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Analytic pseudo-rotations

 and solves a problem of Herman (1998). One aspect of the proof provides a new approximation theorem, it enables in particular to implement the Anosov-Katok scheme in new analytic settings.

Statement of the main theorems

In low dimensional analytic dynamics, a fundamental question is wether far from periodic points, the dynamics is rigid. In real or complex dimension 1, dynamics without periodic point are rigid [START_REF] Yoccoz | Il n'y a pas de contre-exemple de denjoy analytique[END_REF][START_REF] Sullivan | Quasiconformal homeomorphisms and dynamics i. solution of the fatou-julia problem on wandering domains[END_REF]: the dynamics restricted to an invariant domain without periodic point is either a rotation or in the basin of periodic points. In dimension 2, for real analytic volume preserving diffeomorphisms of the cylinder or the real sphere, the Birkhoff rigidity conjecture for pseudorotations [START_REF] Birkhoff | Some unsolved problems of theoretical dynamics[END_REF] states that such are also conjugate to rotations. We are going to disprove this conjecture. More precisely we are going to show two examples of entire real symplectomorphisms of the annulus A = R/Z × R, without periodic points and such that outside a region A 0 of A bounded by two disjoint analytic curves, the dynamics is analytically conjugate to a rotation, while inside A 0 the dynamics is not rigid. In the first example, the restriction f |A 0 will be ergodicsee Theorem A -while in the second example it will be extremely far from being ergodic -see Theorem C. More precisely the ergodic decomposition of the latter map will be infinite dimensional and even of maximal local order, i.e. with local emergence of maximal order 2. This confirms a conjecture on typicality of high emergence in many categories [START_REF] Berger | Emergence and non-typicality of the finiteness of the attractors in many topologies[END_REF].

From this we will deduce a corollary disproving the Birkhoff rigidity conjecture. The proof of the main theorems are shown by developing the Anosov-Katok method [START_REF] Anosov | New examples in smooth ergodic theory, ergodic diffeomorphisms[END_REF], together with a new approximation theorem for entire symplectomorphisms developing a recent work with Turaev [START_REF] Berger | Generators of groups of hamitonian maps[END_REF]. The corollary regarding the sphere is obtained by using a blow-down technique introduced in [START_REF] Berger | Coexistence of chaotic and elliptic behaviors among analytic, symplectic diffeomorphisms of any surface[END_REF].

Finally we will remark that these analytic constructions give examples of entires symplectomorphisms of C/Z × C without periodic point and with a non-empty instability region J.

Ergodic analytic and symplectic pseudo-rotation

Let S be an orientable analytic surface. We recall a diffeomorphism of S is symplectic if it preserves the orientation and the volume.

Conjecture (Birkhoff [START_REF] Birkhoff | Some unsolved problems of theoretical dynamics[END_REF]). An analytic symplectomorphism of the sphere with only two fixed points and no other periodic point is necessarily topologically conjugate to a rotation.

Analogously, an analytic symplectomorphism of a compact cylinder without periodic points is topologically conjugate to a rotation.

While following Birkhoff "considerable evidence was adducted for this conjecture", Anosov-Katok [START_REF] Anosov | New examples in smooth ergodic theory, ergodic diffeomorphisms[END_REF] gave examples of smooth symplectomorphisms of the sphere or the annulus with resp. 2 or 0 periodic points which are ergodic. Anosov and Katok proved their theorems by introducing the approximation by conjugacy method, that we will recall in the sequel. Also, in his famous list of open problems, Herman wrote that a positive answer to the following question would disprove the Birkhoff rigidity conjecture: Question 1.1 (Herman [START_REF] Herman | Some open problems in dynamical systems[END_REF][Q.3.1]). Does there exist an analytic symplectomorphism of the cylinder or the sphere with a finite number of periodic points and a dense orbit? Corollary B will disprove both Birkhoff's conjectures and answer positively to Herman's question in the cylinder case. It will also bring a new analytic case of application of the approximation by conjugacy method, as wondered by Fayad-Katok in [START_REF] Fayad | Constructions in elliptic dynamics[END_REF]§7]. To state the main theorems, we set: T := R/Z, I := (-1, 1), A := T × R, and A 0 = A × I .

We recall that a map of A is entire if it extends to an analytic map on C/Z × C. An entire symplectomorphism is a symplectomorphism which is entire and whose inverse is entire. This corollary is proved in Section 2.4 using the blow up techniques introduced in [START_REF] Berger | Coexistence of chaotic and elliptic behaviors among analytic, symplectic diffeomorphisms of any surface[END_REF]. It seems that the proof of Theorem A might be pushed forward to obtain a positive answer to the following: Problem 1.2. In Theorem A, show that we can replace A 0 by a cylinder with whose boundary is formed by two pseudo-circles.

Theorem A will be proved by proving a new approximation Theorem 1.8 which enables to implement the approximation by conjugacy method to analytic maps of the cylinder. Analytic symplectomorphisms of the 2-torus which are ergodic and without periodic points are known since Furstenberg [START_REF] Furstenberg | Strict ergodicity and transformation of the torus[END_REF]Thm 2.1] (one of the explicit examples is (θ 1 , θ 2 ) ∈ T 2 → (θ 1 + α, θ 1 + θ 2 ) for any α irrational). Actually the approximation by conjugacy method is known to provide examples of analytic symplectomorphisms of T 2 which are isotopic to the identity, see [START_REF] Banerjee | Real-analytic abc constructions on the torus[END_REF] for stronger results. Up to now, the only other known analytic realization of approximation by conjugacy method was Fayad-Katok's theorem [START_REF] Fayad | Analytic uniquely ergodic volume preserving maps on odd spheres[END_REF] showing the existence of analytic uniquely ergodic volume preserving maps on odd spheres. As a matter of fact, we also answer a question of Fayad-Katok [FK04, §7.1] on wether analytic realization of the approximation by conjugacy method may be done on other manifolds than tori or odd spheres .

A way to repair the Birkhoff conjecture might be to ask rigidity for dynamics without periodic point1 whose rotation number satisfies a diophantine condition, as wondered by Herman in [START_REF] Herman | Some open problems in dynamical systems[END_REF][Q.3.2]. The approximation by conjugacy method has been been useful to construct many other interesting examples of dynamical systems with special property, see for instance the survey [START_REF] Fathi | Existence de difféomorphismes minimaux[END_REF][START_REF] Crovisier | Exotic rotations[END_REF]. Certainly the new approximation Theorem 1.8 enables to adapt these examples to the case of analytic maps of the cylinder. In the next subsection, we will study a new property. We show how to use this scheme to construct diffeomorphisms with high local emergence. The readers only interested by the Birkhoff conjecture can skip the next subsection and go directly to Section 1.3.

Analytic and symplectic pseudo-rotation with maximal local emergence

While an ergodic dynamics might sound complicated, the description of the statistical behavior of its orbits is by definition trivial. We recall that by Birkhoff's ergodic theorem, given a symplectic map f of a compact surface S, for Leb . a.e. point x the following limit is a well defined probability measure called the empirical measure of x.

e(x)

:= 1 n n k=1 δ f k (x) .
The measure e(x) describes the statistical behavior of the orbit of x. The empirical function e : x ∈ S → e(x) is a function with value in the space M(S) of probability measures on S. Note that e is a measurable function. A natural question is how complex is the diversity of statistical behaviors of the orbits of points in a Lebesgue full set. To study this, we shall look at the size of the push forward e * Leb of the Lebesgue probability measure Leb of S by e. The measure is e * Leb is called the ergodic decomposition; it is a probability measure on the space M(S) of probability measures of S. The ergodic decomposition describes the distribution of the statistical behaviors of the orbits.

To measure the size of the ergodic decomposition, for every compact metric space X, we endow the space M(X) of probability measures on X with the Kantorovitch-Wasserstein metric d:

∀µ 1 , µ 2 ∈ M(X), d(µ 1 , µ 2 ) := inf X 2 d(x 1 , x 2 )dµ : µ ∈ M(X 2 ) s.t. p i * µ = µ i ∀i ∈ {1, 2} , where p i : (x 1 , x 2 ) → X 2 → x i ∈ X for i ∈ {1, 2}
. This distance induces the weak topology on M(X) which is compact. Also it holds:

Proposition 1.3. For any compact metric spaces X, Y , any µ ∈ M(X) and f, g ∈ C 0 (X, Y ) it holds: d(f * µ, g * µ) ≤ max x∈X d(f (x), g(x)).
Proof. Let μ be the measure on the diagonal of X × X which is pushed forward by the 1st and 2sd coordinate projection to µ. Then observe that the pushforward ν of μ by the product (f, g) is a transport from f * µ to g * µ; its cost Y ×Y d(y, y )dν is at most max x∈X d(f (x), g(x)).

The following has been proved several times (see [BB21, Thm 1.3] for references):

Theorem 1.4. The box order of (M(S), d) is 2:

lim →0 log log N ( ) | log | = 2 with N ( ) the -covering number of (M(S), d) .
In contrast, up to now, all the bounds on the emergence of symplectic and analytic dynamics are finite dimensional:

Example 1.5 (Case study).

1. If the measure Leb is ergodic, then the ergodic decomposition is a Dirac measure at the Lebesgue measure: e * Leb = δ Leb .

2. For a straight irrational rotation of the annulus A 0 = T×I, we have e * Leb = I δ Leb T×{y} dLeb (y) with Leb T×{y} the one-dimensional Lebesgue measure on T × {y}. Hence the ergodic rotation of a straight irrational rotation of the annulus is one dimensional. The same occurs for an integrable twist map of A 0 .

A natural problem (see [START_REF] Berger | Emergence and non-typicality of the finiteness of the attractors in many topologies[END_REF][START_REF] Berger | Complexities of differentiable dynamical systems[END_REF][START_REF] Berger | On emergence and complexity of ergodic decompositions[END_REF]) is to find dynamics for which e * Leb is infinite dimensional in many categories. The notion of emergence has been introduced to precise this problem. In the present conservative setting2 , the emergence describes the size of the ergodic decomposition. More precisely, the emergence of f at scale > 0 is the minimum number E( ) ≥ 1 of probability measures (µ i ) 1≤i≤E( ) such that:

min i d(e(x), µ i )dLeb < .
The order of the emergence is

OE f = lim sup →0 log log E( ) | log | .
In [BB21, ineq. (2.2) and Prop. 3.14], it has been shown that OE f ≤ dim S = 2. Also we constructed an example of C ∞ -flows on the disk with maximal emergence order: OE f = 2. We do not know how to perform this example in the analytic setting3 . Also this example has an ergodic decomposition of local dimension 1. Actually, in view of Theorem 1.4, on can hope for the existence of an ergodic decomposition of infinite local dimension and even of positive local order.

Let us denote ê := e * Leb the ergodic decomposition of f . The order of the local emergence of f is4 :

OE loc (f ) = lim sup →0 log |log ê(B(µ, ))| | log | dê .
In [Hel22], Helfter showed that for ê a.e. µ ∈ M(S) it holds:

O loc ê(µ) := lim sup →0 log |log ê(B(µ, ))| | log | ≤ OE f .
As OE f ≤ 2 by Theorem 1.4, it comes that O loc ê(µ) ≤ 2 a.e. Thus if OE loc (f ) = 2, then the local order O loc ê(µ) of ê is 2 for ê-a.e. µ ∈ M(S). In this work we give the first example of smooth symplectomorphism with infinite dimensional local emergence for smooth dynamics. Moreover our example is entire and of maximal order of local emergence:

Theorem C. There is an entire symplectomorphism F of A which leaves invariant an analytic cylinder A 0 ⊂ A, whose restriction to A 0 has local emergence 2 and whose restriction to A \ cl(A 0 ) is analytically conjugate to a rotation. Moreover the complex extension of F has no periodic point in C/Z × C.

