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ASYMPTOTIC COARSE LIPSCHITZ EQUIVALENCE

BRUNO M. BRAGA AND GILLES LANCIEN

Abstract. We introduce the notion of asymptotic coarse Lipschitz equiva-
lence of metric spaces. We show that it is strictly weaker than coarse Lips-
chitz equivalence. We study its impact on the asymptotic dimension of metric
spaces. Then we focus on Banach spaces. We prove that, for 2 ≤ p <∞, being
linearly isomorphic to `p is stable under asymptotic coarse Lipschitz equiva-
lences. Finally, we establish a version of the Gorelik principle in this setting
and apply it to prove the stability of various properties of asymptotic uniform
smoothness of Banach spaces under asymptotic coarse Lipschitz equivalences.

1. Introduction

As Banach spaces are normed linear spaces, linear isometries are the correct
kind of equivalence if one wants to keep a complete track of all aspects of Banach
spaces. After linear isometries, linear isomorphisms are the next natural equivalence
between Banach spaces which still keeps track of their linear structure; and this is
usually the notion of equivalence Banach space theorists are more concerned with.
However, Banach spaces are in particular metric spaces, so (nonlinear) isometries
and even Lipschitz equivalences are also natural notions to consider. For a long
time, understanding the minimal properties a certain notion of equivalence can
have and still generate an interesting theory has been the topic of intensive study
for researches in Banach space theory (e.g., [MU32, Enf70, Rib76, Rib84, JLS96,
Kal12]). The first milestone in this area is probably the Mazur-Ulam’s theorem,
which says that (nonlinear) isometries between (real) Banach spaces which preserve
zero are automatically linear (see [MU32]). In the 70’s, P. Enflo showed that the
linear structure of Hilbert spaces is determined by a much weaker notion: as long
as a Banach space X is uniformly equivalent to `2,1 it must be (linearly) isomorphic
to it (see [Enf70, Theorem 6.3.1]). In the last few decades, researches have been
interested in an even weaker notion, called coarse Lipschitz equivalence, which is an
equivalence that only takes into account large scale geometric aspects of the spaces
(the precise definition will be given in the next paragraph). As we explain in details
below, this paper concerns an even weaker notion of large scale equivalence between
metric spaces which turns out to still be strong enough so that many linear aspects
of Banach spaces can be recovered by it.

The large scale geometry of metric spaces is often regarded as the study of metric
spaces by observers positioned very far away from the objects of interest. In this
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1I.e., there is a bijection X → `2 which is uniformly continuous and so is its inverse.

1



2 B. M. BRAGA AND G. LANCIEN

sense, the local geometric aspects are not of interest and global aspects are the focus
of the study. One of the main consequences of this approach is that different events
happening at a uniformly bounded distance from each other should be treated as
being “morally” the same. To formalize this, we have the concept of closeness
between maps into a metric space. Precisely, given a set X, a metric space (Y, ∂),
and maps f, g : X → Y , we say that f is close to g, and write f ∼ g, if

sup
x∈X

∂(f(x), g(x)) <∞.

So, ∼ is an equivalence relation between maps X → Y which weakens the relation
of equality. Moreover, if (X, d) is also a metric space, then a function f : X → Y
has a modulus of uniform continuity ωf : [0,∞)→ [0,∞) given by

ωf (t) = sup{∂(f(x), f(x′)) | d(x, x′) ≤ t} for all t ≥ 0.
The map f is then called coarse Lipschitz if ωf is bounded above by an affine
function, i.e., if there is L > 0 such that

ωf (t) ≤ Lt+ L for all t ≥ 0.
The map f is called a coarse Lipschitz equivalence if it is coarse Lipschitz and
there is a coarse Lipschitz map g : Y → X such that g ◦ f and f ◦ g are close
to the identities IdX and IdY , respectively. A coarse Lipschitz equivalence is also
often referred to as a quasi-isometry in the literature; especially in geometric group
theory.

The main focus of this paper is to study a weakening of the closeness relation
as well as the large scale geometry induced by it. Moreover, our study will have a
special focus on Banach spaces. Precisely, the following is the main novel definition
in these notes.

Definition 1.1. Let (X, d) and (Y, ∂) be metric spaces. We say that maps f, g :
X → Y are asymptotically close, and write f ∼∞ g if, for some x0 ∈ X, we have
that

lim
x→∞

∂(f(x), g(x))
d(x, x0) = 0.

We adopt the convention that the above limit is always 0, when X is a bounded
metric space. In other words, if X is bounded, two maps f, g : X → Y are always
asymptotically close.

It is evident that the definition above is weaker than the one of closeness and
that it is independent of the point x0 above (Proposition 2.2).

Definition 1.2. We say that metric spaces X and Y are asymptotically coarse
Lipschitz equivalent to each other if there are coarse Lipschitz maps f : X → Y
and g : Y → X such that g ◦ f and f ◦ g are asymptotically close to IdX and
IdY , respectively. The map f (and g) is called an asymptotic coarse Lipschitz
equivalence.

Note that if X and Y are bounded, the above assumptions are satisfied by any
maps f : X → Y and g : Y → X.

We show that asymptotic coarse Lipschitz equivalence is an equivalence relation
in the class of metric spaces (Proposition 2.6). Notice that a coarse Lipschitz
equivalence f is always an asymptotic coarse Lipschitz equivalence. The converse
implication is however not true, as we see in Example 2.7 below. In fact, being
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asymptotic coarse Lipschitz equivalent is strictly weaker than being coarse Lipschitz
equivalent: there are asymptotically coarse Lipschitz equivalent metric spaces X
and Y which are not even coarsely equivalent; see Example 2.9 for an example
where AsyDim(X) 6= AsyDim(Y ) and Proposition 2.11 for a more sophisticated
example where AsyDim(X) = AsyDim(Y ) (where AsyDim stands for asymptotic
dimension, see Subsection 2.2 for definitions).

Then, we focus on asymptotic coarse Lipschitz equivalences between Banach
spaces. First, in Sections 3 and 4 we prove.
Theorem A (Proved as Corollary 4.6 below). If a Banach space X is asymptoti-
cally coarse Lipschitz equivalent to `p, for p ∈ [2,∞), then X is linearly isomorphic
to `p.

In fact, we prove a stronger result. We show that the asymptotically coarse
Lipschitz strucutre of `p1 ⊕ . . .⊕ `pn completely determines its linear structure for
all p1, . . . , pn ∈ [2,∞) (see Theorem 4.5). Our methods are not enough to obtain
the analogous result for p’s smaller than 2. This happens since the usual midpoint
argument used in this range is not enough for this context (see Remark 4.4 below
for a detailed discussion about that).

Finally, in Section 5, we establish a variant of the Gorelik principle for asymptotic
coarse Lipschitz equivalences. We apply it to show that some asymptotic linear
properties of Banach spaces are also preserved under asymptotic coarse Lipschitz
equivalences.2 To state our main result along these lines, we start recalling the
definition of asymptotic uniform smoothness. Given a Banach space X, we denote
by BX its closed unit ball, SX its unit sphere and cof(X) the set of its closed
finite codimensional subspaces. Then, we define the modulus of asymptotic uniform
smoothness of X by letting

ρ̄X(τ) = sup
x∈SX

inf
Y ∈cof(X)

sup
y∈SY

‖x+ τy‖ − 1

for all τ ≥ 0. The Banach space X is called asymptotically uniformly smooth,
abbreviated as AUS, if

lim
τ→0

ρ̄X(τ)
τ

= 0.

It is known that if X is AUS, then there is p ∈ (1,∞) such that ρ̄X(τ) ≤ Cτp

for all τ ≥ (0, 1) (see [KOS99] or [Raj13, Theorem 2.1]); in this case, X is called
p-asymptotically uniformly smooth, abbreviated as p-AUS. Let us also say that X
is ∞-AUS (or asymptotically uniformly flat, AUF in short) if there exists τ0 > 0
such that ρ̄X(τ) = 0 for all τ < τ0.

Notice that AUSness and p-AUSness are not isomorphic properties, so equivalent
norms may disagree on this matter. If a Banach space X has an equivalent norm
making it AUS, we say that X is AUSable. We define p-AUSable analogously.

The following is our main result about preservation of asymptotic structures.
Theorem B. Let p ∈ (1,∞] and let X be a p-AUS Banach space. If a Banach
space Y is asymptotically coarse Lipschitz equivalent to X, then Y is p′-AUSable
for all p′ ∈ (1, p).

2We point out to the reader that the word “asymptotic” may be a little misleading here. Indeed,
while our choice for this word in the definition of our equivalences is motivated by the notion of
asymptotic closeness, ∼∞, asympotitic properties of Banach spaces are usually properties which
depend on finite codimensional subspaces only.
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We point out that Theorem B cannot be improved to say that p-AUSness is
preserved by asymptotically coarse Lipschitz equivalence. Indeed, N. Kalton showed
that p-AUSness is not stable even under the stronger notion of coarse Lipschitz
equivalence (see [Kal13, Theorem 5.4 and Remark in page 170]).

Corollary C. AUSableness is preserved by asymptotically coarse Lipschitz equiv-
alences.

