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Noncollapsed degeneration of Einstein 4-manifolds, IT

TRISTAN OZUCH

In this second article, we prove that any desingularization in the Gromov-Hausdorff
sense of an Einstein orbifold by smooth Einstein metrics is the result of a gluing-
perturbation procedure that we develop. This builds on our first paper where we
proved that a Gromov-Hausdorff convergence implied a much stronger convergence
in suitable weighted Holder spaces, in which the analysis of the present paper takes
place.

The description of Einstein metrics as the result of a gluing-perturbation procedure
sheds light on the local structure of the moduli space of Einstein metrics near its
boundary. More importantly here, we extend the obstruction to the desingular-
ization of Einstein orbifolds found by Biquard, and prove that it holds for any
desingularization by trees of quotients of gravitational instantons only assuming a
mere Gromov-Hausdorff convergence instead of specific weighted Holder spaces.
This is conjecturally the general case, and can at least be ensured by topological
assumptions such as a spin structure on the degenerating manifolds. We also
identify an obstruction to desingularizing spherical and hyperbolic orbifolds by
general Ricci-flat ALE spaces.
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Introduction

An Einstein metric, g satisfies, for some real A, the equation
Ric(g) = Ag.

In dimension 4, they are considered optimal for the homogeneity of their Ricci curvature,
as critical points of the Einstein-Hilbert functional with fixed volume, g — [, v Rgdvoly,
and more importantly as minimizers of the L?-norm of Riemann curvature tensor,
g [i |Rmg [*dvol,.

From dimension 4, even under natural assumptions of bounded diameter (compactness)
and lower bound on the volume (noncollapsing) Einstein metrics can develop singulari-
ties. One major goal for 4-dimensional geometry is therefore to understand the moduli
space of Einstein metrics on a differentiable manifold M* defined as

()  EM* :={(M*g) | 3A € R, Ric(g) = Ag, Vol(M*,g) = 1} /DM*).

and to compactify it with a useful structure. This has been done in an L? and then
Gromov-Hausdorff (GH) sense in [And92, CT06]. More precisely, if we denote by
E(M*);y the compactification of the moduli space E(M*) for the (pointed) Gromov-
Hausdorff distance, dgy, we have a decomposition

2) EM*) ey = EM*) U 9,E(M*) U 0, E(M™),

where 9. E(M*) consists in limits with infinite diameter, and 9,E(M?*) consists in
singular limits with bounded diameter.
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We will focus on local questions and for simplicity assume most of the time that we work
on spaces with uniformly bounded diameter and therefore study the Gromov-Hausdorff
neighborhood of 9,E(M*). We therefore work on the dgy -completion of E(M*), which
is E(M*) U 0,E(M*). The metric spaces in 9,E(M*) and the associated singularity
blow-ups in the Gromov-Hausdorff sense have been understood for a long time in
[And89, BKNS89]: they are respectively Einstein orbifolds and Ricci-flat ALE orbifolds.

Anderson then asked the converse question for instance in [And10], namely, are
all Einstein orbifolds limits of smooth Einstein ? To answer this question one has
to understand if the reverse of the degeneration, the desingularization, of Einstein
orbifolds in 9,E(M*) is possible. A natural way to desingularize an orbifold is by a
gluing-perturbation technique.

The goal of the present paper is to develop a gluing-perturbation procedure which attains
any noncollapsed Einstein 4-manifold which is sufficiently close to an Einstein orbifold
in the Gromov-Hausdorff sense. This in particular elucidates the dgg-neighborhood of
the boundary 9,E(M*) in E(M*), and we will use this description in future works. In
this paper, we will use it to prove that not all Einstein orbifolds can be desingularized
by Einstein metrics in the Gromov-Hausdorff sense with an expected topology which
partially answers the above question of Anderson.

Desingularization of Einstein 4-orbifolds and obstructions

A natural technique to desingularize orbifolds is the following procedure: we glue
Ricci-flat ALE manifolds to the singularities of the orbifold to obtain an approximate
Einstein metrics, and then try to perturb it into an actual Einstein metric. We will call
such gluings, naive desingularizations of the orbifold and often denote them g? (see
Definition 1.6), where  is the set of gluing parameters which are small positive real
numbers. The main result of [Ozu19a] is that the Gromov-Hausdorff proximity of an
Einstein metric to an Einstein orbifold implies the proximity to a naive desingularization
gP in the sense of a weighted Holder norm denoted Cé”i‘(g?). This norm is bounded on

symmetric 2-tensors decaying in the neck regions where the gluing takes place.

In the present paper, we will propose a partial converse by proving that any naive desin-
gularization can be perturbed to a metric which is Einstein modulo some obstructions,
which are elements of an approximate cokernel of the linearization of the Einstein
operator. We will call such a metric an Einstein modulo obstructions metric.

Theorem 0.1 (Theorem 4.6) Let g,D be a naive desingularization of an Einstein
orbifold (M,, g,) with small enough gluing parameters.
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Then, there exists a small Cé’i‘(gf) )-neighborhood of gP in which there exists a unique
metric g, which is Einstein modulo obstructions while satisfying some gauge conditions
with respect to gP.

The proof relies on an inverse function theorem applied to the Einstein operator in well
chosen coordinates.

These Einstein modulo obstructions metrics g; are not interesting for themselves when
they aren’t Einstein as they are not geometrically motivated. Their purpose is for
instance different from the metrics of [GV16] which are critical for some geometric
functionals obtained by perturbing a connected sum of Einstein metrics.

Let us note that the Ricci flow starting at Einstein modulo obstructions metrics however
exhibits interesting behaviors with respect to the Ricci flow. Indeed, in [BK17], an
obstruction is identified to a particular desingularization of T*#/Z, and an ancient
solution to the Ricci flow smoothing out the orbifold T /7, is constructed thanks to it.

Our construction however produces every smooth Einstein desingularization in a
Gromov-Hausdorff sense. Indeed, together with the convergence of [Ozul9a], as a
direct consequence, we have the following complete description of the Einstein metrics
in a Gromov-Hausdorff neighborhood of an Einstein 4-orbifold.

Corollary 1 (Corollary 5) Let (M,, g,) be an Einstein 4-orbifold. Then, there exists
§ > 0 such that if (M, ¢%) is an Einstein manifold satisfying

dGH ((M7 g8)7 (M()7 g())) < 67

then, (M, g°) is isometric to a result of the gluing-perturbation procedure of Theorem
0.1.

A premoduli space in the neighborhood of a singular metric

Classically, studying a moduli space requires understanding its compactification with a
useful structure. The compactification (2) a priori does not carry a useful structure as it
comes from the rough Gromov-Hausdorff distance. The moduli space E(M*) however
admits a real-analytic structure around smooth metrics.

Theorem 0.2 ([Koi83]) Let (M, go) be an Einstein manifold. Then, there exists a
dgy -neighborhood of gy in E(M) which is the quotient by the isometry group of gy of
a real-analytic subvariety of a finite dimensional real-analytic submanifold, W, of the
space of smooth metrics on M.
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The finite dimensional real-analytic submanifold, W, consists in metrics which are
Einstein modulo the cokernel of the linearization of the Einstein equation at g¢ as is
usually obtained by Lyapunov-Schmidt reduction. The Einstein metrics are exactly
the metrics for which these obstructions vanish. Our description extends this local
description of EM*%) to the boundary 9,E(M*), and the set of Einstein modulo
obstructions metrics g, of Theorem 0.1 is the analogue of the ambient space W of
Theorem 0.2.

Theorem 0.2 is an important local result which implies for instance that E(M) is locally
finite. Anderson asked in [And10] whether this structure extends to E(M*) U 9,E(M*).
The new description of the neighborhood of 0,E(M) in (E(M)sy, dgr) of Corollary
1 provides a promising setting in which one can tackle this question. In particular, in
Section 4.3, we provide an adaptation to the singular setting of Koiso’s premoduli space
around metrics of 0,E(M).

Degeneration of Kihler-Einstein manifolds

Even if our purpose here is to study the real Einstein equation and not Kéhler-Einstein
metrics, our analysis in weighted Holder spaces extends the analysis leading to the
gluing-perturbation theorems of [Ban90, Spo14, BR15, HV20] in the Kihler setting.
Indeed, it allows us to glue and perturb multiple trees of singularities with arbitrary
scales and Einstein deformations. It would therefore be interesting to extend the
constructions of [Spo14, BR15] to remove the “generic” ([Spo14]) or “non degenerate”
([BR15]) conditions which correspond to restricting the gluing scales depending on the
size of the Einstein deformation. We should also be able to allow general degenerations
forming trees of singularities.

For instance, in Section 6.2, we precise the construction of [HV20] in the case of
Kronheimer’s gravitational instantons and prove that any tree of Kihler Ricci-flat ALE
spaces can be glued and perturbed to a single Kéhler Ricci-flat ALE metric with uniform
controls (in our weighted Holder norms) only depending on the group at infinity.

Obstructions to the Gromov-Hausdorff desingularization of Einstein orb-
ifolds

Our main application in this paper is a nonexistence result: there exists Einstein orbifolds
which cannot be approached by smooth Einstein metrics with specific topologies in
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the Gromov-Hausdorff sense. For this, it is enough to prove that the obstructions of
Theorem 0.1 do not vanish.

The hyperkidhler ALE spaces which are called gravitational instantons have been
classified in [Kro89a] and their Kéhler quotients have been classified in [Suv11]. Itis a
famous conjecture, [BKN89], that all Ricci-flat ALE spaces are Kéhler.

Our first goal here is to prove that an obstruction holds for any Gromov-Hausdorff
desingularization by trees of Kihler Ricci-flat ALE orbifolds, which are conjecturally
the only possibilities. The obstruction to satisfy is det R = 0 at a singular point of the
orbifold metric, where R is the Riemannian curvature seen as an endomorphism on the
space of 2-forms.

Theorem 0.3 (Theorem 6.7) Let (M;,g;); be a sequence of Einstein manifolds
converging in the Gromov-Hausdorff sense to an Einstein orbifold (M,, g,), and assume
that there exists a subsequence (M;, g;); whose possible blow-up limits are Kéhler
Ricci-flat ALE orbifolds glued in the same orientation.

Then, at every singular point p of (M,, g,), we have

detRy, (p) = 0.

This answers positively a question from [Biq13] and extends it to the case of several
singularities and allows the formation of trees of singularities. It more precisely states
that the obstruction of [Biq13] holds for any known possible configuration of singularity
models, and that it holds even assuming the weakest possible convergence instead of a
convergence in particular weighted Holder spaces.

Remark 1 Note that this obstruction is very different in nature from the result of
[OSS16] which shows that most compact Kéhler-Einstein 4-orbifolds with positive
Ricci-curvature cannot be limits of Kédhler-Einstein manifolds. Indeed, our obstruction
detR = 0 is always satisfied in this situation, and it remains unknown if these metrics
can be desingularized by real Einstein metrics. It is also different from the obstruction
found in [BK17] where the obstruction detR = 0 is also satisfied by the orbifold
T*/Z,.

Under topological assumptions, it is known that the singularity models appearing are
Kihler and glued in the same orientation, in particular we have the following illustration
of our obstruction.
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Example 1 (Corollary 15) Consider S* C R’ and the quotient by Z, given by
(x1,x2, X3, X4,X5) ~ (X1, —X2, —X3, —X4, —X5). We will denote this space S* /7, which
is an Einstein orbifold with two R*/Z, singularities. The minimal resolutions of the
two singularities R*/Z, ~ C?/Z, has the topology M := S*/Z,#T*S*#T*S?, where
# denotes the gluing of an ALE space to an orbifold along their asymptotic cone.

Then, for any 1 < p < oo, there exists a sequence of
metrics (M, g;); with both

|| RiC(gl') - 3giHU’(gi) — 0 and RiC(g,') > 3gl~ Eguchi-Hanson
#

while
GH 4
(M7 gl) 7 (S /227gS4/Zz)? ‘ S4/Z2
A4

but there does not exist any sequence of Einstein metrics

satisfying 4

RIC( ) =3 iy
8i 8i ‘ Eguchi-Hanson

M, g) 2 (S*/ 22, g51/2,)-

In the same fashion, a conjecture of Anderson states that there is no sequence of
asymptotically hyperbolic Einstein metrics on 7*S? desingularizing the hyperbolic
orbifold H*/Z, obtained by antipodal identification in a global geodesic chart. It was
proven in [Biq13] assuming among other things a convergence speed in weighted spaces
towards the orbifold depending on the maximum of the curvature. We can prove it
assuming a pointed Gromov-Hausdorff convergence together with a suitable control in
weighted spaces at infinity, this time independent on the maximum of the curvature.
It is again possible to desingularize H*/Z, with Ricci pinched in any I”, space for
1 < p < oo or with Ric bounded above or below by —3.

and

Hitchin-Thorpe inequality and degeneration of Einstein manifolds

The Hitchin-Thorpe inequality provides a topological obstruction to the existence of
Einstein metrics on a given 4-dimensional differentiable manifold M,

2x(M) = 3| (M),
where x is the Euler characteristic, and 7 the signature. These topological invariants

have definitions adapted to orbifolds and ALE spaces which we will denote ¥ and 7,
and any orbifold M, admitting an Einstein metric satisfies

2%(M,) = 3|F(M,)|.
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Any Gromov-Hausdorff desingularization damages this inequality, and the equality case
implies the obstruction.

Theorem 0.4 (Theorem 7.2) Let (M,,g,) be an Einstein orbifold, and assume that
(M, gi); is a sequence of Einstein metrics converging to (M,, g,) in the Gromov-
Hausdorff sense.

Then, we have the following inequality,
2x(M) = 3|T(M)| = 2(M,) — 3|F(M,)|.

Moreover, there is equality if and only if M is a desingularization of M, by gluing of
trees of Kéihler Ricci-flat ALE orbifolds in the same orientation (with the same sign for
7). In this equality case, we have the condition

detR(g,) =0

at every singular point.

Degeneration of Einstein metrics on spin manifolds

Another large class of manifolds on which we can prove our obstruction is the class of
4-manifolds admitting a spin structure.

Theorem 0.5 (Theorem 7.4) Let (M;, g;); be a sequence of spin Einstein 4 -manifolds
converging to an Einstein orbifold (M,, g,) in the Gromov-Hausdorff sense. Then,
(M,, g,) is spin, and at any of its singular points whose group is in SU(2), we have the
obstruction

detR,, = 0.

General obstructions for spherical and hyperbolic orbifolds. Our Theorem 5 holds
for any singularity model which might be non-Kéhler. We will use it lastly to identify
an obstruction to desingularizing spherical or hyperbolic orbifolds by any Ricci-flat
ALE manifold in Theorem 8.1. This provides an obstruction to any standard gluing-
perturbation technique but will only imply an actual obstruction to the Gromov-Hausdorff
desingularization by Ricci-flat ALE manifolds whose deformations are integrable (this
is the case of all known examples).

Theorem 0.6 (Corollary 16) Spherical and hyperbolic orbifolds cannot be desingu-
larized in the Gromov-Hausdorff sense by Ricci-flat ALE spaces which are integrable
(see Definition 5.1).
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Outline of the paper

In Section 1, we give the principal definitions, and in Section 2, we introduce and
motivate the function spaces we will use throughout the paper, and moreover restate the
results of [Ozul9a] thanks to them.

In Section 3, we prove that we can always pull-back an Einstein metric which is
Gromov-Hausdorff close to an orbifold by a small diffeomorphism to ensure that it
satisfies some gauge condition with respect to a naive desingularization. The proof
consists in a Lyapunov-Schmidt reduction in our weighted norms where the relevant
operators are proven to be Fredholm.

In Section 4, we prove that any naive desingularization can be perturbed to a metric
which is Einstein modulo some obstruction, that is, an approximate cokernel of the
linearization of the gauged Einstein operator. The point is that every possible Einstein
metric is produced this way, and that whenever the obstructions do not vanish, it is
impossible to perturb the naive desingularization to an Einstein metric. The proof again
relies on a Lyapunov-Schmidt reduction in our weighted Holder spaces. We then extend
Koiso’s definition of a premoduli space in the neighborhood of a singular metric.

In Section 5, we estimate the obstructions to the above Einstein desingularization
modulo obstructions. To obtain such an obstruction at all singular points, we need
to use an analysis on partial desingularizations and produce better approximations of
Einstein modulo obstructions metrics.

In Section 6, we test the above obstructions on degenerations of Einstein manifolds
forming trees of Kéhler Ricci-flat ALE orbifolds. By developing our analysis on
trees of singularities, we prove that the obstruction of [Biq13] for the Eguchi-Hanson
metric extends to any tree of quotients of gravitational instantons and holds under a
mere Gromov-Hausdorff convergence. An important step is to prove that a gluing
of gravitational instantons in the same orientation can be uniformly perturbed to an
Einstein metric in our norms.

In Section 7, we investigate topological conditions which ensure that a sequence of
Einstein manifolds degenerating will only produce trees of Kihler Ricci-flat ALE spaces.
We mainly use the result of [Nak90] and consider the behavior of the Hitchin-Thorpe
inequality as well as the degeneration of Einstein metrics on a spin manifold.

In Section 8, building on the notion of maximal volume for Ricci-flat ALE spaces of
[BH19], we prove that even without assuming that the trees of singularities are Kéhler,
there is a non vanishing obstruction to the desingularization of spherical and hyperbolic
orbifolds. We can however only prove that this is a Gromov-Hausdorff obstruction under
the technical assumption that the Ricci-flat ALE spaces have integrable deformations.
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1 Orbifolds, ALE spaces and naive desingularizations

Let us start by defining the objects we will use throughout this article.

1.1 Einstein orbifolds and ALE spaces

For I a finite subgroup of SO(4) acting freely on S*, let us denote (R*/T, g.) the flat
orbifold obtained by the quotient by the action of I', and r, := d,(.,0).

Definition 1.1 (Orbifold (with isolated singularities)) We will say that a metric space
(M,, g,) is an orbifold of dimension n € N if there exists ¢y > 0 and a finite number of
points (py)x of M, called singular such that we have the following properties:

(1) the space (M,\{p«}«, go) is a manifold of dimension 7,

(2) for each singular point py of M,, there exists a neighborhood of py, Uy C M,,
a finite subgroup acting freely on S"!, I'y C SO(n), and a diffeomorphism
®; : B.(0,¢0) C R"/Ty — Uy C M, for which, the pull-back of ®;g, on the
covering R" is smooth.

Remark 2 Consequently, the analysis on an orbifold is exactly the same as the analysis
on a manifold up to using finite local coverings at the singular points.

Definition 1.2 (The function r, on an orbifold) We define r,, a smooth function on
M, satistying r, := (®4).r. on each Uy, and such that on M, \ Uy, we have ¢y < 1, < 1
(the different choices will be equivalent for our applications).

We will denote, for 0 < € < ¢,
Mofe) i= {r > ¢} = M\ (| 24(B00,0) ).
k
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Let us now turn to ALE Ricci-flat metrics.

Definition 1.3 (ALE orbifold (with isolated singularities)) An ALE orbifold of
dimension n € N, (N, gp) is a metric space for which there exists ¢y > 0, singular
points (px)x and a compact K C N for which we have:

(1) (N, gp) is a orbifold of dimension n,

(2) there exists a compact subset K C N and a diffeomorphism U, : (R"/
') \B.(0, eal) — N\K such that we have

|V (Wiogr — gle. < Cir, "
Definition 1.4 (The function r;, on an ALE orbifold) We define r;, a smooth function

on N satisfying rj, := (Wy)«r, on each Uy, and rp := (P, )+, on Uy, and such that
€0 < Tp < €y ! on the rest of N (the different choices are equivalent for our applications).

For 0 < € < ¢y, we will denote

Ne ={e<r<el)= N\(U Uy (B0, 6)) U Uoo ((R*/T00)\Be(0, e—l))).
k

Now, consider a subset S,, of the singular points of M,, (respectively S of N).

Definition 1.5 (Functionals 7, 5, and r, 5) We define the functional r, g, (respectively
rp.s) exactly like in Definitions 1.2 (respectively 1.4) by only considering the sets Uy
containing points of S, (respectively §).

1.2 Naive desingularizations

Let us now recall the definition of a naive desingularization of an orbifold from [Ozu19a].

Gluing of ALE spaces to orbifold singularities. Let 0 < 2¢ < ¢g be a fixed constant,
t >0, (M,,g,) an orbifold and ® : B.(0, ¢y) C R4 /T — U alocal chart of Definition
1.1 around a singular point p € M,,. Let also (¥, g,) be an ALE orbifold asymptotic to
R*/T, and ¥, : (R*/T)\B,(0,¢,"') — N\K a chart at infinity of Definition 1.3.

Define s > 0, ¢; : x € R*/T" — sx € R*/T". For t < €}, we define M,#N as N glued
to M, thanks to the diffeomorphism

Do oW WAu(ey ', cot ™) = PAcley ' VT, €0))-

Consider moreover y : Rt — RT, a C* cut-off function supported on [0,2] and
equal to 1 on [0, 1].
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Definition 1.6 (Naive gluing of an ALE space to an orbifold) We define a naive
gluing of (N, gp) at scale 0 < t < €* to (M,, g,) at the singular point p, which we will
denote (M #N, g,#,:85) by putting g,#, ;85 = g, on M\U, go#,,8» = 18, on K, and

1 « _1 *
ottpi8h = XT3 r) Wi gy + (1 — x(t7 1)) P,
on A(t, €) := A(e~1\/1,2¢).

(N, tgb) (Mmgo)

(Mv gtD) = (N#MO7 tgb#go)

Remark 3 Itis possible to compose ¢, ; with any isometry of R*/T". This is equivalent
to gluing a different Ricci-flat ALE metric.

More generally, it is possible to desingularize iteratively by trees of Ricci-flat ALE
orbifolds. Consider (M,, g,) an Einstein orbifold (the index o stands for orbifold),
and S, a subset of its singular points and (N}, gp,); (the index b; stands for j-th
bubble) a family of Ricci-flat ALE spaces asymptotic at infinity to R*/ ['; and (Sp,);
a subset of their singular points. Let us finally assume that there is a one to one
map p : j — pj € S, U U, Sk, » where the singularity at p; is R*/T;. We will call
D= ((M(,,g(,,SO), (N}, 8b;, Sbj)j,p) a desingularization pattern.

Definition 1.7 (Naive desingularization by a tree of singularities) Let 0 < 2¢ < ¢,
D be a desingularization pattern for (M,, g,), and let 0 < #; < €* be relative gluing
scales. The metric g is then the result of the following finite iteration:

(1) start with a deepest bubble (N;, g5,), that is, j such that §; = 0,

(2) if p; € Ny, replace (Ni, g, Sj) and (N, gi;, ) in D by (Ni#N;, gb, #p, 1,85, Sk \{pj})
and restrict p as [ — p; for [ # j in D and consider another deepest bubble. The
same works if p; € M, .

(3) choose another deepest bubble and do the same.

For t = (t;);, if N; is glued to p; € N;,, and N, is glued to p;, € N, , ..., Nj,_, is glued
to Nj,, which is glued to M,,, we define T; := 1 t,...t;,. This way, on each ij’, the

metric is Tjgp, .
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(M, gP)

Let (M,, g,) be an Einstein orbifold, and (M, g”) a naive desingularization of (M, g,)
by a tree of ALE Ricci-flat orbifolds (Nj, g5,) glued at scales T; > 0.

Here, the manifold M is also covered as M = M, U |J; N], where
. 1
3) M}, = M\ (| ®u(B.0, 1)),
k

where t; > 0 is the relative gluing scale of N at the singular point p; € M,,, and where

4) N = (VAo (R /To\Bo(0, 26, )\ (L We(Be(0, 1))
k

On M,% C M, we have g” = g, and on each N/® C NI, we have g” = Tjg,,. We
also define fyax := max;#;. By Definition 1.6, on the intersection N]’ N M! we then
have /Tjry; = r,, and on the intersection N{ N Nj, we have Ve, = Tiry, -

Definition 1.8 (Function rp on a naive desingularization) On a naive desingulariza-
tion (M, gP), we define a function rp in the following way:

(1) rp=r, on M/,

2) rp= \/Tjr;,j on each V.

The function rp is smooth on M.

Definition 1.9 (Neck regions, Ax(t,€)) Let (N, gp,) be a Ricci-flat ALE orbifold
of the above tree of singularities. We define A (¢, €) as the connected region with

_1
e Wi < mrbk = rp < et, *+/Ty with a nonempty intersection with N,’C.
Definition 1.10 (Cut-off functions s, XNt X A(te) and XB(,,) We define the
following cut-off functions thanks to the cut-off function y used in Definition 1.6.

_1
* Xwm,equalto 1 on M{],& and equal to 1 — x(t, *r,) on each annulus Ai(t, €). It
is supported on M}.
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‘Aj(tvg) Ak(t,E) .A[(f/,E)
== ) B (Mg
Nj(e) Ni(e) My(e)  Ni(e)

_1
* Xt equalto 1 on N/m’ and equal to 1 — x(z, 4r;,j) on each annulus Ag(z, €) at its

1
singular points and X(tj4 rp;) in a neighborhood of infinity. It is supported on NJ’

1
* XAe equalto 1 on Ag(t, %e), and equal to x(e*1t§ Tp,)— X (€rp, ). Itis supported
on A(t,€).

*  XB(y,e for pp € M, equal to 1 on r, < € equal to X(eflr(,) around py. Itis
supported in supported in r, < 2¢ around pg.

1
Note that since #; r, = 1, on the gluing region, we have X, c) — X Aur,e) = X(€7,) =
_1
X(ety o).
The definition extends to deeper Ricci-flat ALE orbifolds thanks to the iteration of
Definition 1.7.

This in particular yields a partition of unity,

Q) 1=XM5,+ZXN;'
J

2 Weighted Holder spaces and decoupling norms

We now present the spaces in which the analysis of the rest of the article takes place.

