while the training data accuracy
increases. We recall that at this point, we try to recognize one type of dense subgraph par neural
network. So, for each node, there are two classes: 1 if the node belongs to the dense subgraph and
0 otherwise. To overcome this negative results, we first tried to avoid any ovefitting problem by
re-balancing the data so that there are as many nodes belonging to class 1 as to class 0, but the
problem persisted. This led to the conclusion that the embedding vectors given as input to the
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Figure 1: Performance of the neural network with existing embedding methods.

neural network do not contain enough information to recognize whether a node belongs to a dense
subgraph or not.

5. A New Embedding for Dense Subgraph Mining

In this section, we address the problem of how to capture or characterize the belonging of a
node to a dense subgraph. It is clear from the previous section that existing node embedding do not
contain such information. We argue that this is mainly due to the fact that many graph embedding
approaches tend to learn more easily high-quality embedding vectors for high-degree nodes while
not ensuring good quality embedding vectors for low-degree nodes. In fact, such embedding vectors
are often sub-optimal when confronted to limited structural connectivity [20]. To address this issue,
We propose to collect this information independently from the embedding and then concatenate it
to the embedding as an extra dimension. For this, we propose to compute for each node a value that
reflects its connectivity compared to the rest of the graph, i.e., how the node reflects the density
of the structure to which it belongs. So, we define a node property, we call density revealing degree
(dd), aiming at giving more insight and enriching the obtained embedding vectors with information
about the relative structural connectivity in the graph.

Definition 1. Let G = (V, E) be a graph. The density revealing degree of a node u € V is given

by:
V] d(u)

) = i)

(1)
where d(u) is the degree of u in G.

Let d* be the average degree of graph G. One may observe that :

<1 d(u)<d*
dd(u) is { ~1 d(u)=~d*
>1 d(u)>d*

As dd(u) characterizes a node with a global view on how the graph is connected, it will help
with the additional feature contained in the embedding to determine if a node belongs to a dense
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subgraph. Our main claim is that by enriching the existing node embedding, with the dd values
we introduced, we will allow the neural network to learn to distinguish nodes belonging to dense
subgraphs from nodes that do not belong to them. To verify our claim, we first evaluate by
experiment the ability of dd values to recognize nodes that belong to dense subgraphs. Then, in
the next section, we evaluate this approach on other applications related to dense subgraph mining.
To evaluate the ability of dd values to capture enough information on the belonging of each node
to a dense subgraph, we trained a neural network on this task using four types of node embedding;:

e A node embedding consisting only of the dd value of the node.

e A node embedding consisting of two parts: an embedding obtained by an existing method
(such as node2vec, or Line), and the dd value of the node.

e An embedding obtained by an existing method, and augmented with the degree of the node.

e An embedding obtained by an existing method, and augmented with the average degree in
the graph.

100 - — T
,l"'"/./l
80| - .
|‘
bO _J % 5 4 N

Accuracy (%)

40

——

dd value+node embedding
[ |—=— only dd value
20

degree+node embedding -

—a—average degree+node embedding

Om \ I \ \ \ I \
0 20 40 60 80 100 120 140

Epochs
Figure 2: Performance of dd values with and without node embedding.

The results of our experiments depicted in Fig. [2| show clearly that the dd values are essential
to classify the nodes according to their membership to specific dense subgraphs. Using the degree
or the average degree, instead, is not really helpful. In fact, the neural network achieved 96%
accuracy after 100 epochs with dd values as embedding, and 99% accuracy in only 15 epochs with
embedding augmented with dd values. These results prove that although the existing embeddings
alone do not contain enough information to enable a neural network to recognize the membership
of nodes to dense subgraphs, they nevertheless contain important information that improve the
accuracy as well as the speed of convergence of the neural network when using the proposed dd
values. The figure also shows that the neural network does not learn to classify the nodes in the
two cases where the inputs are embedding augmented with degrees and embedding augmented with
the average degree in the graph, giving an accuracy close to 53%.
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6. Evaluation

We show the effectiveness of our dense subgraph mining approach, called DeepDense, on two
main applications: graph summarization and clustering. For this we use synthetic graphs as well
as several real world graphs summarized in Table

Table 1: Datasets.