We finish this introduction with a quick discussion about Theorem B above. For
p ∈ (1,∞], let us denote by Tp the class of all p-AUSable Banach spaces. In the
literature of Banach spaces, one often studies some small variations of the class
Tp; this is important both to better understand Tp as well as to pin down precise
asymptotic properties which are preserved by different notions of equivalences be-
tween Banach spaces. For p ∈ (1,∞], some of those variations on the definition of
p-AUSness give rise to classes of Banach spaces denoted by Ap and Np (we refer the
reader to Subsection 5.1 for precise definitions). Those classes are related by the
following inclusions

Tp ( Ap ( Np (
⋂
p′<p

Tp′ , if p ∈ (1,∞) and T∞ ( A∞ = N∞ (
⋂
p′<∞

Tp′ .

In Section 5, we actually prove a stronger technical result which, together with
the inclusions above, implies Theorem B. Precisely, we shall prove that, for p ∈
(1,∞], both classes Ap and Np are preserved by asymptotically coarse Lipschitz
equivalences (see Theorem 5.7).

2. Preliminaries

2.1. Basic properties. In this subsection, we prove several basic properties of the
new definitions given in the introduction. The material proved in here will be used
throughout the rest of the paper and it serves as a warm up for the reader to get
used to those new definitions. We start with a terminology which will be useful.

Definition 2.1. Let X and Y be asymptotically coarse Lipschitz equivalent metric
spaces and let f : X → Y and g : Y → X witness this equivalence, i.e., f and g are
as in Definition 1.2. We say that g is an asymptotic coarse Lipschitz inverse of f
and vice-versa.

Proposition 2.2. Let (X, d) and (Y, ∂) be metric spaces, and let f, g : X → Y be
maps. The following are equivalent:

(1) For some x0 ∈ X, we have that

lim
x→∞

∂(f(x), g(x))
d(x, x0) = 0.

(2) For all x0 ∈ X, we have that

lim
x→∞

∂(f(x), g(x))
d(x, x0) = 0.

Proof. Suppose (1) holds for x0 ∈ X and fix x1 ∈ X. First, if X has finite diameter,
the result follows immediately from our convention. If not, then, for any x ∈ X
with d(x, x0) > 2d(x1, x0), we have that

∂(f(x), g(x))
d(x, x1) ≤ ∂(f(x), g(x))

d(x, x0)− d(x1, x0) ≤ 2∂(f(x), g(x))
d(x, x0)



ASYMPTOTIC COARSE LIPSCHITZ EQUIVALENCE 5

and the result follows. �

As mentioned in the introduction, asymptotic coarse Lipschitz equivalence is an
equivalence relation on the class of metric spaces. Since reflexivity and symmetry
are evident, we only need to notice its transitivity. For that, we start by proving a
preliminary result which will be useful throughout these notes.

Proposition 2.3. Let (X, d) and (Y, ∂) be metric spaces, and let f : X → Y and
g : Y → X be coarse Lipschitz maps with g ◦ f ∼∞ IdX . For each x0 ∈ X and
θ > 0, there is L > 0, such that for all x, x′ ∈ X we have that

d(x, x′) > θmax{d(x, x0), d(x′, x0)} implies ∂(f(x), f(x′)) ≥ 1
L
d(x, x′)− L.

Proof. Suppose the proposition fails for x0 ∈ X and θ > 0. So, there are sequences
(xn)n, (x′n)n ⊂ X such that

(1) d(xn, x′n) > θmax{d(xn, x0), d(x′n, x0)} for all n ∈ N, and
(2) ∂(f(xn), f(x′n)) ≤ 1

nd(xn, x′n)− n for all n ∈ N.

In particular, (2) implies that limn d(xn, x′n) =∞.
Let g : Y → X be coarse Lipschitz and such that g ◦ f ∼∞ IdX and fix M > 0

such that
d(g(y), g(y′)) ≤M∂(y, y′) +M

for all y, y′ ∈ Y . So, (2) above gives that

d(g(f(xn)), g(f(x′n))) ≤ M

n
d(xn, x′n) +M

for all n ∈ N.

Claim 2.4. Passing to a subsequence if necessary, we can assume that

d(g(f(xn)), xn) ≤ d(xn, x′n)
3 and d(g(f(x′n)), x′n) ≤ d(xn, x′n)

3
for all n ∈ N.

Proof. It is enough to show the claim holds for (xn)n. Suppose first that (xn)n is
bounded. In this case, as f and g are coarse, we must have that (d(g(f(xn)), xn))n
is bounded. Then, as limn d(xn, x′n) =∞, there is n0 ∈ N such that

d(g(f(xn)), xn) ≤ d(xn, x′n)
3

for all n > n0.
Suppose now (xn)n is unbounded. Then, passing to a subsequence, we assume

that limn d(xn, x0) =∞. As g ◦ f ∼∞ IdX , there is n0 ∈ N such that

d(g(f(xn)), xn) ≤ θd(xn, x0)
3

for all n > n0. As d(xn, x′n) is larger than θd(xn, x0), we conclude that

d(g(f(xn)), xn) ≤ d(xn, x′n)
3

for all n > n0. �
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Passing to a subsequence, we now assume the previous claim holds for (xn)n and
(x′n)n. We then conclude that

M

n
d(xn, x′n) +M ≥ d(g(f(xn)), g(f(x′n)))

≥ d(xn, x′n)− d(g(f(xn)), xn)− d(g(f(x′n)), x′n)

≥ d(xn, x′n)
3

for all n > n0. This gives us a contradiction since limn d(xn, x′n) =∞. �

Next we isolate an immediate corollary of Proposition 2.3.

Corollary 2.5. Let (X, d) and (Y, ∂) be metric spaces and f : X → Y be an
asymptotic coarse Lipschitz equivalence. Then, for all x0 ∈ X there is L > 0 such
that

∂(f(x), f(x0)) ≥ 1
L
d(x, x0)− L

for all x ∈ X. In particular, for all x0 ∈ X we have that
lim
x→∞

∂(f(x), f(x0)) =∞.

Proposition 2.6. The asymptotically coarse Lipschitz equivalence is an equivalence
relation in the class of metric spaces.

Proof. Reflexivity and symmetry of this relation are evident; so, we only prove
its transitivity. For this, let (X, dX), (Y, dY ), and (Z, dZ) be metric spaces, and
let f : X → Y and g : Y → Z be asymptotic coarse Lipschitz equivalences with
asymptotic coarse Lipschitz inverses f ′ : Y → X and g′ : Z → Y , respectively. As
f and f ′ are coarse Lipschitz, fix L > 0 such that for all t ≥ 0,

ωf (t) ≤ Lt+ L and ωf ′(t) ≤ Lt+ L.

Let us show that f ′ ◦ g′ ◦ g ◦ f ∼∞ IdX . For that, fix x0 ∈ X and notice that
dX(f ′(g′(g(f(x)))), x)

dX(x, x0) ≤ dX(f ′(g′(g(f(x)))), f ′(f(x))) + dX(f ′(f(x)), x)
dX(x, x0)

≤ LdY (g′(g(f(x))), f(x)) + L+ dX(f ′(f(x)), x)
dX(x, x0)

for all x ∈ X. By Corollary 2.5, we have that limx→∞ dY (f(x), f(x0)) =∞. Hence,
since g′ ◦ g ∼∞ IdY , it follows that

lim sup
x→∞

dY (g′(g(f(x))), f(x))
dX(x, x0) = lim sup

x→∞

(
dY (g′(g(f(x))), f(x))
dY (f(x), f(x0)) · dY (f(x), f(x0))

dX(x, x0)

)
≤ lim sup

x→∞

(
dY (g′(g(f(x))), f(x))
dY (f(x), f(x0)) · LdX(x, x0) + L

dX(x, x0)

)
= 0.

Therefore, as f ′ ◦ f ∼∞ IdX , we conclude that

lim
x→x0

dX(f ′(g′(g(f(x)))), x)
dX(x, x0) = 0.

This shows that f ′ ◦ g′ ◦ g ◦ g ∼∞ IdX and a completely symmetric argument shows
that g ◦ f ◦ f ′ ◦ g′ ∼∞ IdY . Since g ◦ f and f ′ ◦ g′ are coarse Lipschitz, we conclude
that X and Y are coarse Lipschitz equivalent. �
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2.2. Some examples. Obviously, any coarse Lipschitz equivalence is an asymp-
totic coarse Lispchitz equivalence. In this subsection, we provide some nontrivial
examples of asymptotic coarse Lipschitz equivalences, i.e., examples which are not
coarse Lipschitz equivalences (see also Subsection 2.3 for other such example). In
fact, the examples will be of spaces which are not even coarsely equivalent: re-
call, (X, d) and (Y, ∂) are coarsely equivalent if there are maps f : X → Y and
g : Y → X such that both f and g are coarse, i.e., ωf (t), ωg(t) < ∞ for all t ≥ 0,
and g ◦ f ∼ IdX and f ◦ g ∼ IdY .

Example 2.7. Asymptotic coarse Lipschitz equivalences do not need to be coarse
(Lipschitz) embeddings even in the class of Banach spaces; recall, a coarse em-
bedding (resp. coarse Lipschitz embedding) is a coarse equivalence (resp. coarse
Lipschitz equivalence with a subset. Let f : R → R be the identity map and
g : R→ R be the continuous piecewise affine function determined by the following
properties:

(1) g(x) = x for all x ∈ [−2, 2],
(2) g is constant on the intervals [2n, 2n + n] and [−2n − n,−2n] for all n ∈ N,

and
(3) g′(x) = 1 on the intervals (2n+n, 2n+1) and (−2n+1,−2n−n) for all n ∈ N.