A more restrictive version of local emergence could be done by replacing the lim inf instead of lim sup. Then a natural open problem is: Question 1.6. Does there exist a smooth conservative map such that the following limit is positive:

OE loc (f ) = lim inf →0 log |log ê(B(µ, ))| | log | dê ?

Sketch of proof and main approximation theorem

Let Symp ∞ (A) denote the space of symplectomorphisms of A. Let Ham ∞ (A) be the subgroup of Hamiltonian C ∞ -maps of A: there is a smooth family (H t ) t∈[0,1] of Hamiltonians H t ∈ C ∞ δ (A) which defines a family (f t ) t∈[0,1] such that f 0 = id, f 1 = f and ∂ t f t is the symplectic gradient of H t . Let Ham ∞ 0 (A) be the subgroup of Ham ∞ (A) formed by maps so that (H t ) t∈[0,1] can be chosen supported by A 0 . We have Ham ∞ (A) Symp ∞ (A). Indeed, the rotation R α : (θ, y)

∈ A → (θ + α, y) of angle α ∈ R belongs to Symp ∞ (A) \ Ham ∞ (A).
The celebrated approximation by conjugacy method introduced by Anosov-Katok gives the existence of a map which satisfies all the properties of Theorem A but the analyticity. Our first chalenge is to perform this construction among analytic maps of the cylinder. Let us recall: Theorem 1.7 (Anosov-Katok [START_REF] Anosov | New examples in smooth ergodic theory, ergodic diffeomorphisms[END_REF]). There exists a sequence (H n ) n∈N of maps H n ∈ Ham ∞ 0 (A) and a sequence of rational numbers (α n ) n≥0 converging to α ∈ R \ Q such that the sequence of maps

F n := H n • R αn • H -1 n converges to a map F ∈ Symp ∞ (A) whose restriction F |A 0 is ergodic.
We will give a complete proof of this theorem in Section 2.2.1. Let us here sketch its proof to understand the difficulty to adapt it to the analytic case (Theorem A). Sketch of proof. We construct α n = p n /q n and H n by induction such that:

(1) for most points y ∈ I, the push forward of the Lebesgue measure on T × {y} by H n+1 is close to the Lebesgue measure on A 0 ,

(2) H n+1 = H n • h n+1 with h n+1 which commutes with the rotation of angle α n .

The first property is obtained by constructing a map h n+1 as depicted in Fig. 1, so that it sends most of the Lebesgue measure of T × {y} nearby the Lebesgue measure of A 0 .

Figure 1: A conjugacy which sends horizontal curves to cuves close to the Lebesgue measure.

As H n is area preserving and fixed before h n+1 , this property remains true for H n+1 as claimed in (1). To obtain (2), it suffices to consider a lift of h n+1 by the covering (θ, y) → (q n+1 • θ, y).

Finally we take α n+1 = p n+1 /q n+1 close to α n so that F n+1 is close to:

H n • h n+1 • R αn • h -1 n+1 • H -1 n = H n • R αn • H -1 n = F n .
as h n+1 commutes with R n+1 . This implies the convergence of (F n ) n to a map F . Moreover, as q n+1 is large, all the points (θ, y) have their R α n+1 -orbits which are close to be equidistributed on T × {y}. Thus most of the points of A 0 have their F n+1 -orbits close to be equidistributed on A 0 . This implies that F n is close to be ergodic and thus F is ergodic.

To disprove the Birkhoff conjecture using the approximation by conjugation method, we shall find a sequence of analytic maps (h n ) n satisfying (1) and (2). Actually the whole property (1) is not needed, but we need at least that the sequence of compositions

H n = h 1 • h 2 • • • • h n diverges on A 0 without
having a singularity in a uniform complex neighborhood of A 0 ⊂ A C := C/Z × C and likewise for its inverse. An idea to tackle this problem is to define h n as the time-one map of an entire Hamiltonian or to define it implicitly by an entire generating function. Then, in general, the map h n is not an entire automorphism: it or its inverse has a singularity in A C . So we have to check that after composition this singularity does not approach A ⊂ A C . This is not easy. Step (ii) is even more problematic: after a q n -lifting of h n to obtain (ii), a singularity of h n becomes 1/q n -times closer to A.

To avoid these problems, the idea is to work with entire real automorphisms. Then there are no singularity to take care of. The complex definition domains of the maps and of their inverses cannot shrink since it is maximal, that is equal to:

A C := C/Z × C .
Horizontal twist maps which are Hamiltonian maps of the form (θ, y) → (θ + τ (y), y) and vertical twist maps which are Hamiltonian maps of the form (θ, y) → (θ, y + v(θ)) provide examples of entire automorphisms. It suffices to take any τ and v entire. Horizontal twist maps leave A 0 invariant while vertical twist maps do not. One can show that an entire symplectomorphism which leaves A 0 invariant must be a horizontal twist map5 . To overcome the lake of such entire symplectomorphisms, we relax the condition on the invariance of A 0 and we ask instead that the entire map should be close to the identity on a large compact subset of

E C := {(θ, y) ∈ C/Z × C : Re(z) / ∈ I}.
We will see below (see the main approximation Theorem 1.8) that there are a lot of such mappings. Then the idea is to use them in the approximation by conjugacy method (as the h n ). Indeed the approximation by conjugacy method ensures the convergence of the

F n = H n • R αn • H -1 n on C/Z × C to
a map which is not conjugate to a rotation while we know that (H n ) n converges on a large compact subset of E C (a sequence of compositions of sufficiently close to the identity maps converges).

The main approximation Theorem 1.8 is done by adapting to the analytic setting a new result with Turaev [START_REF] Berger | Generators of groups of hamitonian maps[END_REF], which states that compositions of horizontal and vertical twist maps are dense in Ham ∞ (A), see Theorem 3.1. It is easy to approximate these maps by entire automorphisms, yet these might be far from preserving A 0 . That is why, we will show that the set of commutators of vertical and horizontal twist maps with the set of horizontal twist maps generate a dense subgroup of Ham ∞ (A). Furthermore, we will notice that to approximate Ham ∞ 0 (A) only horizontal twist maps or such commutators supported by A 0 are necessary. See Theorem 3.3.

To pass to the analytic case, we will use Runge theorem to approximate the latter maps by entire automorphisms which are arbitrarily close to the identity on A \ A 0 . This leads to the main main approximation Theorem 1.8 stated below. This apparently simple step is actually one of the main technical difficulty of this work.

We need a few notations to state Theorem 1.8. For every δ ≥ 0, let

I δ := [-1 + δ, 1 -δ],
A δ = A × I δ and for every δ ≥ 0, let Ham ∞ δ (A) be the subgroup of Ham ∞ 0 (A) formed by flow maps of Hamiltonian (H t ) t∈[0,1] supported by A δ . Observe that:

Ham ∞ 0 (A) = δ>0 Ham ∞ δ (A) .
We denote Ham ω (A) be the subgroup of Ham ∞ (A) formed by Hamiltonian entire real automorphisms. For ρ > 1, put:

K ρ := T ρ × Q ρ where T ρ := T + i[-ρ, ρ] and Q ρ := [-ρ, -1] [1, ρ] + i[-ρ, ρ] .
We denote Ham ω ρ (A) the subset of Ham ω (A) formed by maps whose restriction to

K p is ρ -1 -close to the canonical inclusion K ρ → A C : Ham ω ρ (A) := h ∈ Ham ω (A) : sup Kρ |h -id| < ρ -1 . Theorem 1.8 (Main approximation result). Let 0 < δ < 1, let h ∈ Ham ∞ δ (A)
and let U be a neighborhood of the restriction h|A δ in C ∞ (A δ , A). Then for any ρ > 1, there exists h ∈ Ham ω ρ (A) such that the restriction h|A δ is in U.

Remark 1.9. By using Mergelyan's theorem instead of Runge's theorem, the proof of this theorem can be adapted to obtain an analogous statement for the surface T 2 instead of A.

A consequence of Theorem 1.8 regards (1/q, 0)-periodic maps for g ≥ 1, which are maps h satisfying h(θ + 1/q, y) = h(θ, y) + (1/q, 0) for every (θ, y) ∈ A:

Corollary 1.10. Let 0 < δ < 1, let h ∈ Ham ∞
δ (A) be (1/q, 0)-periodic and let U be a C ∞ -nghd of the restriction h|A δ . Then for any ρ > 1, there exists h ∈ Ham ω ρ (A) which is (1/q, 0)-periodic and whose restriction h|A δ is in U.

Proof. The map h induces an entire automorphism

[h] on the quotient R/q -1 Z × R. Note that R/q -1 Z × R is diffeomorphic to A via the map ψ : (θ, y) ∈ R/q -1 Z × R → (q • θ, y) ∈ A and that ψ • [h] • ψ -1
satisfies the assumptions of Theorem 1.8. Hence there exists a map g ∈ Ham q•ρ (A) such that the restrictions g|A δ and ψ

• [h] • ψ -1 are close. Then note that ψ -1 • g • ψ is an entire automorphism on the quotient R/q -1 Z × R. It defines a map h ∈ Ham ω ρ (A)
which is 1/q-periodic and such that the restriction h|A δ is close to h|A δ .

We will plug this corollary into the approximation by conjugation method to prove Theorem A in §2.2.2.

To prove Theorem C, we will first implement the approximation by conjugation method to prove the following new result: Theorem 1.11. There is F ∈ Symp ∞ (A) which leaves A 0 invariant, without periodic point and whose order of local emergence of F |A 0 is 2. Moreover F is C 0 -conjugate to an irrational rotation via a conjugacy supported by A 0 .

We will give a complete proof of this theorem in Section 2.3.1. Let us sketch its proof. 

Sketch of proof.

The proof follows the same lines as the one of Anosov-Katok, but differs at one point: we will not assume that the map h n+1 pushes forward of the measure on Leb T×{y} nearby Leb A 0 , for most y. Instead, we will take the map h n+1 so that for most of the point y, the measure of the set of y such that h n+1 * Leb T×{y } is n -close to h n+1 * Leb T×{y} is smaller than some exp(-2-ηn ) for some n , η n → 0, see Fig. 2 and Lemma 2.7. This lemma is proved using Moser's trick (see Theorem 4.1) and a combinatorial Lemma 4.5 develloping [BB21, Prop 4.2]. Again we will plug Corollary 1.10 into this proof to prove of Theorem C in §2.3.2.

