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In this second article, we prove that any desingularization in the Gromov-Hausdorff sense of an Einstein orbifold by smooth Einstein metrics is the result of a gluingperturbation procedure that we develop. This builds on our first paper where we proved that a Gromov-Hausdorff convergence implied a much stronger convergence in suitable weighted Hölder spaces, in which the analysis of the present paper takes place.

The description of Einstein metrics as the result of a gluing-perturbation procedure sheds light on the local structure of the moduli space of Einstein metrics near its boundary. More importantly here, we extend the obstruction to the desingularization of Einstein orbifolds found by Biquard, and prove that it holds for any desingularization by trees of quotients of gravitational instantons only assuming a mere Gromov-Hausdorff convergence instead of specific weighted Hölder spaces. This is conjecturally the general case, and can at least be ensured by topological assumptions such as a spin structure on the degenerating manifolds. We also identify an obstruction to desingularizing spherical and hyperbolic orbifolds by general Ricci-flat ALE spaces. ; Contents 1 Orbifolds, ALE spaces and naïve desingularizations 1.1 Einstein orbifolds and ALE spaces . . . . . . . . . .

Introduction

An Einstein metric, g satisfies, for some real Λ, the equation Ric(g) = Λg.

In dimension 4, they are considered optimal for the homogeneity of their Ricci curvature, as critical points of the Einstein-Hilbert functional with fixed volume, g → M R g dvol g , and more importantly as minimizers of the L 2 -norm of Riemann curvature tensor, g → M | Rm g | 2 dvol g .

From dimension 4, even under natural assumptions of bounded diameter (compactness) and lower bound on the volume (noncollapsing) Einstein metrics can develop singularities. One major goal for 4-dimensional geometry is therefore to understand the moduli space of Einstein metrics on a differentiable manifold M 4 defined as (1) E(M 4 ) := (M 4 , g) | ∃Λ ∈ R, Ric(g) = Λg, Vol(M 4 , g) = 1 /D(M 4 ).

and to compactify it with a useful structure. This has been done in an L 2 and then Gromov-Hausdorff (GH) sense in [START_REF] Anderson | The L 2 structure of moduli spaces of Einstein metrics on 4-manifolds[END_REF][START_REF] Cheeger | Curvature and injectivity radius estimates for Einstein 4-manifolds[END_REF]. More precisely, if we denote by E(M 4 ) GH the compactification of the moduli space E(M 4 ) for the (pointed) Gromov-Hausdorff distance, d GH , we have a decomposition

(2)

E(M 4 ) GH = E(M 4 ) ∪ ∂ o E(M 4 ) ∪ ∂ ∞ E(M 4 ),
where ∂ ∞ E(M 4 ) consists in limits with infinite diameter, and ∂ o E(M 4 ) consists in singular limits with bounded diameter.

We will focus on local questions and for simplicity assume most of the time that we work on spaces with uniformly bounded diameter and therefore study the Gromov-Hausdorff neighborhood of ∂ o E(M 4 ). We therefore work on the d GH -completion of E(M 4 ), which is E(M 4 ) ∪ ∂ o E(M 4 ). The metric spaces in ∂ o E(M 4 ) and the associated singularity blow-ups in the Gromov-Hausdorff sense have been understood for a long time in [START_REF] Anderson | Ricci Curvature Bounds and Einstein Metrics on Compact Manifolds[END_REF][START_REF] Bando | On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth[END_REF]: they are respectively Einstein orbifolds and Ricci-flat ALE orbifolds.

Anderson then asked the converse question for instance in [START_REF] Anderson | A survey of Einstein metrics on 4-manifolds[END_REF], namely, are all Einstein orbifolds limits of smooth Einstein ? To answer this question one has to understand if the reverse of the degeneration, the desingularization, of Einstein orbifolds in ∂ o E(M 4 ) is possible. A natural way to desingularize an orbifold is by a gluing-perturbation technique.

The goal of the present paper is to develop a gluing-perturbation procedure which attains any noncollapsed Einstein 4-manifold which is sufficiently close to an Einstein orbifold in the Gromov-Hausdorff sense. This in particular elucidates the d GH -neighborhood of the boundary ∂ o E(M 4 ) in E(M 4 ), and we will use this description in future works. In this paper, we will use it to prove that not all Einstein orbifolds can be desingularized by Einstein metrics in the Gromov-Hausdorff sense with an expected topology which partially answers the above question of Anderson.

Desingularization of Einstein 4-orbifolds and obstructions

A natural technique to desingularize orbifolds is the following procedure: we glue Ricci-flat ALE manifolds to the singularities of the orbifold to obtain an approximate Einstein metrics, and then try to perturb it into an actual Einstein metric. We will call such gluings, naïve desingularizations of the orbifold and often denote them g D t (see Definition 1.6), where t is the set of gluing parameters which are small positive real numbers. The main result of [START_REF] Ozuch | Noncollapsed degeneration of Einstein 4-manifolds I[END_REF] is that the Gromov-Hausdorff proximity of an Einstein metric to an Einstein orbifold implies the proximity to a naïve desingularization g D t in the sense of a weighted Hölder norm denoted C 2,α β, * (g D t ). This norm is bounded on symmetric 2-tensors decaying in the neck regions where the gluing takes place.

In the present paper, we will propose a partial converse by proving that any naïve desingularization can be perturbed to a metric which is Einstein modulo some obstructions, which are elements of an approximate cokernel of the linearization of the Einstein operator. We will call such a metric an Einstein modulo obstructions metric.

Theorem 0.1 (Theorem 4.6) Let g D t be a naïve desingularization of an Einstein orbifold (M o , g o ) with small enough gluing parameters.

Then, there exists a small C 2,α β, * (g D t )-neighborhood of g D t in which there exists a unique metric ĝt which is Einstein modulo obstructions while satisfying some gauge conditions with respect to g D t .

The proof relies on an inverse function theorem applied to the Einstein operator in well chosen coordinates.

These Einstein modulo obstructions metrics ĝt are not interesting for themselves when they aren't Einstein as they are not geometrically motivated. Their purpose is for instance different from the metrics of [START_REF] Gursky | Critical metrics on connected sums of Einstein fourmanifolds[END_REF] which are critical for some geometric functionals obtained by perturbing a connected sum of Einstein metrics.

Let us note that the Ricci flow starting at Einstein modulo obstructions metrics however exhibits interesting behaviors with respect to the Ricci flow. Indeed, in [START_REF] Brendle | Gluing Eguchi-Hanson metrics and a question of Page[END_REF], an obstruction is identified to a particular desingularization of T 4 /Z 2 and an ancient solution to the Ricci flow smoothing out the orbifold T 4 /Z 2 is constructed thanks to it.

Our construction however produces every smooth Einstein desingularization in a Gromov-Hausdorff sense. Indeed, together with the convergence of [START_REF] Ozuch | Noncollapsed degeneration of Einstein 4-manifolds I[END_REF], as a direct consequence, we have the following complete description of the Einstein metrics in a Gromov-Hausdorff neighborhood of an Einstein 4-orbifold.

Corollary 1 (Corollary 5) Let (M o , g o ) be an Einstein 4-orbifold. Then, there exists δ > 0 such that if (M, g E ) is an Einstein manifold satisfying

d GH (M, g E ), (M o , g o ) δ,
then, (M, g E ) is isometric to a result of the gluing-perturbation procedure of Theorem 0.1.

A premoduli space in the neighborhood of a singular metric

Classically, studying a moduli space requires understanding its compactification with a useful structure. The compactification (2) a priori does not carry a useful structure as it comes from the rough Gromov-Hausdorff distance. The moduli space E(M 4 ) however admits a real-analytic structure around smooth metrics.

Theorem 0.2 ( [START_REF] Koiso | Einstein Metrics and Complex Structures[END_REF]) Let (M, g 0 ) be an Einstein manifold. Then, there exists a d GH -neighborhood of g 0 in E(M) which is the quotient by the isometry group of g 0 of a real-analytic subvariety of a finite dimensional real-analytic submanifold, W , of the space of smooth metrics on M .

The finite dimensional real-analytic submanifold, W , consists in metrics which are Einstein modulo the cokernel of the linearization of the Einstein equation at g 0 as is usually obtained by Lyapunov-Schmidt reduction. The Einstein metrics are exactly the metrics for which these obstructions vanish. Our description extends this local description of E(M 4 ) to the boundary ∂ o E(M 4 ), and the set of Einstein modulo obstructions metrics ĝt of Theorem 0.1 is the analogue of the ambient space W of Theorem 0.2.

Theorem 0.2 is an important local result which implies for instance that E(M) is locally finite. Anderson asked in [START_REF] Anderson | A survey of Einstein metrics on 4-manifolds[END_REF] whether this structure extends to E(M 4 ) ∪ ∂ o E(M 4 ).

The new description of the neighborhood of ∂ o E(M) in (E(M) GH , d GH ) of Corollary 1 provides a promising setting in which one can tackle this question. In particular, in Section 4.3, we provide an adaptation to the singular setting of Koiso's premoduli space around metrics of ∂ o E(M).

Degeneration of Kähler-Einstein manifolds

Even if our purpose here is to study the real Einstein equation and not Kähler-Einstein metrics, our analysis in weighted Hölder spaces extends the analysis leading to the gluing-perturbation theorems of [Ban90, Spo14, BR15, HV20] in the Kähler setting. Indeed, it allows us to glue and perturb multiple trees of singularities with arbitrary scales and Einstein deformations. It would therefore be interesting to extend the constructions of [START_REF] Spotti | Deformations of Nodal Kähler{Einstein Del Pezzo Surfaces with Finite Automorphism Groups[END_REF][START_REF] Biquard | Smoothing singular constant scalar curvature Kähler surfaces and minimal Lagrangians[END_REF] to remove the "generic" ([Spo14]) or "non degenerate" ( [START_REF] Biquard | Smoothing singular constant scalar curvature Kähler surfaces and minimal Lagrangians[END_REF]) conditions which correspond to restricting the gluing scales depending on the size of the Einstein deformation. We should also be able to allow general degenerations forming trees of singularities.

For instance, in Section 6.2, we precise the construction of [START_REF] Han | Viaclovsky Existence and compactness theory for ALE scalar-flat Kähler surfaces[END_REF] in the case of Kronheimer's gravitational instantons and prove that any tree of Kähler Ricci-flat ALE spaces can be glued and perturbed to a single Kähler Ricci-flat ALE metric with uniform controls (in our weighted Hölder norms) only depending on the group at infinity.

Obstructions to the Gromov-Hausdorff desingularization of Einstein orbifolds

Our main application in this paper is a nonexistence result: there exists Einstein orbifolds which cannot be approached by smooth Einstein metrics with specific topologies in the Gromov-Hausdorff sense. For this, it is enough to prove that the obstructions of Theorem 0.1 do not vanish.

The hyperkähler ALE spaces which are called gravitational instantons have been classified in [START_REF] Kronheimer | The construction of ALE spaces as hyper-Kähler quotients[END_REF] and their Kähler quotients have been classified in [START_REF] Suvaina | ALE Ricci-flat Kähler metrics and deformations of quotient surface singularities[END_REF]. It is a famous conjecture, [START_REF] Bando | On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth[END_REF], that all Ricci-flat ALE spaces are Kähler.

Our first goal here is to prove that an obstruction holds for any Gromov-Hausdorff desingularization by trees of Kähler Ricci-flat ALE orbifolds, which are conjecturally the only possibilities. The obstruction to satisfy is det R = 0 at a singular point of the orbifold metric, where R is the Riemannian curvature seen as an endomorphism on the space of 2-forms.

Theorem 0.3 (Theorem 6.7) Let (M i , g i ) i be a sequence of Einstein manifolds converging in the Gromov-Hausdorff sense to an Einstein orbifold (M o , g o ), and assume that there exists a subsequence (M i , g i ) i whose possible blow-up limits are Kähler Ricci-flat ALE orbifolds glued in the same orientation.

Then, at every singular point p of (M o , g o ), we have det R go (p) = 0.

This answers positively a question from [START_REF] Biquard | Désingularisation de métriques d'Einstein[END_REF] and extends it to the case of several singularities and allows the formation of trees of singularities. It more precisely states that the obstruction of [START_REF] Biquard | Désingularisation de métriques d'Einstein[END_REF] holds for any known possible configuration of singularity models, and that it holds even assuming the weakest possible convergence instead of a convergence in particular weighted Hölder spaces.

Remark 1 Note that this obstruction is very different in nature from the result of [START_REF] Odaka | Sun Compact moduli spaces of Del Pezzo surfaces and Kähler{Einstein metrics[END_REF] which shows that most compact Kähler-Einstein 4-orbifolds with positive Ricci-curvature cannot be limits of Kähler-Einstein manifolds. Indeed, our obstruction det R = 0 is always satisfied in this situation, and it remains unknown if these metrics can be desingularized by real Einstein metrics. It is also different from the obstruction found in [START_REF] Brendle | Gluing Eguchi-Hanson metrics and a question of Page[END_REF] where the obstruction det R = 0 is also satisfied by the orbifold T 4 /Z 2 .

Under topological assumptions, it is known that the singularity models appearing are Kähler and glued in the same orientation, in particular we have the following illustration of our obstruction.

Example 1 (Corollary 15) Consider S 4 ⊂ R 5 and the quotient by Z 2 given by (x 1 , x 2 , x 3 , x 4 , x 5 ) ∼ (x 1 , -x 2 , -x 3 , -x 4 , -x 5 ). We will denote this space S 4 /Z 2 which is an Einstein orbifold with two R 4 /Z 2 singularities. The minimal resolutions of the two singularities R 4 /Z 2 ≈ C 2 /Z 2 has the topology M := S 4 /Z 2 #T * S 2 #T * S 2 , where # denotes the gluing of an ALE space to an orbifold along their asymptotic cone.

Then, for any 1 p < ∞, there exists a sequence of metrics (M, g i ) i with both Ric(g i ) -3g i L p (gi) → 0 and Ric(g i ) 3g i while (M, g i )

GH

--→ (S 4 /Z 2 , g S 4 /Z 2 ), but there does not exist any sequence of Einstein metrics satisfying Ric(g i ) = 3g i , and (M, g i )

GH

--→ (S 4 /Z 2 , g S 4 /Z 2 ).

In the same fashion, a conjecture of Anderson states that there is no sequence of asymptotically hyperbolic Einstein metrics on T * S 2 desingularizing the hyperbolic orbifold H 4 /Z 2 obtained by antipodal identification in a global geodesic chart. It was proven in [START_REF] Biquard | Désingularisation de métriques d'Einstein[END_REF] assuming among other things a convergence speed in weighted spaces towards the orbifold depending on the maximum of the curvature. We can prove it assuming a pointed Gromov-Hausdorff convergence together with a suitable control in weighted spaces at infinity, this time independent on the maximum of the curvature. It is again possible to desingularize H 4 /Z 2 with Ricci pinched in any L p , space for 1 p < ∞ or with Ric bounded above or below by -3.

Hitchin-Thorpe inequality and degeneration of Einstein manifolds

The Hitchin-Thorpe inequality provides a topological obstruction to the existence of Einstein metrics on a given 4-dimensional differentiable manifold M , 2χ(M) 3|τ (M)|, where χ is the Euler characteristic, and τ the signature. These topological invariants have definitions adapted to orbifolds and ALE spaces which we will denote χ and τ , and any orbifold M o admitting an Einstein metric satisfies

2 χ(M o ) 3| τ (M o )|.
Any Gromov-Hausdorff desingularization damages this inequality, and the equality case implies the obstruction.