2.1 Weighted Holder spaces

Let us construct weighted Holder spaces adapted to our situation. Let (M, g") be a
naive desingularization of an orbifold (M,, g,) by Ricci-flat ALE orbifolds (Nj, gp,) at
scales T; > 0.
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2.1.1 Weighted Holder spaces on orbifolds and ALE spaces

Let us first define weighted spaces on manifolds asymptotic to cones or with conical
singularities. For a tensor s, a point x, o > 0 and a metric g, if we denote exp, the
exponential map at x whose injectivity radius is inj,(x), we define the Holder seminorm
of s on M as
[$)cog () = sup exp; s(0) — exp} s() .
{yeTM,|y|<inj,(x)} |y|« expy 8

For orbifolds, we will consider a norm which is bounded for tensors decaying at the
singular points.

Definition 2.1 (Weighted H6lder norms onanorbifold) Let5 € R,k e N, 0 < a < 1
and (M,, g,) an orbifold. Then, for all tensor s on M,,, we define
k

Hs”cga(ga) = S;p ro_ﬁ ( Z rf"vgos’ga + r(l‘;"'_a[vgus]ca(ga)) '
¢ i=0

Remark 4 The injectivity radius at a point x € M,, is equivalent to 7,.

For ALE orbifolds, we will consider a norm which is bounded for tensors decaying at
infinity and at the singular points.

Definition 2.2 (Weighted norm on ALE orbifolds) For e R,k € Nand0 < a <1
on an orbifold ALE (N, gp), we define

k
. B8 B i 7i k+ k
5l = sup { max(rs ) (30 Wil + 5198 ket ) }-
i=0
Remark 5 The injectivity radius at a point x € N is equivalent to ;.

Remark 6 We similarly define the norms for Cg’a(g,,, S,) and Cg’a(gh, S) by replacing
1o and rp, by r, s, and rp, g of Definition 1.5.

2.1.2 Weighted Holder spaces on trees of singularities

Let us assume that (M, g”) is a naive desingularization of (M,,g,) by a tree of
singularities (N}, gp,). FOr fmax := max; #; < eg, for €y > 0 the constant of Subsection
1.2 only depending on g, and the g, , we define the global weighted norm in the
following way.
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Definition 2.3 (Weighted Holder norm on a naive desingularization) Let 8 € R and
k€ N,0 < a < 1. We define for s € TM®*+ @ T*M®'~ a tensor of type (I, [_) € N?,
with [ := [, — [_ the associated conformal weight.

1
(6) HSHC/E"‘(gD) = ”XMZSHC]EQ(go) + Z sz ||XNJ?SHCIEO‘(gbj)'
J

1
Remark 7 The factor sz in (6) comes from the fact that on N?, the metric gD is close

1
to Tjgp,. For a tensor s of conformal weight /, we have ‘S|T,-gb_, =T7|s| g, and therefore

1
T3 sl e, = X5l et

Remark 8 For a function, being bounded for this norm means being bounded in
C% -norm means being bounded everywhere and having a particular decay in the neck
regions.
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Remark 9 If (M, gP) is a partial desingularization at the singular points of S, and
S;, we define the Cg’a(gD)—norm similarly thanks to C]ga(go, S,) and Cg’a(gb, S) of
Remark 6.

Thanks to this norm, we can for example rewrite and extend the statement of [Ozu19a,
Theorem 6.4].

Corollary 2 Let Dg,vg > 0, [ € N, and 5 = B(vg,Dp) > 0 obtained in [Ozul9a,
Theorem 6.4]. Then, for all ¢ > 0, there exists = d(¢, Do, vo,1) > 0 such that if
(M, g°) is an Einstein manifold satisfying

* the volume is bounded below by vy > 0,

* the diameter is bounded above by Dy,

* the Ricci curvature is bounded |Ric| < 3.
and for an Einstein orbifold (M,, g,),

dari (M, §°),(M,, 80)) <6,

then, there exists a naive desingularization (M, g°) of (M,,, g,) by a tree of singularities

and a diffeomorphism ¢ : M — M such that

&
l¢"g" — gD”c%(gD) Se

Proof Let / € N. Let us give a proof by contradiction and consider a sequence of
counter examples, that is a sequence of Einstein manifolds (M;, g;); such that

* Vol(gi)) = vo >0,
* diam(g;) < Dy and
* |Ric(g)lg <3
converging in the Gromov-Hausdorff sense to an Einstein orbifold (M,, g,), but such

that there exists € > 0 for which, for all i € N and any naive desingularization (M;, g”)
of (M,, g,), and all diffeomorphism ®; : M; — M;, we have || ®fg; — g?”cg(gn) > €.

According to [Ozul9a, Theorem 6.4], this implies that there exists a subsequence
(M, g;); with fixed topology, and a sequence (M, gP); contradicting the assumption for i
large enough by definition of the weighted norm. |

On the annuli of low curvature Ay (t, €9) pulled back on flat annuli A.(p1, p2) C R*/T,
the weighted norm on (M, gP) is equivalent is equivalent to a particular norm which
allows us to control independently of the radii the sum of tensors decaying at the center
of the annulus and of tensors decaying at infinity.
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Definition 2.4 (Weighted norm adapted to an annulus) Let 0 < p; < p2, B € R,
ke N, 0 < a< 1 andatensor s on (A.(p1, p2), 8). We define

) n(ro = max (247, (29)7) <1,
Te 1%}
and the norm,
k
. —1 i i k+aprk
HSHCE,Q(AM“M» D= A((S;Tl’)pz) [77 (m)(% 1|V, Slg, + 7 [Vges]ca(ge))}-

In the rest of this article, we will often use spaces denoted fCZ’O‘ for a positive function
f. They will always be equipped with the following norm
s

f

Is

ch’go‘ = Clga‘

Remark 10 By definition of rp, for all m, there exists a constant C > 0 only
depending on the cut-off functions of Definition 1.10 such that

8) H H mc" gDy HXM erkaO‘ + ZT ”XN’SHrmc" (gp ) < H H mc’* gDy

Remark 11 The metric g” is equal to g, on {rp > €} N M!, and to Tigy; on
{/Tje <rp < 2\/Tje*1} N N}. Since on the A(t, €) between Ny and N; (resp. M,)
identified with A, (¢! t 15, e\/Tj) (resp. Ao(e~'\/Tx, €)), gP is arbitrarily close to g,

we see that defining 7j : M — R™ a function equal to
* lon {rp>e}NM,andon {\/Tje < rp <2,/Tje”'} NN/ and
* equal to the function n < 1 defined in (7) on the associated euclidean annulus

A \/0Tj, e /T)) (or Ao(e™' /Iy, ©)).

Then, the norm rgCg’a(gD ) is equivalent (independently of ¢) to the norm which to a
tensor s associates
k

(9) HS” = Sjl\llp erﬁ(rD)_l (Z r;)‘v;DS‘gD + r]BJrOz[szs]C&(gD)) .
i=0

Remark 12 Let 5 < S, k+a <k +a',and m,m’ € Z.

For all the previously mentioned weighted Holder spaces generically denoted pnche
we have the following properties: for any tensors s and s’

HSHrmCl;i’a < ||S||rmcg;a/ ’
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° HkaHrmC/;;_kaa < ||S||rm+kcl;;7&

* if x is a composition, a product of a contraction of tensors, there exists C =
C(*,k,a) > 0 such that

/ /
(10) HS *§ Hrerm/Cgi,ﬁ/ < CHerngo‘Hs ||rm’C];3’/O‘

Let us give an explanation for that last inequality (10) for bilinear operations and assume
first that £k = 0, a = 0 and consider depending on the situation

(D) v, w) =007, 75" on (M, 20),

@ O, w) = (max(ry,r, ), max(r) ;7)) on (N, )

(3) or(w,w) =@, 7 ~1) with the weights 7} and 7’ used in (9) above respectively

associated to 8 and B’ on (M, gP).
The goal is to bound w.w' o=’ |s * 5’| uniformly and this is done using the definitions
of the norms which yield wr="™|s| < ||s||rmc% and wr" |s'| < ||8']] o for any of
B/

the above spaces. The derivatives are treated thanks to the second above inequality and
Leibniz rule.

2.1.3 Weighted Schauder estimates

Weighted Schauder estimates hold in these norms for the operator P := %V*V —R.

Proposition 1 Forall 5 > 0 and 0 < o < 1, there exists C > 0 and ¢ > 0 such that
if 1 is a symmetric 2-tensor on (M, g°), and g a metric on M satisfying

||g - gDHCéaO‘(gD) < €,

then, we have

HhHCéva(gD) < C(Hpgh“rgzcg(gD) + Hh”C%(gD))'

Proof Let g be a metric on M satisfying ||g — gD||Cz,a(gD) < ¢, for € > 0 which we
will choose small enough along the proof. On the comgacts M,(ep) of the orbifold and
Nj(ep) of the ALE orbifolds minus their singular points, we have an elliptic estimate for
the operators Py, and Pgbj : there exists C; > 0 such that for any symmetric 2-tensors
h, on M,(€p) and h; on Nj(ep), we have

(B, 2eo) | 2oy < Cr([[(Peho)ipty ey llcoten) + 11010) ptyceny Lo )
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and

1D e | c2gs) < CrlllPay B eo o ey + 1D e leoces ) -

By assumption, there exists C > 0 only depending on g, and g, such that ||g —
Zollc2.0(g,) < Ce on M,(ep) and [ES T — &l 2, gy S < Ce on Nj(ep). We conclude that

for e small enough, the operators P, and P £ which are close to the operators Pg, and
Pgb , satisfy for all 4, on M,(¢p) and h; on N /i(€0),

(R0 1, 20y L2y < 2C1 (I(Pgh0) eyl e o) + 1B poen) | coen))

and

1) e | c20gy,) < 2C (||(P e llca@) + 1w lleo,) -

On each almost flat annulus A(z, €9), let us denote A(p, p') := {p < rp < p'}. There
exists a diffeomorphism ¢, : A.(1/2,4) — A(p/2,4p) such that

Tod < Cnipe.
H P gechme(l/z,@) o

then, by ellipticity, for € small enough, there exists C, > 0, such that for all symmetric
2-tensor h on A,(1/2,4) we have,

1]l c2.eran1,2)) < 2C2<HhHC0(A (1/2,4) T HP¢p8hHCO‘(AP(1/2 4)))

Coming back to (M, g), this implies that for € small enough, we have for /& a symmetric
2-tensor on A(p/2,4p),

1llc2ecagpp), ) < 4C2 <||h\CO<A(p/2,4p),§2> +P ;;th%A(p/ZAp),jz)) :

The norm of a symmetric 2-tensor s behaves in the following way by rescaling, for
t>0

sl = 1ls,
and the operator P behaves in the following way by rescaling, for ¢t > 0: P§ = tP,.
Multiplying both sides of the equality by rgz, we get

2]l 2.0 201,80 < 4C2 (1ll o240 + TDIPhllcacipraaps) -

Given the controls on the derivatives of rp, we deduce the stated result by definition of
the weighted norms by multiplying both sides of the inequality by the weight of the
norm. o
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Analogous estimates also hold for the elliptic operator §6* with the same proof.

Proposition 2 Forall 5 > 0 and 0 < o < 1 there exists C > 0 and € > 0 such that
if X is a vector field on (M, gP), and g a metric on M satisfying

||g - gDHCé*O‘(gD) < €,
then, we have

HXH,-DCgO‘(gD) < C(Hégé;gkXH,BlCle“(gD) + HXHrDC%(gD))'

2.2 Decoupling norms

We will see here that to expect good controls for the operators P and 66* in the annular
regions of our manifold, we need to consider separately the influence of traceless
constant 2-tensors for P and linear vector fields of the kernel of 4.6, for ™.

2.2.1 Estimates on annuli A,(¢, e~ 1) of (R*, g,.).
Let us start by studying the situation on flat annuli to motivate our new norms.

Proposition3 let0< < 1,0<a<1l,and P = %V*V—ﬁ. There exists C, > 0,
and €, > 0 such that for any symmetric 2-tensor 2 on an annulus of radii 0 < € < ¢,
and é, there exists a constant symmetric 2-tensor Hy and a symmetric 2-tensor H,
satisfying

ViV.H. =0,

(1) ”H*HC%’O‘(A(,(ZE,(I/Z)E*I)) < Cellh = HOHC%(Ae(e,e—‘)V
(notice the norm Cf’o‘ for the left hand side) and,

(Ae(26,(1/2)e= 1) S

(12) |h — Ho —-If*Hcga Aolec—1))"

CEHPgeh”r;ch

This implies in particular the following control: for all x € A,(1/2,2),

|h — Ho()|g, + [VA(X)|g, 4+ V2| g, + [V h]ca(e)(x)

(13) < Ce((ze)ﬁHPgehHr; -1y T 2¢l|n — HOHc?f

2CY(Aclese W@€%)
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Remark 13 This is a strictly better estimate than the elliptic estimates of Proposition
2 which would only have given

|h — Ho(®)lg, + [Vh®)g, + [VZh(X)|g, + [V hlca(e) ()
(14) < Ce(@ 1Pyl 2 ety + 6 1 = Holl gz g e c-1y)-

The difference will be crucial in the proof of Proposition 11.

Proof Let us start by noting that (13) is a consequence of (11) and (12). Indeed,
h— Hy = (h— Hy — H,) + H,, and we have therefore, denoting

Isllcza/on == sup  |s@)g, + [Vs@)lg, + [V25()|g, + [VZs]ca(g) (),
XEA.(1/2,2)

\h — Ho — Hi|| 2.1 /2,0) + [[Hell 2001 /2,2)

|h — Hollc2.01/2,2) < |

<
S Aclese—1)) (Aclec=1)

B
< Ce(@) IInghII,;ng(AB(“_.» + 2l — HO”cg“(Ae(e,e*l»)’

by definition of the weighted norms and assuming, for C, > 0, the inequalities (12)
and (11).

On R*\{0}, the harmonic symmetric 2-tensors are sum of homogeneous harmonic
symmetric 2-tensors whose coefficients in the canonical basis of R* are proportional
to ¥/ for j € Z\{—1}. These harmonic symmetric 2-tensors are more precisely of the
form r'e‘Hk or re_2_ka for k € N, where Hj is a homogeneous symmetric 2-tensor with
|H|q, ~ r° whose coefficients, once restricted to the unit sphere are eigenfunctions of
the spherical Laplacian with eigenvalue —k(k + 2).

For any symmetric 2-tensor /& on A.(e, e~ 1), let us define A the solution on A, (e, e~ ')
of the following Dirichlet problem, denoting for r > 0, S.(r) := {r. = r},

ViV.H =0,

H = honS,(e) USc(e™h.
More precisely, H = Zk;()(ﬂe)kfl;r +(e'r,) > *H," where the H;® are homogeneous
with |H;"|,, ~ Y and which, once restricted to the sphere are eigenvectors associated

to —k(k + 2). If we decompose in spherical harmonics his, e =: > Hi(e) and

Ris,e-1y =2 > Hi(e™ 1), we have the system
(15) {Hk(€l) = A +

Hi(e) = EZkH,j_ + A,



24 Tristan Ozuch

and therefore,

~ 1 _

B = o (Hile h — e H(e)),
(16) )

Hy = 1z (H(© — € Hie ™),

Denote H, := H — I:IaL . Since V*V, H, = 0, by elliptic regularity on the annulus
A(p/2,4p) C A(e, ¢~ 1), there exists a constant C > 0 independent of & such that we
have,

. C .
(17) [H [ coago 20 < ;HH*HH(Ae(p/zAm)v
so to control the norm C?(Ae(e, e~ 1)) of H,, we just have to control the L?-norm of H,

on the different annuli A.(p, 2p) C A(e, e~ 1). Since the harmonic decompositions are
L?(S,(1))-orthogonal, we have for a constant C > 0 which may change from line to line

2p
/ \H*\idvge = 64/ / |H0_|§er74dee(])r3dr
Ae(p,2p) p Se(1)

2p
+ Z/ / | B+ €2+kl"_2_kHI:|§ed\/se(1)l’3dl"
=1/ Js
S C€4/ ’ﬁa’zed\/se(l)
Se(1)

2p
+ CZ €2k/ /S(l) \H:\;edvse(l)r%”dr
14 e

k=1

2p
4492, r— (2 —1-2
e k/ /s<1> [y [ dvs.yr ™'~ dr
P e

< C€4/ |Hy |7 dvs,)
Se(1)

2%k 2k+4
—|—CZ€ p /Sl

k>1 o

-3 ~
S C€46 / ’HO ’éz,edee(e)
Se(€)

2% 2k+4 3 £+ (2
+ CZE p*tie / ‘H]j_‘gedee(e—l)
k>1 Se(e™1)

\HEI2 dvs,) + € /S N A [, dvs.)

(18) + e / A, |7, dvs, 0
Se(€)
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Now, the equalities (16) and the fact that the decompositions in spherical harmonics are
orthogonal imply that for a constant C > 0 which may change from line to line we have

Z/ ‘I:Ik_‘i,edv‘g(,(e) < CZ/ ’Hk(e)‘ﬁedeg(e) + C66+2k/ ‘Hk(ﬁ_l)@edvé}(e_')
150 /5@ /S See=1)

N

C/ |h— Hyf g, dvs.e) + C€6/ [ = H [g, dvs, )
Se(€) Se(e™h)

3 ; 2 3 : 2
Ce||(h = H 5,0l eoge,) + CE Nl = H s lleog,)

<
3 4112
< C€’|lh—H, ||C%(Ag(e,€_l))

19)

because [(h — Hy )i 0le. < |Ih— H(;LHC%(A(, —1yy and [(h — H )il < 7 -

I:IO+ I Y Aelec) by definition of the norm, and similarly

(€,€

ir+12 -3 7+ 112
(20) Z/S(E_I)ka 5 dvs, -1y < Ce3||h — Hy HC%(AE(“_I)).

k>1

Together with (18), (19) and (20), and since on A.(e, é) forany k> 1, e(p+p~ ') >

ek p*k, this yields the following estimate for ¢ small enough and a constant C > 0,

P2 4 2/ 1 —1\2 i+ (2
1) VA2, 2 < P (07 +07) 10 = Hy o a ey
Combining (17) and (21), we get

(22) HH*HC?(AL,(G,E*I)) < Cllh— ﬁ(THcgme(e,e—l»-

Let us fix xo € S¢(1) and modify our symmetric 2-tensor / to get a symmetric 2-tensor
H such that 7 — H vanishes at xy and on S.(¢) while being constant on S.(e71). The
only possible choice with harmonic symmetric 2-tensors is

2

- co ~ € co
H:= <H+ — 7> (H* —),
o " 1=a) " 1o r

where ¢y = (H — h)(xg). We will show that 4 — H satisfies the estimate (12), but let us

start by proving the control (11) stated. For this, denote Hy := Flar — 1i°€2 the constant

part of H, and H, := H, + —5 —% its varying part.

1—€2 (e~ 1r,)?

According to (21), the part Zk>1(ere)kl:1,;" + (e 'r.)727*H," is well controlled in
L?-norm by the varying parts of 4 — Hy on S.(¢) and S,(e~!): they are the same as the
varying parts of h — Hy. There remains to control the part in 7,2, that is
1 (1—€eHHy + o
1—¢€2 € 2r2 ’
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In order to control this part, let us look at the mean values of 4 — Hy on S.(e) and
S.(e~1). On S,(¢), we have (h — H)‘Se(e) = 0, and therefore

co €

(h — Ho)|s,) = (h — H) + H. + 2.
—€°r,
and its mean value on S,(¢) is then
€o
1 —e€*

(23) Hy +

Similarly, since & — H=0onS,(e") and
- . co
(h — Ho)|Sﬂ(€71) =(h—-H)+H, + =
and its mean value is therefore

47— €0
(24) EHy +

1 —¢%

By considering linear combinations of (23) and (24), we control both |co|,, and |Ho|,,

thanks to the mean values of 47 — Hy on S.(¢) and S,(e~ '), and we consequently have
for some constant C > 0,

|CO,ge + ’H(;’ge < Clh _HOHC%(Ag(e,e—l))‘
Hence we finally have the existence of a constant C > 0 such that we have, going from
L?-controls to C%-controls thanks to (17) applied to H,,
1Hllco < Clli = Hollco

and therefore the stated inequality (11).

Let us prove the estimate (12), and assume towards a contradiction that there exists a

sequence of positive numbers ¢; — 0, and a sequence of symmetric 2-tensors /; on
. 1 o 1

annuli A,(¢;, €; ") satisfying, ||h; —H,'||C%(Ae(67671)) =1, and HPgh,-Hr;zC%(Ae(Ei’e;l» <5

Remark 14 The failure of these properties will indeed yield the estimate (12) since by el-
liptic regularity we will get higher order estimates on the smaller domain A, (2e, 2e) ).

Let then (x;); be a sequence of points of A.(¢;, €; 1y where the C%(Ae(ei, ei_l))—norm
of h; := h; — H; is reached. We can extract a subsequence with one of the following
behaviors:

(1) ro(x;)) = 400, and €;7.(x;) — 0,
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(2) re(x;)) = 400, and €;r.(x;)) = ¢ > 0,
(3) r.(x;) — 0 and el-_lre(xi) — 400,
@) re(x) — 0and € 'r.(x)) = ¢ >0,
5) rex)) > c>0.
In all cases, we rescale to fix r.(x;) = 1 by defining, for all x,
hi(re(xi)x)
€ (re(x)? + re(x)~F)

hi(x) :=
which satisfies
(ViVehi)(0) = re(xi)* (Vi Vohy) (re(x)x).
Since we had by assumption the controls
hix) < € (re” + re(0) ),
and |
[VEVehilg.(0) < <re)™2e] (re@)” + re() ™),

X0

e and on S,(¢;7.(x;)~"), and is constant

our new symmetric 2-tensor /4, vanishes at

on Se(ei_] re(x;)~"). It moreover satisfies

((re(e)re(0))? + (re(x)re(x)~#)

hilg. () <
‘ ‘g re(xi)ﬂ‘*'re(xi)iﬁ

with equality at x; and

5 ((re(x)re()P + (re(xp)re(x))~7)
re(x;)P + re(x;) =5 '

1
’V:veh”ge ()C) g ?re(x)_

In the different situations, up to extracting a subsequence, we finally get one of the
following limits

(1) on R\ {0}, asolution K, of Phl, = ViV,h, =0, and supr—Ph,, = 1, but
there does not exist such a solution because the harmonic symmetric 2-tensors
decay at least as O(r) at O if they vanish at O and must therefore grow at this
rate at infinity. This is a contradiction.

(2) on B.(1/c)\{0}, a solution A’ _ of P,h, = 0, and supr—Ph._ = 1, and such
that (hgo)| Se(1/¢) 1s constant. The unique solution to the Dirichlet problem with

the zero condition at 0 and a constant condition on S.(1/c) is AL, = 0. This is a
contradiction.
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(3) on R*\{0}, a solution #’_ of P,h, = 0, and sup’h_ = 1, but there does
not exist such a solution because the harmonic symmetric 2-tensors decaying at
infinity decay at least like O(r—2), and therefore blow up at least at this rate at 0,
and finally, 2 = 0. This is a contradiction.

4) onR*\B,(1/c),asolution i’ of P,h’_ = 0,and sup ’h’ = 1 and (Mo )is.(1/c) =
0. The unique solution to the Dirichlet problem on R*\B,(1/c), decaying at
infinity and vanishing on S.(1/c) being zero, we have h,, = 0. This is a
contradiction.

(5) on R*\{0}, a solution 4’ of P,h’, = 0, and sup(r® + r—P)h._ = 1 satisfying
h..(2) = 0. The conditions Pk, = 0, and sup(r’ + r~P)h., = 1 imply
that h/ is constant, since A, vanishes at %2, we have A, = 0. This is a
contradiction.

We therefore deduce that there exists €, > 0 and C, > 0 such that for all 0 < € < ¢,
and all symmetric 2-tensor 4 on the annulus A, (e, e~ 1), we have

1 = Hollcg uoqe.e-1yy S CellPehll 2o, ie, 1y

In order to prove the estimate (12) and go from a Cg(Ae(e, e~ 1))-controls to CZ:O‘(Ae(Ze, (2e)~1))-
controls, we use elliptic estimates which are satisfied on the flat annuli according to the
end of the proof of Proposition 1. |

With a completely analogous proof using the harmonic decomposition of 1-forms on a
cone of [CT94, (2.16)-(2.19)] (see also Section 3.1 for particular case of flat cones), we
have the same result for vector fields, but this time, we treat the linear kernel of 6™ on
R*/T" separately. On R*, the elliptic operator

1 1
0.0, = ViVe — sdid = dd} + Sd:d,

has its kernel equal to the linear vector fields of the kernel of 6.0, among the vector
fields of order (’)(r;_ﬁ + r;+ﬁ) for 0 < 8 < 1, see Lemma 3.1 for a proof of this and
Section 3.1 for a description of the kernel.

Proposition 4 Let 0 < 8 < 1. There exists C, > 0, and ¢, > 0 such that for any
vector field X on an annulus of radii 0 < € < ¢, and é, there exists Y, a linear vector
field of the kernel of 4,0, and an element Y., of the kernel of 6.0, satisfying

e

CellX — Yo”rec;’“(Ae(e,efl»’

reCY % (Ae26,20)~ 1)) S

IX =Y —¥ *”recg*“me(ze,(ze)*l» S Cell0g.00,X Hr;‘CQ’“(Ae(e,e*l))'
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In particular, this implies the following control, for all x € A.(1/2,2),

(X — Y0)@)|g, + VX — Y0)®)|g, + |VEX — Yo)(®)|,, + [VEHX — Yo)]ca(e)(x)

(25) < Co(20) 1860 X ], i tatety 2€||X — YOHreC%,a( A1)

2.2.2 Approximate kernels

Let (M, gP) be a naive desingularization of an Einstein orbifold. For each annulus
Ay(t, €) (see Definition 1.9) between Nj and N; or N; and M, , by construction there
exists a diffeomorphism

O A (67 /Tivk, €/T)) C R Ty — Aw(t,e) C M,
such that there exists C > 0 for which, forall 0 < 8 < 1,

* D 2—p3
(26) H(I)kg _geHCZ’a(Ae(e—'\/Tj\/ﬁ,e\/ﬁ)) < Ce .