A complex analytic consequence of the main results

Given a complex dynamics f of several complex variables, there are two sets of special interest. The closure J * of the set of hyperbolic periodic points of f and the set J of points z with bounded and Lyapunov unstable backward and forward orbits. In the setting of polynomial automorphisms of C 2 , a natural problem which goes back to the early 90 s is wether J = J * . In the conservative setting, this problem can be seen as a complex counterpart of Birkhoff's conjecture, since on each component of the J's complement, the dynamics escapes to infinity or is analytically conjugate to a rotation, see [Bed18, Thm 2.1]. In the dissipative setting, arguments in favor of J = J * are the recent results of Crovisier-Pujals [START_REF] Crovisier | Strongly dissipative surface diffeomorphisms[END_REF] and Dujardin [START_REF] Dujardin | A closing lemma for polynomial automorphisms of C 2[END_REF] which assert that for every real and resp. complex Hénon map satisfying |detDf | • (deg f ) 2 < 1, then J = J * a.e. for any invariant probability measure. In the conservative setting, we observe that the complexified Furstenberg symplectomorphism (θ This corollary is proved in Section 2.4. This leads to the following natural question: Question 1.12. Does there exist a conservative entire map of C 2 which satisfies J = J * ? Acknowlegments. I am grateful to Vincent Humilière and Sobhan Seyfaddini for advices on how to write the proof of Moser-Krygin's Theorem 4.1. I am thankful to Romain Dujardin for several discussions around the J = J * problem. I am grateful to Bassam Fayad for his bibliographical and general advices. I indebted to Raphael Krikorian for many comments on the redaction of the proof of the main theorem.

1 , θ 2 ) ∈ C 2 /Z 2 → (θ 1 + α, θ 2 + θ 1 ) with α ∈ R \ Q satisfies J = R/Z × C/Z = ∅ = J * .
2 Proof of the main theorems 2.1 Notations for probability measures Let (M, d) denote the space of probability measures on A endowed with the Kantorovitch-Wasserstein distance (see §1.2). We denote by Leb the Lebesgue measure on A and by Leb T the one-dimensional Lebesgue measure on T. For every cylinder A 0 ⊂ A, we set:

Leb A 0 := 1 Leb A 0 Leb |A 0 ,
which is a probability measure on A 0 . For every y ∈ R, we denote by Leb T×{y} the probability measure Leb T ⊗ δ y . For every x ∈ A, n ≥ 1 and F ∈ Symp ∞ (A), the n th -empirical measure is:

e F n (x) := 1 n n k=1 δ F k (x) .
By Birkhoff's ergodic theorem, if a cylinder A 0 is left invariant by F then for Leb. a.e. x ∈ A 0 , the sequence (e F n (x)) n converges to a probability measure e F (x). We recall that F |A 0 is ergodic iff e F (x) = Leb A 0 for a.e. x ∈ A 0 .

Proof of Theorem A on ergodic pseudo-rotations

To prove that Theorem 1.8 implies the main theorems, we shall first recall the proof of Anosov-Katok's Theorem 1.7.

Existence of ergodic smooth pseudo-rotations

The proof of Theorem 1.7 can be done by induction using a sequence ( n ) n of positive numbers s.t.:

n n < 1 .
We recall that for α ∈ R, the rotation of angle α is denoted by R α : (θ, y) ∈ A → (θ + α, y). Also for > 0, we denote A := T × [-1 + , 1 -]. We prove below: Claim 2.1. There are sequences of rational numbers α n = pn qn and of Hamiltonian maps

H n ∈ Ham ∞ 0 (A) such that F n := H n • R αn • H -1
n satisfies for every n ≥ 1:

(P 1 ) for every x ∈ H n (A n ), the empirical measure e Fn (x) = e Fn qn (x) is n -close to Leb A 0 .

(P 2 ) The C 0 -distance between e Fn k and e

F n-1 k is smaller than n for every k ≤ q n-1 .

(P 3 ) The C n -distance between F n and F n-1 is smaller than n .

Proof that Claim 2.1 implies Theorem 1.7. By (P 3 ) and the convergence n n , the sequence (

F n ) n converges to a C ∞ -map F ∈ Symp ∞ (A).
Again by convergence of n and Borel Canteli-Lemma, the subset B := n≥0 k≥n H n (A n ) of A 0 has full Lebesgue measure in A 0 . Also by (P 1 ) and (P 2 ), for every x ∈ B, the measure Leb A 0 is an accumulation point of the sequence of empirical measures (e F n (x)) n . Thus by Birkhoff's ergodic theorem, a.e. point in B satisfies that e F n (x) → Leb A 0 . As B has full Lebesgue measure in A 0 it comes that F |A 0 is ergodic.

Proof of Claim 2.1. Now let us show the Claim by induction on n. Put q 0 = 1, α 0 = 0 and H 0 = id. Let n ≥ 1, assume (H k ) k<n and (α k = p k q k ) k<n constructed and satisfying the induction hypothesis. We will show in Section 4.2 the following: Lemma 2.2. For every η > 0, there exists a map h n ∈ Ham ∞ 0 (A) such that:

1. the map h n is (1/q n-1 , 0)-periodic.

2. for every (θ, y) ∈ A n , the map h n pushes forward the one-dimensional Lebesgue probability measure Leb T×{y} to a measure which is η-close to Leb A 0 .

Then for η sufficiently small, as H n-1 leaves invariant A 0 , we obtain:

2'. for every (θ, y) ∈ A n , the map H n := H n-1 • h n pushes forward the one-dimensional Lebesgue probability measure Leb T×{y} to a measure which is n /2-close to Leb A 0 .

Then by 1., we have:

H n • R α n-1 • H -1 n = H n-1 • h n • R α n-1 • h -1 n • H -1 n-1 = F n-1 ,
and so for every α n sufficiently close to α n-1 , the map

F n = H n • R αn • H -1
n is sufficiently close to F n-1 to satisfy (P 2 ) and (P 3 ). Also observe that when α n = pn qn is close to α n-1 , then q n is large (with q n ∧ p n = 1). For every x = H n (θ, y) ∈ H n (A n ), it holds that:

e Fn (x) = 1 q n qn k=1 δ Hn•R k•pn/qn (θ,y) = H n * 1 q n qn k=1 δ R k•pn/qn (θ,y) = H n * 1 q n qn k=1 δ (θ+kpn/qn,y)
is close to the pushed forward by H n of Leb T×{y} as q n is large. Thus by 2', assumption (P 1 ) holds true with

B n := H n (A n ).
Remark 2.3. We can develop the construction to obtain immediately that F has no periodic point.

To this end, it suffices to add the following induction hypothesis6 :

(P 4 ) for every x ∈ A 0 and every 0 < k < q n-1 , it holds:

d(F k n (x), x) > d(F k n-1 (x), x) • (1 -2 -n ) .
such an assumption is immediately verified by taking α n sufficiently close to α n-1 . Also it implies that for every k ≥ 0, with n such that k < q n , it holds:

d(F k (x), x) > d(F k n (x), x) • m≥n (1 -2 -m ) > 0 .
Consequently F has no periodic point.

Existence of ergodic analytic pseudo-rotations

Let E := A \ A 0 and E C := C/Z × {y ∈ C : Re(y) / ∈ I}. We recall that:

(2.1)

K ρ := T ρ × Q ρ where T ρ := T + i[-ρ, ρ] and Q ρ := [-ρ, -1] [1, ρ] + i[-ρ, ρ] ∀ρ > 1 .
Similarly to the proof of Theorem 1.7, we are going to show:

Claim 2.4. Let ρ > 1. There exist of a sequence of entire automorphisms H n ∈ Ham ω ρ (A) and a sequence of rational numbers α n such that:

(i) The sequence (α n ) n converges to a number α ∈ R \ Q and the sequence of restrictions H n |E C converges to a map H which is analytic on int(E C ) and on C/Z × {-1, 1} with sup Kρ |H(x) - x| < ρ -1 . (ii) The sequence (F n ) n of maps F n := H n • R αn • H -1 n converges to an entire automorphism F ∈ Symp ω (A) which is ergodic on A := A \ H(E). (iii) The map F has no periodic point in C/Z × C.
Proof that Claim 2.4 implies Theorems A. It remains only to show that A := A \ H(E) is an analytic cylinder. Note that the boundary of cl(A ) is equal to the one of H(E), and the latter is

H(∂E) = H(T × {-1, 1})
. By (i), the restriction H|∂E is analytic and by Cauchy inequality, it is C 1 -close to the canonical inclusion T × {-1, 1} → A when ρ is large. Thus we can chose ρ large enough so that H(∂E) = H(T × {-1, 1}) is the union of two analytic graphs and so that A is an analytic cylinder.

Similarly to Anosov-Katok's proof, Claim 2.4 is proved by induction using a sequence ( n ) n of positive numbers such that:

n n < 1 . For ρ = n ≥ 1, Eq. (2.1) defines sets T n , Q n and K n = T n × Q n . Put: D(n) := {x ∈ C : |x| < n}.
We are going to prove: Claim 2.5. For any N ≥ 1, there are sequences of rational numbers

α n = pn qn → α ∈ R \ Q and of entire automorphisms H n ∈ Ham ω (A) such that with α 0 = 1, H 0 = id and F n := H n • R αn • H -1 n
for every n ≥ 1, it satisfies:

(P 0 ) The restrictions H n |K n+N and H n-1 |K n+N are n+N -C 0 -close with H 0 = id. (P 1 ) for every x ∈ H n (A n ), the empirical measure e Fn (x) = e Fn qn (x) is n -close to H n-1 * Leb A 0 .
(P 2 ) The distance between e Fn k (x) and e

F n-1 k (x) is smaller than n for every k ≤ q n-1 and x ∈ T n × D(n).

(P 3 ) The C 0 -distance between F n |T n × D(n) and F n-1 |T n × D(n) is smaller than n . The C 0 - distance between F -1 n |T n × D(n) and F -1 n-1 |T n × D(n) is smaller than n .
(P 4 ) For every x ∈ T n × D(n) and every 0 < k < q n-1 , it holds:

d(F k n (x), x) > d(F k n-1 (x), x) • (1 -2 -n ) .
Proof that Claim 2.5 implies Claim 2.4. Let ρ > 1 be given by Claim 2.4. Let N > ρ be large enough such that n≥N n < ρ -1 . Let us prove (i). Observe that for every x ∈ E C , there exists N 0 ≥ N such that x ∈ K N 0 . As K N 0 ⊂ K n for every n ≥ N 0 , by (P 0 ), the sequence H n (x) converges. Also if x is in int(E C ) (resp. in C/Z × {-1, 1}), then there is a bidisk D (resp. disk) containing x and included in K N 0 +1 (resp.

K N 0 +1 ∩ C/Z × {-1, 1}). So (H n (D)
) n is bounded by (P 0 ). Thus H is analytic on int(E C ) and C/Z × {-1, 1}. Moreover, observe that:

sup x∈Kρ H(x) -x ≤ sup x∈K N H(x) -x ≤ n≥0 sup x∈K N H n+1 (x) -H n (x) ≤ n≥N n ≤ ρ -1 .
Let us prove (ii). First observe that for the same reason as in the proof that Claim 2.4 implies Theorems A, for N large enough, the set H n (A 0 ) is an analytic cylinder for every n and the sequence (H n (A 0 )) n converges to an analytic cylinder A 0 := A \ H(E). Thus H n * Leb A 0 converges to the normalized Lebesgue measure Leb A 0 on the cylinder A 0 which equals n≥0 k≥n H k (A 0 ):

A 0 = n≥0 k≥n H k (A 0 ) and H n * Leb A 0 Leb A 0 .
By (P 3 ), we observe that (F n ) n converges to an entire real automophism F from A onto A. As its Jacobean is constantly equal to 1, so it is actually an entire automorphism in Symp ω (A). By (P 0 ), the map F is integrable on H(int E). By the Borel-Cantelli lemma, the subset

C := n≥0 k≥n H k (A k ) has full Lebesgue measure in A 0 = n≥0 k≥n H k (A 0 )
. Also by (P 1 ) and (P 2 ), for every x ∈ C, the measure Leb A 0 is an accumulation point of the sequence of empirical measures (e F n (x)) n . Thus a.e. point in A 0 satisfies that e F n (x) = Leb A 0 and so F |A 0 is ergodic. Finally, using the same argument as in Remark 2.3, we obtain that (P 4 ) implies (iii).