Theorem 0.4 (Theorem 7.2) Let (M o , g o ) be an Einstein orbifold, and assume that (M, g i ) i is a sequence of Einstein metrics converging to (M o , g o ) in the Gromov-Hausdorff sense.

Then, we have the following inequality,

2χ(M) -3|τ (M)| 2 χ(M o ) -3| τ (M o )|.
Moreover, there is equality if and only if M is a desingularization of M o by gluing of trees of Kähler Ricci-flat ALE orbifolds in the same orientation (with the same sign for τ ). In this equality case, we have the condition det R(g o ) = 0 at every singular point.

Degeneration of Einstein metrics on spin manifolds

Another large class of manifolds on which we can prove our obstruction is the class of 4-manifolds admitting a spin structure.

Theorem 0.5 (Theorem 7.4) Let (M i , g i ) i be a sequence of spin Einstein 4-manifolds converging to an Einstein orbifold (M o , g o ) in the Gromov-Hausdorff sense. Then, (M o , g o ) is spin, and at any of its singular points whose group is in SU(2), we have the obstruction det R go = 0.

General obstructions for spherical and hyperbolic orbifolds. Our Theorem 5 holds for any singularity model which might be non-Kähler. We will use it lastly to identify an obstruction to desingularizing spherical or hyperbolic orbifolds by any Ricci-flat ALE manifold in Theorem 8.1. This provides an obstruction to any standard gluingperturbation technique but will only imply an actual obstruction to the Gromov-Hausdorff desingularization by Ricci-flat ALE manifolds whose deformations are integrable (this is the case of all known examples).

Theorem 0.6 (Corollary 16) Spherical and hyperbolic orbifolds cannot be desingularized in the Gromov-Hausdorff sense by Ricci-flat ALE spaces which are integrable (see Definition 5.1).

Outline of the paper

In Section 1, we give the principal definitions, and in Section 2, we introduce and motivate the function spaces we will use throughout the paper, and moreover restate the results of [START_REF] Ozuch | Noncollapsed degeneration of Einstein 4-manifolds I[END_REF] thanks to them.

In Section 3, we prove that we can always pull-back an Einstein metric which is Gromov-Hausdorff close to an orbifold by a small diffeomorphism to ensure that it satisfies some gauge condition with respect to a naïve desingularization. The proof consists in a Lyapunov-Schmidt reduction in our weighted norms where the relevant operators are proven to be Fredholm.

In Section 4, we prove that any naïve desingularization can be perturbed to a metric which is Einstein modulo some obstruction, that is, an approximate cokernel of the linearization of the gauged Einstein operator. The point is that every possible Einstein metric is produced this way, and that whenever the obstructions do not vanish, it is impossible to perturb the naïve desingularization to an Einstein metric. The proof again relies on a Lyapunov-Schmidt reduction in our weighted Hölder spaces. We then extend Koiso's definition of a premoduli space in the neighborhood of a singular metric.

In Section 5, we estimate the obstructions to the above Einstein desingularization modulo obstructions. To obtain such an obstruction at all singular points, we need to use an analysis on partial desingularizations and produce better approximations of Einstein modulo obstructions metrics.

In Section 6, we test the above obstructions on degenerations of Einstein manifolds forming trees of Kähler Ricci-flat ALE orbifolds. By developing our analysis on trees of singularities, we prove that the obstruction of [START_REF] Biquard | Désingularisation de métriques d'Einstein[END_REF] for the Eguchi-Hanson metric extends to any tree of quotients of gravitational instantons and holds under a mere Gromov-Hausdorff convergence. An important step is to prove that a gluing of gravitational instantons in the same orientation can be uniformly perturbed to an Einstein metric in our norms.

In Section 7, we investigate topological conditions which ensure that a sequence of Einstein manifolds degenerating will only produce trees of Kähler Ricci-flat ALE spaces. We mainly use the result of [START_REF] Nakajima | Self-Duality of ALE Ricci-Flat 4-Manifolds and Positive Mass Theorem[END_REF] and consider the behavior of the Hitchin-Thorpe inequality as well as the degeneration of Einstein metrics on a spin manifold.

In Section 8, building on the notion of maximal volume for Ricci-flat ALE spaces of [START_REF] Biquard | The renormalized volume of a 4-dimensional Ricci-flat ALE space[END_REF], we prove that even without assuming that the trees of singularities are Kähler, there is a non vanishing obstruction to the desingularization of spherical and hyperbolic orbifolds. We can however only prove that this is a Gromov-Hausdorff obstruction under the technical assumption that the Ricci-flat ALE spaces have integrable deformations.
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Orbifolds, ALE spaces and naïve desingularizations

Let us start by defining the objects we will use throughout this article.

Einstein orbifolds and ALE spaces

For Γ a finite subgroup of SO(4) acting freely on S 3 , let us denote (R 4 /Γ, g e ) the flat orbifold obtained by the quotient by the action of Γ, and r e := d e (., 0).

Definition 1.1 (Orbifold (with isolated singularities)) We will say that a metric space (M o , g o ) is an orbifold of dimension n ∈ N if there exists 0 > 0 and a finite number of points (p k ) k of M o called singular such that we have the following properties:

(1) the space (M o \{p k } k , g o ) is a manifold of dimension n,

(2) for each singular point p k of M o , there exists a neighborhood of p k , U k ⊂ M o , a finite subgroup acting freely on S n-1 , Γ k ⊂ SO(n), and a diffeomorphism

Φ k : B e (0, 0 ) ⊂ R n /Γ k → U k ⊂ M o for which, the pull-back of Φ * k g o on the covering R n is smooth.
Remark 2 Consequently, the analysis on an orbifold is exactly the same as the analysis on a manifold up to using finite local coverings at the singular points.

Definition 1.2 (The function r o on an orbifold) We define r o , a smooth function on M o satisfying r o := (Φ k ) * r e on each U k , and such that on M o \U k , we have 0 r o < 1 (the different choices will be equivalent for our applications).

We will denote, for 0 < 0 ,

M o ( ) := {r o > } = M o \ k Φ k B e (0, ) .
Let us now turn to ALE Ricci-flat metrics.

Definition 1.3 (ALE orbifold (with isolated singularities)) An ALE orbifold of dimension n ∈ N, (N, g b ) is a metric space for which there exists 0 > 0, singular points (p k ) k and a compact K ⊂ N for which we have:

(1) (N, g b ) is a orbifold of dimension n,

(2) there exists a compact subset K ⊂ N and a diffeomorphism

Ψ ∞ : (R n / Γ ∞ )\B e (0, -1 0 ) → N\K such that we have r l e |∇ l (Ψ * ∞ g b -g e )| ge C l r -n e .
Definition 0 on the rest of N (the different choices are equivalent for our applications). For 0 < 0 , we will denote 

N( ) := { < r b < -1 } = N\ k Ψ k B e (0, ) ∪ Ψ ∞ (R 4 /Γ ∞ )\B e (0, -1 ) .

Naïve desingularizations

Let us now recall the definition of a naïve desingularization of an orbifold from [START_REF] Ozuch | Noncollapsed degeneration of Einstein 4-manifolds I[END_REF].

Gluing of ALE spaces to orbifold singularities. Let 0 < 2 < 0 be a fixed constant, t > 0, (M o , g o ) an orbifold and Φ : B e (0, 0 ) ⊂ R 4 /Γ → U a local chart of Definition 1.1 around a singular point p ∈ M o . Let also (N, g b ) be an ALE orbifold asymptotic to R 4 /Γ, and

Ψ ∞ : (R 4 /Γ)\B e (0, -1 0 ) → N\K a chart at infinity of Definition 1.3. Define s > 0, φ s : x ∈ R 4 /Γ → sx ∈ R 4 /Γ. For t < 4 0 , we define M o #N as N glued to M o thanks to the diffeomorphism Φ • φ √ t • Ψ -1 : Ψ(A e ( -1 0 , 0 t -1/2 )) → Φ(A e ( -1 0 √ t, 0 )).
Consider moreover χ : R + → R + , a C ∞ cut-off function supported on [0, 2] and equal to 1 on [0, 1].

Definition 1.6 (Naïve gluing of an ALE space to an orbifold) We define a naïve gluing of (N, g b ) at scale 0 < t < 4 to (M o , g o ) at the singular point p, which we will denote (M o #N, g o # p,t g b ) by putting g o # p,t g b = g o on M\U , g o # p,t g b = tg b on K , and

g o # p,t g b = χ(t -1 4 r e )Ψ * ∞ g b + 1 -χ(t -1 4 r e ) Φ * g o on A(t, ) := A e ( -1 √ t, 2 ).
Remark 3 It is possible to compose φ √ t with any isometry of R 4 /Γ. This is equivalent to gluing a different Ricci-flat ALE metric. More generally, it is possible to desingularize iteratively by trees of Ricci-flat ALE orbifolds. Consider (M o , g o ) an Einstein orbifold (the index o stands for orbifold), and S o a subset of its singular points and (N j , g b j ) j (the index b j stands for j-th bubble) a family of Ricci-flat ALE spaces asymptotic at infinity to R 4 /Γ j and (S b j ) j a subset of their singular points. Let us finally assume that there is a one to one map p : j → p j ∈ S o ∪ k S b k , where the singularity at p j is R 4 /Γ j . We will call D := (M o , g o , S o ), (N j , g b j , S b j ) j , p a desingularization pattern.

Definition 1.7 (Naïve desingularization by a tree of singularities) Let 0 < 2 < 0 , D be a desingularization pattern for (M o , g o ), and let 0 < t j < 4 be relative gluing scales. The metric g D t is then the result of the following finite iteration: (1) start with a deepest bubble (N j , g b j ), that is, j such that S j = ∅,

(2) if p j ∈ N k , replace (N k , g b k , S j ) and (N j , g b j , ∅) in D by (N k #N j , g b k # p j ,t j g b j , S k \{p j })
and restrict p as l → p l for l = j in D and consider another deepest bubble. The same works if p j ∈ M o .

(3) choose another deepest bubble and do the same.

For t = (t j ) j , if N j is glued to p j ∈ N j 1 , and N j 1 is glued to p j 1 ∈ N j 2 , ..., N j k-1 is glued to N j k , which is glued to M o , we define T j := t j 1 t j 2 ...t j k . This way, on each N 16t j , the metric is T j g b j .

Let (M o , g o ) be an Einstein orbifold, and (M, g D ) a naïve desingularization of (M o , g o ) by a tree of ALE Ricci-flat orbifolds (N j , g b j ) glued at scales T j > 0.

Here, the manifold M is also covered as M = M t o ∪ j N t j , where

(3)

M t o := M o \ k Φ k (B e (0, t 1 4 k )) ,
where t k > 0 is the relative gluing scale of N k at the singular point p k ∈ M o , and where (4)

N t j := N j \Ψ ∞ (R 4 /Γ ∞ )\B e (0, 2t -1 4 j ) \ k Ψ k (B e (0, t 1 4 k ) .
On M 16t o ⊂ M t o , we have g D = g o and on each N 16t j ⊂ N t j , we have g D = T j g b j . We also define t max := max j t j . By Definition 1.6, on the intersection N t j ∩ M t o we then have T j r b j = r o , and on the intersection N t j ∩ N t k , we have

T j r b j = √ T k r b k .
Definition 1.8 (Function r D on a naïve desingularization) On a naïve desingularization (M, g D ), we define a function r D in the following way:

(1)

r D = r o on M t o , (2) r D = T j r b j on each N t j .
The function r D is smooth on M .

Definition 1.9 (Neck regions, A k (t, )) Let (N k , g b k ) be a Ricci-flat ALE orbifold of the above tree of singularities. We define A k (t, ) as the connected region with

-1 √ T k < √ T k r b k = r D < t -1 2 k √ T k with a nonempty intersection with N t k . Definition 1.10 (Cut-off functions χ M t o , χ N t j , χ A k (t, ) and χ B(p k , ) )
We define the following cut-off functions thanks to the cut-off function χ used in Definition 1.6.

• χ M t o , equal to 1 on M 16t o and equal to 1 -χ(t

-1 4 k r o ) on each annulus A k (t, ). It is supported on M t o .
• χ N t j , equal to 1 on N 16t j and equal to 1 -χ(t

-1 4
k r b j ) on each annulus A k (t, ) at its singular points and χ(t 1 4 j r b j ) in a neighborhood of infinity. It is supported on N t j .

• χ A k (t, ) equal to 1 on A k (t, 1 2 ), and equal to χ( -1 t

1 2 k r b k )-χ( r b k ). It is supported on A k (t, ). • χ B(p k , ) for p k ∈ M o equal to 1 on r o < equal to χ( -1 r o ) around p k . It is supported in supported in r o < 2 around p k .
Note that since t 1 2 k r b k = r o on the gluing region, we have χ

B(p k , ) -χ A k (t, ) = χ( r b k ) = χ( t -1 2 k r o ).
The definition extends to deeper Ricci-flat ALE orbifolds thanks to the iteration of Definition 1.7. This in particular yields a partition of unity,

(5) 1 = χ M t o + j χ N t j .

Weighted Hölder spaces and decoupling norms

We now present the spaces in which the analysis of the rest of the article takes place.

Weighted Hölder spaces

Let us construct weighted Hölder spaces adapted to our situation. Let (M, g D t ) be a naïve desingularization of an orbifold (M o , g o ) by Ricci-flat ALE orbifolds (N j , g b j ) at scales T j > 0.

Weighted Hölder spaces on orbifolds and ALE spaces

Let us first define weighted spaces on manifolds asymptotic to cones or with conical singularities. For a tensor s, a point x, α > 0 and a metric g, if we denote exp x the exponential map at x whose injectivity radius is inj g (x), we define the Hölder seminorm of s on M as

[s] C α (g) (x) := sup {y∈TxM,|y|<inj g (x)} exp * x s(0) -exp * x s(y) |y| α exp * x g
.

For orbifolds, we will consider a norm which is bounded for tensors decaying at the singular points.

Definition 2.1 (Weighted Hölder norms on an orbifold) Let β ∈ R, k ∈ N, 0 < α < 1 and (M o , g o ) an orbifold. Then, for all tensor s on M o , we define

s C k,α β (go) := sup Mo r -β o k i=0 r i o |∇ i go s| go + r k+α o [∇ k go s] C α (go) .

Remark 4

The injectivity radius at a point x ∈ M o is equivalent to r o .

For ALE orbifolds, we will consider a norm which is bounded for tensors decaying at infinity and at the singular points.

Definition 2.2 (Weighted norm on ALE orbifolds) For β ∈ R, k ∈ N and 0 < α < 1 on an orbifold ALE (N, g b ), we define

s C k,α β (g b ) := sup N max(r β b , r -β b ) k i=0 r i b |∇ i g b s| g b + r k+α b [∇ k g b s] C α (g b ) .
Remark 5 The injectivity radius at a point x ∈ N is equivalent to r b .

Remark 6 We similarly define the norms for C k,α β (g o , S o ) and C k,α β (g b , S) by replacing r o and r b by r o,So and r b,S of Definition 1.5.