Both f and g are clearly 1-Lipschitz and
|x− f(g(x))| = |x− g(f(x))| ≤ 1 + . . .+ n

for all x in either [2n, 2n+1] or [−2n+1,−2n]. Therefore,
f ◦ g ∼∞ IdX and g ◦ f ∼∞ IdY .

However, it is clear that
inf

‖x−x′‖=t
‖g(x)− g(x′)‖ = 0

for all t > 0. So, g cannot be a coarse Lipschitz embedding even though g is an
asymptotic coarse Lipschitz equivalence. Moreover, it is clear that f can be modified
(similarly to the definition of g), so that f is not a coarse Lipschitz embedding either.

Remark 2.8. A map f : X → Y between Banach spaces is called almost uncol-
lapsed if there is t > 0 such that

inf
‖x−x′‖=t

‖f(x)− f(x′)‖ > 0;

see [Ros17] and [Bra18] for more on almost uncollapsed maps (we restrict this
definition to Banach spaces so that the condition “d(x, x′) = ‖x − x′‖ = t” is not
vacuous). Notice that the requirement on the map f not collapsing distances in the
sense above is much weaker than the one of f being a coarse (Lipschitz) embedding
(see [Bra18, Proposition 2.5]). Example 2.7 shows much more than the fact that
asymptotic coarse Lipschitz equivalences do not need to be coarse embeddings: they
do not even need to be almost uncollapsed.

Although Example 2.7 shows that an asymptotic coarse Lipschitz equivalence
between X and Y does not need to be a coarse Lipschitz equivalence, the spaces
in this example, i.e., X = Y = R, are obviously coarse Lipschitz equivalent. In
the next example, we show that this does not need to be the case: asymptotic
coarse Lipschitz equivalence of metric spaces is strictly weaker than coarse Lipschitz
equivalence. Before presenting the example, we recall the definition of asymptotic
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dimension. Recall that, if (X, d) is a metric space and n ∈ N ∪ {0}, then X has
asymptotic dimension at most n ∈ N if for all r > 0 there are families U0, . . . ,Un of
subsets of X such that

(1) X =
⋃n
i=0
⋃
U∈Ui U ,

(2) d(U, V ) := inf{d(x, y), (x, y) ∈ U × V } > r for all i ∈ {0, . . . , n} and all
distinct U, V ∈ Ui, and

(3) supU∈Ui diam(U) <∞ for all i ∈ {0, . . . , n}.
The asymptotic dimension of X, denoted by AsyDim(X), is then defined to be the
minimal n ∈ N ∪ {0} such that X has asymptotic dimension at most n (we refer
the reader to [NY12] for more on asymptotic dimension).

Example 2.9. Consider
X = {2n | n ∈ N} and Y = {(2n, j) | n ∈ N, j ∈ {0, 1, . . . , n}}

endowed with their canonical metrics. Then X and Y are asymptotically coarse
Lipschitz equivalent; but not coarse Lipschitz equivalent, in fact, they are not even
coarsely equivalent. Indeed, the maps f : X → Y and g : Y → X defined by setting

f(2n) = (2n, 0) and g(2n, j) = 2n

for all n ∈ N and all j ∈ {0, . . . , n} are clear witnesses of the asymptotic coarse
Lipschitz equivalence of X and Y . In particular, this implies that the asymp-
totic dimension of metric spaces is not preserved under asymptotic coarse Lipschitz
equivalence. Indeed X has asymptotic dimension 0 and Y has asymptotic dimen-
sion 1, while asymptotic dimension is preserved by coarse Lipschitz embeddings
([NY12, Proposition 2.2.4 and Theorem 2.2.5]).

Remark 2.10. As, under the optics of coarse geometry, {2n | n ∈ N} is the smallest
unbounded metric space3, Example 2.9 shows that containing isometric copies of
({0, . . . , n})∞n=1 imposes no restriction for asymptotic coarse Lipschitz equivalences.
On the other hand, containing a coarse copy of N does impose some restriction.
Indeed, it follows immediately from Corollary 2.5 that if N coarsely embeds into
X and X is asymptotically coarse Lipschitz equivalent to Y , then there is a coarse
(and therefore Lipschitz) map from N to Y with unbounded image. It is easy to
see that such a map from N to {2n | n ∈ N} does not exist. Therefore, {2n | n ∈ N}
cannot be asymptotically coarse Lipschitz equivalent to any metric space containing
a coarse copy of N.

2.3. A more robust example. As we have seen in Example 2.9, the notion of
asymptotic coarse Lipschitz equivalence is strictly weaker than the one of coarse
Lipschitz equivalence. In this subsection, we take a deeper look at this and accen-
tuate this difference even further. In fact, Example 2.9 shows that there are metric
spaces X and Y which are not coarse Lipschitz equivalent, but are asymptotically
coarse Lipschitz equivalent. However, the space Y presented therein does not even
coarsely embed into X. Moreover, it is easy to notice that, for such spaces, there
is not even a coarse map Y → X which is also uncollapsed.4 In this subsection, we
show that we can take asymptotic coarse Lipschitz equivalences to be much more

3The word “smallest” is appropriate here since any unbounded metric space contains a coarse
copy of {2n | n ∈ N}.
4A map f : (X, d)→ (Y, ∂) is uncollapsed if there is r > 0 such that infd(x,x′)≥r ∂(f(x), f(x′)) > 0
(cf. Remark 2.8).
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rigid and still not imply that the metric spaces are even coarsely equivalent to each
other (see Proposition 2.3).

Let (X, d) and (Y, ∂) be metric spaces, and let f : X → Y be a map. For each
s > 0,

Exps(f) = inf
{
d(f(x), f(z))

d(x, z) | d(x, z) ≥ s
}

(here we use the convention that inf ∅ =∞), and we let
Exp∞(f) = sup

s>0
Exps(f).

Notice that, since Exps increases as s increases, we have Exp∞(f) = lims→∞ Exps(f).

Proposition 2.11. Let X and Y be metric spaces, and f : X → Y and g : Y →
X be coarse Lipschitz maps. If Exp∞(g ◦ f) > 0, then f is a coarse Lipschitz
embedding.5

Proof. If f is not a coarse Lipschitz embedding, there are (xn)n and (zn)n in X
such that

∂(f(xn), f(zn)) ≤ 1
n
d(xn, zn)− n

for all n ∈ N. In particular, limn d(xn, zn) = ∞. As g is coarse Lipschitz, there is
L > 0 so that ωg(t) ≤ Lt+ L for all t > 0. Hence,

d(g(f(xn)), g(f(zn)))
d(xn, zn) ≤ Ln−1d(xn, zn) + L

d(xn, zn) ≤ L

n
+ L

d(xn, zn) → 0,

which contradicts that Exp∞(g ◦ f) > 0. �

Remark 2.12. Recall that the asymptotic dimension of a given metric space is
always an upper bound for the asymptotic dimension of any metric space which
coarsely embeds in it ([NY12, Proposition 2.2.4 and Theorem 2.2.5]). Hence, Exam-
ple 2.9 cannot be improved to hold for some asymptotic coarse Lispchitz equivalence
also satisfying that Exp(f ◦ g) > 0 and Exp(g ◦ f) > 0.

The next proposition shows that the asymptotically coarse Lipschitz equivalences
can be much more rigid and still not force the spaces to be coarsely equivalent.

Proposition 2.13. There are metric spaces X and Y which are not coarsely equiv-
alent but such that there is an asymptotic coarse Lipschitz equivalence f : X → Y
with asymptotic coarse Lipschitz inverse g : Y → X such that Exp(f ◦ g) > 0 and
Exp(g ◦ f) > 0. In particular, both f and g are coarse Lipschitz embeddings and
AsyDim(X) = AsyDim(Y ).

Proof. Let
X = {(x+ log(y + 1), y) | (x, y) ∈ [0,∞)2}

and
Y = X ∪

(
{0} × [0,∞)

)
,

and consider X and Y with their standard metrics inherited from R2. Let f : X →
Y be the inclusion map and let g : Y → X be given by

g(x, y) = (x+ log(y + 1), y)

5A completely analogous proof will show that if f and g are only assumed to be coarse, then f is
a coarse embedding.
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for all (x, y) ∈ Y . Being the inclusion, f is coarse Lipschitz and, since the logarithm
is a coarse Lipschitz function on [1,∞), so is g.

We now notice that f and g are asymptotic coarse Lipschitz inverses of each
other. Since

‖g ◦ f(x, x′)− (x, x′)‖ = ‖(log(x′ + 1)), 0)‖ ≤ log(‖(x, x′)‖+ 1)
and lims→∞ log(s+ 1)/s = 0, it follows that g ◦ f ∼∞ IdX . Moreover, since
‖g ◦ f(x, x′)− g ◦ f(z, z′)‖ ≥ ‖(x, x′)− (z, z′)‖ − | log(x′ + 1)− log(z′ + 1)|,

it also follows that Exp∞(g ◦ f) > 0. Analogously, we have that f ◦ g ∼∞ IdY and
Exp∞(f ◦ g) > 0.

Let us now notice that X and Y are not coarsely equivalent. Suppose towards
a contradiction that there are coarse maps f : X → Y and g : Y → X such that
g ◦ f ∼ IdX and f ◦ g ∼ IdY . Given x ∈ X and r > 0, we let B(x, r) = {z ∈ X |
d(x, z) ≤ r}. Since g : Y → X is a coarse equivalence, we have that for all s > 0
there is r > 0 such that

‖(y, y′)− (z, z′)‖ > s implies ‖g(y, y′)− g(z, z′)‖ > r,

for all (y, y′), (z, z′) ∈ Y . Therefore, we must have
lim
t→∞

d(g(0, t)− g(X)) =∞.