Because of the above constant symmetric 2-tensors and the linear vector fields, we
cannot expect estimates independent of the gluing scales in the definition of (M, gP) of
the type ||A]] o (e0) <C ||Pgnh||r52 C3(e?) which are needed to apply an inverse function
theorem. Indeed, we have the following estimates according to Proposition 7 (which is
proven below). Recall that the cut-off functions are in Definition 1.10.

Remark 15 In most of the rest of this article, we will often abusively forget the
diffeomorphism ®; to simplify the notations. For instance, a symmetric 2-tensor
®; (X Aur,0H) will be denoted X 4, ¢, )H on M.

Proposition 5 On a naive desingularization (M, gP), for all 0 < 8 < 1, there exists
C > 0 such that for Hy a constant symmetric 2-tensor, and X 4,(.,¢) the cut-off function
defined in Definition 1.10,

||PgD (XAk(LE)Hk) ||r52Cg(gD) < C|Hk|ge»

but

N

1
Xl cy oy = 5 tmax [ Hile,
O

Linear vector fields in the kernel of §6* also rule out the existence of estimates
independent of ¢ for the operator 66* according to Proposition 7 proven below.
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Proposition 6 On a naive desingularization (M, gP), forall 0 < 3 < 1, there exists
C > 0 such that for X a linear vector field in the kernel of 6,9, ,
H(SgD(S;D (X-Ak(hE)Xk) HrElC}j’a(gD) < CHXkHrgcg(ge)7

but | s
HXAk(tyf)Xk”C%(gD) > 5’ma§‘|Xk||recg(gg)~

Weighted decoupling norms. Propositions 3 and 4 actually show that we can control
the inverses of our operators once we solve our equations modulo constant symmetric
2-tensors and the linear vector fields of the kernel of ,6; on R* and Propositions 5
and 6 show that we cannot expect better. We therefore introduce new norms to reflect
this. They are similar to the norms introduced in [Bam12] for similar reasons.

Definition 2.5 (Norm .|| «. onsymmetric 2-tensors) Let /& be a symmetric 2-tensor
B*

on (M, gD), (respectively (M,, g,) or (IV, gp)). We define its Cg‘i‘ -norm by
Il gse = inf 1]l g + Ekj .

where the infimum is taken among the couples (A, Hy) satisfying h = hy+) ; X A, Hk
(respectively h = hy + >, XB,(oHk or h = hi + Y, xB,Hk), for H a constant
traceless symmetric 2-tensor on R*/T';.

Definition 2.6 (Norm ||.|| . on vector fields) Let X a vector field on (M, g°)
B,*

(respectively (M,, g,) or (N, g5)). We define its rCZ’i -norm, where r is the function
rp (respectively r, or rp) by

10 e 1= dng Il s+ D 1Xel g
k

where the infimum is taken among the couples (X, X;) satisfying X = X+ -, X A (1,0 Xk
(respectively X = X, + > X8, Xk or X = X, + XB,)Xk)

Remark 16 By definition of the weighted norms, on an orbifold or orbifold ALE,
the decompositions & = h, + >, xpeHr and X = X, + ), XXk are unique and
determined respectively by the limits of 4 and of % when r — 0 (where r = r, or
r = rp). Indeed, in other cases, the expression we minimize is infinite.
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Remark 17 By definition, we have
HHc’éi < H'Hc’ga’ and HHngoi < H'Hrcgo‘v

and the spaces (Cg’i7 [ ]| ko) and (rClé’f:, x a) are clearly Banach spaces.
b B,* b

e

2.2.3 Estimates in the decoupling norms

Let us show that it is possible to control thanks to the " Cg’a -norm the images by the
operators P and 64* of elements of r’"*ngtz’a.

Proposition 7 Let 0 < 3 < 1, and (M., g.) one of the spaces (M,, g,), (N}, gp;) or
(M, gP), g ametric, h a symmetric 2-tensor, and X a vector field on M.. We then have,
the following controls:

1Pe.h < Cllall 2

| r2Cg(g) S 2 (ge)

106.0¢.X1l, 1 ¢ gy < CIXII

(g r.c3"1(g.)’

1P = Pet), 2y < Cllg = 8l oo Il g

and
H(Sgég,‘(X) - 5g,5* (X)|| 1 m(g) < Cllg — goHCZ()z(g)HXHrC’%a (@)

Proof Let us show the result for g2, the proof for other spaces is very similar. For the
two first inequalities, consider 4 a symmetric 2-tensor and X a vector field on M, and
some decompositions & = hy + >, x A,r,0Hr and X = X, + >, X 4,¢,0Xk. Remark
12 implies that we have the following controls for A, and X,

27 HPgDh*HrI;ZCa(gD) C||h. ||C2f¥ oDy’
and
(28) 102000l 1t gny S CIXull 3o g0

On R4/F, we have P, H; = 0 and 9,6, X, = 0, hence, since for all / € N, we have
(29) ‘Vle|gD < Cﬂ”Bl,
and thanks to the control (26), we have

(30) 1Pgo (X ave.rHO e e0) < ClHEg.
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and
(31) ||5gD6;D(XAk(Z,€)Xk)HrD—lCga(gb) < CHXkHr(,Cg(ge)a
where we pulled-back thanks to the diffeomorphism

Dy 1 Ac(e ' /Tiv/tr, e/T)) C R Ty — Ai(t, €) C M.

Summing the controls (27) and (30) on the one hand, and the controls (28) and (31) on
the other hand, yields the two fist inequalities stated.

Let us now focus on the two last inequalities, which are more difficult to obtain. The
control we want is local, let us therefore write down the expressions of our operators in
local coordinates in an orthonormal basis (e;). For a symmetric 2-tensor %, denoting
hij = h(e;, ej) and Ry, the Riemannian curvature in coordinates, we have

Lo
(32) Py(h)j = 5 (Vi Veh) ; — 878" Rigilipg,

where V; is the covariant derivative for g in the direction e;. We directly see thanks to
the estimates of Remark 12 that we have the controls:

D
HPg(h) - PgD(h)”rgzcg(gD) < CHg -8 HCé’a(gD)HhHCé’D‘(gD)'

Let us now consider >, x.A,,oHr and Y, X 4,«,c/H} - These tensors being all supported
in the annuli A.(z, €), we just need to restrict our attention to them. The crucial remark
is that in (32), every term involves at least a derivative of & or of g — g”. Hence, we
have a more precise control on 4 a symmetric 2-tensor supported in Ax(z, o)

2
HPg(h) — PgD(h)||r52cg(gD) <C(||g - gDHCéva(gD)Hv hHrBZCE(gD)
+ 11V = &)1 000 VAl 10
2
(33) + | V(g — gD)HrE2cg(gD)”th(z)v“(gD))7

(notice the norms C>®(gP) in which we have \|XAk(,7E)Hk||C(z),a(gD) < C|Hi|,, and
X Ao H || 2.0 @ SC |Hy |g, ). There remains to control the derivatives of the tensors
0
XAut,oHk and x.a,¢..e)H;.. Since the Hy and Hj, are constant on R*, and since the cut
off functions are bounded in C3(g?) by (29), for i € {1,2}, we have
||vl (XAk(EE)Hk) HrEiCé_i’o‘(gD) < C|Hk|gev

and
Hvl (XAk(fyf)Hllc) Hrgici;iao‘(gll) < C|Hl,<|ge7
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which together with (33) let us conclude that the third estimate holds.

For the vector fields, we have the following rewriting for X a vector field supported in

Ak(ta 60)
183500 = 80000, 1 o, < €15 = 80X Lx8)], 1o
+ 118,0(Lx(8” = 8D 1))

We moreover know that for X a linear vector field in the kernel of 6.0, , then the
symmetric 2-tensor Ly, g, is constant, and more generally, for Hy a constant symmetric
2-tensor, we have d,,(Lx, Hy) = 0 on R*. Using these two facts and the controls of
the cut-off functions, we conclude that the last estimate of the statement holds by an
argument similar to the above one for 2-tensors and P. |

2.2.4 Elliptic estimates for the decoupling norms

Some elliptic estimates are still satisfied in these norms.

Proposition 8 Let 0 < 5 < 1, g a metric, & a symmetric 2-tensor and X a vector
field on M, (respectively N;, or M). Then, there exists €. = €x(go, 8b;, g, p) > 0 and

C > 0 such that if we have ||g — g. €, where g. is one of the norms g,, g,

lezaen <
or gP, then,

Il gy < CAPeA 2 + Bl o)
and

HXHr.C%”O;(g.) < C(|’5g5;X|’r,l.Cga(g.) + ||XHr.C%’*(g.))'

Proof Let g. be one of the metrics g,, 8b; Or gD , and for all k, H; a traceless constant
symmetric 2-tensor on R* /T'x, and Xj a Killing vector field on R* /T'. Let moreover
h, be a symmetric 2-tensor of Cé’a(g.) and X, be a vector field of r.C%’a(g.), and
define h = hy 4 > xoXx and X = X, + >, XXk, where xo is X 4,(r,e) OF XB,.(c) (Of
Definition 1.10) depending on the metric.

We then have the following controls:
HPg-X°HkHrfzcg(g,) < C|Hk’gev

and
”68-6;.X°Xk‘|r.—‘ C}jaa(g.) < CHXkHrecg(gg)'
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Hence, for h,, we have
||Pg-h*||r.—zcg < C(”Pg'hHr._ng(g.) + Z |Hk|ge)’
k

and the expected estimate for g = g. is then a consequence of the elliptic estimates in
the weighted spaces of Lemma 1 which give

Hh*HCé’a(g,) < C(HPg,h*Hr_—ng(g.) + ||h*||C%(g.))7
and imply therefore that
2
Il ) < 2C3(1Peh

g (ge) + Hh”C%,*(g-))'

The same argument works for the operator §0* on the vector fields thanks to the elliptic
estimates of Lemma 2.

Proposition 7 finally lets us go from the metric g. to a metric g satisfying ||g —
g.HCé,,Z(g‘) < €x. O

3 Reduced divergence-free gauge

When the Einstein orbifold which we approximate has nonpositive scalar curvature,
we can always put our Einstein metrics in Bianchi gauge with respect to a naive
desingularization (see [Biql3, Lemme 8.2] adapted to our norms). When the Ricci
curvature of our Einstein manifolds is positive, this is not necessarily true, but we can
still use the divergence-free gauge. This is the goal of this section whose main result
is Proposition 10. To show this, we will use a Banach fixed point theorem approach
which necessitates the study of the linearized equation:

§6*X = —h,
where X is a vector field, and 4 a symmetric 2-tensor.

In our degenerating situation, we want to obtain estimates in our weighted norms
which are independent of the gluing scales. A difficulty is that our limit orbifold
might have more symmetries than the Ricci-flat ALE spaces (for example, S*/Z,
desingularized by Eguchi-Hanson metrics). The associated Killing vector fields would
give an approximate kernel for 46* which would not be an actual kernel or cokernel.
We will need to define a reduced divergence-free gauge to obtain uniform estimates as
the gluing scales go to zero.

Remark 18 All along this section, if nothing is precised, an Einstein orbifold (M,, g,)
will be either compact or ALE.
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3.1 Kernel of the linearization

Let us focus on the operator §6* on a flat cone (R* /T, g.), on an orbifold (M,, g,), and
on Ricci-flat ALE orbifolds (N}, g,).

On aflat cone. On the flat cone (R*/T, g.) = (RT x S3/T, dr* + r’gg; /1) according
to [CT94, Section 2], any 1-form on R* /T is a countable sum of 1-forms of one of the
following types which are preserved by d0*:

(1) p(r), where g3 ey = 0, and v is eigenvector of the Hodge Laplacian of S3/r,
Q) r ) odr + u(r)rdss /ng), and ¢ is eigenfunction of the Hodge Laplacian of
S*/T,
where p,L,u : Rt — R and ¢ : S*/T" — R are functions, and where 1) is a 1-form on
S3T.

According to [AV12, Section 4.1], thanks to the computation of the eigenvalues of the
Laplacian and of the Hodge Laplacian on the 1-forms of the sphere [Fol89, Theorem
C], the solutions to 6.0,w = 0 are countable sums of 1-forms of the following types

+
(1) r% ¢ with czjjE = +(1 +j), j € N*, where 1 is an eigenvector the Hodge
Laplacian,
+ + + +
@) Pdgre + BED gdr, or 2% Pdgrg + bF T gdr, with b =
—1 £ (1+4)),j € N and where ¢ is an eigenfunction the Hodge Laplacian.

Since we are interested in solving an equation
36*X = —h,

where X is a vector field, and 4 a symmetric 2-tensor is in CZ:?:, we are naturally

looking for X in rDCZ’,‘:. The exceptional values of 6,0, are the values v € R such
that there exists a homogeneous 1-form whose norm is proportional to r, in the kernel
of J,0;. We are interested in the exceptional values around the exceptional value 1
associated to the linear vector fields of the kernel of 4,9 .

Lemma 3.1 On (R*/T)\{0} for T # {e}, 1 is the only exceptional value between
—3 and 2.

Proof According to the above discussion, the exceptional values are a priori of the
form a” — 1 = —1 £ (1 +) for j € N*, b* —1 = =2+ (1 +) with j € N, or
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b +1 = +(1 +j) with j € N. Let us first note that a;" — 1 € (=3,2) for j € N*

implies that aji — 1 =1, and therefore that no other exceptional value between —3 and

2 come from the first type of 1-form.

For bji + 1, the values 0 and —1 are a priori possible, and for bji —1, —1and -2
are a priori possible. However, these values cannot appear on a flat cone R*/T" for
I’ # {e}. Indeed, the values bji —1=0and b* + 1 = —2 only appear if —3 is an
eigenvalue of the Laplacian on the link of the cone, but this is not the case for S*/T
because there does not exist any non zero I'-invariant linear function on R*.

For the values bji —1=—1 and b/i + 1 = —1, we use the form of the solutions. In
the first case, bji = 0 gives

+ +
rbj d§3/1"¢ + b;trbj _1¢d7": dS3/F¢7
for Agy/p¢ = 0, therefore ¢ is constant and finally ds3 ;p¢ = 0. In the second case,
the equality bji = —2, thatis b7 = 0, gives
+ +
2% P rg + b odr = dg g,

for Ags p¢ = 0, therefore ¢ is constant and finally dgs ;p¢ = 0. |

The 1-forms associated to the exceptional value 1 are sum of 1-forms of the three
following types:

(1) r*¢, where 1) is the dual of a Killing vector field of S3,
2) rdr,
(3) 2r¢dr + rrds: ;r¢.

On an orbifold or an ALE space. Since there is no exceptional value other than 1
in (—3,2), we have the following result on an orbifold ALE.

Proposition 9 Let (N}, g,) be a Ricci-flat ALE orbifold. For 0 < 8 < 1, the operator
. 3, —1 1«
53’17,-5;;7]- Ly Cyl =, Cy
is bijective.
Let (M,, g,) be a compact Einstein orbifold. For 0 < 8 < 1, the operator
* 3, —1 1,
0g,0g, r(,Cﬁf: —r, Cﬁa

is Fredholm and both its kernel and its cokernel are equal to K,, the set of Killing
vector fields of (M,, g,).
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As a consequence there exist C, > 0 and ¢, > 0 depending on g, such that if
llg — go||cz ) S < ¢,, then we have for any vector field X € K on M,

X1, e ) < Coll o3 X, et

There also exists C; > 0 and ¢; > 0 depending on gj, such thatif g — gbf”Cé'yo;(Nj) <€

then we have for any vector field X on N,

X1 ) S Cj||5g5§X||,,;1cua

3, .
;C 8y 5 (&)

Proof For orbifold singularities, we will first authorize our tensors to behave like
r'=8 for 0 < B < 1 at the singularities, instead of being in rC%’,f’: to use the theory
of elliptic operators in weighted Holder spaces, see for instance [PR78, Chapter 2] of
[LMS85]. Let us start by considering an Einstein orbifold (M,, g,) and the operator
0g, 0%, : r0C3’a — r‘lcl’g (notice the —f3). Its kernel is composed of Killing vector

fields of g,. Indeed, if for X € roC we have dg,0; X = 0, integrating by parts yields,
0= / (00,0% X, X)dv,
M,
/ |0, X|g dv, + hm 6*0X(n,X)
M,

ro=r}
_ / 1072 X2 dv,,
M,
Vr,

v, because the boundary term which is schematically lim,_,o(O(r—BH1=6+3y)

where n =
vanishes. Similarly, its cokernel is equal to the kernel of dg,d; on r*3C *“ which is

also reduced to K, because there is no exceptional value between —3 and 1.

On an ALE orbifold (N, g5), let us assume that a vector field X € rb -8 C3 “ satisfies

0g,04,X = 0. Since there is no exceptional value between —3 and 1, we actually have

X = O(rp) when r, — 0 at the singular points of (N, g5), and X = (’)(rb_3) at infinity.
Let us then consider the following integration by parts,

0= / (50,07, X. X)dvy

/ |0y X\ghdvb — 11m 0, X(n,X) + lim 0, X(n,X)

{n=n} =0 n=r}
~ [ 15X an.
N
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where the boundary term vanishes because it is the sum of the limit for r, — oo of a
O(X|,|VX|g,73) = O(ry*) and of the limit when r, — 0 of a O(|X|,,|VX|,,73) =
O(ry). Hence, we have 6% X = 0, and since g, is Ricci-flat, (8, + %dtrb)dng =
V;, VX = 0, which implies that V,X = 0 by integration by parts against X, and finally,
that X is parallel on N. Since X tends to O at infinity, we have X = 0. The operator

* . 1—[3 3,0[ —1—[3 1,0( . R .
0g,0g, 21, "Cy — 1, TCy" is therefore injective.

The cokernel of the self adjoint operator dg,dg, : r[i*ﬁ CS’O‘ — rbfl*ﬁ Cé’a is equal to the

kernel of dg,d7 on ey

tional values between —3 + 3 and 1 — 3. The operator d,,d;, o S or
is therefore bijective.

which is also reduced to {0} because there is no excep-

Let us finally work in the norms we are interested in and study the operators 0,0,

rOCZJZ‘ — ! C}j’o‘ and dg, 03, rbCZ,"i‘ — r;lcg’a. Since the spaces rbC;’i‘ and
rOC;’?: are respectively only the direct sum of rbC%’a and rOC%’O‘ with a space of finite
dimension composed of cut-off of linear vector fields, the image remains closed and of

finite codimension. We can be more precise by noticing that
* 3, * 37 - )
8g, 05 (roC3%) = 04,07 (roCY5) Ny C5°.
Indeed, we have &y, 0% (r,C5%) C 0,,0% (roC¥G) Ny 'Cy™ because r,C5% C r,CG
and thanks to Proposition 7. Conversely, if for X € rOC?g we have dg,0, X € I"()_IC}ja’
then, since the only exceptional value between 1 — § and 1 + (5 is 1 and corresponds

to the linear kernel of 9,6, we have X € rOCZ’(j:. Similarly, we conclude that

(5gb<5;,‘h (rbcg’f:) = 6gb5;,‘h (r}]_BCS’O‘) N rb_IC};O‘,

and finally, dg,0; : 7o Cgi‘ -1, ng’a is Fredholm with K, as kernel and cokernel,

and 5gb5;‘b : rbC‘;;i‘ =Ty, 1C23,a is bijective. We finally conclude by the open mapping

theorem between Banach spaces which is stable by small perturbation of the operator. O

3.2 Controls on the inverse of the linearization
These controls will help us treat the case of trees of singularities with small enough
gluing parameters.

For this, we approximate the kernel K,, on our naive desingularization (M, gP) in the
following way. Note that K, = 0 for an ALE Ricci-flat orbifold (M,, g,) by Proposition
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9. For all X, € K,, according to Remark 16, on an orbifold, there exists a unique
decomposition

Xo — Xo,* + Z XB(pk,eo)Xo,ka
k

such that [[X, [, 7o = [1Xoel,, 30 + Xk %o,

reCY (other decompositions make the

value infinite). We then define K as the space of the following vector fields on M

X()J = XM;;X()7* + Z XAk(t7€0)X()7k7
k

for X, € K,,. Note that we therefore have XOJ =X,onM ;6’ .

Remark 19 By elliptic regularity on M, , the norms L*(g,), rDCg’i(go) and rp, Ic é’o‘( £0)
are equivalent on the finite-dimensional space K,. Since the Cg -norms of the cut-off
functions are bounded, we conclude that for € and #,x small enough, the norms L?(gP),
r DC3 OC(gD) and rp,’ clh 5 *(gP) are equivalent on K,,.

Definition 3.2 (Reduced divergence-free gauge) We define the reduced divergence
operator, 5g = Tg.L0g, Where T, is the L?(gP)-orthogonal projection on K. We
will say that a metric g; is in reduced divergence-free gauge with respect to a metric g,
if 54,81 = 0.

Let us start by noticing that the operator Sgu is actually very close to d,» for a naive
desingularization g” with small enough gluing parameters.

Lemma 3.3 There exists C > 0 such that for any symmetric 2-tensor h € lor 3 (D),
we have,

(34) 1(5gp — S0)]| 100 o szaxuhucza

) S (&™)
Proof If (M,, g,) is ALE, then, one has K, = {0} and therefore Sgu = d,0. Letus
focus on the case when M, is compact.

Thanks to the equivalence of the different norms, see Remark 19, it is enough to show
that the L*(g”)-projection on K, of dgph is small to show the result. We naturally
proceed by integration by parts. Let X, ; € K, for X, € K, be an approximate Killing
vector field as above. We have,

‘/(5011) 0d)dveo

h 6*D(X0 1)) gpdvgp
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and,

5 Xo1) = 05 X + 0% (O, — DXo,0) + 5, (<><Ak<,,go) — XBupoo) Y Xa,k)

k
+ (5;0 - 6;D) (XAk([,Eo) Z XOJ‘)?
k

where by definition d; X, = 0. Thanks to Definition 1.10, on M, X1 Xo,« is equal to

1 1

X« except on the annuli of radii #; and 2¢} , and X _4,(1,ep) — XBo(pr,e0) 15 Supported in
€0 'Vt < rp < 2¢5 v/ and well-defined on M. For any [ € N, the cut off functions
are moreover uniformly bounded in Cé. If we denote k4 the indicator function of A,
for the vector fields, we therefore have

rlD <‘VIX0,* ‘go + ’vl Z X(),k
k

) <Gl o

and
ré)]Vl(gD — g0)|g0 < C¥ | (rlz) + t,%r54).
{r1)<lk4}
As a consequence, because of the properties of the norms detailed in Remark 12, we
have

|5;<0((XM{, - I)Xo,*)|gu < cF 1 ||Xo

1 ’Cl )
{1t <rp<2t}} roCo(80)

on the annulus of radii €, Wi <rp < 2¢, 'V/1,, we have
‘5; (e = Xtoien) ZXO,k)) < OF (' iem<ag i Xl ciceo
k

and

or — ok ( ‘ X >‘<CJ% 2+ 2 IX
‘( 8o gD) XA, o)zk: 0,k {661\ﬁk<’D<té}( D kD )” 0

r[’Cé(gU) :

Finally, since we have Vol (A, (té, 2t,§‘)) ~ ty, Vol (A (e ' v/tx, 2¢5 ') ~ 2, and
3

2 2..—4 2 2
also 1 (rp+tgrpT)dvep &t} + 1| log
f{eo_'\/ﬁ<rp<tk4}( () N1+ 1

’ /A;[<5gl)h, X(),l>ngVgD

Finally, let us denote ?0,, = 7K, 0,0h, we have Sgnh = TgLOgph = Oph — YOJ with

, we have

< CtmaxHh||C8(gD)HX”HroC(])(go)'

Yo,

|r5‘c}§a(g0> < Crmax ||l cggn),

by the equivalence of the norms of Remark 19. |
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Lemma34 Let0< 3 <1,0<a<1and(M,gP) anaive desingularization of a
compact or ALE Einstein orbifold by a tree of singularities. Then, there exists Tp > 0
and ep > 0 and Cp > 0, only depending on [ and the constants of Proposition 9, such

that for tmax < Tp, and any metric g satistying ||g — gP|| Zegr) S < €p, the operator

N IR 7 3,
3e0y : Ky NrpC3o(s”) — Ky Ny C5%(8”)
is invertible and we have for any vector field X | K, on M,

HX||rDC3 a(gD) CDH(S 5*X” 71C1 o

)
Proof Let0 <€ < ¢, =3 < ¢ for eD and € which we will choose small enough along
the proof, and assume that #,,x < ¢*. Therefore, by construction, on each annulus
Ay := Ai(t, €) between Ny and N; or Ny and M, (in which case, we will fix T, = 1),
we have a diffeomorphism

Ao (e ' /Tivtk, e /T;) C RY Ty — Au(t,e) C M,

such that for all 0 < 8 < 1, there exists C > 0, for which we have

* D 2-8
(35) ||(bkg _geHCé’a(Ae(€7l\/E\/ﬁ7€\/fj)) g CE < CED.

Until the end of the proof, we will use the notation
A= Al T e/ T).
According to the estimate (34), for tmax small enough, it is enough to have

X 285X, 110

e “(gD) )

to obtain the stated result.