Weighted Hölder spaces on trees of singularities

Let us assume that (M, g D t ) is a naïve desingularization of (M o , g o ) by a tree of singularities (N j , g b j ). For t max := max j t j < 4 0 , for 0 > 0 the constant of Subsection 1.2 only depending on g o and the g b j , we define the global weighted norm in the following way.

Definition 2.3 (Weighted Hölder norm on a naïve desingularization) Let β ∈ R and k ∈ N, 0 < α < 1. We define for s ∈ TM ⊗l + ⊗ T * M ⊗l -a tensor of type (l + , l -) ∈ N 2 , with l := l +l -the associated conformal weight.

s C k,α β (g D ) := χ M t o s C k,α β (go) + j T l 2 j χ N t j s C k,α β (g b j ) . (6) 
Remark 7 The factor T l 2 j in (6) comes from the fact that on N t j , the metric g D is close to T j g b j . For a tensor s of conformal weight l, we have |s| T j g b j = T l 2 j |s| g b j , and therefore

T l 2 j χ N t j s C k,α 0 (g b j ) = χ N t j s C k,α 0 (T j g b j ) .
Remark 8 For a function, being bounded for this norm means being bounded in C 0 β -norm means being bounded everywhere and having a particular decay in the neck regions.

Its main advantage is that it is totally adapted to trees of singularities.

Remark 9 If (M, g D ) is a partial desingularization at the singular points of S o and S j , we define the C k,α β (g D )-norm similarly thanks to C k,α β (g o , S o ) and C k,α β (g b , S) of Remark 6.

Thanks to this norm, we can for example rewrite and extend the statement of [Ozu19a, Theorem 6.4].

Corollary 2 Let D 0 , v 0 > 0, l ∈ N, and β = β(v 0 , D 0 ) > 0 obtained in [START_REF] Ozuch | Noncollapsed degeneration of Einstein 4-manifolds I[END_REF]Theorem 6.4]. Then, for all > 0, there exists δ = δ( , D 0 , v 0 , l) > 0 such that if (M, g E ) is an Einstein manifold satisfying • the volume is bounded below by v 0 > 0,

• the diameter is bounded above by D 0 ,

• the Ricci curvature is bounded | Ric | ≤ 3. and for an Einstein orbifold (M o , g o ),

d GH (M, g E ), (M o , g o ) δ,
then, there exists a naïve desingularization (M, g D ) of (M o , g o ) by a tree of singularities and a diffeomorphism φ : M → M such that

φ * g E -g D C l β (g D )
.

Proof Let l ∈ N. Let us give a proof by contradiction and consider a sequence of counter examples, that is a sequence of Einstein manifolds (M i , g i ) i such that

• Vol(g i ) v 0 > 0, • diam(g i ) < D 0 and • | Ric(g i )| gi 3
converging in the Gromov-Hausdorff sense to an Einstein orbifold (M o , g o ), but such that there exists > 0 for which, for all i ∈ N and any naïve desingularization (M i , g D i ) of (M o , g o ), and all diffeomorphism Φ i : [START_REF] Ozuch | Noncollapsed degeneration of Einstein 4-manifolds I[END_REF]Theorem 6.4], this implies that there exists a subsequence (M, g i ) i with fixed topology, and a sequence (M, g D i ) i contradicting the assumption for i large enough by definition of the weighted norm.

M i → M i , we have Φ * i g i -g D i C l β (g D ) > . According to
On the annuli of low curvature A k (t, 0 ) pulled back on flat annuli A e (ρ 1 , ρ 2 ) ⊂ R 4 /Γ, the weighted norm on (M, g D ) is equivalent is equivalent to a particular norm which allows us to control independently of the radii the sum of tensors decaying at the center of the annulus and of tensors decaying at infinity. Definition 2.4 (Weighted norm adapted to an annulus) Let 0 < ρ 1 < ρ 2 , β ∈ R, k ∈ N, 0 < α < 1 and a tensor s on (A e (ρ 1 , ρ 2 ), g e ). We define

(7) η(r e ) := max ρ 1 r e β , r e ρ 2 β 1,
and the norm,

s C k,α β (Ae(ρ 1 ,ρ 2 )) : = sup Ae(ρ 1 ,ρ 2 ) η -1 (r e ) k i=0 r i e |∇ i ge s| ge + r k+α e [∇ k ge s] C α (ge) .
In the rest of this article, we will often use spaces denoted fC k,α β for a positive function f . They will always be equipped with the following norm

s fC k,α β := s f C k,α β .
Remark 10 By definition of r D , for all m, there exists a constant C > 0 only depending on the cut-off functions of Definition 1.10 such that

(8) 1 C s r m D C k,α β (g D ) χ M t o s r m o C k,α β (go) + j T l-m 2 j χ N t j s r m b j C k,α β (g b j ) C s r m D C k,α β (g D ) .
Remark 11 The metric g D is equal to g o on {r D > } ∩ M t o , and to T j g b j on { T j < r D < 2 T j -1 } ∩ N t j . Since on the A k (t, ) between N k and N j (resp. M o ) identified with A e ( -1 t k T j , T j ) (resp. A e ( -1 √ t k , )), g D is arbitrarily close to g e , we see that defining η : M → R + a function equal to • 1 on {r D > } ∩ M t o and on { T j < r D < 2 T j -1 } ∩ N t j and • equal to the function η 1 defined in (7) on the associated euclidean annulus

A e ( -1 t k T j , T j ) (or A e ( -1 √ t k , )).
Then, the norm r m D C k,α β (g D ) is equivalent (independently of t) to the norm which to a tensor s associates

(9) s = sup M r -m D η(r D ) -1 k i=0 r i D |∇ i g D s| g D + r k+α D [∇ k g D s] C α (g D ) .
Remark 12 Let β β , k + α k + α , and m, m ∈ Z.

For all the previously mentioned weighted Hölder spaces generically denoted r m C k,α β , we have the following properties: for any tensors s and s

• s r m C k,α β s r m C k ,α β , • ∇ k s r m C k -k,α β s r m+k C k ,α β • if * is a composition, a product of a contraction of tensors, there exists C = C( * , k, α) > 0 such that (10) s * s r m+m C k,α β+β C s r m C k,α β s r m C k,α β .
Let us give an explanation for that last inequality (10) for bilinear operations and assume first that k = 0, α = 0 and consider depending on the situation

(1) (w, w ) = (r -β o , r -β o ) on (M o , g o ), (2) (w, w ) = max(r β b , r -β b ), max(r β b , r -β b ) on (N, g b ) (3) or (w, w ) = ( η-1 , η -1
) with the weights η and η used in (9) above respectively associated to β and β on (M, g D ).

The goal is to bound w. 

Weighted Schauder estimates

Weighted Schauder estimates hold in these norms for the operator P := 1 2 ∇ * ∇ -R.

Proposition 1 For all β > 0 and 0 < α < 1, there exists C > 0 and > 0 such that if h is a symmetric 2-tensor on (M, g D ), and g a metric on M satisfying

g -g D C 2,α β (g D )
, then, we have

h C 2,α β (g D ) C P g h r -2 D C α β (g D ) + h C 0 β (g D ) .
Proof Let g be a metric on M satisfying g -

g D C 2,α β (g D )
, for > 0 which we will choose small enough along the proof. On the compacts M o ( 0 ) of the orbifold and N j ( 0 ) of the ALE orbifolds minus their singular points, we have an elliptic estimate for the operators P go and P g b j : there exists C 1 > 0 such that for any symmetric 2-tensors h o on M o ( 0 ) and h j on N j ( 0 ), we have

(h o ) |Mo(2 0 ) C 2,α (go) C 1 (P go h o ) |Mo( 0 ) C α (go) + (h o ) |Mo( 0 ) C 0 (go) , and 
(h j ) |N j (2 0 ) C 2,α (g b j ) C 1 (P g b j h j ) |N j ( 0 ) C α (g b j ) + (h j ) |N j ( 0 ) C 0 (g b j )
.

By assumption, there exists C > 0 only depending on g o and g b j such that gg o C 2,α (go) C on M o ( 0 ) and g T jg b j C 2,α (g b j ) C on N j ( 0 ). We conclude that for small enough, the operators P g and P g T j , which are close to the operators P go and P g b j , satisfy for all h o on M o ( 0 ) and h j on N j ( 0 ),

(h o ) |Mo(2 0 ) C 2,α (go) 2C 1 (P g h o ) |Mo( 0 ) C α (go) + (h o ) |Mo( 0 ) C 0 (go) , and 
(h j ) |N j (2 0 ) C 2,α (g b j ) 2C 1 (P g T j h j ) |N j ( 0 ) C α (g b j ) + (h j ) |N j ( 0 ) C 0 (g b j ) .
On each almost flat annulus A k (t, 0 ), let us denote A(ρ, ρ ) := {ρ r D ρ }. There exists a diffeomorphism φ ρ : A e (1/2, 4) → A(ρ/2, 4ρ) such that

φ * ρ g ρ 2 -g e C 1,α (Ae(1/2,4))
Cη(ρ) .

then, by ellipticity, for small enough, there exists C 2 > 0, such that for all symmetric 2-tensor h on A e (1/2, 4) we have,

h C 2,α (Ae(1,2)) 2C 2 h C 0 (Ae(1/2,4)) + P φ * ρ g ρ 2 h C α (Ae(1/2,4)) .
Coming back to (M, g), this implies that for small enough, we have for h a symmetric 2-tensor on A(ρ/2, 4ρ),

h C 2,α (A(ρ,2ρ), g ρ 2 ) 4C 2 h C 0 (A(ρ/2,4ρ), g ρ 2 ) + P g ρ 2 h C α (A(ρ/2,4ρ), g ρ 2 )
. The norm of a symmetric 2-tensor s behaves in the following way by rescaling, for t > 0 |s| g t = t|s| g , and the operator P behaves in the following way by rescaling, for t > 0: P g t = tP g .

Multiplying both sides of the equality by r -2 D , we get h C 2,α ((ρ,2ρ),g) 4C 2 h C 0 ((ρ/2,4ρ),g) + r 2 D P g h C α ((ρ/2,4ρ),g) .

Given the controls on the derivatives of r D , we deduce the stated result by definition of the weighted norms by multiplying both sides of the inequality by the weight of the norm.

Analogous estimates also hold for the elliptic operator δδ * with the same proof.

Proposition 2 For all β > 0 and 0 < α < 1 there exists C > 0 and > 0 such that if X is a vector field on (M, g D ), and g a metric on M satisfying

g -g D C 2,α β (g D )
, then, we have

X r D C 3,α β (g D ) C δ g δ * g X r -1 D C 1,α β (g D ) + X r D C 0 β (g D ) .

Decoupling norms

We will see here that to expect good controls for the operators P and δδ * in the annular regions of our manifold, we need to consider separately the influence of traceless constant 2-tensors for P and linear vector fields of the kernel of δ e δ * e for δδ * .

Estimates on annuli

A e ( , -1 ) of (R 4 , g e ).

Let us start by studying the situation on flat annuli to motivate our new norms.

Proposition 3 Let 0 < β < 1, 0 < α < 1, and P = 1 2 ∇ * ∇ -R. There exists C e > 0, and e > 0 such that for any symmetric 2-tensor h on an annulus of radii 0 < < e and 1 , there exists a constant symmetric 2-tensor H 0 and a symmetric 2-tensor H * satisfying ∇ * e ∇ e H * = 0, (11)

H * C 2,α 1 (Ae(2 ,(1/2) -1 )) C e h -H 0 C 0 β (Ae( , -1 )) ,
(notice the norm C 2,α 1 for the left hand side) and,

(12) h -H 0 -H * C 2,α β (Ae(2 ,(1/2) -1 ))
C e P ge h r -2 e C α β (Ae( , -1 )) . This implies in particular the following control: for all x ∈ A e (1/2, 2),

|h -H 0 (x)| ge + |∇h(x)| ge + |∇ 2 h(x)| ge + [∇ 2 h] C α (g) (x) C e (2 ) β P ge h r -2 e C α β (Ae( , -1 )) + 2 h -H 0 C 2,α β (Ae( , -1 )) . (13) 
Remark 13 This is a strictly better estimate than the elliptic estimates of Proposition 2 which would only have given

|h -H 0 (x)| ge + |∇h(x)| ge + |∇ 2 h(x)| ge + [∇ 2 h] C α (ge) (x) C e (2 ) β P ge h r -2 e C α β (Ae( , -1 )) + (2 ) β h -H 0 C 2,α β (Ae( , -1 )) . (14) 
The difference will be crucial in the proof of Proposition 11.

Proof Let us start by noting that (13) is a consequence of (11) and (12). Indeed, 

h -H 0 = (h -H 0 -H * ) + H * ,
|s(x)| ge + |∇s(x)| ge + |∇ 2 s(x)| ge + [∇ 2 s] C α (ge) (x), h -H 0 C 2,α (1/2,2) h -H 0 -H * C 2,α (1/2,2) + H * C 2,α (1/2,2) (2 ) β h -H 0 -H * C 2,α β (Ae( , -1 )) + 2 H * C 2,α 1 (Ae( , -1 )) C e (2 ) β P ge h r -2 e C α β (Ae( , -1 )) + 2 h -H 0 C 2,α β (Ae( , - 1 
)) , by definition of the weighted norms and assuming, for C e > 0, the inequalities (12) and (11).

On R 4 \{0}, the harmonic symmetric 2-tensors are sum of homogeneous harmonic symmetric 2-tensors whose coefficients in the canonical basis of R 4 are proportional to r j for j ∈ Z\{-1}. These harmonic symmetric 2-tensors are more precisely of the form r k e H k or r -2-k e H k for k ∈ N, where H k is a homogeneous symmetric 2-tensor with |H k | ge ∼ r 0 whose coefficients, once restricted to the unit sphere are eigenfunctions of the spherical Laplacian with eigenvalue -k(k + 2).

For any symmetric 2-tensor h on A e ( , -1 ), let us define H the solution on A e ( , -1 ) of the following Dirichlet problem, denoting for r > 0, S e (r) := {r e = r},

∇ *
e ∇ e H = 0, H = h on S e ( ) ∪ S e ( -1 ).