So, we can pick a sequence (yn)n of elements in [0,∞) such that
(2.1) B(g(0, yn), n) ∩

(
g(Y ) \ g({0} × [0,∞))

)
= ∅

for all n ∈ N. Let
Z = g({0} × [0,∞)) ∪

⋃
n

(B(g(0, yn), n) ∩X).

Let h = g � {0}×[0,∞); so, h is a coarse embedding. As g is a coarse equivalence,
its image is cobounded, i.e., supx∈X d(x, g(Y )) <∞. Therefore, it follows from (2.1)
that h : {0} × [0,∞) → Z is a coarse equivalence. This is a contradiction since
{0}× [0,∞) has asymptotic dimension 1, Z has asymptotic dimension 2, and coarse
equivalences preserve asymptotic dimension ([NY12, Theorem 2.2.5]). �

Remark 2.14. We present here another approach to obtain that X and Y are
not coarsely equivalent in the previous proposition. We can introduce the following
coarse property: a metric space (X, d) is said to be coarsely connected at infinity
if there is s > 0 such that for all bounded A ⊂ X there exists another bounded
B ⊂ X such that any x, y ∈ X \ B can be connected by a discrete path x0 =
x, x1, . . . , xn = y such that xi 6∈ A and d(xi, xi−1) ≤ s for all i ∈ {1, . . . , n}.

It is easy to show that this is a coarse property, i.e., it is preserved by coarse
equivalences. But while X in the previous example has it, Y does not.

Notice that both restrictions in the previous proposition and in the previous
remark only work for metric spaces with asymptotic dimension at least 1 (indeed,
the existence of the paths in the remark above implies either that X is bounded or
that X has asymptotic dimension at least 1). Moreover, Example 2.9 falls in the
same scenario. This justifies the following problem.

Problem 2.15. Let X and Y be asymptotically coarse Lipschitz equivalent metric
spaces with asymptotic dimension zero. Does it follow that X and Y are coarse
(Lipschitz) equivalent?
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3. Banach spaces and behavior under ultraproducts

3.1. Comparing asymptotic coarse Lipschitz and coarse Lipschitz equiva-
lences. The metric spaces of main interest in this paper are Banach spaces. From
now own, we will study the asymptotic coarse Lipschitz geometry of Banach spaces
and show that several of the results present in the coarse Lipschitz theory are still
valid under this weaker notion. As a warm up, we start with a simple result about
asymptotic coarse Lipschitz equivalences which also satisfy the extra assumption
that Exp(f ◦ g) > 0 and Exp(g ◦ f) > 0.

Proposition 3.1. Let X and Y be Banach spaces, and f : X → Y be an asymptotic
coarse Lipschitz equivalence with asymptotic coarse Lipschitz inverse g : Y → X.
Suppose also that Exp(f ◦g) > 0 and Exp(g ◦f) > 0. Then dim(X) = dim(Y ) and,
if dim(X) <∞, f (and g) are coarse Lipschitz equivalences.

Proof. By Proposition 2.11, both f and g are coarse Lipschitz embeddings and
dim(X) = dim(Y ) follows. If moreover dim(X) < ∞ the result follows since
any coarse Lipschitz embedding h : Rn → Rn is automatically cobounded, i.e.,
supy∈Rn d(y, h(Rn)) <∞ (see [Kap14, Exercise 2.27]), and therefore a coarse Lips-
chitz equivalence. �

As we will see in Corollary 3.6 below, the first statement of the previous propo-
sition also holds for asymptotic coarse Lipschitz equivalences. However, as seen in
Example 2.7, the second does not. We conclude now this very short subsection
with two questions.

Problem 3.2. Let X and Y be two asymptotically coarse Lipschitz equivalent Ba-
nach spaces. Are they necessarily coarse Lipschitz equivalent?

Problem 3.3. Let X and Y be Banach spaces and let f : X → Y be as in Propo-
sition 3.1. Must f be a coarse Lipschitz equivalence? If not, does it follow that the
existence of such f implies the existence of a coarse Lipschitz equivalence X → Y ?

3.2. Ultrapowers and asymptotic coarse Lipschitz equivalences. It is well
known that coarse equivalences generate Lipschitz equivalences between ultraprod-
ucts. In the next lemma, we show that the same holds for asymptotic coarse
Lipschitz equivalences. Recall, if X is a Banach space and U is an ultrafilter on N,
we denote the ultraproduct of X with respect to U by XN/U . We refer the reader
to [AK06, Section 11.1] for the theory of ultraproducts of Banach spaces.

Proposition 3.4. Let X and Y be Banach spaces and U be a nonprincipal ultrafilter
on N. Let f : X → Y and g : Y → X be coarse Lipschitz maps such that f ◦ g ∼∞
IdY . Define F : XN/U → Y N/U and G : Y N/U → XN/U by

F ([(xn)n]) =
[(f(nxn)

n

)
n

]
, for all [(xn)n] ∈ XN/U

G([(yn)n]) =
[(g(nyn)

n

)
n

]
, for all [(yn)n] ∈ Y N/U .

Then F and G are Lipschitz and F ◦G = IdY N/U .
In particular, F is surjective and if, furthermore, we have that g ◦ f ∼∞ IdX ,

then F is a Lipschitz equivalence with Lipschitz inverse G.

Proof. Notice that, as f and g are coarse Lipschitz maps, it follows easily that F
and G are well defined and Lipschitz. We only need to show that F ◦G = IdY N/U ,
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as the rest of the statement will clearly follow. It is also obvious that F ◦G(0) = 0.
So let [(yn)n] ∈ Y N/U , so that [(yn)n] 6= 0 and fix ε > 0.

As f ◦ g ∼∞ IdY , there exists r > 0 such that for all y ∈ Y with ‖y‖ > r we
have ‖f(g(y)) − y‖ ≤ ε‖y‖. Since limn,U ‖yn‖ > 0, there exists A ∈ U such that
‖f(g(nyn))− nyn‖ ≤ ε‖nyn‖, for all n ∈ A. Unfolding definitions, we have that

F (G([(yn)n]))− [(yn)n] =
[(f(g(nyn))

n
− yn

)
n

]
=
[(f(g(nyn))− nyn

n

)
n

]
.

Therefore,∥∥∥F (G([(yn)n]))− [(yn)n]
∥∥∥ = lim

n,U

∥∥∥∥f(g(nyn))− nyn
n

∥∥∥∥ ≤ ε‖[(yn)n]‖.

As ε > 0 was arbitrary, this shows that F ◦G([(yn)n]) = [(yn)n]. �

Unlike coarse Lipschitz equivalences, the range of an asymptotic coarse Lipschitz
equivalence does not need to be δ-dense in its codomain for some δ > 0 (see Example
2.9 or Proposition 2.11). The next corollary gives some information on what the
range of an asymptotic coarse Lipschitz equivalence must be.
Corollary 3.5. Let X and Y be Banach spaces, and f : X → Y be an asymptotic
coarse Lipschitz equivalence. Then

⋃
n∈N

1
nf(X) is dense in Y .

Proof. Let F be as in Proposition 3.4. Let y ∈ Y . As F : XN/U → Y N/U is
surjective, there exists [(xn)n] ∈ XN/U such that F ([(xn)n]) = [(y)n] ∈ Y N/U .
Hence, limn,U ‖ 1

nf(nxn)− y‖ = 0. So,
⋃
n∈N

1
nf(X) is dense in Y . �

Corollary 3.6. Let X and Y be asymptotically coarse Lipschitz equivalent Banach
spaces.

(1) If dim(X) <∞, then dim(X) = dim(Y ).
(2) If Y = `2, then X is isomorphic to `2.

Proof. This follows immediately from Proposition 3.4. Indeed, if dim(X) < ∞,
then all of its ultraproducts also have dimension dim(X) and the dimension is
preserved by Lipschitz equivalences. So, (1) follows.

For (2), recall that the ultrapower of `2 is still a Hilbert space and that being
isomorphic to a Hilbert space is preserved by Lipschitz equivalences (see [Enf70,
Theorem 6.3.1]). �

4. Asymptotic coarse Lipschitz structure of `p, p ∈ (2,∞).

As shown in Corollary 3.6, the asymptotic coarse Lipschitz structure of `2 com-
pletely determines its isomorphic structure. In this subsection, we show that the
same holds for `p for any p ∈ (2,∞). This is the missing part of Theorem A
of Section 1 and it is proved below as Corollary 4.6. In fact, the same holds for
`p1 ⊕ . . .⊕ `pn for any p1, . . . , pn ∈ (2,∞) (see Theorem 4.5).

Asymptotic uniform smoothness will play an important role in the proof of The-
orem 4.5 below. We refer the reader to Section 1 for the precise definitions of
asymptotic uniform smoothness, abbreviated as AUS, and p-asymptotic uniform
smoothness, abbreviated as p-AUS. For this section, however, it will be enough for
the reader to know that, for p ∈ (1,∞), `p is p-AUS. Moreover, if 1 < p1 < p2 <
. . . < pn <∞, then

⊕n
i=1 `pi is p1-AUS.

As demonstrated by N. Kalton and L. Randrianarivony [KR08], the Hamming
graphs are of great help when studying p-AUS spaces. Given an infinite M ⊂ N and
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k ∈ N, we let [M]k be the set of all subsets of M with exactly k elements and we
denote each element of [M]k as a tuple in an increasing order, i.e., given n̄ ∈ [M]k,
we write n̄ = (n1, . . . , nk) where n1 < . . . < nk. The Hamming metric of [M]k is
the metric dH given by

dH(n̄, m̄) = |{i ∈ {1, . . . , k} | ni 6= mi}|
for all n̄, m̄ ∈ [M]k.