Proof of Claim 2.5. Let us show the Claim by induction on n ≥ 0. Put q 0 = 1, α 0 = 0 and H 0 = id. Let n ≥ 1 and assume (H k ) k<n and (α k = p k q k ) k<n constructed and satisfying the induction hypothesis. By Lemma 2.2, there exists hn ∈ Ham ∞ 0 (A) such that:

(1) the map hn is (1/q n-1 , 0)-periodic.

(2) for every (θ, y) ∈ A n , the map Hn := H n-1 • hn pushes forward the one-dimensional Lebesgue probability measure Leb T×{y} to a measure which is n /2-close to H n-1 * Leb A 0 .

Let δ > 0 be such that the support of hn is included in A δ . By Corollary 1.10, for any C ∞ -nghd U of the restriction hn |A δ , for any ρ > 1, there exists h n ∈ Ham ω ρ (A) which is (1/q n , 0)-periodic and such that the restriction h n |A δ is in U. Now put:

H n := H n-1 • h n .
Observe that if we fixed ρ > 1 large enough depending on H n-1 and n+N , then the restrictions H n |K n+N and H n-1 |K n+N are n+N -close, as stated by (P 0 ). Furthermore the measure H n * Leb A 0 = Leb Hn(A 0 ) is n /4-close to H n-1 * Leb A 0 . We will fix U in the sequel. Again, by (1/q n , 0)-periodicity of h n , we have:

H n • R α n-1 • H -1 n = H n-1 • h n • R α n-1 • h -1 n • H -1 n-1 = F n-1 ,
and so for every α n sufficiently close to α n-1 ,

F n = H n • R αn • H -1
n is sufficiently close to F n-1 to satisfy (P 2 ), (P 3 ) and (P 4 ). Also observe that when α n = pn qn is close to α n-1 , then q n is large (with q n ∧ p n = 1). Thus for every x = H n (θ, y) ∈ H n (A n ), it holds that

e Fn (x) = 1 q n qn k=1 δ Hn•R k•pn/qn (θ,y) = H n * 1 q n qn k=1 δ R k•pn/qn (θ,y) = H n * 1 q n qn 1 δ (θ+kpn/qn,y)
is close to the push forward by H n of Leb T×{y} . Thus by (2), assuming U small enough, we obtain that e Fn (x) is close to the push forward by Hn of the one-dimensional Lebesgue probability measure Leb |T × {y}, and so 3 4 n -close to H n-1 * Leb A 0 . As H n * Leb A 0 and H n-1 * Leb A 0 are n /4close, Property (P 1 ) holds true.

Proof of Theorem C on pseudo-rotation with maximal local emergence

The proof of Theorem C follows the same lines as the one of Theorem A. We shall first give the proof of Theorem 1.11, which is the smooth version of Theorem C.

Existence of smooth pseudo-rotations with maximal local emergence

The proof of Theorem 1.11 is also done by induction using a sequence ( n ) n of positive numbers s.t.:

n n < 1 .
We prove below: Claim 2.6. There are sequences of rational numbers α n = pn qn converging to α ∈ R \ Q, a decreasing sequence of positive numbers (η n ) n converging to 0 and a sequence of Hamiltonian maps H n ∈ Ham ∞ 0 (A) such that H 0 = id, α 0 = 1 and for n ≥ 1 it holds:

(P 1 ) There is a family

(I n,i ) 1≤i≤Mn of M n ≥ exp(η -2+ n n
) disjoint segments of I s.t.:

(a) for any i, it holds (1n ) 2 Mn < Leb I n,i < 2 Mn ; hence Leb (I \ i I n,i ) < 2 Mn n , (b) for any y ∈ I n,i and y ∈ I n,j , j = i, the distance between H n * Leb T×{y} and H n * Leb T×{y } is > 2η n .

(P 2 ) It holds:

sup x∈A H n (x) -H n-1 (x) < n-1 η n-1 and sup x∈A H -1 n (x) -H -1 n-1 (x) < n-1 η n-1 . (P 3 ) The C n -distance between F n := H n • R αn • H -1 n and F n-1 is smaller than n .
Proof that Claim 2.6 implies Theorem 1.11. Let (F n ) n be given by the claim. By (P 3 ) and the convergence n n , the sequence (F n ) n converges to a C ∞ -map F ∈ Symp ∞ (A). Let us show that F satisfies the properties of Theorem 1.11. By (P 2 ), the sequence (H m ) m converges to a homeomorphism H. As each H n coincides with the identity on the complement of A 0 , so does H and so F coincides with R α on A \ A 0 . Note also that H preserves the volume. Also by continuity of the composition it holds:

F = H • R α • H -1 ,
and so F is indeed C 0 -conjugate to an irrational rotation. Now let us show that F has maximal local emergence. For every n, i, let B n,i := T × I n,i and B n := i B n,i . By (P 3 ), the set C := n≥0 k≥n H n (B n ) is included in A 0 . By (P 1 ) -(a), the measure of k≥n H n (B n ) is equal to the one of A 0 and so the subset C := n≥0 k≥n H n (B n ) has full Lebesgue measure in A 0 . Now let x ∈ C. Then there exist n arbitrarily large and i such that x belongs to H n (B n,i ). Put x = H n (θ, y). Then by (P 1 ) -(a -b), we have:

Leb y ∈ I : d(H n * (Leb T×{y} ), H n * (Leb T×{y } )) < 2η n < Leb I n,i + Leb (I \ ∪ j I n,j ) ≤ 2(1 + n ) M n .
By (P 2 ) and Proposition 1.3, for every m > n, it holds:

Leb y ∈ I : d(H m * (Leb T×{y} ), H m * (Leb T×{y } )) < (2 - m-1 k=n k )η n < 2(1 + n ) M n .
Taking the limit as m → ∞ and infering that k k < 1, it comes:

Leb y ∈ I : d(H * (Leb T×{y} ), H * (Leb T×{y } )) < η n < 2(1 + n ) M n . As F = H • R α • H -1 with α ∈ R \ Q, the empirical measure e F (x ) of x = H(θ , y ) ∈ A 0 is equal to H * (Leb T×{y } ). Thus: Leb (θ , y ) ∈ A 0 : d(e F • H(θ, y), e F • H(θ , y )) < η n < 2(1 + n ) M n .
Now we infer that x = H(θ, y) and that H is area preserving to obtain:

Leb x ∈ A 0 : d(e F (x), e F (x )) < η n < 2(1 + n ) M n . Thus log | log Leb {x ∈ A 0 : d(e F (x), e F (x )) ≤ η n }| -log η n ≥ log | log(2(1 + n )) -log M n | -log η n . As M n > exp(η -2+ n n
), we obtain:

log | log Leb {x ∈ A 0 : d(e F (x), e F (x )) ≤ η n }| -log η n ≥ log(η -2+ n n -log(2(1 + n ))) -log η n ∼ 2 .
So the local order is a.e. ≥ 2. By Hefter's theorem [Hel22] and Theorem 1.4, the local order is at most 2 and so equal to 2.

Proof of Claim 2.6. The proof is done by induction on n ≥ 0. The step n = 0 is obvious. Assume n ≥ 1, with H n-1 and α n-1 = p n-1 q n-1 constructed. We are going to construct H n of the form H n = H n-1 • h n with h n ∈ Ham ∞ 0 (A) which is (1/q n-1 , 0)-periodic. Then, for α n sufficiently close α n-1 we observe that (P 3 ) is satisfied (by Anosov-Katok's trick). Consequently, to prove the claim, it suffices to find a (1/q n-1 , 0)-periodic h n ∈ Ham ∞ 0 (A) such that H n = H n-1 • h n satisfies (P 1 ) and (P 2 ).

Let Q be a large multiple of q n-1 and let (T k, ) 0≤k, <Q be the tiling of A 0 defined by:

T k, := θ ∈ T : k Q < θ < k+1 Q × -1 + 2 Q , -1 + 2 +2 Q .
When Q is large and if h n ∈ Ham ∞ 0 (A) leaves invariant the tiling, i.e. h n (T k, ) = T k, for every (k, ), then h n and h -1 n are Q -1 -C 0 close to the identity. We fix Q sufficiently large such that H n = H n-1 • h n and its inverse are n-1 η n-1 -C 0 -close to respectively H n-1 and its inverse, as claimed in (P 2 ). Consequently, to prove the claim, it suffices to find a (1/q n-1 , 0)-periodic h n ∈ Ham ∞ 0 (A) which leaves invariant (T k, ) 0≤k, <Q and such that (P 1 ) is satisfied. In order to do so, we use the following shown in Section 4.3: Lemma 2.7. For every 1 > > 0, there exist η > 0 arbitrarily small, an integer M ≥ exp(η -2+ ), a map h ∈ Ham ∞ (T × R/2Z) and a family (J ,i ) 1≤i≤M of disjoint compact segments of R/2Z such that:

(a) it holds Leb (I \ i J ,i ) = 2 M and Leb J ,i = (1 -) 2 M for every i, (b) for any j = i, y ∈ J ,i and y ∈ J ,j , the distance between the measures h * Leb T×{y} and h * Leb T×{y } is greater than 2η.

(c) h coincides with the identity on neighborhoods of {0} × R/2Z and T × {0}.

Let us apply Lemma 2.7 with = n /2 fixed and some η ∈ (0, η n-1 ) small enough so that

(2.2) M ≥ exp(η -2+ n/2 ) ≥ exp(η -2+ n n ) with η n := η/(Q • DH n-1 C 0 ) .
This is possible since the power -2 + n /2 and -2 + n are different in the latter inequality. Let (J ,i ) 1≤i≤M be the family of disjoint segments of I and let h be the map provided by the lemma. For every 0 ≤ k, < Q, let:

φ k, : (θ, y) ∈ T k, → (Q • θ, Q • y + Q -2 ) ∈ T × R/2Z .
Note that φ k, is a bijection from T k, onto (T \ {0}) × (R/2Z \ {0}). We define:

(2.3)

h n := (θ, y) → (θ, y) if (θ, y) / ∈ 0≤k, <Q T k, , φ -1 k, • h • φ k, (θ, y) if (θ, y) ∈ T k, .
Remark that h n leaves invariant the tiling (T i,j ) 0≤i,j<Q . Now let us verify (P 1 ). First let

M n := Q • M . For 1 ≤ i ≤ M n , put i =: mM + with 1 ≤ ≤ M and 0 ≤ m < Q.
By identifying J , to a subset of (0, 2) we define:

I n,i := J , /Q -1 + 2m/Q ⊂ (-1, 1) = I .
First observe that by Eq. (2.2), it holds:

M n := Q • M ≥ Q • exp(η -2+ n/2 ) ≥ exp(η -2+ n n ),
as claimed in the begining of (P 1 ). Moreover by Lemma 2.7 (a), Property (P 1 ) -(a) is verified as n ≥ . Also for any y ∈ I ,i = I ,j y , the distance between the measures h n * Leb T×{y} and h n * Leb T×{y } is greater than 2η/Q and so the distance between the measures H n * Leb T×{y} and

H n * Leb T×{y } is greater than 2η/(Q • DH n-1 C 0 ) = 2η n as claimed in (P 1 ) -(b).