More precisely, H = k 0 ( r e ) k H+ k +( -1 r e ) -2-k Hk where the H± k are homogeneous with | H+ k | ge ∼ r 0 e and which, once restricted to the sphere are eigenvectors associated to -k(k + 2). If we decompose in spherical harmonics h |Se( ) =:

k H k ( ) and h |Se( -1 ) =: k H k ( -1 ), we have the system (15)

H k ( -1 ) = H+ k + 4+2k H- k , H k ( ) = 2k H+ k + H- k ,
and therefore, (16)

     H+ k = 1 1 -4+4k H k ( -1 ) -4+2k H k ( ) , H- k = 1 1 -4+4k H k ( ) -2k H k ( -1 ) , Denote H * := H -H+ 0 . Since ∇ *
e ∇ e H * = 0, by elliptic regularity on the annulus A(ρ/2, 4ρ) ⊂ A e ( , -1 ), there exists a constant C > 0 independent of h such that we have,

(17) H * C 0 (A(ρ,2ρ)) C ρ 2 H * L 2 (Ae(ρ/2,4ρ)) ,
so to control the norm C 0 1 (A e ( , -1 )) of H * , we just have to control the L 2 -norm of H * on the different annuli A e (ρ, 2ρ) ⊂ A( , -1 ). Since the harmonic decompositions are L 2 (S e (1))-orthogonal, we have for a constant C > 0 which may change from line to line

Ae(ρ,2ρ) | H * | 2 ge dv ge = 4 2ρ ρ Se(1)
| H-0 | 2 ge r -4 dv Se(1) r 3 dr

+ k 1 2ρ ρ Se(1) | k r k H+ k + 2+k r -2-k H- k | 2 ge dv Se(1) r 3 dr C 4 Se(1) | H- 0 | 2 ge dv Se(1) + C k 1 2k 2ρ ρ Se(1)
| H+ k | 2 ge dv Se(1) r 2k+3 dr

+ 4+2k 2ρ ρ Se(1) | H- k | 2 ge dv Se(1) r -1-2k dr C 4 Se(1) | H- 0 | 2 ge dv Se(1) + C k 1 2k ρ 2k+4 Se(1) | H+ k | 2 ge dv Se(1) + 4+2k ρ -2k Se(1) | H- k | 2 ge dv Se(1) C 4 -3 Se( ) | H- 0 | 2 ge dv Se( ) + C k 1 2k ρ 2k+4 3 Se( -1 ) | H+ k | 2 ge dv Se( -1 ) + 4+2k ρ -2k -3 Se( ) | H- k | 2 ge dv Se( ) (18)
Now, the equalities (16) and the fact that the decompositions in spherical harmonics are orthogonal imply that for a constant C > 0 which may change from line to line we have

k 0 Se( ) | H- k | 2 ge dv Se( ) C k Se( ) |H k ( )| 2 ge dv Se( ) + C 6+2k Se( -1 ) |H k ( -1 )| 2 ge dv Se( -1 ) C Se( ) |h -H+ 0 | 2 ge dv Se( ) + C 6 Se( -1 ) |h -H+ 0 | 2 ge dv Se( -1 ) C 3 (h -H+ 0 ) |Se( ) 2 C 0 (ge) + C 3 (h -H+ 0 ) |Se( -1 ) 2 C 0 (ge) C 3 h -H+ 0 2 C 0 β (Ae( , -1 )) (19) because |(h -H+ 0 ) |Se( ) | ge h -H+ 0 C 0 β (Ae( , -1 )) and |(h -H+ 0 ) |Se( -1 ) | ge h - H+ 0 C 0 β (Ae( , -1
)) by definition of the norm, and similarly

k 1 Se( -1 ) | H+ k | 2 ge dv Se( -1 ) C -3 h -H+ 0 2 C 0 β (Ae( , -1 )) . (20) 
Together with (18), ( 19) and (20), and since on A e ( , 1 ) for any k 1, (ρ + ρ -1 ) k ρ ±k , this yields the following estimate for small enough and a constant C > 0,

H * 2 L 2 (Ae(ρ,2ρ)) Cρ 4 2 ρ 1 + ρ -1 2 h -H+ 0 2 C 0 β (Ae( , -1 )) . (21) 
Combining ( 17) and (21), we get

(22) H * C 0 1 (Ae( , -1 )) C h -H+ 0 C 0 β (Ae( , -1 )) .
Let us fix x 0 ∈ S e (1) and modify our symmetric 2-tensor H to get a symmetric 2-tensor H such that h -H vanishes at x 0 and on S e ( ) while being constant on S e ( -1 ). The only possible choice with harmonic symmetric 2-tensors is

H := H+ 0 - c 0 1 -2 + H * + 2 1 -2 c 0 r 2 e ,
where c 0 = ( Hh)(x 0 ). We will show that h -H satisfies the estimate (12), but let us start by proving the control (11) stated. For this, denote H 0 := H+ 0 -c 0 1-2 the constant part of H , and

H * := H * + 1 1-2 c 0 ( -1 re) 2 its varying part.
According to (21), the part k 1 ( r e ) k H+ k + ( -1 r e ) -2-k Hk is well controlled in L 2 -norm by the varying parts of h -H 0 on S e ( ) and S e ( -1 ): they are the same as the varying parts of h -H0 . There remains to control the part in r -2 e , that is

1 1 -2 (1 -2 ) H- 0 + c 0 -2 r 2 e .
In order to control this part, let us look at the mean values of h -H 0 on S e ( ) and S e ( -1 ). On S e ( ), we have (h -H) |Se( ) = 0, and therefore

(h -H 0 ) |Se( ) = (h -H) + H * + c 0 1 -2 2
r 2 e and its mean value on S e ( ) is then

(23) H- 0 + c 0 1 -2 .
Similarly, since h -H = 0 on S e ( -1 ) and

(h -H 0 ) |Se( -1 ) = (h -H) + H * + c 0 1 -2 ,
and its mean value is therefore

(24) 4 H- 0 + c 0 1 -2 .
By considering linear combinations of ( 23) and (24), we control both |c 0 | ge and | H0 | ge thanks to the mean values of h -H 0 on S e ( ) and S e ( -1 ), and we consequently have for some constant C > 0,

|c 0 | ge + | H- 0 | ge C h -H 0 C 0 β (Ae( , -1 )) .
Hence we finally have the existence of a constant C > 0 such that we have, going from L 2 -controls to C 0 -controls thanks to (17) applied to H * ,

H * C 0 1 C h -H 0 C 0 β ,
and therefore the stated inequality (11).

Let us prove the estimate (12), and assume towards a contradiction that there exists a sequence of positive numbers i → 0, and a sequence of symmetric 2-tensors h i on annuli A e ( i , -1 i ) satisfying, h i -H i C 0 β (Ae( , -1 )) = 1, and P e h i r -2 e C 0 β (Ae( i,

-1 i )) 1 i .
Remark 14 The failure of these properties will indeed yield the estimate (12) since by elliptic regularity we will get higher order estimates on the smaller domain A e (2 , (2 ) -1 )).

Let then (x i ) i be a sequence of points of A e ( i , -1 i ) where the C 0 β (A e ( i , -1 i ))-norm of hi := h i -H i is reached. We can extract a subsequence with one of the following behaviors:

(1) r e (x i ) → +∞, and i r e (x i ) → 0,

(2) r e (x i ) → +∞, and i r e (x i ) → c > 0,

(3) r e (x i ) → 0 and -1 i r e (x i ) → +∞, (4) r e (x i ) → 0 and -1 i r e (x i ) → c > 0, (5) r e (x i ) → c > 0.

In all cases, we rescale to fix r e (x i ) = 1 by defining, for all x, h i (x) := hi r e (x i )x

β i r e (x i ) β + r e (x i ) -β , which satisfies ∇ * e ∇ e h i (x) = r e (x i ) 2 ∇ * e ∇ e hi (r e (x i )x).
Since we had by assumption the controls hi (x)

β i r e (x) β + r e (x) -β ,

and

|∇ * e ∇ e hi | ge (x) 1 i r e (x) -2 β i r e (x) β + r e (x) -β , our new symmetric 2-tensor h i vanishes at x 0 re(xi) and on S e ( i r e (x i ) -1 ), and is constant on S e ( -1 i r e (x i ) -1 ). It moreover satisfies

|h i | ge (x) (r e (x i )r e (x)) β + (r e (x i )r e (x)) -β r e (x i ) β + r e (x i ) -β
with equality at x i and

|∇ * e ∇ e h i | ge (x) 1 i r e (x) -2 (r e (x i )r e (x)) β + (r e (x i )r e (x)) -β r e (x i ) β + r e (x i ) -β .
In the different situations, up to extracting a subsequence, we finally get one of the following limits

(1) on R 4 \{0}, a solution h ∞ of P e h ∞ = 1 2 ∇ * e ∇ e h ∞ = 0, and sup r -β h ∞ = 1, but there does not exist such a solution because the harmonic symmetric 2-tensors decay at least as O(r) at 0 if they vanish at 0 and must therefore grow at this rate at infinity. This is a contradiction.

(2) on B e (1/c)\{0}, a solution h ∞ of P e h ∞ = 0, and sup r -β h ∞ = 1, and such that (h ∞ ) |Se(1/c) is constant. The unique solution to the Dirichlet problem with the zero condition at 0 and a constant condition on S e (1/c) is h ∞ = 0. This is a contradiction.

(3) on R 4 \{0}, a solution h ∞ of P e h ∞ = 0, and sup r β h ∞ = 1, but there does not exist such a solution because the harmonic symmetric 2-tensors decaying at infinity decay at least like O(r -2 ), and therefore blow up at least at this rate at 0, and finally, h ∞ = 0. This is a contradiction.

(4) on R 4 \B e (1/c), a solution h ∞ of P e h ∞ = 0, and sup r β h ∞ = 1 and (h ∞ ) |Se(1/c) = 0. The unique solution to the Dirichlet problem on R 4 \B e (1/c), decaying at infinity and vanishing on S e (1/c) being zero, we have h ∞ = 0. This is a contradiction.

(5) on R 4 \{0}, a solution h ∞ of P e h ∞ = 0, and sup(r

β + r -β )h ∞ = 1 satisfying h ∞ x 0 c
= 0. The conditions P e h ∞ = 0, and sup(r

β + r -β )h ∞ = 1 imply that h ∞ is constant, since h ∞ vanishes at x 0 c , we have h ∞ = 0. This is a contradiction.
We therefore deduce that there exists e > 0 and C e > 0 such that for all 0 < < e and all symmetric 2-tensor h on the annulus A e ( , -1 ), we have

h -H 0 C 0 β (Ae( , -1 )) C e P g h r -2 e C α β (Ae( , -1 )) .
In order to prove the estimate (12) and go from a C 0 β (A e ( , -1 ))-controls to C 2,α β (A e (2 , (2 ) -1 ))controls, we use elliptic estimates which are satisfied on the flat annuli according to the end of the proof of Proposition 1.

With a completely analogous proof using the harmonic decomposition of 1-forms on a cone of [START_REF] Cheeger | On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay[END_REF](2.16)-(2.19)] (see also Section 3.1 for particular case of flat cones), we have the same result for vector fields, but this time, we treat the linear kernel of δδ * on R 4 /Γ separately. On R 4 , the elliptic operator

δ e δ * e = ∇ * e ∇ e - 1 2 d * e d = dd * e + 1 2 d * e d,
has its kernel equal to the linear vector fields of the kernel of δ e δ * e among the vector fields of order O(r 1-β e + r 1+β e ) for 0 < β < 1, see Lemma 3.1 for a proof of this and Section 3.1 for a description of the kernel.

Proposition 4 Let 0 < β < 1. There exists C e > 0, and e > 0 such that for any vector field X on an annulus of radii 0 < < e and 1 , there exists Y 0 , a linear vector field of the kernel of δ e δ * e , and an element Y * of the kernel of δ e δ * e satisfying Y * reC 3,α 1 (Ae(2 ,(2

) -1 )) C e X -Y 0 reC 3,α β (Ae( , -1 )) , X -Y 0 -Y * reC 3,α β (Ae(2 ,(2 ) -1 )) C e δ ge δ * ge X r -1 e C 1,α β (Ae( , -1 )) .
In particular, this implies the following control, for all x ∈ A e (1/2, 2),

|(X -Y 0 )(x)| ge + |∇(X -Y 0 )(x)| ge + |∇ 2 (X -Y 0 )(x)| ge + [∇ 2 (X -Y 0 )] C α (g) (x) C e (2 ) β δ e δ * e X r -1 e C 1,α β (Ae( , -1 )) + 2 X -Y 0 reC 3,α β (Ae( , -1 )) .
(25)

Approximate kernels

Let (M, g D ) be a naïve desingularization of an Einstein orbifold. For each annulus A k (t, ) (see Definition 1.9) between N k and N j or N k and M o , by construction there exists a diffeomorphism

Φ k : A e -1 T j √ t k , T j ⊂ R 4 /Γ k → A k (t, ) ⊂ M,
such that there exists C > 0 for which, for all 0 < β < 1,

(26) Φ * k g D -g e C 2,α β (Ae( -1 √ T j √ t k , √ T j )) C 2-β .
Because of the above constant symmetric 2-tensors and the linear vector fields, we cannot expect estimates independent of the gluing scales in the definition of (M, g D ) of the type h C 2,α

β (g D ) C P g D h r -2 D C α β (g D )
which are needed to apply an inverse function theorem. Indeed, we have the following estimates according to Proposition 7 (which is proven below). Recall that the cut-off functions are in Definition 1.10.

Remark 15 In most of the rest of this article, we will often abusively forget the diffeomorphism Φ k to simplify the notations. For instance, a symmetric 2-tensor

Φ * k χ A k (t, ) H will be denoted χ A k (t, ) H on M .
Proposition 5 On a naïve desingularization (M, g D t ), for all 0 < β < 1, there exists C > 0 such that for H k a constant symmetric 2-tensor, and χ A k (t, ) the cut-off function defined in Definition 1.10,

P g D χ A k (t, ) H k r -2 D C α β (g D ) C|H k | ge , but χ A k (t, ) H k C 0 β (g D ) 1 2 t -β 4 max |H k | ge .
Linear vector fields in the kernel of δδ * also rule out the existence of estimates independent of t for the operator δδ * according to Proposition 7 proven below.

Proposition 6 On a naïve desingularization (M, g D t ), for all 0 < β < 1, there exists C > 0 such that for X k a linear vector field in the kernel of δ e δ * e ,

δ g D δ * g D χ A k (t, ) X k r -1 D C 1,α β (g D ) C X k reC 0 0 (ge) , but χ A k (t, ) X k C 0 β (g D ) 1 2 t -β 4 max X k reC 0 0 (ge) .
Weighted decoupling norms. Propositions 3 and 4 actually show that we can control the inverses of our operators once we solve our equations modulo constant symmetric 2-tensors and the linear vector fields of the kernel of δ e δ * e on R 4 and Propositions 5 and 6 show that we cannot expect better. We therefore introduce new norms to reflect this. They are similar to the norms introduced in [Bam12] for similar reasons. 

h C k,α β, * := inf h * ,H k h * C k,α β + k |H k | ge ,
where the infimum is taken among the couples (h

* , H k ) satisfying h = h * + k χ A k (t, ) H k (respectively h = h * + k χ Bo( ) H k or h = h * + k χ B b ( ) H k ), for H k a constant traceless symmetric 2-tensor on R 4 /Γ k . Definition 2.6 (Norm . rC k,α β, * on vector fields) Let X a vector field on (M, g D ) (respectively (M o , g o ) or (N, g b ))
. We define its rC k,α β, * -norm, where r is the function r D (respectively r o or r b ) by

X rC k,α β, * := inf X * ,X k X * rC k,α β + k X k rC 0 0 (ge) ,
where the infimum is taken among the couples (X * , X k ) satisfying

X = X * + k χ A k (t, ) X k (respectively X = X * + k χ Bo( ) X k or X = X * + χ B b ( ) X k ).
Remark 16 By definition of the weighted norms, on an orbifold or orbifold ALE, the decompositions h = h * + k χ B( ) H k and X = X * + k χ B( ) X k are unique and determined respectively by the limits of h and of X r when r → 0 (where r = r o or r = r b ). Indeed, in other cases, the expression we minimize is infinite. ) are clearly Banach spaces.

Estimates in the decoupling norms

Let us show that it is possible to control thanks to the r m C k,α β -norm the images by the operators P and δδ * of elements of r m+2 C k+2,α β, * .