The following relation between the Hamming metric and AUSness was found by
N. Kalton and L. Randrianarivony:

Lemma 4.1. ([KR08, Theorem 4.2]). Let p ∈ (1,∞) and suppose Y is a reflexive
p-AUS Banach space. Then there is C > 0 such that for all k ∈ N and all Lipschitz
maps f : [N]k → Y , there is an infinite M ⊂ N such that

diam(f([M]k)) ≤ CLip(f)k1/p.

Theorem 4.2. Let 1 ≤ r < p1 < . . . < pn < ∞. If a Banach space X is
asymptotically coarse Lipschitz equivalent to

⊕n
k=1 `pk , then `r does not coarse

Lipschitz embed into X.

Proof. To simplify notation, let Y =
⊕n

k=1 `pk . Assume X is asymptotically coarse
Lipschitz equivalent to Y and let f : X → Y be such an equivalence. Suppose
towards a contradiction that there is a coarse Lipschitz embedding g : `r → X.
Replacing g by an appropriate translation of itself if necessary, we can assume that
g(0) = 0. Moreover, as g is a coarse Lipschitz embedding, replacing g by αg(β·) for
appropriate α, β > 0, we can also assume that there is L > 1 for which
‖z − z′‖ ≤ ‖g(z)− g(z′)‖ ≤ L‖z − z′‖ for all z, z′ ∈ `r with ‖z − z′‖ ≥ 1.

As f is coarse Lipschitz, replacing L by a larger number if necessary, we can also
assume that

‖f(x)− f(x′)‖ ≤ L‖x− x′‖ for all x, x′ ∈ X with ‖x− x′‖ ≥ 1.
For each k ∈ N, define ϕk : [N]k → `r as

ϕk(n̄) =
k∑
i=1

eni for all n̄ ∈ [N]k.

Notice that ϕk is 21/r-Lipschitz and that its image is 1-separated. So, by our choice
of L, we have that

Lip(f ◦ g ◦ ϕk) ≤ 21/rL2 for all k ∈ N.
Therefore, as Y is p1-AUS, it follows from Lemma 4.1 that there is C > 0 such
that, for each k ∈ N, there is an infinite Mk ⊂ N such that
(4.1) diam(f ◦ g ◦ ϕk([Mk]k)) ≤ C21/rL2k1/p1 .

For a fixed k ∈ N, pick n̄, m̄ ∈ [Mk]k with nk < m1. Then
‖g(ϕk(n̄))− g(ϕk(m̄))‖ ≥ 21/rk1/r

and, as we assume that g(0) = 0,
‖g(ϕk(n̄))‖ ≤ Lk1/r and ‖g(ϕk(m̄))‖ ≤ Lk1/r.
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Applying Proposition 2.3 to x0 = 0 and θ = 21/r/L, we obtainM > 1 (independent
on k) and k0 ∈ N such that, if k was previously chosen larger than k0,

(4.2) ‖f(g(ϕ(n̄)))− f(g(ϕ(m̄)))‖ ≥ 1
M
‖g(ϕ(n̄))− g(ϕ(m̄))‖ ≥ k1/r

M

Then, (4.1) and (4.2) imply that for all k ≥ k0,
k1/r

M
≤ C21/rL2k1/p1

As r < p1, this gives us a contradiction for large values of k ∈ N. �

Remark 4.3. The above statement could actually be stated in terms of “asymp-
totically coarse Lipschitz embeddings”. However, the right definition of this type of
embedding is not clear: indeed, one could naturally define such embedding as being
an asymptotic coarse Lipschitz equivalence between X and a subset of Y . But this
definition has a big fault: it is not clear that the composition of such embeddings
would still be an embedding of this sort. For this reason, we chose to focus only on
equivalences in this paper.

We point out however that the proof of Theorem 4.2 shows the following stronger
result: if 1 ≤ r < p1 < . . . < pn < ∞, then there is no coarse Lipschitz map
f : `r → `p1 ⊕ . . . ⊕ `pn which also satisfies the conclusion of Proposition 2.3. We
will study maps between Banach spaces which are coarse Lipschitz and satisfy the
conclusion of Proposition 2.3 (as well as modifications of it) in a forthcoming paper
(see [BL23]).

Remark 4.4. The reader familiar with the nonlinear theory of Banach spaces
knows that, for the classic coarse Lipschitz equivalences, Theorem 4.2 also holds
if r is larger than all pi’s. More precisely, `r does not coarse Lipschitz embeds
into `p1 ⊕ . . . ⊕ `pn for all 1 ≤ p1 < . . . < pn < r. The proof of this result
does not use Hamming graphs but instead uses what is called the “approximate
midpoints technique” (see [KR08, Proposition 3.1]). This however does not hold
in our settings. Indeed, we show in our forthcoming paper (see [BL23]) that, for
p > q, `p can be mapped into `q by a coarse Lipschitz maps which satisfies the
conclusion of Proposition 2.3 (spoiler: the Mazur map does that). See Remark 4.7
below.

We can now state and prove our extension of [JLS96, Theorem 2.2] and [KR08,
Theorem 5.3] to asymptotically coarse Lipschitz equivalences.

Theorem 4.5. Let 2 < p1 < . . . < pn <∞. If a Banach space X is asymptotically
coarse Lipschitz equivalent to

⊕n
k=1 `pk , then X is linearly isomorphic to

⊕n
k=1 `pk .

Proof. The proof follows by induction on n ∈ N. Indeed, suppose X is asymptot-
ically coarse Lipschitz equivalent to `p1 . Then, by Proposition 3.4, we have that
XN/U is Lipschitz equivalent to Y N/U , where U is any nonprincipal ultrafilter on
N. In particular, it follows from classic results that X is isomorphic to a comple-
mented subspace of Lp1 (this follows for instance from [HM82, Theorems 1.3 and
2.3, and Proposition 2.1]). By Theorem 4.2, X does not contain an isomorphic
copy of `2. Hence, X must be isomorphic to a complemented subspace of `p1 (see
the main result in [Joh76]), which in turn is either isomorphic to `p1 itself or finite
dimensional ([Peł60, Theorem 1]). Since X cannot be finite dimensional, the case
n = 1 follows.
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Let n > 1 and suppose the result follows for any m < n. If X is asymptotically
coarse Lipschitz equivalent to

⊕n
k=1 `pk , arguing exactly as above, we obtain thatX

is isomorphic to a complemented subspace of
⊕n

k=1 Lpk . Since X does not contain
`2 (Theorem 4.2), this implies that X must be isomorphic to a complemented
subspace of

⊕n
k=1 `pk (this follows again from the main result of [Joh76])). As this

is the direct sum of completely incomparable Banach spaces, this implies that X is
isomorphic to

⊕n
k=1Ek, where each Ek is a complemented subspace of `pi ([EW76,

Corollary 3.7]); so, each Ek is either finite dimensional or isomorphic to `pk itself.
In order to conclude, we need to show that each Ei is isomorphic to `pi . Otherwise
X would be isomorphic to Y =

⊕
i∈I `pi , for some I ( {p1, . . . , pn} and thus,⊕n

k=1 `pk would be asymptotically coarse Lipschitz equivalent to Y , contradicting
our inductive assumption. �

The following is an immediate consequence of Corollary 3.6 and Theorem 4.5.

Corollary 4.6 (Theorem A in Section 1). Let p ∈ [2,∞). If a Banach space is
asymptotically coarse Lipschitz equivalent to `p, then X is linearly isomorphic to
`p.

Remark 4.7. We point out that we do not know if Corollary 4.6 is valid for p’s in
the range [1, 2). We only know that, if true, the proof would have to use different
ideas than the ones from coarse Lipschitz equivalences (see Remark 4.4 above for
more details on that).

5. The Gorelik principle and applications to the asymptotic
structure

In this section, we establish a version of the Gorelik principle for asymptoti-
cally coarse Lipschitz equivalences. Then, we apply it to extend to asymptotically
coarse Lipschitz equivalences a few results on the stability of asymptotic smoothness
properties of Banach spaces under nonlinear equivalences. The first results in this
direction can be found in [GKL01] where it is shown that being p-AUSable is stable
under Lipschitz equivalences and that being p′-AUSable for all p′ < p is stable
under uniform homeomorphism. However, Kalton proved that being p-AUSable is
not stable under uniform homeomorphisms or coarse Lipschitz equivalences ([Kal13,
Theorem 5.4 and Remark in page 170]). In order to describe our results precisely,
we will first introduce a few other asymptotic properties.

5.1. Relevant asymptotic properties. It will be useful to define a modulus that
is dual to the modulus of asymptotic uniform smoothness of a Banach space X,
namely, the modulus of weak∗-asymptotic uniform convexity of X∗. Firstly, denote
the set of all weak∗-closed subspaces of X∗ with finite codimension by cof∗(X∗).
We can then define the modulus of weak∗-asymptotic uniform convexity of X∗ by
letting

θ̄X(τ) = inf
x∗∈SX∗

sup
Y ∈cof∗(X∗)

inf
y∗∈SY

‖x∗ + τy∗‖ − 1

for all τ ≥ 0. We say thatX∗ is weak∗-asymptotically uniformly convex, abbreviated
as w∗-AUC, if

θ̄X(τ) > 0 for all τ > 0.
It is easy to notice (and we will use this in the proof of Theorem 5.12) that θ̄X(τ)/τ
is increasing. These moduli are related to each other in the sense that X is AUS
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if and only if X∗ is w∗-AUC. This follows from the following precise quantitative
result that we shall also need.