Existence of analytic pseudo-rotations with maximal local emergence

For the same reasons, Theorem C is an immediate consequence of the following counterpart of Claim 2.4 where only (ii) has been changed.

Claim 2.8. Let ρ > 1. There exist of a sequence of entire automorphisms H n ∈ Ham ω (A) and a sequence of rational numbers α n such that:

(i) The sequence (α n ) n converges to a number α ∈ R \ Q and the sequence of restrictions H n |E C converges to a map H which is analytic on int(E C ) and on C/Z × {-1, 1} with sup Kρ |H(x) - x| < ρ -1 . (ii) the sequence (F n ) n of maps F n := H n • R αn • H -1 n converges to an entire automorphism F ∈ Symp ω (A) whose restriction to A := A \ H(E) has local emergence 2. (iii) The map F has no periodic point in C/Z × C.
Similarly, Claim 2.8 is proved below using some series n n < 1 of positive numbers and the following counterpart of Claim 2.5: Claim 2.9. For any N ≥ 1, there are sequences of rational numbers α n = pn qn → α ∈ R \ Q, of positive numbers (η n ) n converging to 0 and of entire automorphisms

H n ∈ Ham ω (A) such that α 0 = 1, H 0 = id and F n := H n • R αn • H -1
n , it satisfies for every n ≥ 1:

(P 0 ) the restrictions H n |K n+N and H n-1 |K n+N are n+N -C 0 -close, with H 0 = id. (P 1 ) There is a family (I n,i ) 1≤i≤Mn of M n ≥ exp(η -2+ n n ) disjoint subsegments of [-1 + δ n , 1 -δ n ], with δ n = 1 2 n /M n s.t.: (a) for any i, it holds (1 -n ) 2 Mn < Leb I n,i < 2 Mn ; hence Leb (I \ i I n,i ) < 2
Mn n , (b) for any y ∈ I n,i and y ∈ I n,j , j = i, the distance between H n * Leb T×{y} and H n * Leb T×{y } is > η n .

(P 2 ) It holds sup x∈A n/Mn H n (x) -H n-1 (x) < n-1 η n-1 . (P 3 ) The C 0 -distance between F n |T n × D(n) and F n-1 |T n × D(n) is smaller than n . The C 0 - distance between F -1 n |T n × D(n) and F -1 n-1 |T n × D(n)
is smaller than n . (P 4 ) For every x ∈ T n × D(n) and every 0 < k < q n-1 , it holds:

d(F k n (x), x) > (1 -2 -n ) • d(F k n-1 (x), x) .
Proof that Claim 2.9 implies Claim 2.8. Properties (i) and (iii) are proved as in the proof of that Claim 2.5 implies Claim 2.4, and likewise for the fact that (F n ) n converges to an entire automorphism F ∈ Symp ω (A). Using verbatim the same argument as in the proof of Claim 2.6 we obtain that the local emergence of F |A 0 is 2 as stated in (ii).

Remark 2.10. Note that (P 2 ) implies that (H n |A 0 ) n converges for the C 0 -compact-open topology. With slightly more work, one can also obtain that this limit is a homeomorphism onto its image. However, the construction does not imply that this limit extends H : E → A continuously (the union might be discountinuous at ∂A 0 ), contrarily to the smooth case.

Proof of Claim 2.8. The proof is done basically as for Claim 2.5. The only change is that the map hn defined by Lemma 2.2 is replaced by the map defined in Eq. (2.3) using Lemma 2.7. Then we use Corollary 1.10 to obtain an analytic map H n whose restriction to A δn is close to the one of H n-1 • hn . This enables to obtain statements (P 1 ) and (P 2 ) of Claim 2.8 from the proof of statements (P 1 ) and (P 2 ) in Claim 2.6.

Proof of the corollaries

Proof of Corollary B. By Theorem A, there is an entire symplectomorphism F of A which leaves invariant an analytic cylinder A 0 ⊂ A. 1.) For ± ∈ {-, +}, let γ ± ∈ C ω (T, R) be such that A 0 = {(θ, y) ∈ A : γ -(θ) < y < γ + (θ)}. Note that up to a conjugacy with a map of the form (θ, y) → (θ, α • y) with α > 0, we can assume that the mean of γ + -γ -is 2. Now let (θ) = (γ + -γ -)(θ)/2. Note that T dθ = 1. Thus there exists L ∈ C ω (T, T) such that ∂ θ L = and L(0) = 0. Note that ∂ θ L does not vanish and so L is a diffeomorphism. Set:

ψ : (θ, y) → (L(θ), y/ (θ)).
Note that ψ is analytic and symplectic. Furthermore there is

γ 0 ∈ C ω (T, R) such that the image of A 0 by ψ is {(θ, y) ∈ A : γ 0 (θ) -1 ≤ y ≤ γ 0 (θ) + 1}. Let h be the composition of ψ with the map (θ, y) → (θ, y -γ 0 (θ)). Observe that h sends A 0 to A 0 . Then h • f • h -1 satisfies the sought properties.
2) Let Â0 be a neighborhood of A 0 which is bounded by two integrable curves Γ 1 := {(θ, γ 1 (θ)) : θ ∈ T} and Γ 2 := {(θ, γ 2 (θ)) : θ ∈ T}. By [Ber22, Thm 2.14], as the system is integrable nearby these analytic curves, we can blow down them to transform Â0 to a sphere, so that the dynamics is pushed forward to an analytic and symplectic diffeomorphism of the sphere.

Let us give a short independent (sketch of) proof on how to complement Â0 to obtain a sphere. For i ∈ {1, 2}, let V i be a small neighborhood of Γ i in which the dynamics is analytically conjugate to the rotation (θ,

y) ∈ R/Z × [-, ] → (θ + α, y) via a map φ i : V i → R/2πZ × [-, ] so that φ i (Γ i ) = R/2πZ × {0}. Up to a composition with -id, we can assume that φ i (V i ∩ Â0 ) is R/2πZ × [0, ]. Now we compose φ i with the analytic symplectomorphism (θ, r) ∈ R/2πZ × [0, ] → ( √ 1 + 2r cos θ, √ 1 + 2r sin θ).
From this we obtain that the composition ψ i is an analytic symplectomorphism from V i ∩ Â0 onto the annulus C i of radii (1, √ 1 + 2 ) and which conjugates f |V i ∩ Â0 to a map which coincides with the rotation of angle α on the disk of radius √ 1 + 2 . Now we glue the cylinder Â0 to two copies D 1 and D 2 of the disk of radius √ 1 + 2 at C 1 and C 2 via resp. ψ 1 and ψ 2 . This forms a sphere on which the dynamics extends canonically to the rotation of angle α on the inclusions of D 1 and D 2 . This extension is ergodic on the inclusion of A 0 and have no more than two periodic points.

Proof of Corollary D. Let F be given by Theorems A or C. We recall that F does not have periodic point in C/Z × C and so that J * = ∅. Hence it suffices so show that its Julia set J is nonempty. More precisely we are going to show that the cylinder A 0 is included in the Julia set of F . Let x ∈ A 0 . Both the forward and backward orbits of x are bounded.

For the sake of contradiction, assume that there is an open neighborhood U of x ∈ C/Z × C such that the following set is bounded:

U + := n∈N F n (U ) .
Note that F -1 (U + ) ⊃ U + . As F preserves the volume, F -1 (U + ) and U + have the same volume. As F -1 (U + ) is open, it cannot contains a point which is not in the closure of U + . So F -1 (U + ) ⊂ cl(U + ). Likewise we have F -n (U + ) ⊂ cl(U + ) for every n and so:

Û := n≥0 F -n (U + ) = n∈Z F n (U )
is a bounded F -invariant invariant open set. Then one proves as in [START_REF] Bedford | Real polynomial diffeomorphisms with maximal entropy[END_REF]Appendix] or [Bed18, Thm 2.1], that G := cl({F n | Û : n ∈ Z} is a compact Abelian subgroup of complex automorphisms of the bounded domain Û . Then by the Cartan Theorem [START_REF] Narasimhan | Several complex variables[END_REF], the set G is a Lie group equal to an i-dimensional torus T i . As the set iterates of F | Û is dense in G, the element F | Û must act on G as an irrational rotation. Thus the restriction of F to the closure of the orbit of any x ∈ Û ∩ A is semi-conjugate via an analytic map to an irrational rotation on T i . The rank of the semi-conjugacy must be invariant by the irrational rotation and so constant. Therefore, G • x = cl{F n (x) : n ∈ Z} must be a torus analytically embedded into A. This torus cannot be of dimension ≥ 2 (as T 2 cannot be embedded in A) neither of dimension 0 (as F has no periodic point). Thus the orbit of x is included in an analytic circle (on which F acts as an irrational rotation). This implies that there is an analytic fibration by circles on A 0 which is left invariant by the dynamics. This is in contradiction to the case of Theorem A which asserts that a typical point of A 0 has the closure of its orbit equal to A 0 . This is also in contradiction to the case of Theorem C which asserts that the local order of the emergence is 2, while by Example 1.5.2, a dynamics leaving invariant such a differentiable fibration should have an order of emergence 0.

Approximation Theorems

In order to prove Theorem 1.8 we are going to study the generators of Ham ∞ 0 (A) and Ham ω (A), see Theorems 3.3 and 3.4. In Section 3.4, we will prove that Theorem 3.4 implies Theorem 1.8.

Generators of Ham

The main theorem of [START_REF] Berger | Generators of groups of hamitonian maps[END_REF] implies that Ham ∞ (A) is spanned by the following subgroups:

• Let V be the subgroup of Ham ∞ (A) of the form (θ, y) → (θ, y + v(θ)) with vdθ = 0.

• Let T be the subgroup of Ham ∞ (A) of the form (θ, y) → (θ + τ (y), y).