Proposition 7 Let 0 < β < 1, and (M • , g • ) one of the spaces (M o , g o ), (N j , g b j ) or (M, g D ), g a metric, h a symmetric 2-tensor, and X a vector field on M • . We then have, the following controls:

P g• h r -2 • C α β (g•) C h C 2,α β, * (g•) , δ g• δ * g• X r -1 • C 1,α β (g•) C X r•C 3,α β, * (g•) , P g (h) -P g• (h) r -2 • C α β (g•) C g -g • C 2,α β, * (g•) h C 2,α β, * (g•) , and δ g δ * g (X) -δ g• δ * g• (X) r -1 • C 1,α β (g•) C g -g • C 2,α β, * (g•) X r•C 3,α β, * (g•) .
Proof Let us show the result for g D , the proof for other spaces is very similar. For the two first inequalities, consider h a symmetric 2-tensor and X a vector field on M , and some decompositions

h = h * + k χ A k (t, ) H k and X = X * + k χ A k (t, ) X k . Remark
12 implies that we have the following controls for h * and X * , (27)

P g D h * r -2 D C α β (g D ) C h * C 2,α β (g D )
, and (28)

δ g D δ * g D X * r -1 D C 1,α β (g D ) C X * r D C 3,α β (g D ) .
On R 4 /Γ, we have P e H k = 0 and δ e δ * e X k = 0, hence, since for all l ∈ N, we have

(29) |∇ l χ k | g D C l r -l D ,
and thanks to the control (26), we have (30)

P g D (χ A k (t, ) H k ) C α β (g D ) C|H k | ge ,

and

(31)

δ g D δ * g D (χ A k (t, ) X k ) r -1 D C 1,α β (g D )
C X k reC 0 0 (ge) , where we pulled-back thanks to the diffeomorphism

Φ k : A e ( -1 T j √ t k , T j ) ⊂ R 4 /Γ k → A k (t, ) ⊂ M.
Summing the controls ( 27) and (30) on the one hand, and the controls ( 28) and (31) on the other hand, yields the two fist inequalities stated.

Let us now focus on the two last inequalities, which are more difficult to obtain. The control we want is local, let us therefore write down the expressions of our operators in local coordinates in an orthonormal basis (e i ). For a symmetric 2-tensor h, denoting h ij = h(e i , e j ) and R ijkl the Riemannian curvature in coordinates, we have

(32) P g (h) ij = 1 2 ∇ * g ∇ g h ij -g kp g lq R ikjl h pq ,
where ∇ i is the covariant derivative for g in the direction e i . We directly see thanks to the estimates of Remark 12 that we have the controls:

P g (h) -P g D (h) r -2 D C α β (g D ) C g -g D C 2,α β (g D ) h C 2,α β (g D ) .
Let us now consider k χ A k (t, ) H k and k χ A k (t, ) H k . These tensors being all supported in the annuli A k (t, ), we just need to restrict our attention to them. The crucial remark is that in (32), every term involves at least a derivative of h or of gg D . Hence, we have a more precise control on h a symmetric 2-tensor supported in A k (t, 0 )

P g (h) -P g D (h) r -2 D C α β (g D ) C g -g D C 2,α 0 (g D ) ∇ 2 h r -2 D C α β (g D ) + ∇(g -g D ) r -1 D C 1,α β (g D ) ∇h r -1 D C 1,α β (g D ) + ∇ 2 (g -g D ) r -2 D C α β (g D ) h C 2,α 0 (g D ) , (33) 
(notice the norms C 2,α 0 (g D ) in which we have χ A k (t, ) H k C 2,α 0 (g D ) C|H k | ge and χ A k (t, ) H k C 2,α 0 (g D )
C|H k | ge ). There remains to control the derivatives of the tensors

χ A k (t, ) H k and χ A k (t, ) H k .
Since the H k and H k are constant on R 4 , and since the cut off functions are bounded in C 2 0 (g D ) by ( 29), for i ∈ {1, 2}, we have

∇ i χ A k (t, ) H k r -i D C 2-i,α β (g D ) C|H k | ge , and 
∇ i χ A k (t, ) H k r -i D C 2-i,α β (g D ) C|H k | ge ,
which together with (33) let us conclude that the third estimate holds.

For the vector fields, we have the following rewriting for X a vector field supported in A k (t, 0 )

δ g δ * g (X) -δ g D δ * g D (X) r -1 D C 1,α β (g D ) C (δ g -δ g D )(L X g) r -1 D C 1,α β (g D ) + δ g D (L X (g D -g)) r -1 D C 1,α β (g D ) .
We moreover know that for X k a linear vector field in the kernel of δ e δ * e , then the symmetric 2-tensor L X k g e is constant, and more generally, for H k a constant symmetric 2-tensor, we have δ ge (L X k H k ) = 0 on R 4 . Using these two facts and the controls of the cut-off functions, we conclude that the last estimate of the statement holds by an argument similar to the above one for 2-tensors and P.

Elliptic estimates for the decoupling norms

Some elliptic estimates are still satisfied in these norms.

Proposition 8 Let 0 < β < 1, g a metric, h a symmetric 2-tensor and X a vector field on M o (respectively N j , or M ). Then, there exists * = * (g o , g b j , g D , β) > 0 and

C > 0 such that if we have g -g • C 2,α β, * (g•) * , where g • is one of the norms g o , g b j or g D , then, h C 2,α β, * (g•) C P g h r -2 • C α β (g•) + h C 0 β, * (g•) , and X r•C 3,α β, * (g•) C δ g δ * g X r -1 •C 1,α β (g•) + X r•C 0 β, * (g•) .
Proof Let g • be one of the metrics g o , g b j or g D , and for all k, H k a traceless constant symmetric 2-tensor on R 4 /Γ k , and X k a Killing vector field on

R 4 /Γ k . Let moreover h * be a symmetric 2-tensor of C 2,α β (g • ) and X * be a vector field of r • C 3,α β (g • ), and define h = h * + k χ • X k and X = X * + k χ • X k , where χ • is χ A k (t, ) or χ Bg • ( ) (of Definition 1.10) depending on the metric.
We then have the following controls:

P g• χ • H k r -2 • C α β (g•) C|H k | ge , and 
δ g• δ * g• χ • X k r -1 • C 1,α β (g•) C X k reC 0 0 (ge) .
Hence, for h * , we have

P g• h * r -2 • C α β C P g• h r -2 • C α β (g•) + k |H k | ge ,
and the expected estimate for g = g • is then a consequence of the elliptic estimates in the weighted spaces of Lemma 1 which give

h * C 2,α β (g•) C P g• h * r -2 • C α β (g•) + h * C 0 β (g•)
, and imply therefore that

h C 2,α β, * (g•) 2C 2 P g h r -2 • C α β (g•) + h C 0 β, * (g•) .
The same argument works for the operator δδ * on the vector fields thanks to the elliptic estimates of Lemma 2.

Proposition 7 finally lets us go from the metric g • to a metric g satisfying g -

g • C 2,α β, * (g•) * .

Reduced divergence-free gauge

When the Einstein orbifold which we approximate has nonpositive scalar curvature, we can always put our Einstein metrics in Bianchi gauge with respect to a naïve desingularization (see [START_REF] Biquard | Désingularisation de métriques d'Einstein[END_REF]Lemme 8.2] adapted to our norms). When the Ricci curvature of our Einstein manifolds is positive, this is not necessarily true, but we can still use the divergence-free gauge. This is the goal of this section whose main result is Proposition 10. To show this, we will use a Banach fixed point theorem approach which necessitates the study of the linearized equation:

δδ * X = -δh,
where X is a vector field, and h a symmetric 2-tensor.

In our degenerating situation, we want to obtain estimates in our weighted norms which are independent of the gluing scales. A difficulty is that our limit orbifold might have more symmetries than the Ricci-flat ALE spaces (for example, S 4 /Z 2 desingularized by Eguchi-Hanson metrics). The associated Killing vector fields would give an approximate kernel for δδ * which would not be an actual kernel or cokernel. We will need to define a reduced divergence-free gauge to obtain uniform estimates as the gluing scales go to zero.

Remark 18 All along this section, if nothing is precised, an Einstein orbifold (M o , g o ) will be either compact or ALE.

Kernel of the linearization

Let us focus on the operator δδ * on a flat cone (R 4 /Γ, g e ), on an orbifold (M o , g o ), and on Ricci-flat ALE orbifolds (N j , g b j ).

On a flat cone. On the flat cone (R 4 /Γ, g e ) = (R + × S 3 /Γ, dr 2 + r 2 g S 3 /Γ ), according to [CT94, Section 2], any 1-form on R 4 /Γ is a countable sum of 1-forms of one of the following types which are preserved by δδ * :

(1) p(r)ψ , where δ S 3 /Γ ψ = 0, and ψ is eigenvector of the Hodge Laplacian of S 3 /Γ, (2) r -1 l(r)φdr + u(r)rd S 3 /Γ φ, and φ is eigenfunction of the Hodge Laplacian of S 3 /Γ, where p, l, u : R + → R and φ : S 3 /Γ → R are functions, and where ψ is a 1-form on S 3 /Γ.

According to [AV12, Section 4.1], thanks to the computation of the eigenvalues of the Laplacian and of the Hodge Laplacian on the 1-forms of the sphere [Fol89, Theorem C], the solutions to δ e δ * e ω = 0 are countable sums of 1-forms of the following types

(1) r a ± j ψ with a ± j := ±(1 + j), j ∈ N * , where ψ is an eigenvector the Hodge Laplacian,

(2) r b ± j d S 3 /Γ φ + b ± j r b ± j -1 φdr, or 2r b ± j +2 d S 3 /Γ φ + b ∓ j r b ± j +1 φdr, with b ± j = -1 ± (1 + j), j ∈ N
and where φ is an eigenfunction the Hodge Laplacian.

Since we are interested in solving an equation

δδ * X = -δh,
where X is a vector field, and h a symmetric 2-tensor is in C 2,α β, * , we are naturally looking for X in r D C 3,α β, * . The exceptional values of δ e δ * e are the values γ ∈ R such that there exists a homogeneous 1-form whose norm is proportional to r γ e in the kernel of δ e δ * e . We are interested in the exceptional values around the exceptional value 1 associated to the linear vector fields of the kernel of δ e δ * e .

Lemma 3.1 On (R 4 /Γ)\{0} for Γ = {e}, 1 is the only exceptional value between -3 and 2.

Proof According to the above discussion, the exceptional values are a priori of the form a

± j -1 = -1 ± (1 + j) for j ∈ N * , b ± j -1 = -2 ± (1 + j) with j ∈ N, or b ± j + 1 = ±(1 + j) with j ∈ N.
Let us first note that a ± j -1 ∈ (-3, 2) for j ∈ N * implies that a ± j -1 = 1, and therefore that no other exceptional value between -3 and 2 come from the first type of 1-form.

For b ± j + 1, the values 0 and -1 are a priori possible, and for b ± j -1, -1 and -2 are a priori possible. However, these values cannot appear on a flat cone R 4 /Γ for Γ = {e}. Indeed, the values b ± j -1 = 0 and b ± + 1 = -2 only appear if -3 is an eigenvalue of the Laplacian on the link of the cone, but this is not the case for S 3 /Γ because there does not exist any non zero Γ-invariant linear function on R 4 .

For the values b ± j -1 = -1 and b ± j + 1 = -1, we use the form of the solutions. In the first case, b ± j = 0 gives

r b ± j d S 3 /Γ φ + b ± j r b ± j -1 φdr = d S 3 /Γ φ, for ∆ S 3 /Γ φ = 0, therefore φ is constant and finally d S 3 /Γ φ = 0. In the second case, the equality b ± j = -2, that is b ∓ j = 0, gives 2r b ± j +2 d S 3 /Γ φ + b ∓ j r b ± j +1 φdr = d S 3 /Γ φ,
for ∆ S 3 /Γ φ = 0, therefore φ is constant and finally d S 3 /Γ φ = 0.

The 1-forms associated to the exceptional value 1 are sum of 1-forms of the three following types:

(1) r 2 ψ , where ψ is the dual of a Killing vector field of S 3 ,

(2) rdr,

(3) 2rφdr + r 2 d S 3 /Γ φ.
On an orbifold or an ALE space. Since there is no exceptional value other than 1 in (-3, 2), we have the following result on an orbifold ALE.

Proposition 9 Let (N j , g b j ) be a Ricci-flat ALE orbifold. For 0 < β < 1, the operator

δ g b j δ * g b j : r b j C 3,α β, * → r -1 b j C 1,α β is bijective.
Let (M o , g o ) be a compact Einstein orbifold. For 0 < β < 1, the operator

δ go δ * go : r o C 3,α β, * → r -1 o C 1,α
β is Fredholm and both its kernel and its cokernel are equal to K o , the set of Killing vector fields of (M o , g o ).

As a consequence, there exist

C o > 0 and o > 0 depending on g o such that if g -g o C 2,α β, * (Mo)
o , then we have for any vector field

X ∈ K ⊥ o on M o X roC 3,α β, * (go) C o δ g δ * g X r -1 o C 1,α β (go) .
There also exists C j > 0 and j > 0 depending on

g b j such that if g -g b j C 2,α β, * (N j ) j
then we have for any vector field X on N j ,

X r b j C 3,α β, * (g b j ) C j δ g δ * g X r -1 b j C 1,α β (g b j ) .
Proof For orbifold singularities, we will first authorize our tensors to behave like r 1-β for 0 < β < 1 at the singularities, instead of being in rC 3,α β, * to use the theory of elliptic operators in weighted Hölder spaces, see for instance [PR78, Chapter 2] of [START_REF] Lockhardt | Elliptic operators on noncompact manifolds[END_REF]. Let us start by considering an Einstein orbifold (M o , g o ) and the operator

δ go δ * go : r o C 3,α -β → r -1 o C 1,α -β (notice the -β ). Its kernel is composed of Killing vector fields of g o . Indeed, if for X ∈ r o C 3,α -β we have δ go δ * go X = 0, integrating by parts yields, 0 = Mo δ go δ * go X, X dv o = Mo |δ * go X| 2 go dv o + lim r→0 {ro=r} δ * go X(n, X) = Mo |δ * go X| 2 go dv o ,
where n = ∇ro |∇ro| , because the boundary term which is schematically lim r→0 (O(r -β+1-β+3 )) vanishes. Similarly, its cokernel is equal to the kernel of δ go δ * go on r -3 o C 1,α β which is also reduced to K o because there is no exceptional value between -3 and 1.