The diffeomorphisms &y : Ay — Ay allow us to pull the situation back on R*, where
the ratio of the annuli Ay is eztk_l/ 2 which is arbitrarily large for t,x arbitrarily small.
According to the estimate (25) of Proposition 4 and thanks to the controls of Proposition
7, for tnax and ep small enough, then, there exist linear vector fields Xj of the kernel of
0.0, such that the vector fields x 4, X in the annuli Ay satisfy

11
H(I);X - Xk” c> a(A(Tl/2 1/4)) < Cesz tlg <eiﬁtk H5ge5;eq)ZXHr;1CIBv“(Ak)

1
_1 1 * _
+ 27 I OEX = Xl o)
11 B8
20T (P11 (003X) Ly 1o

1
(36) +2e7 (X — XAka)IAk||mC%’“<gD>)
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on A(\fz‘l/4 =A.((1/2) \ftw' 4\ft1/4) Let us then consider the decomposition

37) X=X+ xaXc
k

with the above linear vector fields Xy in the kernel of 6.0, for the rest of the proof.

The objective is now to show that there exists a constant Cp > 0 such that

Xl 3 o) +Z IXellrocteer < ColldgodgnXl, 1t gn)-

In order to do this, we will reduce our situation to M, and to the N; where such controls
have been shown in Proposition 9.

on MY, gP — g, is supported in Mf/lﬁ\Mg&, that is where %t,i/ < 7rp < 2t1/

each annulus Ay, and for all / € N, there exists C; > 0 such that in these regions, we
have

1A 1
(38) H 1V (&P — g)e < Cit}.

Consider the cut-off function y /16 of Definition 1.10 supported in M, /16 Such that
Xyq/16 = 1 on M! and such that for all / € N, there exists C; > 0 for which in each Ay,

(39) tZ|VlXM£/16|gD < Ch.
We then define a vector field X, on M, by

X, = XM;/WX* + Z XBo(pr, )Xk
k€K,

where K, is the set of k such that the annulus .A; has a nonempty intersection with M?.

By construction, X, = X, , on M, ’ and we therefore have the following obvious control.
Denoting X, « := Xyy/16X %> We have

(40) [1Xo,

g 2 1Koyt e = 1Kt 1y o0

On M/, we have,
(41) Sgp0ipX = 0,05 Xo + 0g,05 (X — X,) + (0000 — 0,05 )X

Since the cut off functions are bounded in norm Cg’a(gD) and Cg’a(go) by (39), and

since their derivatives are supported in Mf,/ 16\M !, we have the following bound on the
last two terms of (41): for C > 0 depending on the cut off function, we have
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102, 9%, (g = < Ol ) MY "\m, HrDC?;a(g

between X and Xo on M}f’ only comes from the cut-off on X, , and
1((3g0 050 — 0g,05,)X)

Consequently, by (41), and using (36), for C > 0 depending on the above constants,
we have

|| (5g05;DX) |M(t]/16HrElCEO¢(gD) > H(Sgoé(;OXoHrg—lcga g

X =Xl Siche D) since the difference

1
\MWH Slchen) S < C) ek, tl?HXHrDC;ﬁ thanks to (38).

(80)

N C||(X*)|M’/l6\Mt ||rDC3’°‘(gD)

—csz X113

keK,

> H(Sgo(S*X H -1 la(gn)

—2¢(li( 500330X) L e,

-8
71 -
+ Z | x — XAk(t,e)Xk)Ak”rDC%,a(gD))

k€K,
(42) -Cy tk X130
kEK,
Now, when #,.x — 0, we have
It Xoll, 3 g,
HXO”rocg’,i(gn)

because X L K, . Proposition 9 therefore yields, for .« small enough,

(43) IXoll,, 5 g,y < 2CollOg 0, Xol, -1 et -

Therefore, thanks to (40) and (42), for £, small enough, and denoting by C' > 0 a

constant that may change from line to line but only depending on the previous ones of
1-8
this proof, and therefore only on g, and the 8b; and Y(fmax) 1= Zk tmax + tmax , we have

”(X*)|M;,Hmc%(g0) + Z Xl o6 — C/’Y(tmaX)HXHrDC%’*(gD)
keK,

ol ey = CVmadlXlrpct o)
S2Colldg, 03, Xoll 1y~ CVtma) XLyt e

44) <Cl||5gD5;DX||rEIC;3’a(gD)’
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where we successively used (40), (43) and (42). Indeed, on an orbifold (M,, g,), the

vector fields X of the decomposition (37) reaching the infimum of the definition of the

norm ||.|| ..o are determined by the limit of r, !X, at each singular point according to
o ﬁ *

Remark 16. Here, the infimum is therefore reached with the X of the decomposition
(37).

We next consider the vector field X; := X — Zke K, XAXk which satisfies for a constant
C>0,

45) H(ngS;DXl ”rglcga(gD) < C(H(SgD(EDXHrglclﬁ,a(gD) + V(ZmaX)HXHrDC%*(gD))

thanks to the control (44) of ;& || Xk

reCS(ge)

Given j € K,, the Ricci-flat ALE orbifold (Nj, gp,) is glued to M,, and we can extend
the vector field X; = X, + Ek¢Ku XA, X to N; by

X .= XN{/mX* + Z XB,‘(PJ,E)XI7
/ leK;

where K; is the set of k # j such that A; has a nonempty intersection with N]’ .

Remark 20 By considering X; instead of X, we do not have a linear vector field of
the kernel of 4.0, to extend at at infinity of N;. The vector field X; is therefore well
controlled in ry, C%‘i(gbj).

The difference % — &»; 1s supported in N/t/ 16\1\7].16’ and there exists forall / € N, C; > 0
such that we have the following controls. Around the singular points where

VT <= /Ty, <2/,

we have

D

(L), <o
8b; S Gl -
j 8b;

I
(46) %
¢ T

and at infinity, where
1

VT <o = /Ty < 2T

we have

1 1
(47) i vl(i . gbj) ]g <.
bj
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Denoting X; . := XN’/16X*’ we have

(48) H % ”rb C3 a(gb) > ” ¥ ||r,, co(g,,) ||(X )N’HrDcO(gD)v
and thanks to (36) and the inequalities (46) and (47), we have
5gu(5;‘DX1 1= 0g, 0y Xj+ 0, 07 (X1 — X)) + (6gD(5; — g, O )Xl,

8b; g;, 8b;~ 8b; 8b; - 8b;

analogously to (42), we find for C > 0 depending on the above constants such that

10 050X1) ersl 1t oy > 108,93, Xill 1oy,
<||( D5*0X1)|A I rp ' C5(gP)

+> Ny = (X, )AAHFDCM(gD))

keK;

(49) - ka [1X1]] Cf X1 ]

rC3a rC3a’

where we remark that HXlHrDC?;’,D‘* < ”X*Hrycg"" + ZkeKj I kHrng(ge).

Proposition 9 then yields
111

nga

< C ||5g17 5* }(T]'||r']-71C}3’a(gl?j)’

and thanks to the control (45), we then have for a constant C > 0 only depending on
the constants of Propositions 9 and 4, the control

||(X*)|N/’||rDC%(gD) + Z ||Xk”reC8(ge) - C’y(tmaX)HXHrDC%’*(gD)
kEK;

(50) < Cld 830X, o oy

similar to (44).
Iterating this to the other Ricci-flat ALE orbifolds of the tree of singularities, we get

controls similar to (50) on all the N; which, with (44) on M, give the following control
on the whole manifold only depending on g, and the g,

Xl emy + D Xl coien = CYEma) 1Kyt o)
k

< CH(SgD(S;DXHrBIC}},a(gD)
and for #,,,x small enough. Together with the elliptic estimates of Proposition 8, this
shows the stated result for g = g? because M = M} U U]N]’ .
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To get the estimate for another metric g close to g”, we just use Proposition 7 to ensure
D . . N . . .
that for ||g — g”|| 3 0) arbitrarily small, 0,05 is arbitrarily close to dgody, for the

operator norm on rp Cg’i(gD)-

Finally, notice that (Sgn)* = 5;D7rl~( L and therefore that Sgn 6;‘0 is self adjoint on K(,L
Its injectivity implies its surjectivity by integration by parts on the compact manifold
(M, gP). O

We can finally prove the main result of the section by fixed point theorem.

Proposition 10 Let 0 < 8 < %, and (M, g°) = (M, gf) ) be a naive desingularization
of a compact Einstein orbifold, (M,, g,). Then, there exist ep, 7p, Cp > 0 which only
depends on the constants of Lemma 4.3 such that for #,,x < 7p and for any metric g
satisfying ||g — g°|| € (g?) < ep, there exists a unique vector field X | K, on M for

which,
dgn(expy g) = 0,
where expy is the diffeomorphism expy : x € M — exp;‘ZD(X(x)).

We moreover have, ||X||rDC%’i(gD) < CD||5gD(g — gD)HrglC};“(gD)’ and therefore, there

exists ) : R* — R™ with limg 7 = 0 such that we have

lexpi g = gllze oy < 1(llg = 8%l cze g))-

Proof Let us fix g a metric on M, such that ||g — g°|| 2. < € for € > 0 which we
B,*

will choose small enough along the proof and define the operator Fj : rDCZ’fi‘(gD ) —

rgl Cg’a(gD ) which to a vector field X associates
Fg(X) = S(GXPXD X)*ng‘

The objective is therefore to find X such that F,(X) = 0, which will imply that
5gn(expgu X)*g = 0 because for any diffeomorphism ¢, (000" g) = 94,08 (by
applying ¢, to g which is C*, we do not loose regularity). The map g — F, is
linear, and the linearization of the operator Fyo around zero is Sgo 6;,) which is invertible

between the orthogonals of K, according to Lemma 3.4.

There remains to control the nonlinear terms in our norms. Let us denote them

Q=Fyp — 65,05;‘,3. We schematically have that Q(X) is a converging sum of terms of
the form (V;DX*X) *« Xk x X, (VX5 Vo X) 5 X5 ..x X, (Rm(gP) x X 5 X) ... x X
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which are at least quadratic in X, where * denotes various multilinear operations or
contractions.

Using (10) of Remark 12, since on a compact manifold [|rp|| 3, is bounded, there
0

exists C > 0 such that
(5D H'Hrglcgf"(gD) < CH‘HC/lg»O‘(gD))

and for any vector field X, assuming 8 < %, we have
(52)

vaDXHrgl/zcé,a

(gD) g vaDXHrgl/zcé»a(gD) < HXHr})ﬂCSB’a(gD) g CHXH,-DC%:O;(gD)'

We therefore find
10X0=QCX| 1 et oo
< C(1X = X'l gy (IV2Xl 1 et g
(1K1, 10 oy + 1X N0 @o) V2K = XDl 1o

+

2!
+ ||v X ||rBIC}3,Of(gD))

D
‘XHrDC(l)»Oé(gD) + HX/|’,,DC(1)#X(gD)) (HX - X/HrDc(l)v“(gD)) ” Rm(g )”rgzcgo‘(gD)
/ /
+ HV(X - X )||r51/2Cé’a(gD)(HVXHrBl/ZCé’&(gD) + ||VX ||r51/zcéaa(g0))

’ !
< 3C(HX||rDC?3"’(1(gD) + ||X HVDC%:(,!‘(S’D)) ||X - X HrDC%’z(gD)’

notice the different norms with 5 and O for the weight power. We controlled the
Cé’a(gD )-norm (which is larger than the r[_,1 Cé’a(gD )-norm by (51)) in the first three
1/2

lines and the rBl Cé’a(gD )-norm in the last one (notice the r,

(52)).

-norms controlled by

Remark 21 Using rgl/ ?_norms was necessary because the first derivatives of the
linear element of the kernel of dg,d, do not decay in the neck regions, that is,

Vo XaaoXe & C5(gP).

The crucial reason for such a control of the nonlinear terms, already noted in [Biq13,
Proof of Lemma 8.2], is that our norm is equivalent to a norm C*“(g”) weighted by a
function uniformly bounded below by 1 independently on ¢, see (9). We can therefore
finally put our metrics in gauge with respect to each other thanks to a fixed point theorem
with explicit constant below, Lemma 3.5.

Lemma 3.5 Let ® : E — F, be a smooth map between Banach spaces and let
Q:=0 —P0) —dyd.

Assume that there exist g > 0, ryp > 0 and ¢ > 0 such that:
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(1) forall x and y in B(0, rp), we have the following control on the nonlinear terms

10(x) — Ol < qllx]| + [Iy[Dllx — yII-
(2) the linearization dy® is an isomorphism, and more precisely, we have
Ido®) || <.

1

If r < min (ro, o

) and || ®(0)|| < 5, then, the equation ®(x) = 0 admits a unique
solution in B(0, r).

Let us finally remark that for a linear vector field X in the kernel of 6.0, , the symmetric
2-tensor 0, X is constant. This lets us define for any metric g on M, a continuous map
g : rDC;’fjf — Céi‘ by

X — o(X) 1= expy g.

It is indeed continuous since for any diffeomorphism ¢ : M — M, we have

0i¢ ;¢

(") = 8O 5 7o

in local coordinates and therefore, for any vector field X, € rDCZ’a, the symmetric

2-tensor expy g — g is arbitrarily small for the CZ,C*“ -norm. For the constant part, it
is enough to note that for a linear vector field X; in the kernel of 6.0, , and for a
constant symmetric 2-tensor Hy, the symmetric 2-tensor expy, Hy is also constant and
controlled | expy, Hilg, < CI|Xkl|,,co|Hklg, - O

3.3 Einstein metrics in gauge

Let us now come back to Einstein metrics which can be characterized in dimension n
thanks to the Bianchi identity as the zero set of

R -2
Blg) = Ric(g) ~ g + " 2Rewyg

on a compact manifold M, where R := m Ju R(8)dvg. Notice that §,E(g) = 0,
again by the Bianchi identity.

The equation E(g) = 0 is invariant by the action of diffeomorphisms and by scaling, we
will therefore restrict our attention to deformations which are transverse to these actions
in order to obtain an operator whose linearization is elliptic. More precisely, we will fix
the volume and fix a gauge thanks to the reduced divergence-free condition.
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It turns out that we can characterize the zeros of E in reduced divergence-free gauge as
the zeros of a single operator ,» defined by

2(8) 1= E(8) + 650408.

Indeed, if we have E(g) = 0 and 5gng = 0, then we have ,0(g) = 0. And conversely, if
¢(8) = 0, then since E(g) is divergence-free (for g) by the Bianchi identity, by taking
the reduced divergence of ,n(g) = 0, we get

Oggp(8) = (8g03)0gn .

Since for g close enough to g, (Sgééf ) is invertible on the image of Sgp by Lemma 3.4,

we finally have Sgug =0and E(g) =0.Ina Cé’i‘(gD )-neighborhood of g” the zero
set of ,» is exactly the set of Einstein metrics in reduced divergence-free gauge with
respect to g”.

Corollary 3 Let Dg,vo > 0, [ € N, and 8 = S(vg, Do) > 0 obtained in Corollary
2. Then, for all € > 0, there exists § = d(e, Do, vo, [) > 0 such that if (M, g%) is an
Einstein manifold satisfying

¢ the volume is bounded below by vy > 0,
* the diameter is bounded above by Dy,

* the Ricci curvature is bounded |Ric| < 3.
and such that for an Einstein orbifold (M,, g,),
dGH ((Ma gé')’ (Mm g())) < 5)

then, there exists a naive desingularization (M, g”) of (M,, g,) by a tree of singularities,
and a diffeomorphism v : M — M such that

||¢*é"g - gDHC/ﬁ’*(gD) < €,
and
Sep(¥*g%) = 0.
In particular, we have

2(*g") = 0.
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4 Resolution of the Einstein equation modulo obstructions

We will now show that it is always possible to produce metrics which are Einstein
modulo some obstructions (which are elements of the cokernel of the linearization of
the Einstein operator) in our weighted Holder spaces. The main result of the section is
Theorem 4.6 which allows us to perturb any naive desingularization g” to an Einstein
modulo obstructions metric and in particular according to [Ozul9a] we produce all
Einstein metrics close to an Einstein orbifold in the Gromov-Hausdorff sense by this
procedure.

We have seen in Corollary 3 that up to a diffeomorphism, any Einstein metric g close to
(M,, g,) in the Gromov-Hausdorff sense is a solution of

2(8) = E(g) + 650,08 = 0.
To study this equation, we will naturally start by studying its linearization on vol-
ume preserving deformations at g”, that is, on symmetric 2-tensors / satisfying
f Iy trgthng = 0, for which we have the formula
_ 1/, .
Poo() i= dypgo() =3 (V3o Vo — R ()
— 2600g0h + 207p0,0h — (5,08,0h)g"
+ (Agotrgph)g” — Viptrgoh
+ Rico o + h o Ricp — Rep h + (Ricyo, h) o g”

1— 1 .. D R(gD)
(53) RO i /M <Rlc(g ) — T,h>ngng),

in dimension 4. If g” were an Einstein metric and / a divergence-free symmetric
2-tensor, then the operator Pgn would reduce to

1_, o
PgD = EVgDVgD — Rgo,

which is simpler to study. Since g is almost Einstein and / will be almost divergence-
free, we will mostly study the operator P,o, and we will obtain results for Pgn by
approximation.

4.1 Kernel and cokernel of the linearization on model spaces

Exceptional values for P, := %VZVE on (R*/T", g.) and gauge constraints. As
described in the proof of Proposition 3, the elements of the kernel of P, on R*/I" are
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sums of homogeneous symmetric 2-tensors whose coefficients in an orthonormal basis
of R* are homogeneous of order k or —2 — k for k € N.

However, some of these tensors cannot appear in our developments because they are
not trace-free or in divergence-free gauge on our nontrivial quotient of R*/T".

Lemma 4.1 ([CT94, Proposition 4.65]) On R*/T for T" # {e}, there is no harmonic
homogeneous symmetric 2-tensor whose coefficients are of order 1, —2 or —3 in
divergence-free gauge.

Kernel of the operator P on the model spaces. Let us start by describing the kernel
of P on our model spaces.

Lemma 4.2 Let (N, gp) be a Ricci-flat ALE orbifold, and denote Py, := %v;;vb — Ry,
and O(gp), the kernel of P, on Cé"i‘(gb).

The elements of O(g,) decay at least like ”17_4 at infinity, and for all o, € O(gp), we
have the following development coordinates at infinity,

0, = 0"+ O(r,”),
with O* ~ rb_4 a harmonic homogeneous symmetric 2 -tensor.
Let also (M, g,) be a compact Einstein orbifold, we denote O(g,) the kernel of P, on
Céf: forall 0 < 8 < 1. An element o, € O(g,) has a development
0, = Oy + 0y + O(r7),

for harmonic homogeneous symmetric 2-tensors O; ~ ..

Proof Let us consider o € O(gp), for which P,0 = 0, and 0 = (’)(rb_ﬁ ) for some
B > 0. Such a symmetric 2-tensor is actually necessarily traceless and divergence-free.
Indeed, we have dg, P, = %v;bvg,,agb, and trg, Py, = %V;bvgbtrgb. Therefore, if
Pg,h = 0 for h = O(r,°) for some § > 0, then do,h = 0, and tro,h = 0 by the
maximum principle. We deduce from Lemma 4.1 that o decays at least like rb_4
principal term is a harmonic symmetric 2-tensor.

and its

In the same way in the neighborhood of a singularity of an orbifold (M,, g,) or of a
Ricci-flat ALE orbifold (N, g3), since there is no harmonic symmetric 2-tensor with
linear growth because of the action of the nontrivial group I', an element of the kernel
admits a development

0= 00+ 0+ O(rp),

where Oy and O, are harmonic homogeneous symmetric 2-tensors in 79 and r2
respectively. O
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Estimates on the inverses. Just like for the operator §0* in Proposition 9, the
operators Py, and Pgbj are injective on the orthogonal of their respective kernels.

Lemmad4.3 Let (N, gp) be a Ricci-flat ALE orbifold and (M, g,) an Einstein orbifold,
and 0 < g < 1.
Then, the operators

Py : O(gp)" N CH%(ep) = 1,2 CH (),

and
Py : O(g0)" N C5(20) = 7, 2CH(20)

are injective and there exist C, > 0 and C, > 0, such that we have for any symmetric
2-tensor h, L O(gp) on N and h, L O(g,) on M,,

(54) C;1||thbH,,;2cg(gh) S lleze g, < CollPohvll 2o g,
and

-1
(55) Co ||P0h0”r;2cg<go) S Hh"HC;’j@u) < COHP”hOHr;zcg(g,,)'

Moreover, their respective cokernels are O(gp) and O(g,).

Proof By standard theory of elliptic operators between weighted Holder spaces (see
for instance [PR78, Chapter 2]), the operators

Po . Cig(go) — rgzcgﬂ(go)a

and
Py, PCE % (gp) = 1, P CY ()

are Fredholm for 0 < 8 < 1 because we avoid the exceptional values close to zero:
—2 and 1. Let us study their kernels and cokernels.

Let us start by the case of an Einstein orbifold (M,, g,) and notice that ker P,, C

C2%(80)
s

O(g,) because there is no exceptional value between 0 and —3. The kernel of
P,: Cig(go) — ro_szB(go) is therefore equal to O(g,). Since P, is self adjoint and
since we are strictly between two exceptional values, its cokernel is the kernel of P, on

r, ch(go) which is also reduced to O(g,) by a similar argument.

Similarly, the kernel of Py : r, P Co®(gp) — ;> " C§(gp) is O(gp), and its cokernel is
the kernel of P;, on rb_2+5 C§ (gp) which is reduced to O(gy).
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For the cokernels of

Py O(gp)" N C5%(g6) = 1,2 CH(gp),

and
P, 1 O(g0)" N CE5(80) = 75 2 CH(80),

like in the end of the proof of Proposition 9, we use the fact that
Po(C55(20)) = Po(C>5(20)) N7y CH(8o),

and
Py (CZ(81)) = Py(r, " Co(g6)) N1y *CH(80)-

Approximation of kernels and cokernels on a naive desingularization. We wish
to solve the equation Ric(g) = Ag for a metric g close to g” modulo the kernel and the
cokernel of the linearization of the Einstein operator. We will use approximate kernels
and cokernels defined as the truncated infinitesimal deformations of each model space
on the tree of singularities in order to obtain uniform controls as the singularities form,
that is as the gluing parameters ¢ tend to 0.

Let 0, € O(g,) and o; € O(gy), and define 0, = 0o+ + D} XB,(p,c0)%0,k and
0j = 0j + D 1 XB,(pi.c0)9j.x their respective decompositions as a symmetric 2-tensor of
CZ:O‘ and constant symmetric 2-tensors truncated in the neighborhoods of the singular
points. Thanks to the cut-off functions of Definition 5, we define on M the following
symmetric 2-tensors
00,1 1= XM1 00, + Z X A(t,60)00,k>
k
and
%ﬂzxw%w+§:Xka
k

Remark 22 We have 6, = 0, on M and 6;; = 0; on le6’.

Definition 4.4 (Space of truncated obstructions) Let (M, g? ) be a naive desingular-
ization of a Einstein orbifold (M,, g,). On M, we will denote

O(&”) = {80:+ Y 80, 0, € O(2,), 0; € Olgs) }
J

the space of truncated obstructions.
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Remark 23 For 0 < 8 < 2, by elliptic regularity for the elements of O(g,) and the
O(gp,), and the Cé -control of the cut-off functions we have

‘ 0, + Z Tjo;, 0,1 + Z Tj;¢
J J
and

[ Sos+ > 00
J J

We would like to produce Einstein metrics in reduced divergence-free gauge with
P)

CO(gD) ~ ‘ Z,j(gD) ~ sup (HOOHCO(ED)’ ||Oj||c0(gbj)),

Cs

~ = Su () 0; .
LZ(gD) ‘ rEZCg(gD) p (|| OHLz(gU)? ” /HLZ(gbj))

respect to g”. But the point is that it is not always possible because the space O(g
is an (approximate) obstruction space. We will show that we can perturb g” + v for
parameters t > 0 and v € O(gD) small enough to obtain a metric g, = 2, which will
be in gauge with respect to g” + v and solution of:

»(&) € 0P,

hence the term Einstein modulo obstructions.

Control of the inverse of the linearization. We can first show that the linearization
is invertible and that we can control its inverse independently of the gluing scales thanks
to Lemma 4.3.

Let us start by showing that the operator 7q,0)1 Pgp is close to P for a sufficiently

degenerate tree of singularities.

Lemma 4.5 There exists C > 0 such that for any symmetric 2-tensor h € Cé’f:(gD ),
we have

1
|| (WO(gD)LPgD - PgD)h||F52Cg(gD) < Ctr%lax”hncéﬁ(gD)'

Remark 24 Here, the constant C only depends on the constants C, and Cj,; of Lemma
4.3.

Proof The proof is similar to that of the estimate (34). Thanks to the equivalence of
the norms, see Remark 23, we only have to control the L?(g”)-norm of the projection
on C)(gD ).