Theorem 3.1 (with Turaev). Any maps of Ham ∞ (A) can be arbitrarily well C ∞ -approximated by a composition of maps in T or V Interestingly, the proof is constructive. Also, as a consequence of the proof using a Lie bracket technique and Fourier's Theorem inspired from [START_REF] Berger | Any diffeomorphism is a total renormalization of a close to identity map[END_REF], we will show that any maps of Ham ∞ (A) can be arbitrarily well approximated by a finite composition of maps in T or [V, T ], where:

[V, T ] := {[V, T ] = V -1 • T -1 • V • T : V ∈ V & T ∈ T } .
Also the subgroup of entire maps of T is dense in T and the subgroup of entire maps of V is dense in V. Yet to prove the main approximation Theorem 1.8, we should take care of the supports of the maps in this decomposition. First, we will see that any maps of Ham ∞ 0 (A) can be arbitrarily well C ∞ -approximated by a composition of maps in

T ∩ Ham ∞ 0 (A) or [V, T ∩ Ham ∞ 0 (A)] ∩ Ham ∞ 0 (A). Indeed, the set [V, T ∩ Ham ∞ 0 (A)] is not included in Ham ∞ 0 (A)
, so we shall study more carefully the supports of these decompositions by introducing with the following notations:

• For > 0, let V := {V ∈ V : sup x∈A V (x) -x < } be the C 0 --nghbd of id in V. • For δ > 0, let T δ := Ham ∞ δ (A) ∩ T , where Ham ∞ δ (A) is defined in Section 1.3. • Let [V , T δ ] := {[V, T ] = V -1 • T -1 • V • T : V ∈ V & T ∈ T δ }.
Most of the maps of V are not compactly supported. In contrast T δ and [V , T δ ] are formed by compactly supported maps if δ > > 0:

Fact 3.2. For every δ > > 0, the set [V , T δ ] is formed by maps in

Ham ∞ δ-(A). Proof. Recall that A \ A δ-= T × (-∞, -1 + δ -) T × (1 -δ + , ∞). Let: [V, T ] = V -1 • T -1 • V • T ∈ [V , T δ ].
Every z in A \ A δ-is fixed by T and sent by V into A \ A δ on which T -1 is the identity. Thus

T -1 • V • T (z) = V (z) and so [V, T ](z) = z.
Here is a compactly supported counterpart of Theorem 3.1, that we will prove in Section 3.2: Theorem 3.3. For any 0 < < δ, any map F ∈ Ham ∞ δ (A) and any C ∞ -neighborhood U of F , there is a composition

F := F 1 • • • • • F M of maps F j in T δ or in [V , T δ ] such that F is in U.
It is indeed a compactly supported counterpart of Theorem 3.1 since by Fact 3.2, each map F j belongs to Ham ∞ 0 (A). We shall prove Theorem 1.8 by introducing the analytic counterpart of Theorem 3.3, which requires the following notations. First recall that for ρ > 1:

K ρ := T ρ × Q ρ where T ρ := T + i[-ρ, ρ] and Q ρ := [-ρ, -1] [1, ρ] + i[-ρ, ρ] .
Recall that Ham ω (A) denotes the space of entire Hamiltonian maps of A and Ham ω ρ (A) is its subset formed by maps whose restrictions to K ρ are ρ -1 -C 0 -close to the identity.

We will use the following generators for , η > 0 and ρ > 1:

• Let T ω ρ := T ∩ Ham ω ρ (A).
In other words, it consists of maps of the form: • For any

ρ 1 , ρ 2 > 1, let [V ρ 1 , T ρ 2 ] := {[V, T ] = V -1 • T -1 • V • T : V ∈ V ρ 1 & T ∈ T ρ 2 } .
Here is the analytic counterpart of Theorem 3.3, that we will prove in Section 3.3:

Theorem 3.4. For any 1 > δ > 0, for every sequence (ρ j ) j≥0 of numbers > 1, for every map F ∈ Ham ∞ δ (A) and any neighborhood

U of F |A δ in C ∞ (A δ , A), there is a composition F := F 1 • • • • • F M of maps F j in T ω ρ j or in [V ω ρ 0 , T ω ρ j ] whose restriction F |A δ is in U.
Let us now prove of the approximation Theorems 3.3 and 3.4.

The smooth case: proof of Theorem 3.3

For δ > 0, let C ∞ δ (A, R) and C ∞ δ (R, R) be the spaces of smooth functions with support in respectively A δ and [δ -1, 1 -δ]. We recall that the symplectic gradient of H ∈ C ∞ (A, R) is:

X H := (∂ y H, -∂ θ H) .
The proof of this theorem will use Poisson brackets. We recall that given two functions f, g ∈ C ∞ (A, R) the Poisson bracket {f, g} is the function defined by:

{f, g} = ∂ θ f • ∂ y g -∂ θ g • ∂ y f .
The Poisson bracket has the following well known property: To show this claim, we fix a neighborhood N of

[-1 + δ -2ρ -1 0 , 1 -δ + 2ρ -1 0 ] which is disjoint from R \ (-1, 1
). Such a neighborhood exists by Eq. (3.4). There are two cases.

Case 1) If F j ∈ T δ , then there exists τ j such that F j : (θ, y) → (θ + τ j (y), y). First, by the Weirstrass Theorem, there exists a polynomial C ∞ -approximation τj of τ j |N . Now let Ñ be a neighborhood of cl(N ) in C \ Q ρ j so that the complement of Ñ ∪ Q ρ j is connected. See Fig. 3.

Then using Runge's theorem, there exists an entire map τj which is C 0 -close to τj on Ñ and which is ρ -1 j -small on Q ρ j . As τ is real, up to considering 1 2 τ (z) + τ (z) instead of τ , we can assume that τ is real. Then by the Cauchy inequality, the map τj restricted to N is C ∞ -close to τj |N and so τ j |N .

Then we observe that Fj : (θ, y) → (θ + τj (y), y) belongs to T ω ρ j and has its restriction to T × N close to the one of F j .

Case 2) If F j ∈ [V ω ρ 0 , T δ ], then there exist V j ∈ V ω ρ 0 and T j : (θ, y) → (θ + τ j (y), y) such that F j = [V j , T j ]. As in the case (1), there is Tj ∈ T ω ρ j such that the restriction of T j and Tj to T

× N are C ∞ -close. Then put: Fj = [V j , Tj ] = V -1 j • T -1 j • V j • Tj . Note that a small neighborhood of A δ-ρ -1 0 is sent by Tj to a small neighborhood of A δ-ρ -1 0 , which is then sent by V j into a small neighborhood of A δ-2ρ -1 0 , which is therefore included in T × N . As T -1 j |T × N is close to T -1 j |T × N , it comes that the restrictions of Fj and F j to a neighborhood of A δ-ρ -1 0 are C ∞ -close.
3.4 Proof that Theorem 3.4 implies Theorem 1.8 By Theorem 3.4, we know that every map F ∈ Ham ∞ δ (A) has its restriction to A δ which can be approximated by a compositon F :

= F 1 • • • • • F M of maps F j in T ρ j ∪ [V ρ 0 , T ρ j ],
for any chosen sequence (ρ j ) j of numbers > 1. Yet we do not know if F |K ρ is small. Actually it might be not the case since the set K ρ is a priori not left invariant by the maps F j . Thus we shall first deduce from Theorem 3.4 a similar statement (see Lemma 3.12) giving an approximation of F |A δ by the restriction of a composition of maps F j which are moreover small on a neighborhood K ρ, of K ρ . Then we will show that the composition of these maps is indeed small on K ρ . This leads us to introduce a few technical notations.

Notations For > 0, we denote K ρ, and Q ρ, the -neighborhoods of K ρ and Q ρ :

K ρ, = T ρ+ × Q ρ, and Q ρ, := [-ρ -, -1 + ] [1 -, ρ + ] + i[-ρ -, ρ + ] .
Similarly, we denote Ham ω ρ, (A) the subset of Ham ω ρ (A) formed by maps whose restrictions to K ρ, is ρ -1 -C 0 -close to the identity:

Ham ω ρ, (A) := F ∈ Ham ω ρ (A) : sup x∈Kρ, |F (x) -(x)| < ρ -1 .
Likewise we denote:

• Let T ω ρ, := T ∩ Ham ω ρ, (A). In other words, it consists of maps of the form:

(θ, y) → (θ + τ (y), y) where τ is an entire function satisfying sup

Qρ, |τ | < ρ -1 . • Let V ω ρ, := V ∩ Ham ω ρ, (A).
In particular, its elements are of the form:

(θ, y) → (θ, y + v(θ)) where v is an entire function satisfying sup

T ρ+ |v| < ρ -1 . • For any ρ 1 , ρ 2 > 1, let [V ω ρ 1 , ; T ω ρ 2 , ] := {[V, T ] = V -1 • T -1 • V • T : V ∈ V ω ρ 1 , & T ∈ T ω ρ 2 , }.
Similarly to Theorem 3.4 we have:

Lemma 3.12. For any 1 > δ > > 0, for every sequence (ρ j ) j≥0 of numbers > 1, for every map

F ∈ Ham ∞ δ (A) and any C ∞ -neighborhood U of F |A δ , there is a composition F := F 1 • • • • • F M of maps F j in T ω ρ j , or in [V ω ρ 0 , , T ω ρ j , ] such that F |A δ ∈ U.
Proof. We can assume ρ 0 sufficiently large so that:

(3.5) 2ρ -1 0 + < δ .

We notice that V ω ρ 0 + = V ω ρ 0 , . Thus by Lemma 3.10 with ρ 0 + instead ρ 0 , any

F ∈ Ham ∞ δ (A) can be arbitrarily well C ∞ -approximated by a composition F M • • • • • F 1 with each F j in T δ or in [V ω ρ 0 , , T δ ].
Likewise it suffices to show: Claim 3.13. For every j, there exists Fj in T

ω ρ j , ∪ [V ω ρ 0 , , T ω ρ j , ] whose restriction to a neighborhood of A δ-ρ -1 0 is C ∞ -close to the one of F j .
To prove this claim, we proceed as for Claim 3.11. We chose a neighborhood N of [-1 + δ -2ρ -1 0 , 1-δ +2ρ -1 0 ] which is disjoint from R\(-1+ , 1-). Such a neighborhood exists by Eq. (3.5). Then we distinguish two cases.

Case 1) If F j ∈ T δ , then it is of the form F j : (θ, y) → (θ + τ j (y), y). First, by the Weirstrass Theorem, there exists a polynomial C ∞ -approximation τj of τ j |N . Now let Ñ be a neighborhood of cl(N ) in C \ Q ρ j , so that the complement of Ñ ∪ Q ρ j , is connected. See Fig. 3. Then using Runge's Theorem, there exists a real entire map τj which is C 0 -close to τj on Ñ and which is ρ -1 j -small on Q ρ j . Then by the Cauchy inequality, the map τj restricted to N is C ∞ -close to τ j .

Case 2) If F j ∈ [V ω ρ 0 , , T δ ], then there exist V j ∈ V ω ρ 0 , and T j : (θ, y) → (θ + τ j (y), y) such that F j = [V j , T j ]. As in the case (1), there is Tj ∈ T ω ρ j , such that the restrictions of T j and Tj to a neighborhood of T × N are C ∞ -close. Then we conclude exactly as in Claim 3.11.