On an ALE orbifold (N, g b ), let us assume that a vector field

X ∈ r 1-β b C 3,α 0 satisfies δ g b δ * g b X = 0.
Since there is no exceptional value between -3 and 1, we actually have X = O(r b ) when r b → 0 at the singular points of (N, g b ), and X = O(r -3 b ) at infinity. Let us then consider the following integration by parts,

0 = N δ g b δ * g b X, X dv b = N |δ * g b X| 2 g b dv b -lim ρ→∞ {r b =ρ} δ * g b X(n, X) + lim r→0 {r b =r} δ * g b X(n, X) = N |δ * g b X| 2 g b dv b ,
where the boundary term vanishes because it is the sum of the limit for

r b → ∞ of a O(|X| g b |∇X| g b r 3 b ) = O(r -4 b ) and of the limit when r b → 0 of a O(|X| g b |∇X| g b r 3 b ) = O(r 4 b )
. Hence, we have δ * g b X = 0, and since

g b is Ricci-flat, δ b + 1 2 dtr b δ * g b X = ∇ *
b ∇ b X = 0, which implies that ∇ b X = 0 by integration by parts against X , and finally, that X is parallel on N . Since X tends to 0 at infinity, we have X = 0. The operator

δ g b δ * g b : r 1-β b C 3,α 0 → r -1-β b C 1,α 0 is therefore injective.
The cokernel of the self adjoint operator

δ g b δ * g b : r 1-β b C 3,α 0 → r -1-β b C 1,α 0 is equal to the kernel of δ g b δ * g b on r -3+β b C 1,α 0
which is also reduced to {0} because there is no exceptional values between -3 + β and 1 -β . The operator

δ g b δ * g b : r 1-β b C 3,α 0 → r -1-β b C 1,α 0 is therefore bijective.
Let us finally work in the norms we are interested in and study the operators δ go δ * go :

r o C 3,α β, * → r -1 o C 1,α β and δ g b δ * g b : r b C 3,α β, * → r -1 b C 1,α β . Since the spaces r b C 3,α β, * and r o C 3,α
β, * are respectively only the direct sum of r b C 3,α β and r o C 3,α β with a space of finite dimension composed of cut-off of linear vector fields, the image remains closed and of finite codimension. We can be more precise by noticing that

δ go δ * go r o C 3,α β, * = δ go δ * go r o C 3,α -β ∩ r -1 o C 1,α β .
Indeed, we have

δ go δ * go r o C 3,α β, * ⊂ δ go δ * go r o C 3,α -β ∩ r -1 o C 1,α β because r o C 3,α β, * ⊂ r o C 3,α -β
and thanks to Proposition 7. Conversely, if for X ∈ r o C 3,α -β we have δ go δ * go X ∈ r -1 o C 1,α β , then, since the only exceptional value between 1 -β and 1 + β is 1 and corresponds to the linear kernel of δ e δ * e , we have X ∈ r o C 3,α β, * . Similarly, we conclude that

δ g b δ * g b r b C 3,α β, * = δ g b δ * g b r 1-β b C 3,α 0 ∩ r -1 b C 1,α β ,
and finally, δ go δ * go :

r o C 3,α β, * → r -1 o C 1,α
β is Fredholm with K o as kernel and cokernel, and

δ g b δ * g b : r b C 3,α β, * → r -1 b C 1,α
β is bijective. We finally conclude by the open mapping theorem between Banach spaces which is stable by small perturbation of the operator.

Controls on the inverse of the linearization

These controls will help us treat the case of trees of singularities with small enough gluing parameters.

For this, we approximate the kernel K o on our naïve desingularization (M, g D ) in the following way. Note that K o = 0 for an ALE Ricci-flat orbifold (M o , g o ) by Proposition 9. For all X o ∈ K o , according to Remark 16, on an orbifold, there exists a unique decomposition

X o = X o, * + k χ B(p k , 0 ) X o,k , such that X o roC 3,α β, * = X o, * roC 3,α β + k X o,k reC 0 0
(other decompositions make the value infinite). We then define Ko as the space of the following vector fields on M

Xo,t := χ M t o X o, * + k χ A k (t, 0 ) X o,k , for X o ∈ K o . Note that we therefore have Xo,t = X o on M 16t o .
Remark 19 By elliptic regularity on M o , the norms L 2 (g o ), r D C 3,α β, * (g o ) and r -1 D C 1,α β (g o ) are equivalent on the finite-dimensional space K o . Since the C 4 0 -norms of the cut-off functions are bounded, we conclude that for and t max small enough, the norms L 2 (g D ),

r D C 3,α β, * (g D ) and r -1 D C 1,α β (g D ) are equivalent on Ko .
Definition 3.2 (Reduced divergence-free gauge) We define the reduced divergence operator, δg := π K⊥ o δ g , where π K⊥ o is the L 2 (g D )-orthogonal projection on K⊥ o . We will say that a metric g 1 is in reduced divergence-free gauge with respect to a metric g 2 if δg 2 g 1 = 0.

Let us start by noticing that the operator δg D is actually very close to δ g D for a naïve desingularization g D with small enough gluing parameters. Lemma 3.3 There exists C > 0 such that for any symmetric 2-tensor h ∈ C 2,α β, * (g D ), we have,

(34) ( δg D -δ g D )h r -1 D C 1,α β (g D ) Ct max h C 2,α β, * (g D ) .
Proof If (M o , g o ) is ALE, then, one has K o = {0} and therefore δg D = δ g D . Let us focus on the case when M o is compact.

Thanks to the equivalence of the different norms, see Remark 19, it is enough to show that the L 2 (g D )-projection on Ko of δ g D h is small to show the result. We naturally proceed by integration by parts. Let Xo,t ∈ Ko for X o ∈ K o be an approximate Killing vector field as above. We have,

M (δ g D h) Xo,t dv g D = M h, δ * g D ( Xo,t ) g D dv g D ,
and,

δ * g D ( Xo,t ) = δ * go X o + δ * go ((χ M t o -1)X o, * ) + δ * go (χ A k (t, 0 ) -χ Bo(p k , 0 ) ) k X o,k + δ * go -δ * g D χ A k (t, 0 ) k X o,k ,
where by definition δ * go X o = 0. Thanks to Definition 1.10, on

M t o , χ M t o X o, * is equal to X o, * except on the annuli of radii t 1 4 k and 2t 1 4 k , and χ A k (t, 0 ) -χ Bo(p k , 0 ) is supported in -1 0 √ t k < r D < 2 -1 0 √
t k and well-defined on M . For any l ∈ N, the cut off functions are moreover uniformly bounded in C l 0 . If we denote A the indicator function of A, for the vector fields, we therefore have

r l D |∇ l X o, * | go + ∇ l k X o,k go C l X o roC l β, * r D , and r l D |∇ l g D -g o | go C l {r D <t 1 4 k } r 2 D + t 2 k r -4 D .
As a consequence, because of the properties of the norms detailed in Remark 12, we have

|δ * go ((χ M t o -1)X o, * )| go C {t 1 4 k <r D <2t 1 4 k } X o roC 1 0 (go) ,
on the annulus of radii -1

0 √ t k < r D < 2 -1 0 √ t k , we have δ * go χ A k (t, 0 ) -χ Bo(p k , 0 ) k X o,k C { -1 0 √ t k <r D <2 -1 0 √ t k } X o roC 1 0 (go) , and 
δ * go -δ * g D χ A k (t, 0 ) k X o,k C { -1 0 √ t k <r D <t 1 4 k } r 2 D + t 2 k r -4 D X o roC 1 0 (go) .
Finally, since we have Vol A e t

1 4 k , 2t 1 4 k ≈ t k , Vol A e -1 0 √ t k , 2 -1 0 √ t k ≈ t 2 k ,

and also

{ -1 0 √ t k <r D <t 1 4 k } r 2 D + t 2 k r -4 D dv g D ≈ t 3 2 k + t 2 k | log t k |, we have M δ g D h, Xo,t g D dv g D Ct max h C 0 0 (g D ) X o roC 1 0 (go) .
Finally, let us denote Ỹo,t = π Ko δ g D h, we have δg

D h = π K⊥ o δ g D h = δ g D h -Ỹo,t with Ỹo,t r -1 D C 1,α β (g D )
Ct max h C 0 0 (g D ) , by the equivalence of the norms of Remark 19. Lemma 3.4 Let 0 < β < 1, 0 < α < 1 and (M, g D ) a naïve desingularization of a compact or ALE Einstein orbifold by a tree of singularities. Then, there exists τ D > 0 and D > 0 and C D > 0, only depending on β and the constants of Proposition 9, such that for t max < τ D , and any metric g satisfying g -

g D t C 2,α β, * (g D ) D , the operator δg δ * g : K⊥ o ∩ r D C 3,α β, * (g D ) → K⊥ o ∩ r -1 D C 1,α β (g D
) is invertible and we have for any vector field X ⊥ Ko on M ,

X r D C 3,α β, * (g D ) C D δg δ * g X r -1 D C 1,α β (g D ) .
Proof Let 0 < < 1 2-β D < 0 for D and which we will choose small enough along the proof, and assume that t max < 4 . Therefore, by construction, on each annulus A k := A k (t, ) between N k and N j or N k and M o (in which case, we will fix T o = 1), we have a diffeomorphism

Φ k : A e -1 T j √ t k , T j ⊂ R 4 /Γ k → A k (t, ) ⊂ M,
such that for all 0 < β < 1, there exists C > 0, for which we have

(35) Φ * k g D -g e C 2,α β (Ae( -1 √ T j √ t k , √ T j )) C 2-β < C D .
Until the end of the proof, we will use the notation

A k := A e ( -1 T j √ t k , T j ).
According to the estimate (34), for t max small enough, it is enough to have

X r D C 3,α β, * (g D ) C D 2 δ g D δ * g D X r -1 D C 1,α β (g D )
to obtain the stated result.

The diffeomorphisms Φ k : A k → A k allow us to pull the situation back on R 4 , where the ratio of the annuli

A k is 2 t -1/2 k
which is arbitrarily large for t max arbitrarily small. According to the estimate (25) of Proposition 4 and thanks to the controls of Proposition 7, for t max and D small enough, then, there exist linear vector fields X k of the kernel of δ e δ * e such that the vector fields

χ A k X k in the annuli A k satisfy Φ * k X -X k reC 3,α 0 (A(T 1/2 j t 1/4 k )) C e T 1 2 j t 1 4 k -β t β 4 k δ ge δ * ge Φ * k X r -1 e C 1,α β (A k ) + 2 -1 t 1 4 k Φ * k X -X k reC 3,α β (A k ) 2C e T 1 2 j t 1 4 k -β t β 4 k δ g D δ * g D X |A k r -1 D C 1,α β (g D ) + 2 -1 t 1 4 k (X -χ A k X k ) |A k r D C 3,α β (g D ) (36) on A( T j t 1/4 k ) := A e ((1/2) T j t 1/4 k , 4 T j t 1/4 k ).
Let us then consider the decomposition (37)

X = X * + k χ A k X k
with the above linear vector fields X k in the kernel of δ e δ * e for the rest of the proof. The objective is now to show that there exists a constant C D > 0 such that

X * r D C 3,α β (g D ) + k X k reC 0 0 (ge) C D δ g D δ * g D X r -1 D C 1,α β (g D ) .
In order to do this, we will reduce our situation to M o and to the N j where such controls have been shown in Proposition 9.

On M t/16 o , g D -g o is supported in M t/16 o \M 16t o , that is where 1 2 t 1/4 k r D < 2t
1/4 k on each annulus A k , and for all l ∈ N, there exists C l > 0 such that in these regions, we have

(38) t l 4 k |∇ l (g D -g o )| go C l t 1 2 k .
Consider 

X o, * roC 0 β (go) (X * ) |M t o r D C 0 β (g D ) .
On M t 16

o , we have,

δ g D δ * g D X = δ go δ * go X o + δ go δ * go (X -X o ) + δ g D δ * g D -δ go δ * go X. (41)
Since the cut off functions are bounded in norm C 3,α 0 (g D ) and C 3,α 0 (g o ) by (39), and since their derivatives are supported in M t/16 o \M t o , we have the following bound on the last two terms of (41): for C > 0 depending on the cut off function, we have

• δ go δ * go (X -X o ) r -1 D C 1,α β (g D ) C (X * ) |M t/16 o \M t o r D C 3,α
β (g D ) since the difference between X and X o on M 16t o only comes from the cut-off on X * , and

• δ g D δ * g D -δ go δ * go X |M t 16 o r -1 D C 1,α β (g D ) C k∈Ko t 1 2 k X r D C 3,α β, *
thanks to (38).

Consequently, by (41), and using (36), for C > 0 depending on the above constants, we have

δ g D δ * g D X |M t/16 o r -1 D C 1,α β (g D ) δ go δ * go X o r -1 o C 1,α β (go) -C (X * ) |M t/16 o \M t o r D C 3,α β (g D ) -C k∈Ko t 1 2 k X r D C 3,α β, * δ go δ * go X o r -1 o C 1,α β (go) -2C δ g D δ * g D X |A k r -1 D C 1,α β (g D ) + k∈Ko β-1 t 1-β 4 k (X -χ A k (t, ) X k ) A k r D C 3,α β (g D ) -C k∈Ko t 1 2 k X r D C 3,α β, * . (42)
Now, when t max → 0, we have

π K ⊥ o X o roC 3,α β, * (go) X o roC 3,α β, * (go) 
→ 0 because X ⊥ Ko . Proposition 9 therefore yields, for t max small enough, (43)

X o roC 3,α β, * (go) 2C o δ go δ * go X o r -1 o C 1,α β (go)
. Therefore, thanks to (40) and (42), for t max small enough, and denoting by C > 0 a constant that may change from line to line but only depending on the previous ones of this proof, and therefore only on g o and the g b j and γ(t max ) := k t

1 2 max + t 1-β 4 max , we have (X * ) |M t o r D C 0 β (g D ) + k∈Ko X k reC 0 0 (ge) -C γ(t max ) X r D C 0 β, * (g D ) X o roC 3,α β, * (go) -C γ(t max ) X r D C 0 β, * (g D ) 2C o δ go δ * go X o r -1 o C 1,α β (go) -C γ(t max ) X r D C 0 β, * (g D ) C δ g D δ * g D X r -1 D C 1,α β (g D ) , (44) 
where we successively used (40), ( 43) and (42). Indeed, on an orbifold (M o , g o ), the vector fields X k of the decomposition (37) reaching the infimum of the definition of the norm . roC 3,α β, * are determined by the limit of r -1 o X o at each singular point according to Remark 16. Here, the infimum is therefore reached with the X k of the decomposition (37).

We next consider the vector field X 1 := X -k∈Ko χ A k X k which satisfies for a constant C > 0,

δ g D δ * g D X 1 r -1 D C 1,α β (g D ) C δ g D δ * g D X r -1 D C 1,α β (g D ) + γ(t max ) X r D C 0 β, * (g D ) (45)
thanks to the control (44) of k∈Ko X k reC 0 0 (ge) . Given j ∈ K o , the Ricci-flat ALE orbifold (N j , g b j ) is glued to M o and we can extend the vector field

X 1 = X * + k / ∈Ko χ A l X l to N j by X j := χ N t/16 j X * + l∈K j χ B j (p l , ) X l ,
where K j is the set of k = j such that A k has a nonempty intersection with N t j .

Remark 20 By considering X 1 instead of X , we do not have a linear vector field of the kernel of δ e δ * e to extend at at infinity of N j . The vector field X j is therefore well controlled in r b j C 3,α β, * (g b j ).