On M, , since P,p is self adjoint, an integration by parts yields

‘ / (Pyoh, 8) vy
M

_ ‘ / (B, Py (80,)) gpdven |,
M
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and since g” = g, on M!® and P, (0,) = 0 we use the decomposition
PgD(ﬁo,t) = Pg,,((XMgﬁf - 1)00,*)
+ P 0 ( Z(X.Ak(t,e()) - XBU(pk,E()))OO,k)>
k

(56) + (Pgo - Pg/-)) (Z XAk(Z,e())OO,k)
k

in order to obtain the following estimates (compare with the proof of (34)) thanks to the
control of the cut-off functions of Definition 1.10 and to Remark 23

57 P . — 1o < Cllo oo 1t
57 PeQarge = Dol < Clowllo ¥y 4t

=

-1
(58) ‘Pg” ( zk:(XAk(tﬁO) - XBo(pk’EO))OO’k» ’ S CHOUHLZ(g”)HA{eJ'té<rn<2e0“tk%}tk ’
and
59 ‘PfP ( 60)‘<C0 Koo A48,
(59) ( 8o gD) zk:XAk(t, 0)Y0,k H o”Lz(ga) {e&‘t,§<ro<2tk‘l‘}( [30)) )

Since for any C > 0 independent on ¢, we have
* Volg, ({ZIé <P < 4t,§}) < Cy,
* Vol ({eo_ltk% <rp< 26612‘]% }) < Cea4t,%, and
" i ey (DM < Clo
integrating the controls (57), (58) and (59) of the terms of (56) yields

(60) | / (Pyoh, 8,,1)pdveo
M

1
< Ct]? ||h||céyi(gD)||00||L2(go)

Similarly, for the N;, consider o; € O(gy,). By invariance of the L?-norm of 2-tensors
in dimension 4 and since Pz = tP, for any metric g and ¢ > 0, we have
t

h
/<P3Dh36j7t>ngng :/ <?’P£6j7t>ngVD
M M A T

L
Jo T T
The control at the singular points is the same as in the case of M,, and at infinity we have

P8 = (Pp — Py )0js + Pg, 0 + Py, (1o — 1)0j4),
T; '

T j
and therefore, since 0; = O(”za_,4)’ we have

3
2

|,—1/4 —1/a, L7,
{3t <rp;<t; 7

D(’j,t‘gb/_ < CHOJ'HLZ(gbj)“‘ ;

-6 )
{%tj_]/4<rbj<tj_]/4}rbj ~ CHOJHLZ(g;,j)“é
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1
- 1. =3 73 -1 - h
and since Vol (AE(itj %) < Ct; " and at every point |XNfIGtTj|ghj < HhHCé’fk(gD)’

we have
©1) | / (Pyoh, 8),) pdvyn
M

and finally,

1
< Ctl%laXHhHCéﬁ(gD)HOJMLZ(gl?_/)’

1
| (7o) Py — P?)hHrgzcg@D) < CtinaxlAll e g

O

Proposition 11 Let 0 < 3 < 1,k € N, 0 < a < 1 and let (M, gP) be a naive
desingularization of a compact or ALE FEinstein orbifold by a tree of singularities. Then,
there exists 7p > 0 and ep > 0 and Cp > 0 only depending on 3, and the constants of
Lemma 4.3 and of Proposition 3 such that for #,x < 7p and for any metric g such that
s — gPHC?;j@D) < ep, the operator

oo Pe 0@ N €3 (e”) — 0™ My C3(e™),

where 7¢,p)1 is the orthogonal projection for g? on O(gP)*, is invertible and we have

for any symmetric 2-tensor 4 L O(g”) on M,

HhHCé,fi(gD) < CD”7TO(gD)J_PthrBZCg(gD).

Proof The proof is similar to that of Lemma 3.4. The idea is again to extend the
symmetric 2-tensors on the model spaces and to deduce a control on the whole tree of
singularities.

1
Let 0 < e < 656 < ¢g for ep and e which we will choose small enough along the

proof, and assume that fp,x < ¢* in order to have on each annulus A; := Ai(t, €)
between Ny and N;, the existence of a diffeomorphism

Dyt Aol /Tt e/T) CRY Ty — Ay C M,
such that for any 0 < 8 < 1, there exists C > 0,
D 2-8
H(I)ltg _ge‘|Cé’a(Ae(e*1\/ZTj\/ﬁ,e\/fj)) < Ce < Cep,
by definition of g”. Until the end of the proof, we will denote

Ak = Ae TV, €/T)).

Let i be a symmetric 2-tensor on M. Thanks to the estimate (13) of Proposition 3
and to its generalization to metrics close to g, by Proposition 7, for ep and fy,,x small
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enough, we can choose constant and traceless symmetric 2-tensors Hy on R*/T'; such

that we have on A(,/Tjr,/ ") := A((1/2)\/Tiry* 4/ T )

B
185 — Hill gy gy < o (1 NPe Bh, 2,

1
4| OFh = Hll ey,

B
<2C, (e‘ﬁ i | (Peoh) "CHe”

1
(62) el = xaHO | e )
Let us then consider the decomposition

h=he+ Y xaHe
k

We define a symmetric 2-tensor h, extending & to M, in the following way:
ho = XM(t)/lﬁh* + Z XBg(pk7€)Hk7
k€K,

where K, is the set of k such that Ay N M}, # (). Denoting h,, . := XM;/mh*, we have
ol oy > ol > 16yl
because M/ is outside of the region damaged by the gluing.

Since for .« small enough, the metric g” is close to the metric g, on Mf,/ 16 by (38)
and

Pypoh = Pg,hy + Pg,(h — hy) + (Pgp — Py, )h,
we moreover have the following control thanks to (62),

H(PgDh)W;/'GHrl;zcg(gD) 2 ‘|Pguh0‘|r;2cg(gn)

—CC. Y 1P h) | 2o ooy
kek,

(63) - ’y(tmax)HhHCév,‘i(gD)a

where y(#max) — 0 when f.x — 0 (compare with (42) for the vector fields).

IToo ol 2,0

Since 1 L O(gP), we have 8= (0, and by Lemma 4.3, this implies, for #yax

lI720]] &
small enough, the control ’

ol < 2CollPabol 203
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and the estimate (63) and Lemma 4.5 imply that for #,,x small enough, there exists
C > 0 only depending on the previous constants such that we have

(64) H(h*)|M;HC%(gD)+Z ’Hk‘ge—C’Y(fmax)|’h”c%i(gn) < C||7TO(gD)LPgDhHr52cg(g0)-
keK, '

Indeed, on an orbifold (M,, g,), the constant symmetric 2-tensors of the decomposition
in the definition of the norm |[.|| 2, are determined, see Remark 16.
B,*

Let us then consider the symmetric 2-tensor hy := h — ), ., Hy which satisfies for
C > 0 depending on the previous constants,

(65) H7T()(g1))J_PgDh1 ||rgzcg(gn) < CHﬂ()(gD)J-PgDhHrEZCg(gD) + C’y(l‘max)Hthz,i(gD)
thanks to the control (64) of ;i |Hilg, -

Given j € K,, the Ricci-flat ALE orbifold (N, 8b;) is glued to M, and we can extend
the symmetric 2-tensor h; = h, + ZZ¢K0 XA H; to N; by

h] = XNf/lﬁh* + Z XBj(p],e)Hla
! lEK;

where K; is the set of / ¢ K, such that A; has a nonempty intersection with the
neighborhood of a V.

Denoting h; , := XN’/mh*’ we have
j

(66) Hh}*Hcé!D‘(gbj) > Hh}*HC%(gbj) > H(h*)|N;HCOﬂ(gD)7

and by (62) and since % is close to g, on N;/ 16

have the following control thanks to (62),

for fnax small enough, we moreover

H (PgDhl)lef/16||r52Cg(gD) P ‘|Pg1:_/hj||r,:jzcg(gbj)

- CC, Z H(PgDhl)MkHr;QCg(gD)
kek;

(67) - ’Y(tmax) thcéﬁ (gP)’

where Y(fmax) — 0 when #n,x — 0. We then have a control on (h*)| N and on the Hy,

for k € K; thanks to Lemma 4.3 by using again the fact that 7 L O(g”) which implies
that for #,x small enough, we have

th'”r,«CZ’,i(gbp < 2CjHPgb_,hj||,;2cg(gbj)'



Noncollapsed degeneration of Einstein 4-manifolds, Il 59

The estimates (67), (62) and Lemma 4.5 then yield

(68) H(h*)\N/‘HC% + Z |Hk|ge - C’Y(tmax)HhHCé’z(gD) < C||7T(~)(gD)J-PgDhHrgzcg(gD)'
kek;

Iterating the above controls to the other Ricci-flat ALE orbifolds of the tree of
singularities, we obtain controls similar to (68) on all of the N; and with the control
(64), we finally find

(1 - CV(tmax)) HhHC?}’i(gD) < C||7T(~)(gD)J-PgDh||rgzcg(gD)7
and therefore the stated result for g = g” for f,, small enough.

To obtain the same result for a metric g close to g”, we simply apply Proposition 7 to
ensure that for ||g — g?|| (2o (gn) arbitrarily small, Py is arbitrarily close to P for the
B,*

operator norm on Cé’jf(gD ).

The operator P being self adjoint on a compact manifold, its injectivity implies its
surjectivity by integration by parts. |

4.2 Resolution modulo obstructions of the Einstein equation

Let us now show that we can always solve the Einstein equation modulo obstructions.
Let us recall that being Einstein and in reduced divergence-free with respect to a naive
desingularization g” is equivalent to being a zero of the operator

. R e
¢ g+ Ric(g) — %g + Ag + 0g0,408.

Theorem 4.6 Let (M,,g,) be a compact or ALE Einstein orbifold of dimension 4
such that Ric(g,) = Ag,, for A € R, and let (N, gi;); be a tree of singularities
desingularizing (M,, g,) with pattern D, and 0 < 8 < 1.

Then, there exists 7 > 0, € > 0 only depending on 3 and the constants of Lemma 4.3
and of Proposition 3 such that for any naive desingularization g” := gP, with ty,x < T,
and for all v € O(gP) satisfying HvHC% (g7 < €, there exists a unique solution g, = g,
to the equation

(@) € 087,

satistying the following conditions:

M 13— &l <26,



60 Tristan Ozuch

2) 8 — (@GP +v)is LZ(gD)—orthogonal to O(gD).

Proof Let (M, gP) = (M, gP) be a naive desingularization of an orbifold (M,, g,) by
a tree of singularities (N}, gs,); -

Define the operator W : g + Cé’f:(gD) — 0Pt N rp?C5(¢P) by

. R %
W(g) 1= T gnyL g0 (8) = T30y L (Rlc(g) — %g + g+ 6g5go(g)>,

where 7)1 is the L?(gP)-orthogonal projection on O(g”)*. The conclusion of the

theorem for v = 0 then rewrites: there exists a unique solution g € g”+ (()(gD )+ ﬁC%’fi)
to the equation W(g) = 0.

Let us apply the inverse function theorem, Lemma 3.5, to W. The linearization of the
operator U at gP for any symmetric 2-tensor / satisfying f v ephdvep =0 s

ng W(h) = WO(gD)LPgD(h),
where Pgu is explicited in (53). Let us show that this linearization is invertible at g” and

has an inverse which is uniformly bounded as + — 0. We want to go back to the operator
P, = %V;Vgh - f{g(h) for which the invertibility has been shown in Proposition 11.

First, by the estimate (34), we have

_ 1
|\6gDh — (sgDhHrElC;;i(gD) < ClrznaxHthéai(gD),

and therefore the term —2d;0,h + 2d;0,0h of (53) is controlled in the following way

1
(69) | — 20505 + 25;5gph||rgzcg(gp) < Ctr%axHh||C2,,a*(gD).
Next, notice that the Ricci curvature of g is almost constant:

. oD D =2
(70) | Ric(g”) — Ag HYEZC?; < Ctmax

because Ric(gD ) — AgD = 0 for rp > 21‘3@‘(, and on the rest of the manifold,
|Ric(gD) — AgP | < C. Therefore, for f,x arbitrarily small, doV is close (as an

operator from CZ,Z‘ to rEZCg) up a power of fymqx to the operator mg o). f’gn, where
for a symmetric 2-tensor #,

a 1 o
Poo() =3 (Vo Voh = 2Ro(h)
— (Ogn0,0h)g"

R
— V2otipoh + (Agtrwh)g” + Tgu(trgnh)gD),
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where we neglected the difference of the divergence terms by (69), and simplified the
terms involving the Ricci curvature by (70).

Let us use the following decomposition of a 2-tensor on (M, gP): for any symmetric
2-tensor h € Cé"i‘(gD ), there exists a unique decomposition

1) h = hT—i-cF;DX
with

(1) asymmetric 2-tensor hr € Cé’f:(gD ) satisfying SgDhT =0,

(2) avector field X € rpC35(g”) N K.
Indeed, according to Lemma 3.4, for any 2-tensor h € Cé’jf (gP), there exists a unique
Xe rDCZ’f:(gD) N K such that

Ogn O X = dgnh.

The decomposition (71) is then & = (h— 5;DX )+ 5;DX and the sum is L*(g")-orthogonal.
Remark 25 A simple integration by parts shows that a differentiable symmetric 2-
tensor & on M satisfies Sgo if and only if it is L*(gP )-orthogonal to 5;‘D(C°°(TM )N IN((}).
Similarly, for a symmetric 2-tensor v € rgzcg we have a unique decomposition
(712) v=vr+ Y

with a symmetric 2-tensor vy orthogonal to 5;D(C°°(TM) N KOL) and a vector field
X LK,.

Now, we have the following properties:

(1) our metric has almost constant Ricci curvature by (70),

(2) the divergence of the obstructions is arbitrarily small, that is for 0 € ()(gD ), we

have _
16,08 -1 1. N
ol
nd 16,08
gDO —3Co
ﬂ - O

HOHGZCE

as Imax — 0 by elliptic regularity .
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These imply that for X € rDCg’a N K}, one has

7* o0
(73) ||7T6(gD)J_IA)gD(5;DX) - ;DSgD(S;DXHrEZCEz < V(Imax)HX”rDC;’za
for v : Rt — RT with limy vy = 0, and that

Consider the decompositions (71) and (72) where we identify the symmetric 2-tensor
of the form 5;‘DX with the vector field X since

Ogp KIn rDCZ’f: — Céi‘

and
~ _ 1 _
dgn K- nrp'c S r5°CS.

are injective. Thanks to (73), the operator m¢ ) L;)gD : Cé‘i‘ — rBZCg decomposes
blockwise

2 SgD(S;D 0
(74) WO(gD)J-PgD = A

+A.p
0 7oL Py ¢

where Ap is an arbitrarily small (for fy.x arbitrarily small) operator between the same
spaces, and

A 1/, .
Po(h) =3 (vgn V oh — 2R o ()

R
- V;Dtrgoh + (Agutrguh)gD + TgD(trguh)gD) .
Given the shape of the matrix in (74), it is enough to show that
5g05;fp KN rDCZ’fi —KIn rBICE”i‘
and
Tony Peo 1 OGPy N CET = 0P Ny Cy

are invertible with inverse bounded independently of #,,x. This is already the case for

5gn 5;0 thanks to Lemma 3.4.
Let us now focus on m¢,n)1 f’gn. For any symmetric 2-tensor v, we have an L*(gP)-
orthogonal decomposition into a conformal and traceless part
tr,npVv tr,pVv
75 v= gl 4 (y— £ _gP).
(75) AR <)
Now, we have

tI'gD (WO(gD)L PgD (h)) = trgDPgD (h) — tI'gD (Wo(gp)i)gn (h))
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and since for an element & of O(g”), we have

I (trgbf))gD Hr52C§

(76) - —0
HOHrEzcg
and
(0018
) —2 0

6 2,
[l
as fmax — 0, the operator trep(7ggn) LPgD) is arbitrarily close to the operator trgDPgD

(as operators from sz’: to rgzcg) which is itself arbitrarily close to Agp + A for tpax
arbitrarily small because our metric is almost Einstein according to (70).

For the traceless part of 7¢,n). ISgD(h), recall that for any symmetric 2-tensor /1, we
have the following decomposition

D D
2 2 8 2 A 8
WO(gD)LPgD(h) —1rep (WO(gD)LPgD(h)) T = TPy L <PgD(h) —trep (PgD(h)) Z)

D
TO(g”)8

— trop (Pyo(h)) 1

D
(78) + (”gD (Tr()(gD)PgD(h))> gj
Using the control (70) once more together with (76) and (77), we neglect the last two
terms of (78) and see that the traceless part of 7¢ ) LPgD (h) is arbitrarily close to the
firsts term O gDy (Pgn (h) — trep (Pgn (h)) %) , that is, to

D
TO(gP)L (Pgu(h) — (Véotrguh — Agu(trguh)%)),

Let us therefore decompose / and the operator 7 gu)f’gn(h) in conformal and traceless
parts. Block-wise, we obtain the following operator:

Agu—i—[\

D +Alp
- g 2 -
(D) - (Agntrgnh - — VthrgDh) TPyt Pop g

7TO(gD)J’ L = [

where A; p ! Céi‘ — rgzcg is an arbitrarily small operator for fy,,x arbitrarily small.
There remains to show that the operator

Ag + A 0
D
7T(~)(gD)J_ (Agl)t}’gl)h% — V;Dtrgnh) 7T(~)(gD)J-PgD
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from Cé?: to rBz 3 1s invertible with a uniformly bounded inverse (independently of
t) for tpnax small enough. Given the shape of the matrix, it is enough to show it for the
two diagonal blocks since the operator at the bottom left is uniformly bounded. The
operator A,p + A is invertible with a uniformly bounded inverse thanks to Lichnerowicz
eigenvalue estimate, see [And10, Section 5] for instance, and the estimate (70). This is
also the case for g ,n)1 Peo thanks to Proposition 11.

We conclude that the linearization of ¥ at g” is invertible with a bounded inverse as it

is arbitrarily close to an invertible operator.

Remark 26 The operator PgD itself is not self adjoint because the metric g° is not
Einstein. Indeed, all of the terms are self adjoint except —Vétrgh, —(040h)g, and
(Ricg, h) g, and we remark that the adjoint of / — Véz,trgh is h +— (6,05h)g. However,
the term % — (Ric,, h),g whose adjoint is & — (trgh) Ric, prevents Py to be self
adjoint when g? is not Einstein.

To apply the inverse function theorem, Lemma 3.5 to the operator ¥, there remains to
control the non-linear terms. Since the variations of the Ricci curvature for a variation
h of a metric g, are schematically,

Ric(g +h) = Ric(g) + (g +h) '« Rm(g) + (g + h) 2« V2h+ (g + h) >« Vh = Vh,

where * refers to diverse multilinear operations and by Remark 12, the non-linear terms
Qo (h) == U(gP + h) — U(gP) — d,oW(h) satisfy the control

HQgD(h)—QgD(h’)H,Bzcg(gn)
< C((Hthng) + 11 g em) (17 = A | 2o q0)) | Rm(gD)Hrgzcg(gn)
= W ez (192l 2oy + 1959 22 g0)
+(IIhllca oy + 17 | g emy) V2 = h/)H,1;2cg(gD)
+ 20|V 0 = 1)1 oy (I oy + 190D 1o
<30l g, + W @) e = 2
We moreover have the control
9Pz cqem) < s

Hence, according to the inverse function theorem, Lemma 3.5, for #,,x small enough,
there exists a unique solution § with § — g” L O(g”), to the equation ¥(3) = 0
2-8

. . D ~ D 4
satisfying moreover ||g"” — g”Cé’i(é’D) < || U(g )Hrgzcg(g’)) < Clmix .
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Now, we have only solved the equation in the neighborhood of g” and on the orthogonal
of O(gP). For v € O(gP) we study the operator g — W(g + v). The control of the
non-linear terms is exactly the same for this operator, and for v arbitrarily small, its
linearization at g is arbitrarily close to d,oW which is invertible. As a consequence,
there exists € > 0 such that for all ||vHC% (g») < €, there exists a unique solution g, of

U(3,) = 0 with g, — (¢ +v) L O(g").

Remark 27 By adding v, we however damage the estimate on W(g” + v) which

becomes
2-8

D 2 7
(79) ||\If(g + V)Hrgzcg(gD) < C(HVHCé,a(gD) ~+ Tmax )

We will see later in Section 5.1 that without an integrability assumption, we cannot
hope for a better estimate.

Corollary 4 With the notations of Theorem 4.6, the map v — 2, is analytic.

Proof This is a consequence of the implicit function theorem for analytic functions,
see [Whi65] for instance. Let us define the map

v, h) = ¥(@o +v+h)
from O(g?) x (O(g”)* N Céf:) to O(g2) N r,;zcg(gD) where we denote
W(g) 1= ToenyL g0(8) = Toeny (E(Q) + 530,0(2)),
like in the proof of Theorem 4.6 and where gy is the solution of Theorem 4.6 for v = 0.
The map (v, h) — W(go + v + h) is analytic since E and g — 6;,‘ are, and since Sgn

2-8
and g ,p1 are linear. We know that 120 — &P|| < Ctmix , and that do W is invertible
thanks to the proof of Theorem 4.6, hence dg,V is also invertible.

The implicit function theorem for analytic functions, see [Whi65], then implies, by the
uniqueness of the solution &, of Theorem 4.6 that for v small, the map v — &, — (g +v)
is analytic and that v — g, is analytic too. a

Remark 28 The previous analysis of Theorem 4.6 extends to partial desingularizations.

More precisely, let S, be a subset of the singularities of M,, and for each j, §; a subset
of the singularities of N; and denote S = (S,, (§;);) and Mg := M,#;N; (# means gluing
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the ALE spaces at orbifold singularities) where the gluings are given by some gluing
pattern D.

For tpnax,s and v small enough, the metric g8 = gg , iteratively defined just like in
Definition 1.6 can be perturbed to a unique solution gs, = gs;, to the equation

(80) o (@s) € 0(g5),
satisfying the following conditions:

(1) lgsy — g8l 2 0y < 2¢, where Cé"f:(gls)) is the partial desingularization norm
B,x 08 )
of Remark 9,
(2) &sy— gg , is L2(g5)-orthogonal.

Thanks to Corollary 3, we have the following result.

Corollary 5 Let Dg,vg > 0, [ € N, and 8 = S(vp, Do) > 0 obtained in Corollary
2. Then, for all € > 0, there exists & = d(e, Do, vo, 1) > 0 such that if (M, g°) is an
Einstein manifold satisfying

¢ the volume is bounded below by vy > 0,
¢ the diameter is bounded above by Dy,

* the Ricci curvature is bounded |Ric| < 3.
and such that for an Einstein orbifold (M,, g,), we have
dGH ((M7 gg)> (M(,, g())) < 57

then, there exists a naive desingularization (M, gfv) of (M,, g,) by atree of singularities,
and a diffeomorphism ) : M — M such that

1/}*88 = gt,v;

where 2;, is the perturbation of gP + v of Theorem 4.6.

4.3 Premoduli space of Einstein metrics around a singular one

Let us now explain how the Einstein modulo obstructions metrics of Theorem 4.6 are
analogous to the metrics in the set W of Theorem 0.2.

Let M a differentiable 4-manifold and consider an orbifold (M,,g,) € J,E(M) C
E(M)gy\E(M). According to Corollary 5, the Einstein metrics which are sufficiently
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close to (M,, g,) in the Gromov-Hausdorff are results of the gluing-perturbation
procedure of Theorem 4.6.

By analogy with the definition of [Koi83] of the premoduli space of Einstein metrics
around a smooth one, we define de directional premoduli space in the neighborhood of
a singular metric in the following way.

Definition 4.7 (Directional premoduli space) We define Eg (M), the premoduli space

of Einstein metrics on M in the neighborhood of (M,, g,) and in the direction D, as the

set of metrics g on M for which there exists ¢ such that we have ||g — gP|| 2oy < €
B,x ot

for ¢ > 0 the constant of Theorem 4.6 and v € ()(g? ) for which we have:
(1) E(g) =0, Vol(g) = Vol(go),
) g— (8 +v) L OGP,
(3) dng =0.

Remark 29 The above premoduli space is directional in the sense that it does not
cover all of the Gromov-Hausdorff desingularizations of (M,, g,), but only the ones
whose tree of singularities is D. Given an arbitrary sequence (g;); of smooth Einstein
metrics on M dgy-converging to (M,, g,), then, up to considering a subsequence, all
of the metrics g; are in a single directional premoduli space IEZ M).

The result of [Ozu19a] together with Theorem 4.6 yield the following statement.

Corollary 6 The directional premoduli space E?D (M) is the zero-set of E on the set

denoted W of metrics 81y in the Cz"i(g?)-neighborhoods of the metrics gf) of Theorem
4.6.

Since E is analytic, Koiso’s proof of Theorem 0.2 reduces to proving that W is an
analytic submanifold by implicit function theorem. Therefore the question of the
regularity of the dgy-completion of EM*), E(M*) U 9,E(M*), reduces to the question
of the regularity of the set W of the Einstein modulo obstructions metrics of Theorem
4.6.

5 Obstructions to the Gromov-Hausdorff desingularization

Let us now come to the main application of this article, which is the obstruction to the
desingularization of Einstein orbifolds.
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5.1 Analysis of integrable Ricci-flat ALE spaces

In order to obtain an obstruction result we will need to assume that the Ricci-flat ALE
metrics in the trees of singularities have integrable Ricci-flat deformations.

5.1.1 Integrable Ricci-flat ALE

Since Corollary 2 does not control the convergence speed towards the limit orbifold or
the Ricci-flat ALE spaces, like in Theorem 4.6, we have to fix a gauge v € O(g”) on
the approximate kernel of the operator P.

Not to damage our controls, we cannot simply use g” + v as an approximate metric.
We need to find a better approximation to extend Proposition 13 to the case when v # 0.
It turns out that this will only be possible if we assume that the Ricci-flat ALE metrics
are integrable.

Definition 5.1 (Integrable Ricci-flat ALE orbifold) We will say that a Ricci-flat
metric ALE g, is integrable if for all v € O(gp) small enough, there exists a Ricci-flat
metric ALE gy, satisfying g, — (g +v) L O(gp) and 8oy — &bll124,) < 2[IV[12>
and such that 6,85, = 0.

Remark 30 All of the known examples of Ricci-flat ALE spaces are integrable since
they are quotients of hyperkihler spaces. Moreover, any infinitesimal L?-deformation
of ALE Ricci-flat orbifolds is automatically divergence-free and trace-free by the proof
of Lemma 4.2.

5.1.2 Weighted Holder spaces and asymptotics of Ricci-flat ALE spaces

Let us introduce yet another function space to control the asymptotics of our ALE
metrics. This will be crucial to deduce obstructions in the following sections.