Proposition 5.1. ([DKLR17, Proposition 2.1]). Let X be a Banach space and
τ, σ ∈ (0, 1).

(1) If ρ̄X(σ) < στ , then θ̄X(6τ) ≥ στ
(2) If θ̄X(τ) > στ , then ρ̄X(σ) ≤ στ .

This can be rephrased in terms of Young’s duality between ρ̄X and θ̄X . Recall
that, given a continuous function f : [0, 1] → R, its dual Young function f∗ :
[0, 1]→ R is defined as

f∗(s) = sup{st− f(t) | t ∈ [0, 1]}
for all s ∈ [0, 1]. Notice that, if f, g : [0, 1] → R are so that f(t/C) ≤ g(t) for all
t ∈ [0, 1] and some C > 0, then g∗(t/C) ≤ f∗(t) for all t ∈ [0, 1]. The following is
then a simple consequence of Proposition 5.1.

Proposition 5.2. ([DL17, Corollary 6.2]). Given a Banach space X, we have that
ρ̄X(s/2) ≤ (θ̄X)∗(s) and (θ̄X)∗(s/6) ≤ ρ̄X(s)

for all s ∈ [0, 1].

We now turn to the asymptotic isomorphic properties that we shall consider.
First, if D is a set and k ∈ N, we write D≤k =

⋃k
i=1Di and D<ω =

⋃∞
i=1Di. Given

a Banach space X and a weak neighborhood basis of 0 ∈ X, say D, we call a family
(xn̄)n̄∈D≤k (respectively (xn̄)n̄∈D<ω ) a weakly null tree if for each n̄ ∈ {∅} ∪D≤k−1

(respectively for each n̄ ∈ {∅} ∪ D<ω) the net (x(n̄,nk))nk∈D is weakly null; where
here we consider D as a directed set with the usual reverse inclusion order.

Definition 5.3. Let p ∈ (1,∞] and X be a Banach space. We say that X has
property Tp if there is c > 0 such that for all weak neighborhood basis D of 0 ∈ X,
and all weakly null trees (xn̄)n̄∈D<ω in BX , there is m̄ = (m1, . . . ,mk, . . .) ∈ DN

such that ∥∥∥ ∞∑
i=1

aix(m1,...,mi)

∥∥∥ ≤ c‖a‖p
for all a = (ai)∞i=1 ∈ `p.

It was proved by R.M. Causey in that X is p-AUSable if and only if X has
property Tp ([Cau18, Theorem 1.1(i)]). We shall concentrate on two slightly weaker
properties.

Definition 5.4. Let p ∈ (1,∞] and X be a Banach space. We say that X has
property Ap if there is c > 0 such that for all weak neighborhood basis D of 0 ∈ X,
all k ∈ N, and all weakly null trees (xn̄)n̄∈D≤k in BX , there is m̄ = (m1, . . . ,mk) ∈
Dk such that ∥∥∥ k∑

i=1
aix(m1,...,mi)

∥∥∥ ≤ c‖a‖p
for all a = (a1, . . . , ak) ∈ `kp.

Definition 5.5. Let p ∈ (1,∞] and X be a Banach space. We say that X has
property Np if there is c > 0 such that for all weak neighborhood basis D of 0 ∈ X,
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all k ∈ N, and all weakly null trees (xn̄)n̄∈D≤k in BX , there is m̄ = (m1, . . . ,mk) ∈
Dk such that ∥∥∥ k∑

i=1
x(m1,...,mi)

∥∥∥ ≤ ck1/p

(if p =∞, we use the convention that 1/∞ = 0).

The next theorem gathers the relations between the classes Tp, Ap, and Np.

Theorem 5.6. ([Cau21, Theorem 1.1]). Let p ∈ (1,∞). Then

Tp ( Ap ( Np (
⋂
p′<p

Tp′ and T∞ ( A∞ = N∞ (
⋂
p′<∞

Tp′

We can now state our most precise result, which is the main result of this section
and will imply Theorem B.

Theorem 5.7. Let p ∈ (1,∞]. Then properties Ap and Np are stable under asymp-
totically coarse Lipschitz equivalences.

5.2. The Gorelik principle. Before we proceed with the proof of Theorem 5.7, we
need to establish a variant of the Gorelik principle that is valid for such equivalences.
This subsection takes care of this. This principle was initially manufactured for
uniform homeomorphisms and named after Gorelik’s pioneer work ([Gor94]). Here
is our version for continuous asymptotically coarse Lipschitz equivalences.

Proposition 5.8. Let X and Y be Banach spaces and assume that there exist a
continuous asymptotic coarse Lipschitz equivalence f : X → Y with continuous
asymptotic coarse Lipschitz inverse g : Y → X. Assume also that f(0) = 0 and
g(0) = 0. Then there exists M ≥ 1 such that for all ε > 0, there exists t0 > 0
such that for any finite codimensional subspace X0 of X and any t > t0, there is a
compact subset K ⊂ Y such that

t

M
BY ⊂ K + εtBY + f(2tBX0).

The following lemma will be needed in the proof of Proposition 5.8.

Lemma 5.9. ([BL00, Claim (i) of Theorem 10.12]). Let X be a Banach space,
X0 ⊂ X be a subspace with finite codimension, and t > 0. There is a compact
A ⊂ tBX satisfying the following: if ϕ : A → X is a continuous map such that
‖ϕ(a)− a‖ ≤ t/2 for all a ∈ A, then ϕ(A) ∩X0 6= ∅.

Proof of Proposition 5.8. Let L ≥ 1 be such that ωf (t) ≤ Lt+L and ωg(t) ≤ Lt+L,
for all t ∈ [0,∞). Let us show the proposition holds for M = 12L. For that, fix
ε > 0 and let δ = min{ 1

12L2 ,
ε

4L2 }. Since g ◦ f ∼∞ IdX and f ◦ g ∼∞ IdY , there is
t0 > 0 such that

‖g(f(x))− x‖ ≤ δ‖x‖ and ‖f(g(y))− y‖ ≤ δ‖y‖
for all x ∈ X and y ∈ Y with ‖x‖ ≥ δt0 and ‖y‖ ≥ δt0. Furthermore, we assume
that δt0 ≥ 12L2.

Let t ≥ t0 and X0 ⊂ X be a subspace with finite codimension. By Lemma 5.9,
there is a compact subset A ⊂ tBX such that if ϕ : A → X is a continuous map
satisfying ‖ϕ(a)− a‖ ≤ 1

2 t, for all a ∈ A, then ϕ(A) ∩X0 6= ∅.
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Fix y ∈ t
12LBY and define a map ϕ : A → X by ϕ(a) = g(y + f(a)), for all

a ∈ A. As g is continuous, so is ϕ. If a ∈ A ∩ δtBX , we have
‖ϕ(a)− a‖ ≤ ‖g(y + f(a))− g(f(a))‖+ ‖g(f(a))‖+ ‖a‖

≤ L‖y‖+ L+ L(Lδt+ L) + L+ δt

≤ t

2 .

On the other hand, if a ∈ A \ δtBY , as t ≥ t0, our choice of t0 gives us that
‖ϕ(a)− a‖ ≤ ‖g(y + f(a))− g(f(a))‖+ ‖g(f(a))− a‖

≤ L‖y‖+ L+ δ‖a‖

≤ t

2 .

So, ‖ϕ(a) − a‖ ≤ t
2 , for all a ∈ A. Hence, by our choice of A, there exists ay ∈ A

such that ϕ(ay) ∈ X0. Since, ‖ay‖ ≤ t and ‖ϕ(ay) − ay‖ ≤ t
2 , we have that

ϕ(ay) ∈ 2tBX0 .
Now let us notice that

‖f(g(y + f(ay)))− (y + f(ay))‖ ≤ εt.
Indeed, if y + f(ay) ∈ δtBY , then, since f(0) = g(0) = 0, we have that

‖f(g(y + f(ay)))− (y + f(ay))‖ ≤ ‖f(g(y + f(ay)))‖+ ‖y + f(ay)‖
≤ L(Lδt+ L) + L+ δt

≤ εt.
On the other hand, if y+ f(ay) 6∈ δtBY , our choice of t0 and the fact that f(0) = 0
gives that

‖f(g(y + f(ay)))− (y + f(ay))‖ ≤ δ‖y + f(ay)‖
≤ δ‖y‖+ δ(Lt+ L)
≤ εt.

Therefore, we conclude that
y ∈ K + εtBY + f(2tBX0),

where K = −f(A). As f is continuous, K is compact. �

We now explain how to drop the continuity assumptions in Proposition 5.8 in
order to get the following version of the Gorelik principle for asymptotically coarse
Lipschitz equivalences.