The difference g D T jg b j is supported in N t/16 j \N 16t j and there exists for all l ∈ N, C l > 0 such that we have the following controls. Around the singular points where

1 2 T j t 1 4 k < r D = T j r b j < 2 T j t 1 4 k , we have (46) t l 4 k ∇ l g D T j -g b j g b j C l t 1 2 k .
and at infinity, where

1 2 T j t -1 4 j < r D = T j r b j < 2 T j t -1 4 j we have (47) t -l 4 j ∇ l g D T j -g b j g b j C l t 1 2 j .
Denoting X j, * := χ N t/16 j X * , we have

(48) X j, * r b j C 3,α β (g b j ) X j, * r b j C 0 β (g b j ) (X * ) N t j r D C 0 β (g D )
, and thanks to (36) and the inequalities ( 46) and (47), we have

δ g D δ * g D X 1 := δ g b j δ * g b j X j + δ g b j δ * g b j (X 1 -X j ) + δ g D δ * g D -δ g b j δ * g b j X 1 ,
analogously to (42), we find for C > 0 depending on the above constants such that

δ g D δ * g D X 1 |N t/16 j r -1 D C 1,α β (g D ) δ g b j δ * g b j X j r -1 b j C 1,α β (g b j ) -C δ g D δ * g D X 1 |A k r -1 D C 1,α β (g D ) + k∈K j β-1 t 1-β 4 k (X * ) A k r D C 3,α β (g D ) -Ct 1 2 k X 1 r D C 3,α β, * -Ct 1 2 j X 1 r D C 3,α β, * , (49) 
where we remark that

X 1 r D C 3,α β, * X * r D C 3,α β + k∈K j X k reC 0 0 (ge) . Proposition 9 then yields X j r j C 3,α β, * (g b j ) C j δ g b j δ * g b j X j r -1 j C 1,α β (g b j )
, and thanks to the control (45), we then have for a constant C > 0 only depending on the constants of Propositions 9 and 4, the control

(X * ) |N t j r D C 0 β (g D ) + k∈K j X k reC 0 0 (ge) -Cγ(t max ) X r D C 0 β, * (g D ) C δ g D δ * g D X r -1 D C 1,α β (g D ) , (50) 
similar to (44).

Iterating this to the other Ricci-flat ALE orbifolds of the tree of singularities, we get controls similar to (50) on all the N j which, with (44) on M o , give the following control on the whole manifold only depending on g o and the g b j

X * r D C 0 β (g D ) + k X k reC 0 0 (ge) -Cγ(t max ) X r D C 0 β, * (g D ) C δ g D δ * g D X r -1 D C 1,α β (g D )
and for t max small enough. Together with the elliptic estimates of Proposition 8, this shows the stated result for g = g D because M = M t 0 ∪ j N t j .

To get the estimate for another metric g close to g D , we just use Proposition 7 to ensure that for gg D C 2,α β, * (g D ) arbitrarily small, δg δ * g is arbitrarily close to δ g D δ * g D for the operator norm on r D C 3,α β, * (g D ).

Finally, notice that ( δg D ) * = δ * g D π K⊥ o , and therefore that δg D δ * g D is self adjoint on K⊥ o . Its injectivity implies its surjectivity by integration by parts on the compact manifold (M, g D ).

We can finally prove the main result of the section by fixed point theorem.

Proposition 10 Let 0 < β < 1 2 , and (M, g D ) = (M, g D t ) be a naïve desingularization of a compact Einstein orbifold, (M o , g o ). Then, there exist D , τ D , C D > 0 which only depends on the constants of Lemma 4.3 such that for t max τ D and for any metric g satisfying gg D C 2,α β, * (g D ) D , there exists a unique vector field X ⊥ Ko on M for which, δg D (exp * X g) = 0, where exp X is the diffeomorphism exp X : x ∈ M → exp g D x (X(x)).

We moreover have, X r D C 3,α

β, * (g D ) C D δg D (g -g D ) r -1 D C 1,α
β (g D ) , and therefore, there exists η : R + → R + with lim 0 η = 0 such that we have

exp * X g -g C 2,α β, * (g D ) η g -g D C 2,α β, * (g D ) .
Proof Let us fix g a metric on M , such that g -

g D C 2,α β, *
for > 0 which we will choose small enough along the proof and define the operator

F g : r D C 3,α β, * (g D ) → r -1 D C 1,α β (g D ) which to a vector field X associates F g (X) := δ(exp g D X) * g D g.
The objective is therefore to find X such that F g (X) = 0, which will imply that δg D (exp g D X) * g = 0 because for any diffeomorphism φ, φ * (δ g D φ * g) = δ φ * g D g (by applying φ * to g D which is C ∞ , we do not loose regularity). The map g → F g is linear, and the linearization of the operator F g D around zero is δg D δ * g D which is invertible between the orthogonals of Ko according to Lemma 3.4.

There remains to control the nonlinear terms in our norms. Let us denote them

Q = F g D -δg D δ * g D . We schematically have that Q(X) is a converging sum of terms of the form (∇ 2 g D X * X) * X * ... * X , (∇ g D X * ∇ g D X) * X * ... * X , (Rm(g D ) * X * X) * ... * X
which are at least quadratic in X, where * denotes various multilinear operations or contractions.

Using (10) of Remark 12, since on a compact manifold r D C 3,α 0 is bounded, there exists C > 0 such that (51)

. r -1

D C 1,α β (g D ) C . C 1,α β (g D )
, and for any vector field X , assuming β < 1 2 , we have (52)

∇ g D X r -1/2 D C 2,α 0 (g D ) ∇ g D X r -1/2 D C 2,α β (g D ) X r 1/2 D C 3,α β (g D ) C X r D C 3,α β, * (g D ) . We therefore find Q(X)-Q(X ) r -1 D C 1,α β (g D ) C X -X r D C 1,α 0 (g D ) ∇ 2 X r -1 D C 1,α β (g D ) + ∇ 2 X r -1 D C 1,α β (g D ) + X r D C 1,α 0 (g D ) + X r D C 1,α 0 (g D ) ∇ 2 (X -X ) r -1 D C 1,α β (g D ) + X r D C 1,α 0 (g D ) + X r D C 1,α 0 (g D ) X -X r D C 1,α 0 (g D ) Rm(g D ) r -2 D C 1,α β (g D ) + ∇(X -X ) r -1/2 D C 2,α 0 (g D ) ∇X r -1/2 D C 2,α β (g D ) + ∇X r -1/2 D C 2,α β (g D ) 3C X r D C 3,α β, * (g D ) + X r D C 3,α β, * (g D ) X -X r D C 3,α β, * (g D )
, notice the different norms with β and 0 for the weight power. We controlled the C 1,α β (g D )-norm (which is larger than the r -1 D C 1,α β (g D )-norm by (51)) in the first three lines and the r -1 D C 1,α β (g D )-norm in the last one (notice the r -1/2 D -norms controlled by (52)).

Remark 21 Using r -1/2 D -norms was necessary because the first derivatives of the linear element of the kernel of δ ge δ * ge do not decay in the neck regions, that is,

∇ g D χ A k (t, ) X k / ∈ C 2,α β (g D ).
The crucial reason for such a control of the nonlinear terms, already noted in [Biq13, Proof of Lemma 8.2], is that our norm is equivalent to a norm C k,α (g D ) weighted by a function uniformly bounded below by 1 independently on t, see (9). We can therefore finally put our metrics in gauge with respect to each other thanks to a fixed point theorem with explicit constant below, Lemma 3.5.

Lemma 3.5 Let Φ : E → F , be a smooth map between Banach spaces and let

Q := Φ -Φ(0) -d 0 Φ.
Assume that there exist q > 0, r 0 > 0 and c > 0 such that:

(1) for all x and y in B(0, r 0 ), we have the following control on the nonlinear terms

Q(x) -Q(y) q( x + y ) x -y .
(2) the linearization d 0 Φ is an isomorphism, and more precisely, we have

(d 0 Φ) -1 ≤ c.
If r min r 0 , 1 2qc and Φ(0) r 2c , then, the equation Φ(x) = 0 admits a unique solution in B(0, r).

Let us finally remark that for a linear vector field X k in the kernel of δ e δ * e , the symmetric 2-tensor δ * e X k is constant. This lets us define for any metric g on M , a continuous map

ψ g : r D C 3,α β, * → C 2,α β, * by X → ψ g (X) := exp * X g.
It is indeed continuous since for any diffeomorphism φ : M → M , we have

(φ * g)(x) kl = g(φ(x)) ij ∂ i φ ∂x k ∂ j φ ∂x l
in local coordinates and therefore, for any vector field X * ∈ r D C 3,α β , the symmetric 2-tensor exp * X gg is arbitrarily small for the C 2,α β, * -norm. For the constant part, it is enough to note that for a linear vector field X k in the kernel of δ e δ * e , and for a constant symmetric 2-tensor H k , the symmetric 2-tensor exp * X k H k is also constant and controlled

| exp * X k H k | ge C X k reC 0 |H k | ge .

Einstein metrics in gauge

Let us now come back to Einstein metrics which can be characterized in dimension n thanks to the Bianchi identity as the zero set of

E(g) := Ric(g) - R(g) 2 g + n -2 2n R(g)g
on a compact manifold M , where R := 1 Vol(M,g) M R(g)dv g . Notice that δ g E(g) = 0, again by the Bianchi identity.

The equation E(g) = 0 is invariant by the action of diffeomorphisms and by scaling, we will therefore restrict our attention to deformations which are transverse to these actions in order to obtain an operator whose linearization is elliptic. More precisely, we will fix the volume and fix a gauge thanks to the reduced divergence-free condition.

It turns out that we can characterize the zeros of E in reduced divergence-free gauge as the zeros of a single operator g D defined by

g D (g) := E(g) + δ * g δg D g.
Indeed, if we have E(g) = 0 and δg D g = 0, then we have g D (g) = 0. And conversely, if g D (g) = 0, then since E(g) is divergence-free (for g) by the Bianchi identity, by taking the reduced divergence of g D (g) = 0, we get δgg D (g) = ( δg δ * g ) δg D g.

Since for g close enough to g D , ( δg δ * g ) is invertible on the image of δg D by Lemma 3.4, we finally have δg D g = 0 and E(g) = 0. In a C 2,α β, * (g D )-neighborhood of g D the zero set of g D is exactly the set of Einstein metrics in reduced divergence-free gauge with respect to g D .

Corollary 3 Let D 0 , v 0 > 0, l ∈ N, and β = β(v 0 , D 0 ) > 0 obtained in Corollary 2. Then, for all > 0, there exists δ = δ( , D 0 , v 0 , l) > 0 such that if (M, g E ) is an Einstein manifold satisfying • the volume is bounded below by v 0 > 0,

• the diameter is bounded above by D 0 ,

• the Ricci curvature is bounded | Ric | ≤ 3. and such that for an Einstein orbifold (M o , g o ),

d GH (M, g E ), (M o , g o ) δ,
then, there exists a naïve desingularization (M, g D ) of (M o , g o ) by a tree of singularities, and a diffeomorphism ψ : M → M such that

ψ * g E -g D C l β, * (g D )
, and δg D (ψ * g E ) = 0.

In particular, we have

g D (ψ * g E ) = 0.
4 Resolution of the Einstein equation modulo obstructions

We will now show that it is always possible to produce metrics which are Einstein modulo some obstructions (which are elements of the cokernel of the linearization of the Einstein operator) in our weighted Hölder spaces. The main result of the section is Theorem 4.6 which allows us to perturb any naïve desingularization g D to an Einstein modulo obstructions metric and in particular according to [START_REF] Ozuch | Noncollapsed degeneration of Einstein 4-manifolds I[END_REF] we produce all Einstein metrics close to an Einstein orbifold in the Gromov-Hausdorff sense by this procedure.

We have seen in Corollary 3 that up to a diffeomorphism, any Einstein metric g close to (M o , g o ) in the Gromov-Hausdorff sense is a solution of

g D (g) := E(g) + δ * g δg D g = 0.
To study this equation, we will naturally start by studying its linearization on volume preserving deformations at g D , that is, on symmetric 2-tensors h satisfying M tr g D hdv g D = 0, for which we have the formula

Pg D (h) := d g D g D (h) = 1 2 ∇ * g D ∇ g D h -2 Rg D (h) -2δ * g D δ g D h + 2δ * g D δg D h -(δ g D δ g D h)g D + (∆ g D tr g D h)g D -∇ 2 g D tr g D h + Ric g D •h + h • Ric g D -R g D h + Ric g D , h g D g D + 1 2 R(g)h - 1 2 Vol(g) M Ric(g D ) - R(g D ) 2 , h g D dv g D , (53) 
in dimension 4. If g D were an Einstein metric and h a divergence-free symmetric 2-tensor, then the operator Pg D would reduce to

P g D := 1 2 ∇ * g D ∇ g D -Rg D ,
which is simpler to study. Since g D is almost Einstein and h will be almost divergencefree, we will mostly study the operator P g D , and we will obtain results for Pg D by approximation.

Kernel and cokernel of the linearization on model spaces

Exceptional values for P e := 1 2 ∇ * e ∇ e on (R 4 /Γ, g e ) and gauge constraints. As described in the proof of Proposition 3, the elements of the kernel of P e on R 4 /Γ are sums of homogeneous symmetric 2-tensors whose coefficients in an orthonormal basis of R 4 are homogeneous of order k or -2k for k ∈ N.

However, some of these tensors cannot appear in our developments because they are not trace-free or in divergence-free gauge on our nontrivial quotient of R 4 /Γ. ) for some β > 0. Such a symmetric 2-tensor is actually necessarily traceless and divergence-free. Indeed, we have δ

g b P g b = 1 2 ∇ * g b ∇ g b δ g b , and tr g b P g b = 1 2 ∇ * g b ∇ g b tr g b . Therefore, if P g b h = 0 for h = O(r -δ b )
for some δ > 0, then δ g b h = 0, and tr g b h = 0 by the maximum principle. We deduce from Lemma 4.1 that o decays at least like r -4 b and its principal term is a harmonic symmetric 2-tensor.

In the same way in the neighborhood of a singularity of an orbifold (M o , g o ) or of a Ricci-flat ALE orbifold (N, g b ), since there is no harmonic symmetric 2-tensor with linear growth because of the action of the nontrivial group Γ, an element of the kernel admits a development Estimates on the inverses. Just like for the operator δδ * in Proposition 9, the operators P go and P g b j are injective on the orthogonal of their respective kernels. Then, the operators

o = O 0 + O 2 + O(r 3 
P b : O(g b ) ⊥ ∩ C 2,α β, * (g b ) → r -2 b C α β (g b ),
and

P o : O(g o ) ⊥ ∩ C 2,α β, * (g o ) → r -2 o C α β (g o )
are injective and there exist C o > 0 and C b > 0, such that we have for any symmetric Proof By standard theory of elliptic operators between weighted Hölder spaces (see for instance [PR78, Chapter 2]), the operators

2-tensor h b ⊥ O(g b ) on N and h o ⊥ O(g o ) on M o , (54) 
C -1 b P b h b r -2 b C α β (g b ) h b C 2,α β, * (g b ) C b P b h b r -2 b C α β (g b ) , and 
(55) C -1 o P o h o r -2 o C α β (go)
P o : C 2,α -β (g o ) → r -2 o C α -β (g o ),
and

P b : r -β b C 2,α 0 (g b ) → r -2-β b C α 0 (g b )
are Fredholm for 0 < β < 1 because we avoid the exceptional values close to zero:

-2 and 1. Let us study their kernels and cokernels.

Let us start by the case of an Einstein orbifold (M o , g o ) and notice that ker C 2,α -β (go) P go ⊂ O(g o ) because there is no exceptional value between 0 and -β . The kernel of

P o : C 2,α -β (g o ) → r -2 o C α -β (g o ) is therefore equal to O(g o ).
Since P o is self adjoint and since we are strictly between two exceptional values, its cokernel is the kernel of P o on r -2 o C α β (g o ) which is also reduced to O(g o ) by a similar argument.