Definition 5.2 (Cé’i‘* -norm on a ALE orbifold) Let (N, g5) be an ALE orbifold, and

let & be a symmetric 2-tensor on N, and assume that A = H* + (’)(rb_4_ﬂ) for >0
and H* a homogeneous harmonic symmetric 2-tensor with |[H*| ~ r,;*. We define its
CZ)?:* -norm by

[Allcze = suprg[HEg, + 11+ 1) (h = xCer)HY) | e
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Definition 5.3 (r, Cgi‘* -norm on a ALE orbifold) Let (N, g,) be an ALE orbifold,
and let X be a vector field on N, and assume that X = Y3 + (’)(rb_S_B) for 3 > 0
and Y? a homogeneous element of the kernel of 8,6} with |Y?| ~ r,3. We define its
rbCZ,’i‘* -norm by

3,

XI5

= supr2|V3g, + |1+ rp)*(X — X(erb)Y3)HrbC2,i.

These norms are motivated by the following Lemmata.

Lemma 5.4 Let (N, gp) be an ALE orbifold. Then, there exists C > 0 such that we
have, for any h L O(gp),

(81) ca+ rb)“Pg,,h”rb_ng < ||h||Cé,i* <A+ rb)“Pg,,h”r;ng.

Proof By the theory of elliptic operators in weighted Holder spaces (see for instance
[PR78, Chapter 2]), the operator Pgh (14 rb)_4Cig — 1+ rb)_4rb_2CC_“5 is Fredholm
with kernel O(gp) and cokernel O(g,) because there is no other exceptional value
than O between 2 and —4. This implies that Pgb (1 + r;,)*“szg N O(g;,)l —
(14 rp) 4, 2C 5N O(gp) " is invertible with a bounded inverse.

Moreover, we have P! ((1 + rp)~*r; 2Cg‘) = Céi‘* since —4 is the first negative
exceptional value for P, and the stated inequality comes from the fact that the inverse is
bounded. O

Similarly for vector fields, we have the following result.

Lemma 5.5 Let (N, g,) be an ALE orbifold. Then, there exists C > 0 such that for
any vector field X on N, we have

(82) X1

3,

VbCB

< )l + rb)45gb6;hXHr;lclﬁ’a'

In particular the analysis of Theorem 4.6 and Proposition 10 extends to the case where
(M,, g,) is a Ricci-flat ALE orbifold and where the norm Cé’f:(g,,) is replaced by

Cé’f:*(go) thanks to Lemma 5.4 and rOC%f:(go) is replaced by roCZ;fj:* (g,) thanks to
Lemma 5.5. Indeed, all of the controls are local around the singular points or coming
from an estimate on the inverse on the rest of the orbifold exactly like (81) and (82).
For the operator P, this yields the following control on the asymptotic terms on the
ALE end.
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Corollary 7 Let (N, g;) be a Ricci-flat ALE orbifold, and denote (N5, gf ) a naive
desingularization of (V, g5) by a tree of Ricci-flat ALE orbifolds glued according to a
pattern B with relative scales ¢.

For v and ¢ small enough depending on the constants of Lemma 4.3, let g;, be the
unique metric (according to Theorem 4.6) satisfying for € > 0 small enough:

(1) Hg[B - gl‘,VHCgi(gf) < 26’
() (g8 +v)— 3., is L*(g8)-orthogonal to O(g?), and
3) WO(gf)Lgf(gt,v) =0.
Then, for any 0 < 8 < 1, we have
gt,v = ge + I:I;tv + O(r1;4_6)a
for |H},| ~ rz* and A}, — H*, the asymptotic terms of (N, g) as (,v) — (0,0).
Similarly, using Lemma 5.5, we can put our ALE metrics in gauge with respect to each

other. The nonlinear terms are taken care of like in Proposition 10 by noting that the
weight of our norm, (1 + rb)4rb_1 , is this time also larger than 1 at infinity.

Corollary 8 Let 0 < 8 < 1, let (V, g») be a Ricci-flat ALE orbifold, and denote
(NB, gf ) a naive desingularization of (N, g5) by a tree of Ricci-flat ALE orbifolds glued
according to a pattern B with relative scales ¢.

Then, there exist eg, 75, Cg > 0 which only depend on the metrics g, and the elements
of B such that for f.x < 75 and for any metric g satisfying ||g — g5|| 2 (oF) < eg,
Byxx Ot

there exists a unique vector field X on M for which,
Sg?(exp;‘( 2) =0,
where expy is the diffeomorphism expy : x € M — expﬁf (X(x)).

We moreover have, ||X||rBC%, @ S CB (14 rB)45g? (g— gf)||rB_1 Cleehy” and therefore,

@
J ok

there exists 77 : RT™ — R with limg 7 = 0 such that we have

lexpi g = gllze o) < n(lls = &7l 2o op)):
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5.2 Approximate Einstein modulo obstructions metric

Let (M,, g,) be an Einstein orbifold and let p be one of its singular points whose
singularity model is R*/T".

Let us now construct a good approximation of the metric g;, of Theorem 4.6, which we
will denote g‘,“,v. This is a crucial step to understand and approximate the obstructions
coming from the Ricci-flat ALE spaces appearing at a singular point p € M,,.

In all of this section, we will assume the following properties:

e (M, gf) ) is a naive desingularization of (M,, g,),

* at the singular point p € M,, there is only one Ricci-flat ALE manifold (N, gp)
glued, and therefore no tree of singularity,

* (N, gp) is an integrable Ricci-flat ALE manifold.

Consider S the complement of {p} among the singular points of M, let (Ms, g§ = g5,
be a naive partial desingularization of (M,, g,) which only leaves the point p singular
and let (Ms, &5 = 8s,,v5) be the perturbation of (Msg, g? + vg) orthogonally to O(g?)
of Theorem 4.6 satisfying

¢ (&s) = 05 € O(g).

At p, the metric gg has the following development in local coordinates where it is in
divergence-free gauge with respect to g,

(83) 8s = ge + Hs + O(r))

and we know that ,»(8s) = o5 = Os + O(r2) with |Ogly, ~ 79, tr,,Os = 0 and
0¢,0s = 0. We therefore have

(84) 0 = p(&s) — Os = Ag, + Po(Hs) — 05 + O(r2),

where \ = %E(gs). Consequently P.Hs + \g. = Og, where Oy is the limit of og at
p.

For some small v, € O(g,), we will glue a Ricci-flat deformation by, Of gp at a scale
1 to gs. To obtain a better estimate, we will extend the quadratic terms of 2g in order
to minimize the error in the gluing.

Proposition 12 Let (N, g;) a Ricci-flat ALE orbifold asymptotic to R*/T", Hs a
quadratic symmetric 2-tensor on R*/T", A € R and Oy a constant symmetric 2-tensor
on R*/T" such that we have:

PeI:IS + Ag. = Os.
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Then, there exists a 2-tensor fzs, and for (0;); an L?-orthonormal basis of O(gp), real
numbers 5\1 such that (izg, 5\1) is a solution of

{ Pbils + )\gb = XOS -+ Zj j\jOj,

(85) . A a
|hs — xHslg, = O(r;?),

where x is a cut-off function supported in a neighborhood of the infinity of (N, g;)
where the ALE coordinates are defined, and where

(86) Aji=— /S y (3(Hs, 0})q, + O} (VetreHs, 0,,) )dves /- + / x(O0s, 0;) ¢, dvp.
r N
The set of solutions to the above equation (85) is (izs + O(gp), j\j).

Proof We have P,(xHs) + \g» — xOs € r;zcg(gb) for 0 < 8 < 1 because in a
neighborhood of infinity, g, — g, = (Q(r;“) together with the derivatives. Lemma 4.3
also holds by replacing the operator Pj, by the operator P, as a consequence of Theorem
4.6 in the case where (M,, g,) = (N, gp) is a Ricci-flat ALE manifold. Consequently,
there exists i’ € Cé’a(gb) such that P,(xHs + i) + Agp = yOs + Zj /A\,Q/ with

< N 1 .
®7) \=-— /S o (3(Hs, 0)g, + EOf(Vtng,are))des o+ /N x(Os, 0;) g, dvp,

where 0;* ~ r;4 is the first term of the development of o; at infinity. Indeed, by
integration by parts, and using the fact that tr,0; = (gp, 0),, = 0 and 0,0; = 0, we get,

- N 1 . N ~
(Pp(xHs),05);2 = = lim (V3Vp(xHs) — Vi(tryxHs) , 0))dvg,
2 p=oo rpy<p
1 . . N
=3 ((XHs , Vo)) = (VaxHs) ; 0))

+ 0,(Vy(trpxHs) , 9y,))dS,

A 1 R
= — /S}/F (3<H57 0;">g£, + 50‘;t (vetreHS, 8r£:))dvg3/l".

Now, the integral [, x(Os, 0;)¢,dvs converges even if (Os, 0;),, = O(r;*). Indeed, in
ALE coordinates, rZ‘oj = gb,-jdxidxj + (’)(rb_l), where the ¢;; : S?® — R are nonconstant
eigenfunctions and therefore have zero mean values, hence, | {r=p} (Os,0)g,dS, =

O(p_Z) and the integral converges. The values of 5\1 from (87) therefore ensure that we
have
Py(xHs) + Ag» — xOs — > Ajoj Ly, OCgp).
J
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Choosing 15,1, > 0, vg € O(ggts) and v, € O(gy), by gluing metric 8b.v, at scale 1, to
8s.vs.,15» We reach all of the gauges of Theorem 4.6, that is we attain some element of
(gP 4+ v) + O(gP)* for any small v and .

We define ()t,, (8b,v,) as the cut-off of the elements of O(gmp) as in Definition 4.4 at
scale #,. We denote fzS(t, v) the 2-tensor satisfying ﬁg(t, V) J—éh,v,, (),p(gb,vp) obtained
in Proposition 12 with the Ricci-flat ALE metric gp,,, and Hy the quadratic terms of
gS = gs,ts,\/5~

Definition 5.6 (Approximate metric g’;‘,v) Letv e ()(g? ) for (M, gP) a naive desin-
gularization of (M,, g,).

The Riemannian manifold (M, g* = g‘gv) is obtained by naive gluing (Definition 1.6) of
(N, &by, + tphs(t,v)) to (Mg, 8s.15,v5) at scale 1, > 0.

The numbers #,,z5 > 0, v, € O(gy) and vy € (N)(gg) are chosen in order to have
g — (&l +v) L O@D).

5.3 Better approximation and obstructions

The obstruction will come from the better controls of g‘f:v and the following proposition.

Proposition 13 Let 0 < a < 1, and (M, gP) be a naive desingularization, and assume
that for #,.x < 7, the metric (M, & = g;,,) obtained by Theorem 4.6 is an Einstein metric
(without obstructions). Then, there exists € > 0 and C > 0 only depending on g, and
the gy, , such that, denoting ¥(g7',) := T o0y~ g{)(g‘,‘fv) and of), := ”Otp(grp,vp)gf’(gév)’ we
have

(88) Hgt,v - gﬁV”Cé’f‘(gf’) < CH\IJ(g?,v)Hrgzcg(g{))a
and
A A 3+ A
(39) ”Oz,vHLz(gD) < (H\I/(ggv)nr#cg(gD) + 1 )H\Il(gt,v)Hrl;ng(gD)‘

Proof Let us denote g* := g‘,‘fv, g = &y and =g —ghaswellas g, = by,
for simplicity. The inequality (88) is a direct consequence of the proof of Theorem
4.6 because the proof uses an inverse function theorem. Indeed, at the linear level, by
Lemma 4.3, we have

(90) Hg - gAHCé’j(gD) < C||7T(~)(gD)ipgD(g - gA)||r52Cg(gD)~
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Since ¥(g) = 0, the controls of the nonlinear terms of ¥ imply that
H\IJ(gA)Hrgzcg(gD) 2 HW()(gD)inD(g - gA)Hrgzcg(gr))

~ D D ~

O1) = C(IIg = 8"l goy + 18" = 8”22 0)) 1 = &"ll 20 o
2-8

We moreover know that ||g* — gDHCZ(x( by < 2¢and [|g—g ||C2a( py = Oltmix ) thanks

to the proof of Theorem 4.6 and by assumptlon Therefore, choosmg € and fyax small
enough and putting the estimates (90) and (91) together yields the expected control
(88).

Let us focus on the zone N! where the elements of O,p(gbvvp) are supported. For
0c ()tp(gb,vp), we have
5 1A = T T A < 7 A <
(P, 0) p2g0)| < [{(Pga = Py, A", 0) 12,00 | £ [(Prog i3 0) 12,5,
s T A —1;A

92) = K(ng‘ - Ptpgb)h ) >L2(t gb)’ + |< h Pgb0>L2(gb)’?

since Pgb is self dual and since the L?-product of 2-tensor is invariant by rescaling
in dimension 4 as well as the rescahng behaV10r of P. Now, we have the following

estimates on N' = {r, < 21, * } c{mp < 2tp} for k € {0, 1,2}, there exists C > 0
such that:

) kv tpgb(gA — 185z < Cr?, since g* = 1h8b + tlzjlg on N'® by construction
and because of the controls of the cut-off functions,

1
2 r’g|V’g§b()| < Cr;4 as well as P3,6 = 0 on NS c {rp < 1}, and

_1
3) 1hIVhghalig, < €y o) [ W, 1200 g0, bY (89)

We can therefore control the terms of (92) in the following way:
1

Yoor g, T -4
(B )0 < O o [ () ()P

1

I

21,
* H\Ij(gA)HFEZCE‘(gD) /i tp_lr_ﬁ’"_6r3dr
248 +ﬁ
<CH\If(gA)Hr52Ca o T

A 3+
93) < C||¥(g )||r52cg(gu)lﬁ ¢
Let o = o‘gv = Wofp(gb,)yp)gD(gA)’ since ,p(§) = 0, and dyap = P,a. We have

04 —[0*|[72 0, = (@) — 0%, 0%) = (W(g") + Pl + Qi) 0%),
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where the non-linear terms Qs () = 2@ — gp(gA) — PgA (K satisfy
A A2 2

and by definition of the weighted norms, since rEng (gP) C L*(g"), we therefore have
for 0 € O(gP),

2
(0,01 (1) 120y | < Cloll2 [ W72 g0

Hence, since ¥(g*) Lo o by definition of W, we have by (94), and thanks to (93)
and (95) we therefore have

i)

1
A A P A
HO ||L2(gD) < C(H\I’(g )Hrgzcg(gD) +t[§ )H\I’(g )Hr[;zcg(gz))-

O

Remark 31 The inequality (88) means that if we are able to construct a metric g* such
that W(g”) is small, then g# is a good approximation of g, the only zero of ¥. This
allows us to approximate the metrics g, and therefore degenerating Einstein metrics
with an arbitrarily good precision.

The inequality (89) is an obstruction result. Indeed, if we construct a good approximation
gA , for which \I/(gA) is small, but without having o? small, then £ cannot be Einstein, and
the metric g* (and therefore g) cannot be perturbed to an Einstein metric orthogonally
to C)(gD ).

Let us now control the above quantities of (89) for g‘;fv.

Proposition 14 For (s, 7,) > 0 small enough and k € N, denoting (0,); an orthonormal
basis of (),,,(g,p,vp) there exist real numbers (;\j = ;\j(t, v)); and Cy > O such that we
have

3-8
A =P
(96) ||7T(~)(gD)L gD (gtvv) Hrl;ché(gD) < thp 4 ,

and, for any iy, we have

97) (ot = 1> Adi6,) < Cot3.
J

Remark 32 If we did not use the partial Einstein modulo obstructions desingularization
8s, we would only have a control with powers of 7,y instead of #,. In particular, we
would not be able to later prove that an obstruction holds at all of the singular points,
but just at one of them.
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Proof Let us again use the following notations along this proof: gi= 8?,v’ 8 = by,
8s = 8s.5.vs for simplicity.

On M1®, we have by assumption

(98) 2(8s) = o5 € 0(g5),
and on N'% we have
(99) b (@b, + 1hs) = XOs +1, Y \joj + O(rp).

J
Now, since at the point p, the development of gs in local coordinates where the metric
is divergence-free gauge with respect to g, is

(100) gs = ge + Hs + O(),
. _1 _1
and since 1,(gp,y, + fphs) has the following development for , <2t

(101) tp (@b, + tphs) = ge + Hs + O(t3r, > + tpr; ™),
with corresponding controls for the derivatives up to order 2. On the annulus of radii
1 1

rp = tg and rp = 2t§, recalling that rp = r, = \/%,1p, for k € N, we have

~ _1 1
b Vin (&5 = (WpBbo, + 1phs)) [ = O + 13ty 2rp) > + 1t 2rp) ™)

3 3
=0, +1t; +1,)

3
= O(1y)
thanks to (100) and (101). By definition of the gluing, this yields
3
(102) 5 I Vip (Toep)ep (i) | = O(5),

According to (98), (99) and (102), we have the estimate (96).

Finally, we have the control (97) thanks to (101), (99) and (102):
o 3-8 248N 3-8 5
LA, v)| < C(r,,“ +1,* )tp“ <ty

O

Lemma 5.7 Let :\j(t, v) be the real numbers of Proposition 12 obtained by extending
Hy, the quadratic terms of 85 = &g 15.vs 0n (N, gpy,), and let 5\1- be the ones obtained by
extending the divergence-free quadratic terms of g, on (N, gp). Then as t,v — 0, we
have

(103) [Aj(t,v) — Aj m
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Proof We have the expression

At,v) = — /S y (3(Hs(ts, vs), 07 (p))g, + OF(vp) (VetreHs(ts, vs), 0y, ) ) dves jr
I

+ / X {(Os(ts, vs), 0j(vy))dvy
N

thanks to Proposition 12. Since we want to show that it converges, as (¢,v) — 0, to

~

N 1 N
)\j = — /3 (3<H5, O;">ge + 50;‘(VetreH5,are)>dV§3/p.
$3/T

We therefore just have to show that as (z,v) — 0, we have

(1) Hs(ts,vs) — Hs in r2C(ge),

(2) |Os(ts,vs)|g, — 0, and

(3) 0} (vp) = O in r;*CY(ge).
Thanks to Theorem 4.6, we know that gg ;; ,, converges smoothly to g, on compacts
of M,\S as (ts,vs) — (0,0), in particular, we have smooth convergence on small
neighborhoods of p. Therefore, the quadratic terms of the expansion of gg s v

converge to those of g, as (ts,vs) — (0,0). Consequently, the obstruction Og(ts, vs) =
PeI:IS(tg, vs) + A(ts, vs)g. also converges to P.Hs + Age =0.

Similarly, thanks to Corollary 7, the asymptotic term of g5 ,,, converge to the asymptotic
terms of g, as v, — 0. a

Remark 33 We needed to consider partial desingularizations to obtain these controls.

Remark 34 Thanks to the computations of [Biq17, Proposition 4], it turns out that
generically (when the self-dual part of the curvature at p, Ry is of rank 2 and A # 0),
the difference S\j(t, V) — j\j = (v,0)) (oj(R+) — Aoj) + (9(||VHZCM) does not vanish.

By*

Remark 35 If there were non integrable infinitesimal deformations of g, we a priori
could not expect to prove an obstruction result by the above techniques. Indeed, the
metric has an expansion g, = g» + vp + w + O(|v,|*), where w satisfies:

Qg,)("pv Vp) + Py, (w) = 7T0<gb>Qg,)(va vp) € O(gp),
and we potentially have Wo(gb)Qg))(Vp, vp) = O(|vp|?) if v, is not integrable. By
considering the metric i gﬁv, we have the following development of ¢z, on N 161,

1 = A a
o (-80) = 0 @s) T 1Py(hs) + 1,00y, hs) + O).
P

Up to the order tg there are three different sources of obstructions:
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(1) the projection of 4,(8p,,) = O(|vp|2) on O(gp),
(2) the projection of tpr(fAzS) = O(1,) on O(gp), and
(3) the projection of thg,zb)(vp, hs) = O(t,|vp|) on O(gp).

Hence, we can only "see" the obstructions which are O(z,) if Ric(gp,y,) = 0, or if
vpl? < 1.

By adapting the end of the proof of [Biql3, Proposition 3.1], we get the following
useful result.

Corollary 9 Let H; be a quadratic symmetric 2-tensor satisfying d, Ric(Hy) = Ag.,
and let V ~ rg be a homogeneous vector field which satisfies 6.0,V = —d.H>, and
define Ay := H, + 0,V which satisfies 5.Hg = 0. Then, we have

~

Ai =N,
where
~ A 4 1 4 A
)\j = — (3<Hs, Oj >ge + *OJ (VetreHs, 8”))de3/1~,
S3/F 2
and

N o= — /83/ (3(H2, 0})g, + OF (B.H2, 0y,) ) dvss jr
T

5.4 Obstruction to the Gromov-Hausdorff desingularization

We can finally conclude that there are obstructions to the desingularization of some
Einstein orbifolds.

Theorem 5.8 Let (M,, g,) be an Einstein orbifold, and (M;, g;); a sequence of Einstein
manifolds converging to (M,, g,) in the Gromov-Hausdorff sense and assume that, at a
singular point p € M, the possible non-flat blow-up limits are integrable Ricci-flat
ALE manifolds (which implies that there are no tree of singularities forming).

Then, if we denote H, the quadratic terms of the development of g, in geodesic
coordinates at p, and (Of)j the rb_4 -terms of a basis of O(gp), we have:

(104) / (3(Hz, 0}) + O} (BcHa, 9;,))dvgs = 0.
S3
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Proof Let (M,, g,) be an Einstein orbifold, and assume that there exists a sequence of
Einstein metrics (M;, g;); converging to (M,, g,) in the Gromov-Hausdorff sense whose
blow-ups at the singular point p satisfy the assumptions of the theorem. According
to Corollary 3, for i large enough, there exists a naive desingularization of (M,, g,),
M, gt[[’), v, € (N)(gfi)), ti,vi — 0 and a diffeomorphism ¢; : M — M such that
®78i = 8. 1s the Einstein modulo obstructions perturbation of gfi) + v; of Theorem
4.6. Let us fix p a singular point of M, and denote S the rest of the singularities of M, .
Assume that no tree of singularities forms at p and denote (N, g;) the Ricci-flat ALE
manifold limit of blow-ups at p.

According to Proposition 14, there exists an approximation g‘;vi satisfying

3-8
A EE
T~ Dy oP\ &7 v, < Gty f
H O(gt[,»’)gn(gfhvl)‘rDZC;;(g% S
and consequently
R . 5
(105) ltpi > At vi)8) Ml o < 5
J

where the (Gii7Vi)j form an L?-orthonormal basis of elements of O,p (8b,v,)> and
(1) Hgg,vi - ngCé’fl(gf) < 26’
() gt — (g2 +v,) is L*(gD)-orthogonal to O(g?).

The estimate (105) implies that we have
o 5
(106) il Aj(ti, vi)| < Ctg i L 1.

Now, we know that #;,v; — 0, and according to Lemma 5.7, this implies that the
Xj(t,-, v;) converge to 5\j. Since the j\j are only constants depending on the geometry
of (M,, g,) and that of (N, g;), they must necessarily vanish to satisfy the inequality
(106) for #; arbitrarily small. By coming back to the expression of 5\, of (86) we find
the obstruction. We can finally extend it in geodesic coordinates (for example) to obtain
(104) thanks to Corollary 9. O

6 Obstructions for known singularity models

The description of the previous section allowed us to find obstructions to the desingu-
larization of Einstein orbifolds by smooth Einstein manifolds. We will now test them
on the known examples and first show that the obstruction to the desingularization
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by gluing-perturbation of an Eguchi-Hanson metric of [Biql3] also holds for any
Gromov-Hausdorff desingularization of a finite number of singularities by trees of
Kihler ALE Ricci-flat orbifolds in Theorem 6.7. This is conjecturally the only possible
way for Einstein metrics to degenerate in a noncollapsed setting.

In dimension 4, the 2-forms decompose into self-dual and anti self-dual 2-forms
which are elements of the eigenspaces of Hodge star operator * (which satisfies
¥2 = Id) respectively associated to the eigenvalues 1 and —1. Thanks to this direct
sum, the symmetric endomorphism on 2-forms, R given by the Riemannian curvature
decomposes into blocks,

_[RY Ri

‘[m& Ry

where the Ric® is the traceless part of the Ricci curvature, and where R* are the
self-dual and anti self-dual parts of the curvature.

6.1 Kaihler Ricci-flat ALE metrics and obstructions

The first obstructions to the desingularization of an Einstein orbifold (M,, g,) by
a Ricci-flat ALE manifold (N, g5) come from the infinitesimal deformations of g
decaying as r;4 at infinity. We will show that for any Kdhler Ricci-flat ALE orbifold,
there is a common obstruction to the desingularization which was already found in
the case of the gluing of an Eguchi-Hanson metric for a particular gluing-perturbation
procedure in [Biq13]:

detR™ =0,

at the singular point. We will moreover see that generically (see Remark 37), there are
additional obstructions corresponding to

Rt =0.

Remark 36 If we glue the Kihler Ricci-flat ALE metrics with the opposite orientation,
that is with with a gluing parameter in O(4)\SO(4) the common obstruction becomes

detR™ = 0 and therefore in general, since the Einstein equation implies that the
curvature is block diagonal (Ric® = 0), the obstruction is
detR = 0.

The only known examples of ALE Ricci-flat orbifolds are Kéhler. They have been
classified and we have a satisfactory parametrization of the moduli space of these
quotients of hyperkihler (hence Ricci-flat) ALE metrics.



Noncollapsed degeneration of Einstein 4-manifolds, Il 81

Let us precise what the deformations of these known Ricci-flat ALE orbifolds are, in
order to extend the obstruction to the desingularization by any Kihler Ricci-flat ALE
space.

Proposition 15 Let I'" be a finite subgroup of SU(2), (N, g») a hyperkihler ALE
manifold asymptotic to R* /I and (0?),- a basis of the r,° 4 _terms of the elements of

O(gp).