Theorem 5.10 (Gorelik principle for asymptotic coarse Lipschitz equivalences).
Let X and Y be asymptotically coarse Lipschitz equivalent Banach spaces. Then
there exist an asymptotic coarse Lipschitz equivalence f : X → Y satisfying the
following: there exists M ≥ 1 such that for all ε > 0, there is t0 > 0 such that
for any finite codimensional subspace X0 of X and any t > t0, there is a compact
subset K ⊂ Y such that

t

M
BY ⊂ K + εtBY + f(2tBX0).
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Proof. Let f : X → Y and g : Y → X witness that X and Y are asymptotically
coarse Lipschitz equivalent. Without loss of generality, we can assume that f(0) = 0
and g(0) = 0. By [Bra17, Theorem 1.4], there exist continuous maps f̃ : X → Y
and g̃ : Y → X such that

sup
x∈X
‖f(x)− f̃(x)‖ <∞ and sup

x∈X
‖g(x)− g̃(x)‖ <∞.

Without loss of generality, we assume that f̃(0) = 0 and g̃(0) = 0. Since f is close
to f̃ and g is close to g̃, it immediately follows that f̃ is also an asymptotic coarse
Lipschitz equivalence with asymptotic coarse Lipschitz inverse g̃. The result now
follows from Proposition 5.8 applied to f̃ and g̃. �

We finish this subsection with a remark about Theorem 5.10 above. For this,
recall: if L ≥ 1, Y is a vector space, and ‖ · ‖ and | · | are norms on Y such that

1
L
‖y‖ ≤ |y| ≤ L‖y‖ for all y ∈ Y,

we say that ‖ · ‖ and | · | are L-equivalent and write ‖ · ‖ ∼L | · |.

Remark 5.11. Notice that the constantM obtained in the proof of Proposition 5.8
equals 12L, where L is simply a number such that ωf (t) ≤ Lt+L and ωg(t) ≤ Lt+L
for all t ∈ [0,∞). This implies in particular that if L′ ≥ 1 and | · | is a norm on X
which is L′-equivalent to the original norm of X, then Theorem 5.10 holds for the
Banach spaces Y and (X, | · |) with M = 12LL′. This will be useful below.

5.3. The technical renorming result. We present in this subsection the key
renorming result for Banach spaces that are asymptotically coarse Lipschitz equiv-
alent to an AUS Banach space. Its proof follows ideas in [GKL01, Theorem 5.3]
(see also [GLZ14, Theorem 3.12] and [DL17]).

Theorem 5.12. Let X be an AUS Banach space and let Y be a Banach space
asymptotically coarse Lipschitz equivalent to X. There are L,C ≥ 1 such that for
all δ ∈ (0, 1) there is a norm | · | on Y such that | · | ∼L ‖ · ‖Y and

θ̄(Y,|·|)(τ) ≥ θ̄X(τ/C)− δ for all τ ∈ (0, 1).

Proof. Let f : X → Y be the asymptotic coarse Lipschitz equivalence given by
Theorem 5.10, g : Y → X be an asymptotic coarse Lipschitz inverse of f , and
M > 0 be given by Theorem 5.10 for f . Moreover, let t0 > 0 be given by Theorem
5.10 for ε = 1/(8M), i.e., for all finite codimensional subspaces X0 ⊂ X and all
t > t0, there is a compact subset K ⊂ Y such that

t

M
BY ⊂ K + t

8MBY + f(2tBX0).

As f and g are coarse Lipschitz, we can pick L > 0 large enough so that
• ‖f(x)− f(x′)‖ ≤ Lmax{‖x− x′‖, 1} for all x, x′ ∈ X, and
• ‖g(y)− g(y′)‖ ≤ Lmax{‖y − y′‖, 1} for all y, y′ ∈ Y .

For each k ∈ N, we define an equivalent norm | · |k on Y ∗ by letting

|y∗|k = sup
{
|y∗(f(x)− f(x′))|

‖x− x′‖
| x, x′ ∈ X with ‖x− x′‖ ≥ 2k

}
Clearly, |y∗|k+1 ≤ |y∗|k for all y∗ ∈ Y ∗ and all k ∈ N. The next claim shows that
this is indeed an equivalent norm on Y ∗.
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Lemma 5.13. For all k ∈ N and all y∗ ∈ Y ∗, we have that
1
L
‖y∗‖ ≤ |y∗|k ≤ L‖y∗‖.

Proof. Fix k ∈ N and y∗ ∈ Y ∗. The inequality |y∗|k ≤ L‖y∗‖ is immediate, so,
we only prove the lower bound for |y∗|k. Fix a sequence (yn)n in SY such that
‖y∗‖ = limn |y∗(yn)|. By our choice of L, we have that
(5.1) ‖g(nyn)− g(0)‖ ≤ L‖nyn‖
for all n ∈ N large enough. It follows that for all n ∈ N,

|y∗(f(g(nyn))− f(g(0)))|
‖g(nyn)− g(0)‖

≥ 1
L

|y∗(f(g(nyn))− f(g(0)))|
‖nyn‖

≥ 1
L

(
|y∗(nyn)|
‖nyn‖

− |y
∗(f(g(nyn))− nyn)|

‖nyn‖
− |y

∗(f(g(0)))|
‖nyn‖

)
.

As limn→∞ ‖nyn‖ =∞ and, as f and g are asymptotic coarse Lipschitz inverses of
each other, we have

lim
n→∞

‖f(g(nyn))− nyn‖
‖nyn‖

= 0.

Therefore, we conclude that

lim
n→∞

|y∗(f(g(nyn))− f(g(0)))|
‖g(nyn)− g(0)‖ ≥ 1

L
‖y∗‖

and the lemma follows. �

Note that | · |k is clearly weak∗ lower semi-continuous and is the dual norm of an
equivalent norm on Y whose closed unit ball is the closed convex hull of{

f(x)− f(x′)
‖x− x′‖

| x, x′ ∈ X with ‖x− x′‖ ≥ 2k
}
.

Lemma 5.14. Let δ ∈ (0, 1). There is C > 0 such that for all k ∈ N with
2kCδ−1θ̄X(δ/C) > 2t0, the following holds: for all τ ∈ (δ, 1) and all y∗ ∈ LBY ,
there is Z ∈ cof∗(Y ∗) such that

|y∗ + z∗|k ≥ 2|y∗|k+1 − |y∗|k + θ̄X(τ/C)
for all z∗ ∈ Z with ‖z∗‖ ≥ τ/L.

Proof. The lemma above is only nontrivial for elements z∗ with a moderately small
norm, i.e., it is enough to show that there are C > 0 such that for all k ∈ N as
above, all τ ∈ (δ, 1), and all y∗ ∈ LBY there is Z ∈ cof∗(Y ∗) such that

|y∗ + z∗|k ≥ 2|y∗|k+1 − |y∗|k + θ̄X(τ/C)
for all z∗ ∈ Z with ‖z∗‖ ∈ (τ/L, s); where s > τ/L is a number large enough
depending on L only. For now on, fix such s and pick some
(5.2) C > 16ML+ 64ML3 + 32sML2.

For the remainder of the proof, we show that C has the required properties. For
that, fix k ∈ N as required, τ ∈ (δ, 1) and y∗ ∈ LBY . We also fix γ > 0 and some
positive β < θ̄X(τ/C) throughout the proof (this is possible because X is AUS and
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therefore X∗ is w∗-AUC). Moreover, since θ̄X(t)/t is increasing, our choice of k
allows us to assume that β also satisfies 2kβCτ−1 > 2t0.

By the definition of the norm | · |k+1, we can pick x, x′ ∈ X with ‖x−x′‖ ≥ 2k+1

such that
y∗(f(x)− f(x′)) ≥ (1− γ)‖x− x′‖|y∗|k+1.

In order to simplify notation, notice that, replacing f by f(· − x1) + x2, for appro-
priate x1, x2 ∈ X, we can assume that x = −x′ and f(x) = −f(x′). In particular,
‖x‖ ≥ 2k and

(5.3) y∗(f(x)) = 1
2y
∗(f(x)− f(x′)) ≥ (1− γ)|y∗|k+1‖x‖.

Letting σ = βC/τ , item (2) of Proposition 5.1 implies that ρ̄X(σ) ≤ β. There-
fore, there is a finite codimensional X0 ⊂ X such that
(5.4) ‖x+ z‖ ≤ (1 + 2β)‖x‖ for all z ∈ σ‖x‖BX0 .

Replacing X0 by a smaller finite codimensional subspace, we can also assume with-
out loss of generality that
(5.5) ‖x+ z‖ ≥ ‖x‖ ≥ 2k for all z ∈ σ‖x‖BX0 .

As ‖x‖ ≥ 2k, it follows from our choice of β that σ‖x‖ > 2t0. Therefore, our
choice of t0 implies that there is a compact K ⊂ Y such that

(5.6) σ‖x‖
2M BY ⊂ K + σ‖x‖

16M BY + f(σ‖x‖BX0).

Since K is compact, there is Z ∈ cof∗(Y ∗) such that

z∗(f(x)) = 0 and |z∗(y)| ≤ σ‖x‖‖z∗‖
8M

for all y ∈ K and all z∗ ∈ sBZ .
We will now proceed to show that Z chosen above has the desired properties.

For that, fix z∗ ∈ Z with ‖z∗‖ ∈ [τ/L, s) and let us estimate |y∗+ z∗|k from below.
For that, let z ∈ σ‖x‖

2M SY be such that

z∗(z) ≥ σ‖x‖‖z∗‖
4M .

Then, using (5.6) for −z, we obtain w ∈ σ‖x‖BX0 such that

(5.7) z∗(−f(w)) ≥ σ‖x‖‖z∗‖
16M ≥ βC‖x‖

16ML
.