Graphs #nodes | #edges
rt-higgs 425 008 732 827
Dc3 116 835 488 953
Enron 79 870 288 364
As-oregon 10 900 31 180
rt-lolgop 9 765 10 075
rt-http 8 917 10 314
ego-facebook 2 888 3 000
football 115 613
les miserables 77 254
Dolphins 61 159
karate 34 7

6.1. Evaluation on graph Summarization

For several graph summarization and compression approaches, finding dense subgraphs is a key
step in building a small and compact representation of a graph. A dense subgraph is generally easy
to compress. For example, to store a clique, we only need to store the set of its vertices. A quasi-
clique can also be represented by the set of its vertices augmented by a list of correcting edges, i.e.,
the set of edges that we had to add to the quasi-clique to obtain a clique, and that do not exist in
the input graph. In this approach, a graph can be represented by its set of dense subgraphs and the
set, of all correcting edges that have been added to store dense subgraphs as a sets of vertices. These
correcting edges are called errors. The cost of compressing the graph is computed by the cost of
representing the considered dense subgraphs plus the cost of the errors. From an adjacency matrix
point of view, the graph is represented by a matrix S of perfect dense subgraphs (cliques, complete
bipartites, k—stars) and an error matrix E, i.e., G = S+ FE. The challenge is then how to select the
best dense subgraphs that minimize the size of this representation. The exiting approaches differ
by the type of dense subgraphs they consider and also by how they find these dense subgraphs [21],
[22],[23] but almost all of them use Minimum Description Length (MDL) [24] to select the best
dense subgraphs to consider. To choose this best subgraphs, the methods compute the compression
cost obtained if a given structure is selected in S. If by considering the structure, no gain is observed
in the final compressed graph representation, this structure is not retained.

We propose in the following, to use DeepDense to generate the dense structures within this
summarization framework. We compare the obtained results with three other techniques used
for this purpose in [2I], namely: Louvain [I2], Metis [14], described in Section 3] and Slashburn
[25], a node reordering algorithm originally developed for graph compression. Slashburn finds dense
components in a graph by first removing high centrality nodes from the graph, and then rearranging
the nodes such that high degree nodes are assigned the lowest IDs in the adjacency matrix and
nodes in disconnected components get the highest IDs. These reordering puts together the nodes
belonging to the same dense subgraphs. However,
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Figure 3: Number of patterns detected by DD: DeepDense, SB: SlashBurn, LV: Louvain, MT: Metis.

these algorithms return a set of structures without identifying the type of each structure: a quasi-
clique, a k—star, a bipartite, etc. Consequently, another step is needed and consists to determine
first what is the best type to use for the considered dense subgraph, i.e., is it interesting to store
it as a clique, a complete bipartite or a k—star by testing all possible cases with MDL. Given a
structure s, the algorithm calculates its cost if it is considered as a clique, then its cost as a k—star,
and so on. Then, it stores the structure with the dense subgraph type that returns the best cost.
The advantage of DeepDense is that each discovered dense subgraph is labeled with a unique type.

260 We consider three main metrics in our comparison: precision, compression rate and runtime.

e Precision: this metric measures how well these algorithms identify the dense subgraphs of
an input graph. For this, we computed the number of structures of each kind found by
each algorithm on four datasets: As-oregon, ego-facebook, Karate and Les miserables. Fig.
depicts the obtained results. It clearly shows that DeepDense manages to detect many more
structures than any other method, regardless of the type of the dense subgraphs. Also, the
subgraphs found by DeepDense are labeled with the correct type (clique, k—star, etc.) and
do not require additional processing to determine how to store them in the compression step.
This is not the case for the other methods.
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Table 2: Compression rate.