A second ingredient for the proof of Theorem 1.8 is the following counterpart of Fact 3.2: Lemma 3.14. For every > > 0 and ρ k > ρ > 1 such that > + 2ρ -1 > 0, for all [V, T ] ∈ [V ω ρ, ; T ω ρ k , ], it holds:

sup K ρ, [V, T ] -id ≤ 1 ρ k with ρ k := --2ρ -1 --ρ -1 • ρ k . Proof. Let [V, T ] ∈ [V ω ρ, , T ω ρ k , ].
As ρ k > ρ and > + 2ρ -1 , we have:

(3.6)

T ρ+ +2ρ -1 k × Q ρ, +2ρ -1 ⊂ K ρ, +2ρ -1 ⊂ K ρ, .
Note that T sends K ρ, = T ρ+ × Q ρ, into T ρ+ +ρ -1 k × Q ρ, which is then sent by V into

T ρ+ +ρ -1 k × Q ρ, +ρ -1
and finally sent into T ρ+ +2ρ -1 k × Q ρ, +ρ -1 by T -1 . Thus, Eq. (3.6), the following restrictions are equal:

[V, T ] |K ρ, = (V -1 ) |K ρ, +2ρ -1 • (T -1 ) |K ρ, +2ρ -1 • V |K ρ, +2ρ -1 • T |K ρ, .
The restrictions to K ρ, of V and its inverse are C 0 -ρ -1 close to the canonical inclusion K ρ, → A C . Hence by the Cauchy inequality, the restriction of V -1 to K ρ, +2ρ -1 is C 1 -ρ -1 /( --2ρ -1 )-close to the identity. Hence it holds: sup

K ρ, V -1 • T -1 • V • T -T = sup T (K ρ, ) V -1 • T -1 • V -id = sup V •T (K ρ, ) V -1 • T -1 -V -1 = sup V •T (K ρ, ) (V -1 ) |K ρ, +2ρ -1 • T -1 -V -1 |K ρ, +2ρ -1 ≤ sup D(V -1 ) |K ρ, +2ρ -1 • sup V •T (K ρ, ) T -1 -id ≤ ρ -1 --2ρ -1 • sup V •T (K ρ, ) T -1 -id ≤ ρ -1 --2ρ -1 • ρ -1 k .
Now we infere that sup Kρ k , T -id < ρ -1 k to obtain:

sup K ρ, [V, T ] ≤ sup T (K ρ, ) V -1 • T -1 • V -id + sup K ρ, T -id ≤ ρ -1 --2ρ -1 • ρ -1 k + ρ -1 k which is ρ -1 k .
Here is the last lemma needed for the proof of Theorem 1.8:

Lemma 3.15. For any ρ > 1 and > 0, let ρ k := 2 k max{ -1 , ρ} for every k ≥ 1. Then for any sequence (F k ) k≥1 of maps F k ∈ Ham ω (A) such that sup K ρ, F k -id < 1/ρ k , it holds:

F 1 • • • • • F n ∈ Ham ω ρ (A) for every n ≥ 1.
Proof. Let us first prove the case n = 2. First note that F 2 (K ρ ) is in K ρ,1/ρ 2 ⊂ K ρ, /4 ⊂ K ρ, . Thus:

sup Kρ F 1 • F 2 -id ≤ sup F 2 (Kρ) F 1 -id + sup Kρ F 2 -id ≤ sup K ρ, F 1 -id + sup Kρ F 2 -id ≤ 1/ρ 1 + 1/ρ 2 ≤ ρ -1 • (2 -1 + 2 -2 ) < ρ -1 .
This proves that F 1 • F 2 belongs to Ham ω ρ (A). Now let us prove the general case for any n ≥ 2. First note that F i (K ρ, k>i 2 -k ) is included in K ρ, k≥i 2 -k . Thus by induction,

F i • • • • • F n (K ρ ) is included in K ρ, k≥i 2 -k ⊂ K ρ, . We have: sup Kρ F 1 • • • • • F n -id ≤ 0≤i≤n-1 sup F i •••••Fn(Kρ) F i+1 -id ≤ 0≤i≤n-1 sup K ρ, F i+1 -id ≤ 0≤i≤n-1 ρ -1 i+1 ≤ 0≤i≤n-1 2 -i-1 • ρ -1 < ρ -1 .
This proves that F 1 • • • • • F n belongs to Ham ω ρ (A).

Proof of Theorem 1.8. Let 0 < δ < 1 and ρ > 1. Let F ∈ Ham ∞ δ (A) and U a C ∞ -nghd of the restriction F |A δ . Let us show that there exists F ∈ Ham ω ρ (A) such that F |A δ is in U. We can assume ρ > 2/δ and so that there are δ > > > 0 satisfying > + 2ρ -1 . For every k ≥ 1, let:

ρ k := 2 k max{ -1 , ρ} and ρ k = --ρ -1 --2ρ -1 • ρ k .
By Lemma 3.12, there is a composition F := F 1 • • • • • F M of maps F j in T ω ρ j , or in [V ω ρ, , T ω ρ j , ] such that F |A δ ∈ U. Thus by Lemma 3.14, each map F j satisfies: sup

K ρ, F j -id < ρ -1 k .
Then by Lemma 3.15, we conclude that the composition F is in Ham ω ρ (A).

4 Smooth Lemmas

A consequence of Moser's trick

Let (S, ω) be a surface of finite volume. We recall that Symp ∞ 0 (S) denotes the space of compactly supported smooth symplectomorphisms of S. The following Folkloric theorem will be a key ingredient for the proof of Lemmas 2.2 and 2.7: Theorem 4.1. Let (D i ) 1≤i≤N and (D i ) 1≤i≤N be two families of disjoints smooth closed disks in int S, such that for every i, Leb (D i ) = D i . Then there exists f ∈ Symp ∞ 0 (S) such that f (D i ) = D i for every 1 ≤ i ≤ N .

We were not able to find a proper reference for a proof of this lemma: Katok [Kat73, Basic Lemma §3] and Anosov-Katok [AK70, thm 1.3] show versions of this theorem which are weaker in dimension 2. Yet they wrote that A. B. Krygin had a proof of such result (without reference). Others would identify this theorem as a direct application of Moser's trick. Theorem 4.1 is proved by induction using:

Figure 2 :

 2 Figure 2: A conjugacy which sends horizontal curve in different strips to distant ones in law.

  We bring the following new cases: Corollary D. The real entire symplectomorphisms F of C/Z × C of Theorems A and C have non-empty Julia set J which contains A 0 and none periodic point. In particular J = J * in each of these examples.

  (θ, y) → (θ + τ (y), y) where τ is an entire function satisfying supQρ |τ | < ρ -1 . • Let V ω ρ := V ∩ Ham ω ρ (A).In other words, it consists of maps of the form:(θ, y) → (θ, y+v(θ)) where v is an entire function satisfying sup Tρ |v| < ρ -1 and T v dLeb = 0 .

Figure 3 :

 3 Figure 3: Domains of C involved in the application of the Runge theorem.

These are called pseudo-rotation in[START_REF] Béguin | Pseudo-rotations of the open annulus[END_REF].

The notion of emergence is also defined for dissipative system.

Yet in the dissipative setting, a locally dense set of area contracting polynomial automorphism of R 2 has been show to have emergence of order 2 in[START_REF] Berger | Emergence of wandering stable components[END_REF].

This definition of order of the local emergence is at most the one of[START_REF] Berger | Complexities of differentiable dynamical systems[END_REF] were the limsup is inside the integral.

For every y ∈ A0, wee apply Picard's Theorem to the second coordinate projection of the entire symplectomorphism restricted to C/Z × {y} to conclude that it must be constant and so equal to y

Actually using rotation number theory, one can show F has no periodic point without this extra assumption, but this argument seems difficult to adapt to the complex settting.

Proposition 3.5. Let H 1 , H 2 ∈ C ∞ (A, R) and H = {H 1 , H 2 } be with respective symplectic gradients denoted by X 1 , X 2 and X. Then X equals the Lie bracket of [X 1 , X 2 ] = DX 2 (X 1 ) -DX 1 (X 2 ):

[X 1 , X 2 ] = X .

In order to prove Theorem 3.3 we will use: Lemma 3.6. Let δ > 0 and H ∈ C ∞ δ (A, R). For every neighborhood U of H in C ∞ (A, R), there exist a function C ∈ C ∞ δ (R, R) and 2N functions A 1 , . . . , A N , B 1 , . . . , B N ∈ C ∞ (R, R) such that the following is in U: Thus H has the sought form.

A consequence of the later lemma and Proposition 3.5 is:

Lemma 3.7. The map H of Lemma 3.6 satisfies that there exist functions (τ j ) 0≤j≤2N ∈ C ∞ δ (R, R) and (v j ) 1≤j≤2N ∈ C ∞ (T, R) such that with φ t H the time-t map of H and with:

T t j := (θ, y) → (θ + tτ j (y), y) and V t j := (θ, y) → (θ, y + tv j (θ))

it holds (at N fixed) in any C r -topology when t → 0:

Moreover the C 0 -norms of v j are bounded by 1.

Proof. In the setting of Lemma 3.6, let

Let X H j be the symplectic gradient of H j and X H the one of H. As H = j H j , we have:

Hence, denoting φ t H j the flot of X H j , in any C r -topology ∞ > r ≥ 1, we have when t → 0:

(3.1)

Now observe that with τ 0 := C (y) and T t 0 (θ, y) = (θ + tτ 0 (y), y), it holds id + tX H 0 (θ, y) = T t 0 (θ, y).

Also for 1 ≤ j ≤ 2N , we have H j of the form H j : (θ, y) ∈ A → {f j (θ), g j (y)}. Put:

v j := -f j and τ j := g j .

Note that sup |f j | = 1. With T t j (θ, y) = (θ + tτ j (y), y) and V t j (θ, y) = (θ, y + tv j (θ)), the symplectic gradients of (θ, y) → f j (θ) and (θ, y) → g j (y) are:

Then by Proposition 3.5, the symplectic gradient of H j is equal to the Lie backet of the symplectic gradients of f j and g j :

. Thus we have in any C r -topology:

Injecting the latter into Eq. (3.2) at time t 2 , it comes:

which is the sought result.

Proof of Theorem 3.3. For any f ∈ Ham ∞ δ (A) , there is a smooth family (H t ) t∈[0,1] of Hamiltonians H t ∈ C ∞ δ (A) which defines a family (f t ) t∈[0,1] such that f 0 = id, f 1 = f and ∂ t f t is the symplectic gradient of H t . Observe that for M large, we have:

)-C r -close to the time τ = M -1 map φ τ j of the vector field ∂ t f j/M . Thus in the C r -topology:

) . Note that φ τ j is the time τ of the symplectic gradient of H j/M ∈ C ∞ δ (A). By Lemmas 3.6 and 3.7, with t 2 := τ , each φ τ j is equal to a composition of elements in T δ and [V t , T δ ] up to precision o(τ ) = o(M -1 ). Thus f is C r -close to a composition of elements in T δ and [V t , T δ ] for any t > 0. We conclude by choosing t 2 < .

The analytic case: proof of Theorem 3.4

The proof of Theorem 3.4 follows basically the same lines as the one of Theorem 3.3, although we have to extend the bounds to a complex compact set and use the Runge theorem.