Then, the conditions [y (3(Ha, O}),, + O}(B.H,,,,))dvss = 0 for a quadratic
symmetric 2-tensor H, satisfying d, Ric H, = Ag, imply that

det R, (H,) = 0,

where R (H>) is the common selfdual part of the curvature of metrics with a development
g+ H, + O(I"Z)

Proof Denote by (x,y, z, f) the coordinates in an orthonormal basis of R*, and define
a basis of invariant 1-forms on the sphere S?, (« 1, 2, a3) by,

1
Qp = ﬁ(xdy — ydx + zdt — tdz)

1
Q) 1= —(xdz — zdx + ydt — tdy)
.

e

1
a3 = ﬁ(xdt — tdx + ydz — zdy).
e

Manifestly, from Theorem 5.8 these obstructions do not particularly depend on the
Eguchi-Hanson metric, but on the r,’ *_terms of the development of its deformations,
Of', which are, by [Biq13, (27)]:

(1) 0411 — Zdrg—&-rgoz%—rgoz%—r?a%

B
e

2

ca.on+redre.
(2) 0421 . FoQ.Qp1Tedle.(3 ,
e

(3) 0%1 = rgm.agfrgdr@az ]
Let I' be a finite subgroup of SU(2). Then, according to [Kro89a], there exists
kr € N* and Dr, a finite union of vector subspaces of R3*r of codimension at least
3 containing 0 such that the set of smooth hyperkihler metrics asymptotic to R* /T
is parametrized as (X¢, 8¢)certr \Dr - Moreover, by [Auv18, Theorem 2.1], for each

¢ = (C1, G, (3) € R¥\Dr, there exists a diffeomorphism @, from a neighborhood of
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the infinity of R*/T" to the infinity of X, such that Pige =8e +he + O(r, 6), where,

2 2 2 2.2 2.2
he = Z |<j|2dr€ +riog —rjop —rq
4
il e
2
ro0q.0 — redre.0i3
<<17 C2> rzet
2
rso.03 + redre.an
<C17<3> r?
r?ozz.ag — redre.crq
- <C27 <3> }’4 )
e

where the first sum is taken on the (j, k, ) satisfying /=k+ 1 =42 mod 3.

Without loss of generality, we can assume that the first coordinates of ¢, (; and (3 € R*r
are 1, 0 and 0. Indeed, there exists / € {1,...,kr} such that the /-th coordinate of
(1,0, 0), (€ {, Cé, Cé) does not vanish. Just like for the homothetic deformations of the
Eguchi-Hanson metric, thanks to an action of SO(4) on the asymptotics of the metric and
a homothetic transformation (which yields an action of SO(3) and a common rescaling
on all the ¢'), we are able to reach another metric 8¢ with (5{, fé, fé) =(1,0,0).

By differentiating the above expression of /., we see that the infinitesimal variations
associated to the variations of (C{, 55, fé) are then asymptotic to O?, 0‘2t and Oé’. The
obstructions they induce by Theorem 5.8 are therefore the same as for the Eguchi-Hanson
metric, and by [Biq13, Theorem 4.1] they imply the condition detR, = O which is
independent of the above actions of SO(4) and scaling. O

Remark 37 The case of the Eguchi-Hanson metric, or when the ¢ I are parallel, is
actually the least obstructed case, and by the formula [Biq13, (38)] the obstruction
condition is Ry = 0 for ¢ generic when kr > 1.

We find the same obstruction for Kéhler Ricci-flat ALE orbifolds which are all asymptotic
to R*/T" ~ C?/T" fora group I' = ﬁ(l,dnm — 1) C U(2), that is the cyclic group

generated by
i2m
ean’ 0
[ 27 (dnm—1) ] 9
O e dn?

where d > 1, n > 2 and, n and m are mutually prime.
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Corollary 10 Let I' be a group #(l,dnm — 1) CcUR)ford>1,n>2 and n and
m mutually prime, and let (N, g5) be a Kihler Ricci-flat ALE metric asymptotic to
R4 /T, and (Of)i a basis of the rb_4 -terms of the elements of O(gy).

Then, for a quadratic symmetric 2-tensor H, such that d, Ric H, = Ag,,fori € {1,2,3}
we have the conditions

/ (3(Ha, Of)g, + O} (B.Hz,0;,))dves = 0
S3

which imply that
detR;(H,) = 0.

Proof Let ﬁ(l,dnm — 1) C U(2) be a finite subgroup of U(2), and (N, gp) a non
flat Kéhler Ricci-flat ALE orbifold asymptotic to R* /. According to [Suv11], (N, zp)
the universal cover of (N, g,) is a hyperkihler orbifold asymptotic to I' = ﬁ(l, —1) C
d—ilz(l ,dnm — 1). Let H, be a quadratic symmetric 2-tensor on R*/I", we can also lift
itto R*/T" as H,.

Let us come back to the origin of the obstruction in Proposition 13, and more precisely
the existence of a symmetric 2-tensor s asymptotic to H, such that dg, Ric(hy) = Agy.
If such a symmetric 2-tensor exists on (N, g), we can lift it as a symmetric 2-tensor
hy on (N, g,) asymptotic to H, and satisfying dg, Ric(h;) = A, which implies, again
according to Proposition 13 and to Proposition 15, the condition det R (H>) = 0, and
finally detR(H,) = 0. |

Remark 38 The above proof (or any proof in this article really) does not use the
Kihler nature of the studied metric. It would also apply to any Ricci-flat ALE metric

whose order r;4 terms do not vanish [BH19, Proposition 2.5]. It is however not clear if
these terms can vanish (in well chosen coordinates) on a non flat Ricci-flat ALE metric.

6.2 Trees of Kihler Ricci-flat ALE orbifolds and obstructions

Let us now treat the case of trees of ALE Kihler Ricci-flat orbifolds.

6.2.1 Uniform controls of gravitational instantons

Let us use the notations of the proof of Proposition 15. Let I'j € SU(2) and (; € Dr,
fixed such that the ALE orbifold (X¢,, g¢,) has a singularity R*/T for I' € SU(2). For
v € O(g¢,) which we will choose small, let us then denote g, , the Ricci-flat (and even
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hyperkéhler) of g¢, given by Definition 5.1. The goal of this section is to show that
there exists a common scale 7 > 0 such that for any ¢ € R3*r with (| = 1, for any
t < 1, the naive gluing of g, to g¢, , at scale ¢, denoted gﬁ £¢ can be perturbed into a
Ricci-flat modulo obstructions metric which we will denote g, ;¢ .

The naive gluing gf + ¢ 18 Ricci-flat everywhere except on the annulus where the gluing
takes place. We therefore have the control

2—

(107) Hgf,,,g(gﬁt,C)”rgzcg(gﬁ[’C) <Cr+

™

where C > 0 only depends on (; and v because g for |¢| = 1 is controlled at infinity
in the ALE coordinates of [Kro89a, Corollaire 3.14].

Going back to the proof of Theorem 4.6 by inverse function theorem, in order to perturb

gf o toa Ricci-flat modulo obstructions metric to to show the existence of 2, ; ¢, it

would be enough to show that the linearization of g e )15
v,t,¢ v,t,¢

o, o P, 0l N Chaghio) = Ol )t Nrg Cheh, o)

is uniformly bounded and has a uniformly bounded inverse for || = 1 and ¢ small
enough and to control the nonlinear terms of s . Fixing ¢; and v, It would therefore
be enough thanks to Proposition 11 to show that

Py O(g)™ N C52(g0) = O(g)" N> Chlge)

is invertible with bounded inverse. This is however not the case when ( — Dr, that is
when g degenerates to an orbifold. In this situation, we replace the norms with respect
to g¢ by norms with respect to a naive desingularization glg (with additional decay in
the neck regions) close to g¢ in order to keep a uniform gluing scale.

Proposition 16 For any I' C SU(2) and ¢ > 0, there exists C = C(I',¢) > 1 such
that for any ¢ € R¥*r with |¢| = 1, there exists a naive desingularization (partial if
¢ € Dr and total if ¢ ¢ Dr, see Definition 1.6) g¢ of an orbifold g¢, with ¢, € R
and |(,| = 1 by hyperkihler orbifolds g, for |¢; = 1 and ¢; € R with ;| < ||,
for which, denoting

HhHCZ”‘:(gB) HPgBhHrEch(gB)
T AT

R(glg) = sup 0+ sup
hE()(gB)lﬂCé’fi(gB) HPgBhHrB_zcg(gB) heCé’i(gB) Hh”cé’i(gli)

we have

B
ey Hgg _gCHCQB’fI(glg) < @’
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) R@g)<C.

Remark 39 The norms in the above statement are the naive desingularizations norms
(Definition 1.6) with respect to g? . They are needed in order to obtain uniform estimates.

Remark 40 What is crucial in this statement is the fact that the constant C is
independent of the metric g¢ and in particular allows ¢ to approach Dr with uniform
controls. The constant e essentially decides from which proximity we replace the metric
g¢ by a naive desingularization. Indeed, the trivial naive desingularization glg = g
always satisfies the first property of the conclusion.

Proof Let ¢ > 0 and let us show the result by induction on the order k of the group at
infinity. It holds for Z; of order 2 because all the metrics g for ¢ € R? are isometric
for |(| = 1, and we can take gg =gc.

Assume now that the conclusion is satisfied for any group of order less than or equal to
k — 1 > 2 and consider I of order k.

Let us again work by induction, this time on the value of the square of the L?-norm of the
curvature of the ALE orbifolds asymptotic to R*/T". This quantity is proportional to the
dimension of the (orbifold) L? cohomology in degree 2 for these gravitational instantons.

Consider, the orbifolds g¢, ¢ € R3*r |¢| = 1 which have the smallest energy. Assume
by contradiction that there exists a sequence of orbifolds g, |¢;| = 1 with the minimal
energy such that for any naive desingularization (Definition 1.6) g? of a hyperkihler
orbifold asymptotic to R*/I", we have

(1) either, ||gg,- - gBHCéai(gB) 2 @’
(2) either, R(g®) > i.

In the coordinates of [Kro89a, Proposition 3.14], all of the metrics g, admit coordinates
of order 4 with a uniform control in r;‘C 3 (g¢;) in a uniform neighborhood of infinity,
where r¢, is the function of Definition 1.4. Therefore, there can only be L*-concentration
of the curvature in a compact of diameter uniformly bounded and volume uniformly
bounded below by Bishop-Gromov inequality. By minimality of the L?-norm of
the curvature, no tree of singularities can form with |(;| = 1 because the limit
orbifold would then have a smaller L2-norm of the curvature. Therefore, there exists
8¢, such that the g¢, converge smoothly (considering local covering at the singular
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points) to g¢. . Since the asymptotic terms converge by [Kro89a, Proposition 3.14],

we have ||ge — gco || ) — 0 when i — oo where we have ||.|| % (5n) ~

(1 + re Nl % (ge) here since we use local coverings at the singularities instead
0 0o
of weights at the singularities of g¢._. The trivial naive desingularization gk = 8Coo
therefore contradicts the assumptions. Indeed, the convergence happens in C%f: (&cs)
and since P, is elliptic, there exists C > 0 such that for any & L O(gc,,), we have
Hh”cévz(g(oo) < CHngoohHrE;cg(gcoo)-

Consider then a higher value for the L?-norm of the curvature E > 0 and assume that
our property holds for the hyperkihler orbifolds asymptotic to R*/T" whose L?-norm
of the curvature is strictly less than E. Let us assume by contradiction that there exists
a sequence (; € R3*r |¢;| = 1 satisfying || Rmyg, [|12(,,) = E for which for any naive
desingularization g? of a hyperkihler orbifold asymptotic to R*/I", we have

. either, Hgg, - gBHCZEvi(gB) P @’
+ or, R(g%) > i.

Like in the above argument for the minimal energy, if no singularity was forming, up
to taking a subsequence, we would have a Céﬁ‘(gcoo)—convergence to a orbifold g¢_
with R(g¢..) bounded. A tree of singularities is therefore forming. More precisely, up
to taking a subsequence, there exists a subsequence naive desingularizations glg[l of a
hyperkihler orbifold asymptotic to R*/T", composed of orbifolds g¢, with |(,| = 0
asymptotic to R*/T" and g¢ with |¢j| = 1 (up to changing the scale of the gluing,
we can always assume that since g, is isometric to 1g¢), ¢; € R, at scales 1 Js
for which we have ||g¢, — ggHCé’i — 0 as i — oo. Moreover, all of the metrics g¢,

and g¢; are hyperkdhler according to [Ban90]. The L?-norm of the curvature of &c,
is strictly inferior to E since some of the total L?-norm is lost in the singularities by
[And89, BKN89], and we have |I'j| < |I'| = k by Bishop-Gromoyv inequality. Up to
replacing g¢, and the g¢, by the naive desingularizations ggo and glgj of the previous
steps of our inductions, we obtain a naive desingularization gg for which we uniformly
(depending on the constants of the previous steps of the induction only) control the
operator P. Thanks to Lemma 4.3, we obtain a uniform control on the inverse of the
operator ngi . This contradicts the initial assumptions and proves the statement. O

The following lemma lets us approximate the kernel of the operator P, thanks to the
approximate kernel O(g¢).
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Lemma 6.1 Let P and P’ be two operators between Banach spaces X and Y for
which there exists C > 0, g6z > € > 0, a finite dimensional space K’ C X and §' a
complement of K’ in X such that we have:

(1) foranyx € X,
1P = P)xlly < ellx]lx,

(2) foranyx e S,
Ixllx < ClIPx]ly,

(3) forany x € K’,
1P'x]ly < ellx]lx,

4) and dim(ker P) = dim(K').

Then, for any k € ker P, there exists k' € K’ such that
2Ce

(108) [k — K'|lx <3 IIk’le

Proof Let k € ker P, and consider its decomposition k = k' + s’ in the direct sum
X = K' @ §'. Thanks to the first hypothesis, we have

(109) IP'k]ly < ellkllx,
thanks to the second,

(110) Is'llx < CIIP's lly
and thanks to the third one, we have

(11D IPE |y < €llK]x.
Putting (109), (110) and (111) together, we find

Il 1x

(112) ellkllx = 1P's'lly — [IP''lly > — ell€']lx,

hence, since k = k' + ',
Is'llx < Ce(|[kllx + [[K'][x) < 2Ce||K'||x 4 Ce[|s'Ix,

and finally
2Ce

1—

Ik =Kllx = lls'llx < 7—g; 1€ lx-
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Remark 41 With the three first assumptions of Lemma 6.1, we still have
dimker P < dimK’,

and any element of ker P is close to an element of K’ (its projection on K’ parallel to
S’) in the sens of (108).

We conclude from Lemma 6.1 and the estimates 1 and 2 of Proposition 16 that for
any I' C SU(2) and any ¢ > 0 small enough depending on I" only, for any ¢ € R3r
and for the metric glg obtained by Proposition 16, we have the following control for
C=CT,e)>0:forany i L O(gc),

1
(113) E”hncgi(glg) < HnghHrgzcg(glg) < CHhHCév,O‘*(glg)'

We therefore conclude that we can define Ricci-flat modulo obstructions perturbations
of our naive desingularizations.

Corollary 11 Let (X¢,, g¢,) be a Ricci-flat orbifold for ¢; € Dr, having a singularity
R*/T", T' C SU(2). Then, there exists ¢ > 0 and 7 > 0 such that for any 0 < 7 < 7,

¢ € R¥*r with |[¢| =1 and v € O(g,) with HVHCé’“(gg) < 7, if we denote

. gﬁlz ¢ the naive gluing of the metric (X, g?), of Proposition 16 for the constant
€, at the singularity R*/T" of g, , (defined above), and
. gfi ¢ the naive gluing of (X¢, g¢) at the scale 7,

there exists a unique metric g, . satisfying

B 5 ) 0B
g\;J’g - gV,Z,C 1 O(gVJ’C)?
B ~ . . . . . BB
o 8ori Boacl e ) < 27 (notice the naive desingularization norm 8yrch

and
. gghg(é’v,r,g) € O(gﬁt,g)-

Moreover, the metric g, ¢ depends smoothly on v, 7 and (.

Proof As discussed at the beginning of this section, for the naive gluing gf oo We
have a control

2-8

B
Hgf,,,g(gV,t,<)||r,;2C§(g€ff,g) s

where C > 0 only depends on ¢;. Now, using the control (113) to replace the controls
of Lemma 4.3, we adapt the proof of Proposition 11 to show that for 7 small enough
depending on I' and (; alone, the operator

o

~ 2’ ~ _
Towr, o Per, 1 0 NN = Ol ) N g Cheie),
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is uniformly bounded (independently of ( and of ¢ and v small enough) and invertible
with a uniformly bounded inverse. Notice the norms gﬁ’i ¢ again. The proof of Theorem
4.6 by inverse function theorem extends here, and there exists a unique solution 2, ; ¢ to
the equations of the statement.

Like in Corollary 4, the smooth dependence of the metric is a consequence of the
implicit function theorem applied to

. - B
v (Va f Ca h) = Wo(gﬁt,()Lgf,t,((ng’C + h)

for h 1 O(gZ, ). m

6.2.2 Gluing-perturbation of gravitational instantons

Let us first make sure that all of the gluing gauges given by the isometries of R*/T’
(see Remark 3) are equivalent to gluing a gravitational instanton but with a different
parameter (.

Lemma 6.2 Let (M,,g,) be an orbifold (compact or ALE) with a singularity R* /T’
at p with T C SU(2), and let ( € R*r. Let moreover ¢ be an isometry of R*/T
preserving the orientation.

Then, there exists (' € R such that the naive gluing of (X¢, g¢) at p with the ALE
coordinates of [Kro89a, Proposition 3.14] composed with i) when identifying with
the coordinates of (M,, g,) (see Remark 3) is isometric to the gluing of (X, g¢1) to
(M,, g,) at p without composing with an isometry.

Proof Let I' C SU(2) be a finite subgroup. Having v € Isom(R*/I") implies that
@ is in the normalizer of T' in SO(4) and therefore that 1) € #(S*® x Nr), where N
is the normalizer of I" in SU(2) (see [McCO02] for an explicit expression) and where
¢S xS — SO(4) is the double covering of SO(4) where the first S? is the left
multiplication by a unit quaternion and the second a right multiplication. In this
identification, we have SU(2) = ¢({1} x S?) and we will denote SU(2) = ¢(S> x {1}).

Let us now study the action of the normalizer of I", which is ¢(S® x Nr), on a metric
of [Kro89a] in the coordinates of [Kro89a, Proposition 3.14]. Let us come back from
their construction in [Kro89a] starting with

P:=C?® End(R),
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where C? is the standard representation of SU(2) and where R is its regular representation
SU(2). Denote P' the set of I'-invariant elements of P, F the set of elements commuting
with I" seen as a subset of the unitary transformations of R, and finally denote 7 the
subgroup of complex numbers of unit norm acting trivially. The gravitational instantons
asymptotic to C?/T" are the hyperkihler quotients of P*' by F/T.

By definition, the normalizer &(S? x Nr) acts on P! and commutes to the action of F.
It consequently acts on the set of solutions of the moment map s : P'' — (f/t)* @ R3
where f and t are the Lie algebras of F' and T respectively. More precisely, denoting
I, k € {1,2,3} the 3 complex structures of P! given by the identification of C? with
the quaternions, for all £ € §/t, the three coordinates of 1 satisfy the equations

grad(pi.§) = Ii(Ve),

where V¢ is the vector field on P' generated by the action of ¢. The SU(2) in which
I' and Nt commutes to the three complex structures since it is identified to the right
multiplication by a unit-norm quaternion. We conclude that Nt acts by isometry on
the hyperkihler metric u~'(¢)/(F/T) for all ¢ € (f/t)* ® R3. The part SU(2) of the
normalizer, acts by rotation on the three complex structures. And more precisely, an
element n_ € SU(2) sends p~'(¢)/(F/T) to =" (Ad(n_)¢)/(F/T) where Ad(n_) is
the standard action of SU(2)/+ = SO(3) on the factor R3 of F/0*® R3.

To conclude there remains to ensure that this action of the normalizer is the standard
action on the asymptotic cone R*/T" in the coordinates of [Kro89a, Proposition 3.14].
To prove this, we use the identification R*/T" ~ 1 ~!(0)/(F/T) of [Kro89a, Corollary
3.2]. The correspondence between the infinities of ~1(¢)/(F/T) and u='(0)/(F/T)
for the coordinates of [Kro89a, Proposition 3.14] given by [Kro89a, (3.13)] lets us
conclude that the action of the normalizer is indeed the standard action on the asymptotic
cone R*/T".

Therefore, the gluing (X¢, g¢) ~ u~'(¢)/(F/T) for ¢ € R¥*r ~ (f/t)* @ R* composed

with the isometry ¢ = ¢(1)_, 1) of R*/T is isometric to the gluing of (X¢r, g¢r) with
(' =Ad®-). m

Let us then remark that any ALE hyperkéhler orbifold can be desingularized by a
sequence of ALE hyperkihler manifolds.

Lemma 6.3 ([Ban90]) Let (X¢,,g¢,) be an ALE hyperkihler orbifold with a sin-
gularity R*/T". Then, for any t > 0, there exists ¢, € R¥*"\Dr and v, € O(g¢,)
satisfying lim,_,ov; = 0 and lim,_,o Xq) =X € R3#r \Dr, such that the Einstein
modulo obstructions desingularization (X #X¢,, gv”t,q)) of Corollary 11 is hyperkiéhler.
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Proof The result of [Ban90, Theorem 4] shows that for ¢ small enough, there exists (g
for which there is a hyperkihler metric g, satisfying
B
Hgt - gO,t,CoH(]+r3)fﬁcéﬂ‘1(gg,l’§0) < (@),

where lim,_,o y(f) = 0. We can then apply our construction of coordinates of [Ozul9a]
to (X¢,#X¢,, &) in order to obtain a diffeomorphism ¢ : X #X, — X¢, #X¢, thanks to
which we have the better control

B
H@b*gt - gOJ,COHC;U;(gg’t’CO) g C’Y(t)

Thanks to Proposition 10, there exists a small diffeomorphism ) : X #X) — X #X¢,
such that Sgg ; Y*¢*g, = 0. The uniqueness of Theorem 4.6 and the fact that the
5,60

infinitesimal deformations of (X, g¢,) integrate to curves t — (X1, &¢,n) by the
classification of [Kro89a, Kro89b] ensures that there exists v; € O(gg,t,Co) and C{) such
that we have

w*(¢*g1) = gw,t,({y

with g, ; o one of the metrics of Theorem 4.6. |

Remark 42 Note that [HV20, Theorem 6.2] provides such gluings-perturbations in
all directions ¢ € R3*r\Dr. The admissible scales are however not independent on
|| = 1, and arbitrary trees of singularities are not allowed.

Proposition 17 There exists 7 > 0 such that for all
0,1,0) € (B (0,1 NO(ge)) x (0,7) x (S¥\Dp),

the metric g, ¢ of Proposition 11 is isometric to a hyperkéhler metric of [Kro89a].

Proof Let us start by noting that the set
3kp—1
(B g )07 N Oge) x (0,7) x (8™ \Dr)

is connected since Dr is a finite union of spaces of codimension at least 2 in S¥*r—!,
We therefore just need to prove that the set

E={(10) ¢ (Bcg,i(g H©01N 0(g¢))) x (0,7) x (S**~"\Dr), Ric(g, ) = 0},

which is non empty by Lemma 6.3 is open and closed. It is therefore isometric to
8ewao) for Ev,1,¢) € R¥i\ Dy,

The set E is closed by the continuity of
(V7 ta C) € (Bcéva(ggl)(ov T) N O(gcl)) X (07 7—) X (S3kF_1\DF) — RiC(gV’LC)



92 Tristan Ozuch

proven in Corollary 11.

For the openness, let us assume that for (v, ¢, ¢) fixed, we have Ric(g,,¢) = 0. The
metric §,, ¢ is therefore one of the metrics of [Kro89a]. There exists a space of the
same dimension as O(gﬁ +,¢) of hyperkihler deformations in the neighborhood of ge(.,¢)
and therefore the Ricci-flat modulo obstructions deformations of 2, ; - are hyperkéhler.
Indeed, since the metrics g¢, ., g¢, and ge(v1¢) are hyperkihler, they have a hyperkihler
deformation space of dimension three times that of their L?-cohomology in degree 2,
and the dimension of this cohomology is additive for our gluings.

16 P/ = Pgﬁt,(7 K/ - O(gﬁtvc) and

S = C)(gﬁ . C)L , the Ricci-flat deformations of g, ; - are arbitrarily close to elements

According to Lemma 6.1 applied to P = Pj,

of ()(gﬁ +¢)- By Corollary 7, the metrics glvg,’,/’c/ approximate the small Ricci-flat

deformations g,/ s ¢ of 2, staying in BCé’i(gf,@Qe)’ for ¢ > 0 the constant of

Theorem 4.6. We therefore reach metrics isometric to all the g,/ ¢ for (/,#,(’) ina

neighborhood of (v,#,¢) in (B2 ” ,(0,7)N O(g¢,) x (0,7) x (S*r=\Dr). The
8,(8¢;

set E is therefore open. O

6.2.3 Obstruction for trees of Kihler Ricci-flat ALE orbifolds

Let us use the notations of the proof of Proposition 15, and parametrize the set of
Kihler Ricci-flat manifolds asymptotic to R*/T" as (X5 8 ¢erdr \Dr. in the following
statement.

Lemma 6.4 Let (X, g¢,) be a Kihler Ricci-flat orbifold asymptotic to R*/T", and let
¢ € R\ Dr be close to (y. Then, there exists a naive desingularization g of (X¢o1 8¢0)
by Kihler Ricci-flat ALE orbifolds glued in the same orientation and v € O(g?) such
that (X¢, g¢) = (N, 8p,1,v) s the (iterated) perturbation of Lemma 17 of (N, gf +v).