Since x = −x′, f(x) = −f(x′), ‖w − x′‖ ≥ 2k (this follows from (5.5)), and
‖x′ − w‖ ≤ (1 + 2β)‖x‖ (5.4), we have that

y∗(f(w) + f(x)) = y∗(f(w)− f(x′)) ≤ (1 + 2β)|y∗|k‖x‖.
The inequality above and (5.3) give us that
(5.8) y∗(f(w)) ≤

(
(1 + 2β)|y∗|k − (1− γ)|y∗|k+1

)
‖x‖.

Hence, as z∗(f(x)) = 0, it follows from (5.3), (5.7), and (5.8) that

(y∗ + z∗)(f(x)− f(w)) ≥
(

(2− 2γ)|y∗|k+1 − |y∗|k − 2β|y∗|k + βC

16ML

)
‖x‖

Since, by the definition of | · |k, (5.4), and (5.5), we have
(y∗ + z∗)(f(x)− f(w)) ≤ (1 + 2β)|y∗ + z∗|k‖x‖,
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and since γ > 0 was arbitrary, we conclude that

(1 + 2β)|y∗ + z∗|k ≥2|y∗|k+1 − |y∗|k − 2β|y∗|k + βC

16ML
.(5.9)

As ‖y∗‖ ≤ L and ‖z∗‖ ≤ s, we have that |y∗|k ≤ L2 and |z∗|k ≤ sL. Hence,
(5.9) gives us

|y∗ + z∗|k ≥ 2|y∗|k+1 − |y∗|k + C − 64ML3 − 32sML2

16ML
β.

By our choice of C (see (5.2)) and as β is any positive number smaller than θ̄X(τ/C),
the lemma is proven. �

We now conclude the proof of the theorem. For that, fix δ ∈ (0, 1) and let C ≥ 1
be given by Lemma 5.14. Since θ̄X(τ/C) ≤ τ/C ≤ τ for all τ ∈ (0, 1), we only need
to find a renorming of Y such that

θ̄Y (τ) ≥ θ̄X(τ/C)− δ for all τ ∈ (δ, 1).
Fix k0 ∈ N with 2k0Cδ−1θ̄X(δ/C) > 2t0 and N ∈ N with 2L2 < δN . Define a

norm | · | on Y ∗ by letting

|y∗| = 1
N

k0+N∑
k=k0+1

|y∗|k for all y∗ ∈ Y ∗.

Clearly, | · | is weak∗ lower semi-continuous and, by Lemma 5.13, it is equivalent to
the original norm of Y ∗; in fact,

1
L
‖y∗‖ ≤ |y∗| ≤ L‖y∗‖

for all y ∈ Y ∗. Hence, | · | is a dual norm, i.e., there is a norm on Y equivalent to
Y ’s original norm whose dual norm is | · |; moreover, this norm is L-equivalent to
Y ’s original norm. By abuse of notation, we also denote this norm on Y by | · |.

In order to conclude, let us estimate θ̄(Y,|·|)(τ) from below. For that, pick y∗ ∈ Y ∗
with |y∗| = 1; so ‖y∗‖ ≤ L. Let Z ∈ cof∗(Y ∗) be given by Claim 5.14 for τ and y∗
so that

|y∗ + z∗|k ≥ 2|y∗|k+1 − |y∗|k + θ̄X(τ/C)
for all k ∈ {k0 + 1, . . . , k0 + N} and all z∗ ∈ Z with ‖z∗‖ ≥ τ/L. Hence, adding
those inequalities, we obtain that

|y∗ + z∗| ≥ |y∗| − 2
N
|y∗|k0+1 + θ̄X(τ/C).

Since 2
N |y

∗|k0+1 ≤ 2L
N ‖y

∗‖ ≤ 2L2

N < δ, we are done. �

We point out a quantitative strengthening of Theorem 5.12 which we will need.
Precisely, we notice that our proof of Theorem 5.12 allows us to change the norm
of X by a fixed amount without having to change the constants L and C.

Theorem 5.15. Let X be an AUS Banach space and let Y be a Banach space
asymptotically coarse Lipschitz equivalent to X. For all K ≥ 1, there are L =
L(K), C = C(K) ≥ 1 satisfying the following: if | · |X is a norm on X with
| · |X ∼K ‖·‖X and δ ∈ (0, 1), then there is a norm | · |Y on Y such that | · | ∼L ‖·‖Y
and

θ̄(Y,|·|Y )(τ) ≥ θ̄(X,|·|X)(τ/C)− δ for all τ ∈ (0, 1).
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Proof. Let f : X → Y be an asymptotic coarse Lipschitz equivalence with asymp-
totic coarse Lipschtiz inverse g : Y → X. Examining the proof of Theorem 5.12,
we see that L only depends on the affine upper bounds for the asymptotic coarse
Lipschitz equivalences f and g. Therefore, if we renorm X with a K-equivalent
norm, we can replace L with LK in the proof of Theorem 5.12 and the result will
still hold.

As for C, this constant is taken in the proof of Theorem 5.12 to be any which
satisfies (5.2). Notice that s depends on L only, so C depends only on L and M ,
where M is given by Theorem 5.10. The result then follows from Remark 5.11. �

We now translate this result in terms of the modulus of asymptotic smoothness.

Theorem 5.16. Let X be an AUS Banach space and let Y be a Banach space
asymptotically coarse Lipschitz equivalent to X. For all K ≥ 1, there are L =
L(K), C = C(K) ≥ 1 satisfying the following: if | · |X is a norm on X with
| · |X ∼K ‖·‖X and δ ∈ (0, 1), then there is a norm | · |Y on Y such that | · | ∼L ‖·‖Y
and

ρ̄(Y,|·|Y )(τ/C) ≤ ρ̄(X,|·|X)(τ) + δ for all τ ∈ (0, 1).

Proof. Let ϕ,ψ be continuous monotone non decreasing on [0, 1] with ϕ(0) = ψ(0) =
0. If there exists D ≥ 1 and δ > 0 such that for all τ ∈ (0, 1), ϕ(τ) ≥ ψ(τ/D)− δ,
it is easy to show that for all τ ∈ (0, 1), ϕ∗(τ/D) ≤ ψ∗(τ) + δ. So the conclusion
follows clearly from Theorem 5.15 and Proposition 5.2. �

5.4. Preservation of asymptotic structures. We are almost ready to prove our
results on the preservation of asymptotic structures. For this we will exploit the
following two renorming characterizations of the classes.

Theorem 5.17. ([Cau21, Corollary 4.15]). Let X be a Banach space and p ∈
(1,∞]. Then X has property Np if and only if there exist a constant L ≥ 1 and a
constant C > 0, such that for any τ ∈ (0, 1] there exists a norm | · | on X such that
| · | ∼L ‖ · ‖X and
(a) if 1 < p <∞, ρ|·|(τ) 6 Cτp
(b) if p =∞, ρ|·|(C) 6 τ .

Theorem 5.18. ([CFL23, Theorem A]). Let X be a Banach space and p ∈ (1,∞).
Then X has property Ap if and only if there exist a constant L ≥ 1 and a constant
C > 0, such that for any τ ∈ (0, 1] there exists a norm |·| on X such that |·| ∼L ‖·‖X
and

∀t ≥ τ, ρ|·|(t) ≤ Ctp.

We can now give the proof of Theorem 5.7, which will follow from Theorem 5.16
and the above renorming characterizations of Ap and Np, for p ∈ (1,∞) and of
A∞ = N∞.

Proof of Theorem 5.7. We only detail the case of Ap for p ∈ (1,∞). So assume
that X has Ap and that Y is asymptotically coarse Lipschitz equivalent to X. As
X has property Ap, let L′ ≥ 1 and C ′ > 0 be given by Theorem 5.18, i.e., for all
τ ∈ (0, 1], we can find an L′-equivalent renorming | · |X of X so that
(5.10) ρ̄(X,|·|X)(t) ≤ C ′tp for all t ≥ τ.



24 B. M. BRAGA AND G. LANCIEN

Let L = L(L′), C = C(L′) ≥ 1 be given by Theorem 5.16, i.e., if | · |X is an L′-
equivalent renorming of X and δ > 0, then there is a norm | · |δ on Y such that
| · |δ ∼L ‖ · ‖Y and
(5.11) ρ̄(Y,|·|δ)(t/C) ≤ ρ̄(X,|·|X)(t) + δ for all t ∈ (0, 1).
We now show that Y satisfies the condition in Theorem 5.18 with constants L and
(C ′ + 1)(12C)p. For that, fix τ ∈ (0, 1]. Let | · |X be an L′-equivalent norm on X
satisfying (5.10) and | · |δ a norm on Y satisfying (5.11). Then,

ρ̄(Y,|·|δ)

( t
C

)
≤ C ′tp + δ

for all δ > 0 and all t ∈ [τ, 1]. Therefore, choosing δ ∈ (0, τp), we get that
ρ̄(Y,|·|δ)(t) ≤ 2C ′Cptp,

for all t ≥ τC. As τ > 0 was arbitrary, we obtain that Y satisfies the condition in
Theorem 5.18, i.e., Y has property Ap.

The case of Np follows analogously with Theorem 5.17 replacing Theorem 5.18
above. �

Proof of Theorem B. This follows immediately from Theorems 5.6 and 5.7. Indeed,
suppose p ∈ (1,∞) and let X be a p-AUS Banach space. Then, by Theorem 5.6 X
is in Ap. Then, if Y is asymptotically coarse Lipschitz equivalent to X, Theorem
5.7 implies that Y is also in Ap. Applying Theorem 5.6 once again, we conclude
that Y is p′-AUSable for all p′ ∈ (1, p). �
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