In this subsection, we fix 1 > δ > 0 and a sequence (ρ j ) j≥0 of numbers > 1 as in the statement of Theorem 3.4. For every n ≥ 1, put:

Then observe that the same proof as Lemma 3.6 gives:

Moreover the derivatives of the functions

Then by plugging Lemma 3.8 instead of Lemma 3.6 in the proof of Lemma 3.7 we obtain:

Lemma 3.9. The map H of Lemma 3.8 satisfies that there exist functions

H the time-t map of H and with:

it holds (at N fixed) in any C r -topology, when t → 0:

Moreover each v j is entire and satisfies

Using the latter lemma instead of Lemma 3.7 in the proof of Theorem 3.3 gives immediately:

We are now ready for the:

Proof of Theorem 3.4. Let 1 > δ > 0 and let (ρ j ) j≥0 be a sequence of numbers > 1 as in the statement of the theorem. As the map ρ → V ω ρ is decreasing, we can assume:

Let F ∈ Ham ∞ δ (A) and let U be a neighborhood of the restriction of F |A δ in the C ∞ -topology. By Lemma 3.10, there exists a composition

We recall that the support of each

is close to the one of F j , then Fj sends any small

Hence it suffices to show: Claim 3.11. For every j, there exists Fj in

Lemma 4.2. For any subsets D, D ⊂ int S, if D and D are smooth closed disks and Leb (D) = D , then there exists f ∈ Symp ∞ 0 (S) such that f (D) = D . Proof. First we consider an isotopy (g t ) t∈[0,1] of S with support in the interior of S and such that g 1 (D) = D , this isotopy can be constructed by retracting the disks to a tiny ones and moving one to the other. Each g t is a diffeomorphism that we shall transform to a symplectic map. Put D t := g t (D). Using a tubular neighborhood of ∂D t , it is easy to deform smoothly (g t ) t∈[0,1] so that g t preserves the volume form nearby ∂D t . Indeed it suffices to work in a tubular neighborhood of D t and tune the size of the normal component of g t .

So we can assume that (g t ) t∈[0,1] is a smooth isotopy of S such that g 1 (D) = D and g * t ω = ω nearby ∂S ∂D. To prove the lemma it suffices to define a map ψ 1 so that f := g 1 • ψ 1 leaves invariant ω and ψ 1 and so f is equal to the identity nearby ∂S ∂D.

We shall apply twice Moser's trick, one inside of D and resp. once outside D. Let A t := Leb D t /Leb D and resp. A t := Leb (S \ D t )/Leb (S \ D), where D t := g t (D). Observe that A 0 = A 1 = 1. This defines a smooth homotopy ω t := A -1 t • g * t ω of symplectic forms that agree with ω on the neighborhood of ∂D (resp. ∂D ∂S). Then by Moser's trick [MS17, Ex. 3.2.6], there exists a smooth isotopy ψ t : D → D (resp. S \ D → S \ D) such that: ψ 0 = id and ψ * t ω t = ω and ψ t is equal to the identity on a neighborhood of ∂D (resp. ∂D ∂S). Then

In particular (g 1 • ψ 1 ) * ω = ω. The outer and inner constructions of ψ 1 are equal to the identity nearby ∂D , so they fit together to define a diffeomorphism ψ 1 of S which satisfies the thought properties.

Proof of Theorem 4.1. By induction on n ≥ 1, we construct a map f n ∈ Symp ∞ 0 (S) which sends (D i ) 1≤i≤n to (D i ) 1≤i≤n . The step n = 1 is the Moser theorem. Let n > 1. Let S n := S \ i<n D i . By Lemma 4.2, there exists a map f ∈ Symp ∞ 0 (S n ) which sends f n-1 (D n ) to D n . We observe that f n := f • f n-1 satisfies the induction hypothesis.

Lemma for Anosov-Katok's theorem

Lemma 2.2 states that: Lemma 4.3. For every q ≥ 1 and > 0, there exists a map h ∈ Ham ∞ 0 (A) such that: 1. the map h is (1/q, 0)-periodic, 2. for every (θ, y) ∈ A the map h sends the one-dimensional measure Leb T×{y} to a measure which is -close to Leb A 0 .

Proof. As both Leb A 0 and each Leb T×{y} are (1/q, 0)-periodic for every q ≥ 1, it suffices to show the lemma in the case q = 1. Indeed then any q-covering of h will satisfy the lemma. Hence for > 0, it suffices to construct h ∈ Ham ∞ 0 (A) such that for every y ∈ I := [-1+ , 1-], the map h sends the one-dimensional Lebesgue probability measure Leb T×{y} to a measure which is -close to Leb A 0 . The construction is depicted Fig. 1.

For N = n 2 large, we consider the following collection of boxes (C k ) 0≤k≤N -1 :

Note that the family (C k ) k is disjoint, does not intersect {0} × I and that for every k we have:

Thus for every v > (1 -)(1 -/4) close to enough to (1 -)(1 -/4), there exists a disjoint family (D k ) 1≤k≤N such that each D k is a neighborhood C k in A 0 which does not intersect {0} × I, which is diffeomorphism to a close disk and whose volume is Leb

Note that the sets C k are disjoint, included in A 0 \ {0} × I, have the same Leb A 0 -volume equal to (1 -)(1 -/4)/n 2 and their diameters are < √ 5/n. Likewise, for v close enough to (1 -)(1 -/4)/n 2 , there exists a disjoint family (D k ) 1≤k≤N such that each D k ⊂ A 0 \ {0} × I is a neighborhood of C k which is diffeomorphic to a close disk and whose volume is v and whose diameter is < √ 5/n. By Theorem 4.1, there exists h ∈ Symp ∞ (A 0 ) which sends each D k to D k and which is equal to the identity nearby ∂A 0 . Furthermore we can assume that it is equal to the identity nearby {0} × I. Thus h ∈ Ham ∞ (A 0 ) and it can be extended to the identity to an element of Ham ∞ 0 (A). Then observe that the Kantorovitch-Wasserstein distance between h * Leb T×{y} and N -1 N k=1 δ z k is smaller than:

which is smaller than /2 for n large enough. We recall that the distance between N -1 N k=1 δ z k and Leb A 0 is < /2 so the distance between h * Leb T×{y} and Leb A 0 is < .

Lemma for emergence

Lemma 2.7 is: Lemma 4.4. For every 1 > > 0, there exist η > 0 arbitrarily small, an integer M ≥ exp(η -2+ ), a map h ∈ Ham ∞ (T × R/2Z) and a family (J ,i ) 1≤i≤M of disjoint segments of R/2Z such that:

(a) it holds Leb (I \ i J ,i ) = 2 M and Leb J ,i = (1 -) 2 M for every i, (b) for any j = i, y ∈ J ,i and y ∈ J ,j , the distance between the measures h * Leb T×{y} and h * Leb T×{y } is greater than η.

(c) h coincides with the identity on neighborhoods of {0} × R/2Z and T × {0}.

Proof. The proof of this lemma combines Theorem 4.1 and a development of [BB21, Prop 4.2]. The present construction is depicted Fig. 2. We fix > 0 small enough to satisfy two inequalities (see Eqs. (4.1) and (4.2)) independent of a large integer n ≥ 3 depending on . Let N := 2 • n 2 and let M be the integer part of (2N ) -1/4 e N/20 :

] .

Now we consider the family of boxes (B i,j ) 1≤i≤N/2,1≤j≤M defined by:

The sets (B i,j ) i,j are disjoint, included in T × R/2Z \ ({0} × R/2Z ∪ T × {0}) and have volume:

Note that (J ,j ) j satisfies (a). We are going to define a conservative map h which sends each box B i,j into a union of N much larger boxes ( Bk ) 1≤k≤N . Let us define ( Bk ) 1≤k≤N . As N = 2 • n 2 , there is a bijection:

Let:

) and have volume:

Now we shall determine in which Bk each B i,j is sent to. To visualize this attribution, one can interpret each box B i,j as a colored pearl, each row (B i,j ) 1≤i≤N/2 as a necklace and each Bk as a pearl case of same color, see Fig. 2. Hence a map h which sends each B i,j into a certain Bk define a coloring of each necklace. We are going to fix a coloring given by the lemma below. In the langage of colored necklace, it states that N colors suffices to color M necklaces of N/2 pearls each such that any pair of necklaces have at least a quarter of their pearls of different colors and such that each color is used approximately evenly among all the necklaces. Lemma 4.5. For every N = 4 • n 2 sufficiently large, there is a map: C : {1, . . . , N/2} × {1, . . . , M } → {1, . . . , N } such that:

(1) For every k ∈ {1, . . . , N }, it holds #C -1 ({k}) ≤ M (1 + 3 /n 2 )/2.

(2) For every j = j , it holds 2 N #{(i, i ) : C(i, j) = C(i , j )} < 3/4. This lemma is a development of the second step of [BB21, Prop 4.2]. It is proved below. By (1), for every 1 ≤ k ≤ N , it holds:

On the other hand, we have Leb B• = (1 -2 ) 2 /n 2 . We assume > 0 sufficiently small so that

Hence we have for every k ∈ {1, . . . , N }:

So there exists v greater and arbitrarily close to Leb B • := 2(1-3 /n 2 ) n 2

• (1-) M such that for every k:

For v small enough, for every (i, j), there is a neighborhood D i,j of B i,j of volume v which is diffeomorphic to a closed disk, such that (D i,j ) i,j are pairwise disjoint and disjoint from {0} × R/2Z ∪ T × {0}. Also for v small enough, for every 1 ≤ k ≤ N , there is a family ( Di,j ) (i,j)∈C -1 ({k}) of disjoint disks which are included in Bk and of volume v. Now we apply Theorem 4.1 which asserts the existence of h ∈ Ham ∞ (T × R/2Z) which sends each D i,j to Di,j and such that h coincides with the identity on neighborhoods of {0} × R/2Z and T × {0}. Hence Property (c) is satisfied. Let us verify Property (b).

For every i and y ∈ J ,j , the circles T×{y} intersects each D i,j at a set of length > 2(1-3 /n 2 )/N and no more than a subset of T × {y} of measure < 3 /n 2 is not included in some D i,j . Thus for any j = j and y ∈ J ,j , the distance between the measures h * Leb T×{y} and h * Leb T×{y } is at least:

We assume > 0 sufficiently small so that

Then the distance between the measures h * Leb T×{y} and h * Leb T×{y } is at least:

As is fixed, when N is large, then η is small and so

This proves the lemma.

Proof of Lemma 4.5. We consider the space:

We can associate to each element f ∈ F a coloring of a necklace formed by N/2 pearls. Indeed we can set that the color i is represented in the necklace iff f (i) = 1. This defines an increasing map:

We endow the space F with the Hamming distance:

Hamm(f, g) := #{i ∈ {1, . . . , N }|f (i) = g(i)} .

Now chose randomly M elements (f j ) 1≤j≤M of F, for the equidistributed measure on the finite set F and we define:

C : (i, j) ∈ {1, . . . , N/2} × {1, . . . , M } → C f j (i) ∈ {1, . . . , N } .

Let us show that the map C satisfies the statement of the lemma with positive probability. For every k ∈ {1, . . . , N }, the probability of the event {f j (k) = 1} is 1/2 for every j. Thus, with := 3 /n 2 , by Bernstein's inequality the probability of the event {#C -1 ({k}) ≤ M (1 + )/2} is at most:

.

Thus the probability that Property (1) fails is ≤ N • p 0 which is small when N is large. Given j = j , the probability p that #{(i, i ) : C(i, j) = C(i , j )} ≥ 3N/8 is equal to #B/#F where B is a ball of radius N/4 in F. The following bound is obtained by first relaxing the condition f (i) = N/2 and then applying Berstein's inequality:

≤ exp(-3 28N ) ≤ exp(-N 10 ) .

On the other hand, the cardinality of F is N N/2 ≥ (2N ) -1/2 2 N (by Stirling formula). Thus:

The probability to have obtained a map C which does not satisfy property (2) of the lemma is:

Hence the probability that both properties (1) and (2) fail is at most close to 1/2. So there exists indeed C satisfying both properties.