Moreover, there exists ¢ > 0 such that for ( close enough to (y, there exists a
diffeomorphism ®; between neighborhoods of the infinities of (X¢, g¢) and of R*/T
such that there exists 01(C), 02(¢) and 03(¢) elements of O(g¢) satistying for all
ie{l,2,3},

®0/(() = 0} + O™,
where O} = (’)(rg4) is the homogeneous symmetric 2-tensor used in the proof of

Proposition 15, and with ||Oi(C)HL2(gC) > €.

Proof According to Corollary 7, (X¢, g¢) = (N, g»,) is a Kihler Ricci-flat perturbation
of a naive desingularization (N, g%) for some small 7 depending on (. Moreover, the
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r, 4 terms of (X¢, g¢) converge to those of (X¢,, g¢,) as ¢ — (o by Corollary 7. By
assumption, there exists / € {1, ..., kp} such that C(’) # 0, hence, for ¢ close enough to
Co, ¢! # 0 by continuity. Just like in the proof of Proposition 15, this implies that there
exists a diffeomorphism @, between neighborhoods of the infinities of (X¢, g¢) and
of R* /T" and infinitesimal deformations of g, 01(¢), 02(¢) and 03(¢) such that there
exists C > 0 independent of ¢ for which we have for all i € {1, 2,3},

|@%0;(¢) — OF| < Crg*™”

by Corollary 7. In particular, since O # 0, there exists ¢ > 0 depending on C and 3,

but independent of ¢ such that we have {|0;(¢)||z2,) = €. O

Lemma 6.5 Let g8 be a naive gluing of Kéhler Ricci-flat ALE orbifolds, and g, its
Kiéhler Ricci-flat pertubation of Lemma 17.

Then, for any symmetric 2-tensor w € rgzcg(g?), there exists a unique symmetric
2-tensor u € O(g;,J)Lg'hvf N Céﬁf(gf), such that

(114) Py, 4 = o, )L W-

We moreover have the following control for C = C(g?) > 0,
””Hcé’z(gf) < CHFO(gb,,)iWHrgzcg(gf)‘

Remark 43 The crucial part of this lemma is the fact that the solution is controlled in
the tree of singularities norm Cz’f:(gf}) which behaves well as t — 0.

Proof According to Theorem 4.6, we have

2-8
(115) 186 = &7l 2t g1y < Climi

which, combined with the proof of Theorem 4.6 implies that, for #,,x small enough, the
operator Py, , is injective on O(g8)+ N Cé":(gf).

b,t

Moreover, for 0 < g < 1, its cokernel on r,;2cg(gf) is equal to its kernel on
rBzCﬁ 5(gf ) which is equal to O(g;,). Indeed, for any g; a Ricci-flat ALE metric, the
kernel and the cokernel of I_’gb : Cé’fi(gb) =T, ch‘(gb) are equal to O(gp) because
taking the divergence of P, (h) = 0 for h € Cé’fi‘(gb), yields dg,07 (0g,h) = 0, and

8b~8p
finally g, h = O by Proposition 9. By taking the trace of the remaining of the equation,

we find that Vi V,, (trg,h) = 0, and since h decays at infinity, trg, s = 0. Finally
Pg,(h) = 0, and we conclude that the kernel of Pg;, : C%f: — r;ng‘ is O(gp), and
similarly, its cokernel is also O(gp). O
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Corollary 12 Letr=(t; = 1,...,1;) > 0, and let

* (N, g )k be a tree of ALE Kihler Ricci-flat orbifolds desingularizing R* /T,

s (N,gP) the naive gluing of the (N, 8n,) at the relative scales 7, to (N1, gp,),
small enough for k # 1, and

* (N, gp,) be the Kihler Ricci-flat ALE perturbation of (N, gf) of Lemma 17.

Let us assume that (N, gp,) is asymptotic to R* /T, consider Hg a quadratic symmetric
2-tensor on R* /T such that P Hg + Ag. = Oy for a constant symmetric 2-tensor Oy.

Then, there exists C > 0 independent of the # and X, a cut-off function supported
in a neighborhood of infinity of (N, g5 ;) independent of the #;, and there exists fzg a
symmetric 2-tensor on N such that we have

Py, b2 + Agps — xOs = Z Aioi € O(gs,),
i

and
|hs — XHchéi(g;e) < C[|Hs |l 2¢00.)-

Proof Let us consider Hg a quadratic symmetric 2-tensor on R* /T such that P.Hg +
Ag. = Oy, and let x be a cut-off function on N; supported in a neighborhood of infinity
where (N1, g»,) has ALE coordinates we will also denote x on N the cut-off function
extended by O on the deeper ALE orbifolds.

We then have
||P§b,z(XI:IS) + )‘gb,t - XOSHrgzcg(gf) < C||HS”rgcg

Indeed, in a neighborhood of infinity where x = 1, since g,; — g, = O(rg“), we
have pg,,,,(XHS) + A8 = Os + (’)(r§4), and on the rest of the manifold, we have
the expected control by definition of the norm rgzcg(g? ). According to Lemma 6.5
applied to g = g5, there exists a unique symmetric 2-tensor 7’ € Cé”fj(gf) N O(gb,t){
such that we have

Py, (xHs + 1) + Agp — XOs € O(Zp,).

Moreover, according to Proposition 12, the element of O(g ) is explicit. More precisely,
consider (0;); an orthonormal basis of O(g; ), and thanks to the diffeomorphism ®; of
Lemma 6.4, let us assume that the three first elements are asymptotic to c,~<I>,,*O§‘ for
ci > % We have

Py, (xHs + ) + Agp — xOs = Y _ Xio; € O(2,),
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where, fori = 1,2,3,
5\i = /%/ (3<I:ISa 0?>ge + O? (vetre[:IS; are))de3/F + / X<0Sa0i>gbd"b-
$3/T N

O
Let (M,, g,) be an Einstein orbifold and p one of its singular points of singularity
R*/T", S the set of singularities of M,\{p}, and let (N, gn )k be a tree of ALE Kihler
Ricci-flat orbifolds desingularizing R*/T". Let moreover &g be a naive desingularization
modulo obstructions of (M,, g,,S) and Hy the quadratic terms of a development in
divergence-free gauge at p € M,,, 11 > 0, g5, a Kéhler Ricci-flat gluing of the (Ni, g5, )k

at relative scales ¢ = (f); > 0 produced by Lemma 17, and a symmetric 2-tensor f»
on N and the real numbers 5\l~ of Lemma 12.

Definition 6.6 (Metric §*) Let us define the approximate metric g4 as the naive
gluing (Definition 1.6) of gs and ¢, (g;,,, + tlfzg).

We have the following control whose proof is the same as Theorem 5.8.

Corollary 13 Let 5 > 0, and let us use the above notations. For #,x > 0 small
enough we have the following controls: for all k£ € N there exists Cy > 0,

3-8
(116) 70yt 2@ 520 oy < ity *
and for all 6 € (~),1 (8»,1), and denoting (0;); and orthonormal basis of (3[1 )
N 5
(117) (2@ =0 As: o>L2(gD) < Colloll 21 -
1
while satisfying,

(1) Hg,A _gDHCé’i(gD) < 2e,

(2) g4 — gP is L*(gP)-orthogonal to O(gP),

Remark 44 The crucial part here is that, by considering the right weighted spaces,
Cé’f:(gfg), and Kéhler Ricci-flat perturbations of our tree of singularities, we obtain a
control by powers of #; only.

We then conclude, exactly like in Theorem 5.8 that the obstruction is satisfied in the
limit at every singular point of (M,, g,) where the trees of singularities appearing are
composed of Kéhler Ricci-flat orbifolds ALE.
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Theorem 6.7 Let (M,, g,) an Einstein orbifold, and assume that there exists (M;, g;);
a sequence of Einstein manifolds such that

GH
M;, gi) — (M, go)-

Then, (M,, g,) satisfies detR(g,) = 0 at every singular point where the trees of
singularities forming in the Gromov-Hausdorff sense according to Corollary 2 are
composed of ALE Kihler Ricci-flat orbifolds glued in the same orientation.

Remark 45 The result is optimal in the sense that it is the only local obstruction
to the desingularization of a R*/Z, singularity. Indeed, together with the existence
of Einstein desingularizations of [Biql3], proven in the case of rigid asymptotically
hyperbolic Einstein metrics with a singularity R*/Z, singularity, we see that there
exists a desingularization in the Gromov-Hausdorff sense by Eguchi-Hanson metrics if
and only if the condition det R(g,) = O is satisfied.

Remark 46 For now, we cannot prove any obstruction result if trees of non Kéhler
Ricci-flat ALE orbifolds were to appear. The reason is that it might not be possible to
glue and perturb them into a single Ricci-flat ALE manifold. The obstructions to such a
gluing could possibly compensate the ones coming from the gluing to the orbifold.

Example 2 Like in Example 1, let us consider the sphere S* as S* € R> = R x R*.
We define S*/T", the orbifold obtained as the quotient of S* by the action of T for the
first 4 coordinates of R>. S*/I" has its sectional curvatures constant equal to 1, and
two singularities modeled on R*/T". The condition detR = 0 is therefore not satisfied
for this orbifold.

7 Obstructions under topological assumptions

Let us now give topological conditions which will ensure that the Ricci-flat ALE
orbifolds appearing as blow ups in our degenerations are Kihler and glued in the same
orientation, and therefore that the obstruction det R = 0 holds.

All of these topological conditions come from the topological characterization of
[Nak90], see also [LV16] for a generalization. Basically, if a desingularization has the
topology of a minimal resolution of a SU(2)-singularity (or a quotient for the U(2)
singularities) in a neighborhood of a singularity, then, all of the bubbles are Kéhler and
glued in the same orientation and we can apply Theorem 6.7. We will state more global
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topological conditions based on Hitchin-Thorpe inequality in Theorem 7.2, and a spin
condition in Theorem 7.4. We will then finally comment on the desingularization of
Einstein orbifolds with various pinching conditions and bound on the Ricci curvature in
Corollary 15 and Remark 51.

7.1 Hitchin-Thorpe inequality and desingularization of Einstein orbifolds

Let us first notice that desingularizing an Einstein orbifold by smooth Einstein manifolds
necessarily damages the Hitchin-Thorpe inequality satisfied by the orbifold, see Theorem
7.2. The equality case is exactly when all the Ricci-flat ALE orbifolds are Kédhler and
glued in a common orientation.

For an Einstein manifold of dimension 4, Chern-Gauss-Bonnet formula implies,

1 1 R?
118 My=— | |RmPdv=— (—
(118) X(3D) SWZ/M‘m’v 82 J,, \24

WP+ W)y,

and Hirzebruch’s signature formula gives,
1

127T2 M

Simply because [,, [W*|?dv > 0 and [, R*dv > 0, thanks to (118) and (119), we

have the following Hitchin-Thorpe inequality for Einstein 4-manifolds,

2(M) > 3|r(M)|.

(119) (M) = (W] — W™ |?)av.

with equality if and only if (M, g) is a quotient of the flat torus or of a hyperkdhler
metric on the K3 surface.

In the case of orbifolds and ALE metrics, to be consistent with Chern-Gauss-Bonnet and
Hirzebruch formulas, (118) and (119) for compact Einstein manifolds of dimension 4,
we have to modify the Euler characteristic and the signature thanks to a boundary term.
The integral quantities (118) and (119) above are topological invariants for Einstein
orbifolds and Ricci-flat ALE orbifolds. We will denote them Y and 7.

For Ricci-flat ALE manifolds, Nakajima obtained an Hitchin-Thorpe inequality.
Lemma 7.1 ([Nak90, Theorem 4.2]) Let (N, g») be a Ricci-flat ALE manifold of

dimension 4. Then, we have the following inequality between the modified Euler
characteristic and the modified signature of Ricci-flat ALE orbifolds,

2%(N) = 3|7(N)|,
with equality if and only if (N, gp) is a Kahler Ricci-flat ALE orbifold.
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Remark 47 In particular, the only Ricci-flat ALE manifolds diffeomorphic to a
minimal resolution of a singularity C?/T" for I' C SU(2) or one of its quotients are
Kihler.

The topological invariants ¥ and Y are additive by gluing ALE spaces to orbifold
singularities like in Definition 1.6. If M = M,#;N;, we then have

T(M) = F(M,) + > F(N),
J
and
X(M) = X(Mo) + > X(N)).
J

This directly implies:

2(M) = 3T D] = 2(XMo) + KN = 3| FM) + D 7N
J J

> 2%(M,) — 3[F(M,)| + > (2% — 317(N))|)
J
> 2%(M,) — 3|7(M,)).

Since every term is nonnegative by Hitchin-Thorpe inequality and Lemma 7.1, we see
that there is equality if and only if for all j we have 2% (N;) — 3|7(N;)| = 0 and that the
gluings are done in the same orientation for which 7(M,) and all the 7(N;) have the
same sign.

Example 3 If (M,, g,) is a hyperkihler orbifold, then the only Gromov-Hausdorff
desingularizations preserving the inequality are hyperkihler and correspond to gluing
hyperkihler ALE in the same orientation.

Example 4 For I' C SU(2), an Einstein desingularization of S*/I" preserving Hitchin-
Thorpe inequality is diffeomorphic to M = S*/T#Xr#Xr for Xr a minimal resolution
of the singularity C?/T".

By studying the equality case in the previous inequalities, we get a quite restrictive
situation.

Theorem 7.2 Let (M,, g,) be an Einstein orbifold oriented so that 7(M,) > 0, and
assume that (M, g;); is a sequence of Einstein metrics converging in the Gromov-
Hausdorff sense to (M,, g,).
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We then have the following inequality,
2x(M) = 3|T(M)| = 2X%(M,) — 37(M,).

Moreover, we have equality, if and only if M is a desingularization of M, by gluing
trees of Kihler Ricci-flat ALE orbifolds in the same orientation (that is with gluing
parameters in SO(4) ), and in this equality case we have the condition

det R+(g0) =0

at all of the singular points of M,,.
Remark 48 The equality condition limits the possible group actions of the singularities.
This for example implies the following.

Corollary 14 LetI' C SU(2), (M;, g;); be a sequence of Einstein manifolds converging
in the Gromov-Hausdorff sense to the spherical orbifold S*/T". Then, for i large enough,
we have

2x(My) = 3[T(My)| > 2%(M,) — 3|F(M,)|.

7.2 Spin manifolds

Another way to ensure that the Ricci-flat ALE orbifolds appearing are Kéhler and glued
in the same orientation is to impose that the sequence of differentiable manifolds is spin.
Our result is essentially an application of the following Lemma of Nakajima.

Lemma 7.3 ([Nak90, Corollary 3.3]) Let (N, gp) be a Ricci-flat ALE metric on a
spin manifold which is asymptotic to R*/T" for I' a finite subgroup of SU(2), then,
(N, gp) is a hyperkéhler metric.

As a consequence, there is also an obstruction to the desingularizations of Einstein
orbifolds by smooth Einstein metrics on spin manifolds. The proof of Theorem 1.1 of
[KL16] whose main tool is Lemma 7.3 implies that the limit orbifold and the Ricci-flat
ALE metrics are spin and glued in the same orientation for a degeneration of Einstein
metrics on spin manifolds. If the group at infinity of the ALE spaces, which are also the
groups of the singularities of the orbifold are in SU(2), we use Lemma 7.3 to get the
following obstruction.
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Theorem 7.4 Let (M;, g;); be a sequence of Einstein spin manifolds of dimension 4
converging to an Einstein orbifold (M, g,). Then, (M,, g,) is spin and at its singular
points whose groups are in SU(2), we have

detR = 0.

Remark 49 There is no restriction on the group singularities in [KL16]. This comes
from their additional assumption on the kernel of the Dirac operator of the sequence
which actually implies that all singularities have their group in SU(2).

7.3 Pinched Ricci curvature and the Einstein condition

Our result shows that there is a fundamental difference between the Einstein condition
and some pinching conditions on the Ricci curvature once we authorize the formation
of singularities. From Theorems 7.2 and 7.4, we deduce that there exists an obstruction
to the desingularization of Einstein orbifolds by smooth Einstein metrics which is not
there if we consider pinching conditions on the Ricci curvature. Let us illustrate this
with the simple example of a spherical orbifold, even though a similar result obviously
holds for general orbifolds with singularity groups in SU(2).

Corollary 15 Let T' be a finite subgroup of SU(2), and M = S*/TH#Xr#Xr (#
means gluing at both orbifold singularities in an orientation), where Xt is the minimal
resolution of the singularity C? /. Then, forall 1 < p < +o0,

(1) there exists a sequence of metrics (M, g;); such that we have

* || Ric(gi) — 3gillre) < § > and

¢ (M) o (/T 8y0):
but,
(2) there does not exist any sequence of Einstein metrics (M, gf ) such that
* Ric(gf) = 3gf, and
. (M, g) e (S*/T, gsu)r) -

Proof The second part is a consequence of Theorem 5.8 because the curvature of the
sphere never satisfies the condition det R = 0 since R = Id for such a metric.

For the first part, we can just remark that our approximation metric g/ with fixed Kéhler
Ricci-flat ALE metrics satisfies || Ric(g') — Ag}'[| o2y = O(1) and that Ric(g;') — Agy!
is supported in regions with a volume of order ¢, therefore, if we choose ¢ small enough,
we have the control in L7 -norm for p < 4o00. O
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Question: Can we desingularize S*/Z, thanks to the Eguchi-Hanson metric by
metrics with Ricci curvature converging to 3 in the L°°-sense?

Remark 50 By being more precise in the expression of the obstructions to the
desingularization of S*/7Z, by two Eguchi-Hanson metrics, for fy, small enough,

(120) | Ric(g) = 3¢} | < 1+ ntmax)

where 7(tmax) — 0 when . — 0.

Remark 51 1t is possible to desingularize a spherical orbifold S*/T" for I' C SU(2)
by metrics with Ric > 3 (or Ric < 3) while Ric is pinched in 7.

Consider for € > 0 and b > 1, choose a cut-off function, Xy, supported on [0, be]
and equal to 1 on [0, €] whose k-th derivatives are O (@e_k ) , and define the metric
8he i= dr* + sin ((1 + X},,E)i")g83/r.

Assume that € — 0, b — +o00 and be — 0, the orbifold metric therefore becomes
arbitrarily close in the Gromov-Hausdorff sense to S*/I". Moreover, the sectional
curvatures of g, . are bounded below by 1 — @ — 1 for some uniform C > 0. Let us
finally glue #(ggy + 2thy), where hy is asymptotic to —%rﬁgsa sr at the singular points
for tmax < €2, so that the gluing happens in 0 < r < € where the metric g, . equals

dr? + sin?(2r)gss sr Jjust like on the sphere of radius % whose sectional curvatures are

g

constant equal to 4. For r < €, the controls are the same as on -, and therefore the
metric satisfies Ric > 3 by (120) since 4(3 —(1 - n(tmax))) > 3. Since the metric
satisfies Ric > 3 — Mg% for larger r, we can simply rescale it a little to ensure that we
have Ric > 3 everywhere.

8 A general obstruction for spherical and hyperbolic orb-
ifolds

Let us finally exhibit an obstruction to the desingularization of spherical and hyperbolic
orbifolds by general Ricci-flat orbifolds (not necessarily Kihler) in Theorem 8.1. We
will deduce from it that there does not exist any smooth desingularization of spherical or
hyperbolic orbifolds whose blow ups are integrable Ricci-flat ALE spaces in Corollary
16.
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8.1 A general infinitesimal deformation for Ricci-flat ALE spaces

On (R* /T, g.), the vector field 2r,0,, is a conformal Killing vector field. It is moreover
the gradient of the function u := r2 which is a solution to —V}V,u = 8, and we
have Lv,,g. = Hessg,u = 4g,. On a Ricci-flat ALE we can approximate this by an
infinitesimal deformation.

Proposition 18 Let (N, g5) be a Ricci-flat ALE orbifold asymptotic to R*/I", and
consider a diffeomorphism ® between neighborhoods of the infinities of N and R*/T".

Then, there exists a unique vector field X on (N, g5) such that ®*X = 2r,0,, +-0(r5), and
V*VX = 0. We actually have X = Vu, where u is the unique solution of —V*Vu = 8,
such that u = rﬁ + o(1).

Moreover, (Lxgp)° = Lxg» — 4gp, the traceless part of Lxgp is an infinitesimal
Ricci-flat deformation of g, which is trace-free and divergence-free.

Proof The proof of the existence and the uniqueness of the function u can be
found in the proof of Theorem B of [BH19]. The symmetric 2-tensor (Lv,g5)° is
indeed an infinitesimal deformation of g, because the equation Ric = 0 is invariant
by scaling and pull-back by diffeomorphisms, and the divergence and the trace of
(Lvugp)° = 2Hessg, u — 4g;, vanish because —V*Vu = 8.

Moreover, (Lv,g5)° vanishes exactly for flat cones. Indeed, if it vanishes, then Vu
is a conformal Killing vector field and therefore generates a family of conformal
diffeomorphisms. By considering the maximum of the pointwise norm of the curvature
of (N, g») which is preserved by this family of diffeomorphism, we see that it has to
vanish. |

Remark 52 This deformation is integrable because it simply comes from a rescaling
and a change of coordinates.

8.2 Obstructions to the desingularization of spherical and hyperbolic
orbifolds

Let us now use the above deformation 01 := (2Hessg,u — 4g;,) in order to deduce some
general obstructions to the desingularization of spherical and hyperbolic orbifolds.
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Theorem 8.1 Let (N, gp) be a Ricci-flat ALE orbifold and H, be the quadratic terms
of a spherical or hyperbolic metric in geodesic coordinates, and O} terms of order r,:4
of the deformation 0 = (2Hessg, u — 4g;,).

Then, we have
/ (3(Ha, 01),, + O1(B.Ha,d,,))dv # 0,
SS

and therefore the perturbation of gP to an Einstein metric orthogonally to C)(g? ) is
always obstructed.

Proof Let (N, gp) be a Ricci-flat ALE orbifold asymptotic to a flat cone R*/I", and let
01 = (2Hessg,u — 4gp,) = 0‘1‘ +O(ry, %) be the infinitesimal deformation of Proposition
18. Let us start by proving that 0‘1‘(8,6, 0y,) does not vanish. There exists a compact
K C M such that M\K is foliated by hypersurfaces ¥, whose mean curvature is
constant equal to %. If we denote (2, the interior of ¥, then, by [BH19, Theorem A]
the following limit exists and is finite:

(121) V= plggo [ Volg, (22,,) — Vol (B(0, p)/D)],

and we actually have V < 0, with equality if and only if (N, g,) = (R*/T, g,).

Moreover, let u be the unique solution of —V*Vu = 8 with u = rlz7 + o(1), then, we
actually have

b

u= r,% + =+ O(rb_3),

"
and by the proof of [BH19, Theorem B], we have the explicit value
eV

[0B(0, 1)/T|

We also deduce the following development of 0; = (2ZHess,, u — 4g;),

b= 0.

8b
(122) 01D, 0p) = 5 + O, )
b

which is strictly positive if g, is not flat.

Now, for a hyperbolic metric, we have H, = %(a% + a% + a%) in geodesic coordinates,
and for a spherical metric, H, = —%g(oz% + a% + a%). Notice moreover that, since
ge = dri+r2(a}+a3+a3), wehave 0 = tr,, 01 = 0}(9,,, 0,,)+ (rX (a2 +a3+a3), 0F)
and therefore

(123) (rX(a} + a3 + a3), 07) =tr,, Of — 01(8,,,;,)

(124) = — 010y, 0y,
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For the other part of the obstruction, we have B, (rj(oz% + oz% + oz%)) = 6r,0,,. Indeed,
r(ad + af + a3) = r2g, — r2dr?, and we have

1
B.(r’g,) = 0.(r’g.) + Edtreofge)

= —2r.8:(0y,,.) + 4rdr,
= 2r.dre,

and
1
Be(rzdry) = 0(r7dr}) + Sdure(r2dr?)

=4, ( Z X' dx'dx’ ) + redr,

i
= — ijdxj -2 ijdxj + redr,

i#] j
= —4r.dr,.
Finally, for r, = 1,
(125) OB, (r{(ef + o3 + a3)),0y,) = 601(0,,, 0,).
The obstruction generated by o, that is [q; (3(Hz, 01),, + O1(B.H>, 8;,))dv therefore
never vanishes by (124) and (125). O

Remark 53 It is also possible to extend the deformations given by the Killing vector
fields at infinity to generate more obstructions, but it is not clear if a Ricci-flat ALE
space can have vanishing terms of order rb_4. Indeed, the quantity V is global and does
not tell anything on the asymptotics of the metrics, but as we just saw, it tells something
about their derivatives along the deformation (Lv,,85)°.

We deduce that we get a general obstruction to a Gromov-Hausdorff desingularization
if we assume that the Ricci-flat ALE spaces are integrable.

Corollary 16 Let (M,, g,) be a compact spherical or hyperbolic orbifold. Then, there
does not exist any sequence of Einstein manifolds (M;, g;) such that

GH
(Mi7 gl) — (M07 80)7

while the non-flat limits of <Mi, %", pi) for t; — 0, t; > 0 and p; € M; converge to
smooth and integrable Ricci-flat ALE manifolds (which means that there are no trees of
singularities forming).
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Proof According to Theorem 5.8, if the quadratic terms of the development of g, are
H,, the obstruction induced by the deformation o, is

/ (3(t, 0, + OB, 0,))dv =0,
S
which is never satisfied according to Theorem 8.1.

The obstruction of Theorem 5.8 is therefore never satisfied for spherical and hyperbolic
metrics, and it is impossible to desingularize it by Ricci-flat ALE manifolds which are
integrable. |

The obstruction to the desingularization of spherical and hyperbolic manifolds is
therefore identified, but we need the technical integrability assumption to deduce a
Gromov-Hausdorff obstruction thanks to it. We believe that this is only a technicality
and conjecture the following statement.

Conjecture 8.2 Singular spherical and hyperbolic orbifolds cannot be Gromov-
Hausdorff limits of smooth Einstein manifolds.
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