Graph Size Compression ratel
(bits) SB | DD | DD* | LV | MT
rt-higgs 13 601 966 | 93% | 70% 73% 100% | 100%
Dc3 7 437 752 80% | 63% 65% 100% | 100%
Enron 4 292 728 4% | 2% 7% 100% | 100%
As-oregon 546 127 69% | 67% | 67% 95% 96%
rt-lolgop 137 557 37% | 18% | 15% | 41% | 100%
rt-http 137 767 70% | 66% 70% 100% | 100%
ego-facebook 35 472 38% | 35% | 35% | 44% 92%

(1The compression rate is the ratio of the size (in bits) of the summary, i.e., S+ E, on the size of the original graph.
SB: SlashBurn; DD: DeepDense ; DD*: DeepDense (using only k—stars); LV: LOUVAIN; MT: METIS

DeepDense error matrix

Figure 4: Structure and error matrices, of the Dolphins graph, obtained by DeepDense, Louvain and Metis.

e Compression Rate: the compression rate measures how well the considered dense subgraphs
compress the graph. It is the ratio between the size in bits of S + F and the size of the
original graph G. Table 2] presents the compression rate obtained with the four algorithms
on the considered datasets. We can clearly see that DeepDense outperforms all the other
methods. This can be explained by the precision of DeepDense. In fact DeepDense produce
more structures and by the way offer more choices to pick the best structures that minimize
S + E. Fig. [4 shows this directly on the adjacency matrix where we can see that both the
matrix S of structures and the error matrix £ of DeepDense are the most optimized. It is
also worth noting that DeepDense has the advantage of allowing us to choose the kind of
dense graphs we want to consider for a compression as all the structures it finds are labeled.
For example, we remarked that we can obtain better compression rate while considering only
k—stars or only quasi-cliques for certain graphs of our dataset. We denoted this by DD* in

Louvain

Louvain error matrix

Table Pl that shows these results.

10

Metis error matrix

Metis
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e Runtime: Table[3|presents the runtime achieved by each algorithm to find the dense subgraphs
for all the datasets. We can see that DeepDense performs well compared to the other methods
even if it is less performant than Metis on large graphs, the latter having rather low complexity
of O(|E|K) where K is the number of clusters/partitions that needs to be given as a parameter.
However, this is not a scalability problem for our method because the neural network detects
the patterns in constant time. However, when the graph is larger than the size of the Neural
network, we treat it as batches which allow us to deal with even larger graphs easily.

Table 3: Runtime (seconds).

Graphs SB DD LV MT
rt-higgs 1387.14s | 63.387s | 141.62s | 50.184s
Dc3 431.58s | 114.83s | 119.43s | 39.947s
Enron 277.937s | 99.36s | 108.118s | 27.677s
As-oregon 36.971s 4.893s 39.694s 14.718s
rt-lolgop 13.635s 3.05s 47.765s 10.884s
rt-http 14.80s 3.018s 41.252s 19.721s
ego-facebook 4.972s 2.827s 28.092s 8.680s

SB: SlashBurn; LV: LOUVAIN; MT: METIS; DD: DeepDense

6.2. Evaluation on Graph Clustering and Community Detection

A cluster or community in a graph is a connected dense subgraph. Cluster detection approaches
can be classified into several categories such as cut-based methods, stochastic block modeling and
random walk-based methods like Walktrap [26] and SynWalk [27].

Consider a clustering of the nodes of a graph into a set of k& non-empty sets C;, 1 <17 < k. If
the clusters are disjoint, they are called non-overlapping clusters. A clustering of G = (V, E) infers
a mapping function m : V' — {1,...,k} , where each node of the graph is associated to the index
of its cluster, i.e., for a node z, if z € C; then m(x) = 1.

In the following, we compare DeepDense with the state-of-the-art community detection methods:
Louvain [12], Walktrap [26], SynWalk [27] and Infomap [2§].

In order to evaluate the results of these clustering methods, we use datasets with ground-truth
on existing communities as done in the state of the art comparisons [29, [30, B1]. We first begin
with synthetic graphs containing this ground truth, namely the LFR benchmark [32] which is one
of the most used dataset in this domain. The LFR benchmark allows to generate graphs according
to the mixing parameter p of each node [32] which is the ratio between its number of edges with
nodes outside the cluster and its degree. For an undirected and unweighted graph and a candidate
cluster C, the mixing parameter of a node z is defined as:

) = L 2

where d(z)°"* is the number of links between 2 and nodes outside its cluster C,,(,) and d(z) is the
degree of z. A cluster C; is said to be a strong cluster [33] if for all its nodes p(z) < 0.5.

The metric often used to measure the quality of the clusters obtained in the LFR benchmarks is the
Adjusted Mutual Information (AMI) [34]. This metric evaluates and compares the clusters obtained

11
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Figure 5: Performance on clustering on the LFR dataset.

Table 4: Modularity values and AMI score for real graphs.

Graphs Modularity AMI score
DD | SW | IM | WT LV DD SW IM WT LV
Football | 0.55 | 0.55 | 0.57 | 0.61 | 0.61 | 0.045 | 0.027 | 0.022 | 0.019 | 0.007
Dolphins | 0.46 | 0.47 | 0.42 | 0.51 | 0.51 | 0.042 | 0.019 | 0.016 | 0.016 | 0.009
Karate 0.30 | 0.29 | 0.27 | 0.40 | 0.41 | 0.391 | 0.228 | 0.243 | 0.182 | 0.082
DD: DeepDense, SW: Synwalk, IM: Infomap, WT: Walktrap, LV: Louvain

by tested algorithms with ground-truth. An AMI value close to 1 indicates a strong similarity with
the ground-truth while a value around 0 reflects low similarity.

Fig. [5| shows the variation of the AMI score in function of the mixing parameter p for the five
algorithms. Overall, DeepDense outperforms all the other methods in terms of AMI on sufficiently
dense networks or networks with mixing parameters p > 0.6. Also, compared to the other methods,
the results show that DeepDense never reaches a zero AMI, even for p = 0.8, its values are between
0.08 and 0.2.

We also evaluate the quality of the obtained clustering on real graphs. For this, we use a
dedicated dataset available in [35] which contains ground truth on the available communities. For
this, we use two metrics: the AMI score and the modularity [I3]. Recall that modularity represents
the fraction of edges of a graph G that are within the same cluster minus the expected value of
the fraction with randomly placed edges. Table [ presents our results. It shows clearly that for all
graphs, Deepdense achieves the best AMI score. For modularity, we can see that Louvain which is
itself based on modularity optimization gives the best results followed by Walktrap. DeepDense,
Infomap and SynWalk have similar results which are inferior to Louvain or Walktrap. However, it
has been shown that modularity optimization may fail to identify good modules or communities in
real world graphs [36].
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7. Conclusion

Dense subgraph mining is a key problem that arises in several tasks and applications such as
graph clustering, graph summarization, fraud detection, and complex network analysis.
In this paper, we proposed DeepDense, a deep learning approach that enumerates the dense sub-
graphs in a graph without any constraint or limitation on their size. Our approach consists in
enriching existing structural node embedding with an additional computed value that captures the
belonging of nodes to dense components in the graph, leading to a more meaningful node embed-
ding. Our experiments on several real and synthetic datasets show the effectiveness of DeepDense
on two main applications, namely graph summarization and graph clustering. We have confidence
that our approach works as well on directed graphs as on undirected graphs but more experiments
are needed to attest this. Furthermore, the dd value formula can be easily adapted to deal with
weighted graphs.
Beyond dense subgraph mining, this work shows that learned representations can be mixed up with
engineered features for better accuracy and convergence.
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