Similarly, the kernel of For the cokernels of

P b : r -β b C 2,α 0 (g b ) → r -2-β b C α 0 (g b ) is O(g b ),
P b : O(g b ) ⊥ ∩ C 2,α β, * (g b ) → r -2 b C α β (g b ), and 
P o : O(g o ) ⊥ ∩ C 2,α β, * (g o ) → r -2 o C α β (g o )
, like in the end of the proof of Proposition 9, we use the fact that

P o C 2,α β, * (g o ) = P o C 2,α -β (g o ) ∩ r -2 o C α β (g o ), and 
P b C 2,α β, * (g b ) = P b r -β b C 2,α 0 (g b j ) ∩ r -2 b C α β (g b ).
Approximation of kernels and cokernels on a naïve desingularization. We wish to solve the equation Ric(g) = Λg for a metric g close to g D modulo the kernel and the cokernel of the linearization of the Einstein operator. We will use approximate kernels and cokernels defined as the truncated infinitesimal deformations of each model space on the tree of singularities in order to obtain uniform controls as the singularities form, that is as the gluing parameters t tend to 0. ≈ õo,t

+ j T j õj,t C 2,α β, * (g D ) ≈ sup o o C 0 (go) , o j C 0 (g b j ) , and 
õo,t + j õj,t L 2 (g D ) ≈ õo,t + j õj,t r -2 D C α β (g D ) ≈ sup o o L 2 (go) , o j L 2 (g b j ) .
We would like to produce Einstein metrics in reduced divergence-free gauge with respect to g D . But the point is that it is not always possible because the space Õ(g D ) is an (approximate) obstruction space. We will show that we can perturb g D + v for parameters t > 0 and v ∈ Õ(g D ) small enough to obtain a metric ĝv = ĝt,v which will be in gauge with respect to g D + v and solution of:

g D (ĝ v ) ∈ Õ(g D ), hence the term Einstein modulo obstructions.
Control of the inverse of the linearization. We can first show that the linearization is invertible and that we can control its inverse independently of the gluing scales thanks to Lemma 4.3.

Let us start by showing that the operator π Õ(g D ) ⊥ P g D is close to P g D for a sufficiently degenerate tree of singularities. Lemma 4.5 There exists C > 0 such that for any symmetric 2-tensor h ∈ C 2,α β, * (g D ), we have

π Õ(g D ) ⊥ P g D -P g D h r -2 D C α β (g D ) Ct 1 2 max h C 2,α β, * (g D ) .
Remark 24 Here, the constant C only depends on the constants C o and C b j of Lemma 4.3.

Proof The proof is similar to that of the estimate (34). Thanks to the equivalence of the norms, see Remark 23, we only have to control the L 2 (g D )-norm of the projection on Õ(g D ).

On M o , since P g D is self adjoint, an integration by parts yields

M P g D h, õo,t g D dv g D = M h, P g D (õ o,t ) g D dv g D ,
and since g D = g o on M 16t o and P go (o o ) = 0 we use the decomposition

P g D (õ o,t ) = P go ((χ M 16t o -1)o o, * ) + P go k (χ A k (t, 0 ) -χ Bo(p k , 0 ) )o o,k + P go -P g D k χ A k (t, 0 ) o o,k (56) 
in order to obtain the following estimates (compare with the proof of (34)) thanks to the control of the cut-off functions of Definition 1.10 and to Remark 23

(57) |P go ((χ M 16t o -1)o o, * )| go C o o L 2 (go) {2t 1 4 k <r D <4t 1 4 k } t -1 2 k , (58) P go k 
(χ A k (t, 0 ) -χ Bo(p k , 0 ) )o o,k C o o L 2 (go) { -1 0 t 1 2 k <r D <2 -1 0 t 1 2 k } t -1 k , and (59) 
P go -P g D k χ A k (t, 0 ) o o,k C o o L 2 (go) { -1 0 t 1 2 k <r D <2t 1 4 k } (1 + t 2 k r -6 D ).
Since for any C > 0 independent on t, we have

• Vol ge {2t 1 4 k < r D < 4t 1 4 k } Ct k , • Vol ge { -1 0 t 1 2 k < r D < 2 -1 0 t 1 2 k } C -4 0 t 2 k , and • { -1 0 t 1 2 k <r D <2t 1 4 k } (1 + t 2 k r -6 D )dv g D Ct max ,
integrating the controls (57), ( 58) and (59) of the terms of (56) yields (60

) M P g D h, õo,t g D dv g D Ct 1 2 k h C 2,α β, * (g D ) o o L 2 (go) .
Similarly, for the N j , consider o j ∈ O(g b j ). By invariance of the L 2 -norm of 2-tensors in dimension 4 and since P g t = tP g for any metric g and t > 0, we have

M P g D h, õj,t g D dv g D = M h T j , P g D T j õj,t g D T j dv g D T j
.

The control at the singular points is the same as in the case of M o and at infinity we have

P g D T j õj,t = (P g D T j
-P g b j )õ j,t + P g b j o j + P g b j ((χ N 16t j -1)o j, * ), and therefore, since o j = O(r -4 b j ), we have 

|P g D T j õj,t | g b j C o j L 2 (g b j ) { 1 2 t -1/4 j <r b j <t -1/4 j } r -6 b j ≈ C o j L 2 (g b j ) { 1 2 t -1/4 j <r b j <t -1/4 j } t 3 
) M P g D h, õj,t g D dv g D Ct 1 2 max h C 2,α β, * (g D ) o j L 2 (g b j )
, and finally,

π Õ(g D ) ⊥ P D g -P D g h r -2 D C α β (g D ) Ct 1 2 max h C 2,α β, * (g D ) .
Proposition 11 Let 0 < β < 1, k ∈ N, 0 < α < 1 and let (M, g D ) be a naïve desingularization of a compact or ALE Einstein orbifold by a tree of singularities. Then, there exists τ D > 0 and D > 0 and C D > 0 only depending on β , and the constants of Lemma 4.3 and of Proposition 3 such that for t max < τ D and for any metric g such that g -

g D t C 2,α β, * (g D ) D , the operator π Õ(g D ) ⊥ P g : Õ(g D ) ⊥ ∩ C 2,α β, * (g D ) → Õ(g D ) ⊥ ∩ r -2 D C α β (g D ),
where π Õ(g D ) ⊥ is the orthogonal projection for g D on Õ(g D ) ⊥ , is invertible and we have for any symmetric 2-tensor h ⊥ Õ(g D ) on M ,

h C 2,α β, * (g D ) C D π Õ(g D ) ⊥ P g h r -2 D C α β (g D ) .
Proof The proof is similar to that of Lemma 3.4. The idea is again to extend the symmetric 2-tensors on the model spaces and to deduce a control on the whole tree of singularities.

Let 0 < < 1 2-β D < 0 for D and which we will choose small enough along the proof, and assume that t max < 4 in order to have on each annulus A k := A k (t, ) between N k and N j , the existence of a diffeomorphism

Φ k : A e ( -1 T j √ t k , T j ) ⊂ R 4 /Γ k → A k ⊂ M,
such that for any 0 < β < 1, there exists C > 0,

Φ * k g D -g e C 2,α β (Ae( -1 √ T j √ t k , √ T j )) C 2-β < C D ,
by definition of g D . Until the end of the proof, we will denote

A k := A e ( -1 T j √ t k , T j ).
Let h be a symmetric 2-tensor on M . Thanks to the estimate (13) of Proposition 3 and to its generalization to metrics close to g e by Proposition 7, for D and t max small enough, we can choose constant and traceless symmetric 2-tensors H k on R 4 /Γ k such that we have on A( T j t

1/4 k ) := A e ((1/2) T j t 1/4 k , 4 T j t 1/4 k ) Φ * k h -H k C 2,α 0 (A(T 1/2 j t 1/4 k )) C e -β t β 4 k P ge Φ * k h r -2 e C α β (A k ) + 4 -1 t 1 4 k Φ * k h -H k C 2,α β (A k ) 2C e -β t β 4 k P g D h |A k r -2 D C α β (g D ) + 4 -1 t 1 4 k (h -χ A k H k ) C 2,α β (g D ) . (62) 
Let us then consider the decomposition

h = h * + k χ A k H k .
We define a symmetric 2-tensor h o extending h to M o in the following way: 

h o := χ M t
P go h o r -2 o C α β (go) -CC e k∈Ko (P g D h) |A k r -2 D C α β (g D ) -γ(t max ) h C 2,α β, * (g D ) , (63) 
where γ(t max ) → 0 when t max → 0 (compare with (42) for the vector fields).

Since h ⊥ Õ(g D ), we have

π O(go) ho C 2,α β, * ho C 2,α β, *
→ 0, and by Lemma 4.3, this implies, for t max small enough, the control

h o C 2,α β, * (go) 2C o P o h o r -2 o C α β (go) ,
and the estimate (63) and Lemma 4.5 imply that for t max small enough, there exists C > 0 only depending on the previous constants such that we have

(64) (h * ) |M t o C 0 β (g D ) + k∈Ko |H k | ge -Cγ(t max ) h C 2,α β, * (g D ) C π Õ(g D ) ⊥ P g D h r -2 D C α β (g D ) .
Indeed, on an orbifold (M o , g o ), the constant symmetric 2-tensors of the decomposition in the definition of the norm . C 2,α β, * are determined, see Remark 16.

Let us then consider the symmetric 2-tensor h 1 := h -k∈Ko H k which satisfies for C > 0 depending on the previous constants,

(65) π Õ(g D ) ⊥ P g D h 1 r -2 D C α β (g D ) C π Õ(g D ) ⊥ P g D h r -2 D C α β (g D ) + Cγ(t max ) h C 2,α β, * (g D )
thanks to the control (64) of k∈Ko |H k | ge .

Given j ∈ K o , the Ricci-flat ALE orbifold (N j , g b j ) is glued to M o and we can extend the symmetric 2-tensor h 1 = h * + l / ∈Ko χ A l H l to N j by

h j := χ N t/16 j h * + l∈K j χ B j (p l , ) H l ,
where K j is the set of l / ∈ K o such that A l has a nonempty intersection with the neighborhood of a N t j .

Denoting h j, * := χ N t/16 j h * , we have

(66) h j, * C 2,α β (g b j ) h j, * C 0 β (g b j ) (h * ) |N t j C 0 β (g D ) ,
and by (62) and since g D T j is close to g b j on N t/16 j for t max small enough, we moreover have the following control thanks to (62),

P g D h 1 |N t/16 j r -2 D C α β (g D ) P g b j h j r -2 b j C α β (g b j )
-CC e k∈K j

(P g D h 1 ) |A k r -2 D C α β (g D ) -γ(t max ) h C 2,α β, * (g D ) , (67) 
where γ(t max ) → 0 when t max → 0. We then have a control on (h * ) |N t j and on the H k , for k ∈ K j thanks to Lemma 4.3 by using again the fact that h ⊥ Õ(g D ) which implies that for t max small enough, we have

h j r j C 3,α β, * (g b j ) 2C j P g b j h j r -2 j C α β (g b j ) .
The estimates (67), (62) and Lemma 4.5 then yield

(68) (h * ) |N t j C 0 β + k∈K j |H k | ge -Cγ(t max ) h C 2,α β, * (g D ) C π Õ(g D ) ⊥ P g D h r -2 D C α β (g D ) .
Iterating the above controls to the other Ricci-flat ALE orbifolds of the tree of singularities, we obtain controls similar to (68) on all of the N j and with the control (64), we finally find

1 -Cγ(t max ) h C 2,α β, * (g D ) C π Õ(g D ) ⊥ P g D h r -2 D C α β (g D ) ,
and therefore the stated result for g = g D for t max small enough.

To obtain the same result for a metric g close to g D , we simply apply Proposition 7 to ensure that for gg D C 2,α β, * (g D ) arbitrarily small, P g is arbitrarily close to P g D for the operator norm on C 2,α β, * (g D ). The operator P being self adjoint on a compact manifold, its injectivity implies its surjectivity by integration by parts.

Resolution modulo obstructions of the Einstein equation

Let us now show that we can always solve the Einstein equation modulo obstructions. Let us recall that being Einstein and in reduced divergence-free with respect to a naïve desingularization g D is equivalent to being a zero of the operator Then, there exists τ > 0, > 0 only depending on β and the constants of Lemma 4.3 and of Proposition 3 such that for any naïve desingularization g D := g D t , with t max < τ , and for all v ∈ Õ(g D ) satisfying v C 0 β, * (g D ) < , there exists a unique solution ĝv = ĝt,v to the equation

g D : g → Ric(g) - R(g) 2 g + λg + δ * g δg D g.
g D (ĝ v ) ∈ Õ(g D ),
satisfying the following conditions:

(1) ĝv -g D C 2,α β, * 2 , (2) ĝv -(g D + v) is L 2 (g D )-orthogonal to Õ(g D ).
Proof Let (M, g D t ) = (M, g D ) be a naïve desingularization of an orbifold (M o , g o ) by a tree of singularities (N j , g b j ) j .

Define the operator Ψ :

g D + C 2,α β, * (g D ) → Õ(g D ) ⊥ ∩ r -2 D C α β (g D ) by Ψ(g) := π Õ(g D ) ⊥ g D (g) = π Õ(g D ) ⊥ Ric(g) - R(g) 2 g + λg + δ * g δg D (g) ,
where π Õ(g D ) ⊥ is the L 2 (g D )-orthogonal projection on Õ(g D ) ⊥ . The conclusion of the theorem for v = 0 then rewrites: there exists a unique solution g

∈ g D + Õ(g D ) ⊥ ∩C 2,α β, *
to the equation Ψ(g) = 0.

Let us apply the inverse function theorem, Lemma 3.5, to Ψ. The linearization of the operator Ψ at g D for any symmetric 2-tensor h satisfying M tr g D hdv g D = 0 is

d g D Ψ(h) = π Õ(g D ) ⊥ Pg D (h),
where Pg D is explicited in (53). Let us show that this linearization is invertible at g D and has an inverse which is uniformly bounded as t → 0. We want to go back to the operator P g = 1 2 ∇ * g ∇ g h -Rg (h) for which the invertibility has been shown in Proposition 11. First, by the estimate (34), we have

δg D h -δ g D h r -1 D C 1,α β, * (g D ) Ct 1 2 max h C 2,α β, * (g D )
, and therefore the term -2δ * g δ g h + 2δ * g δg D h of (53) is controlled in the following way

(69) -2δ * g δ g h + 2δ * g δg D h r -2 D C α β (g D ) Ct 1 2 max h C 2,α β, * (g D ) .
Next, notice that the Ricci curvature of g D is almost constant:

(70) Ric(g D ) -Λg D r -2 D C α β Ct 2-β 4 max , because Ric(g D ) -Λg D = 0 for r D > 2t 1/4
max , and on the rest of the manifold, | Ric(g D ) -Λg D | C. Therefore, for t max arbitrarily small, d g D Ψ is close (as an operator from C 2,α β, * to r -2 D C α β ) up a power of t max to the operator π Õ(g D ) ⊥ Pg D , where for a symmetric 2-tensor h,

Pg D (h) := 1 2 ∇ * g D ∇ g D h -2 Rg D (h) -(δ g D δ g D h)g D -∇ 2 g D tr g D h + (∆ g D tr g D h)g D + R g D 4 (tr g D h)g D ,
where we neglected the difference of the divergence terms by (69), and simplified the terms involving the Ricci curvature by (70).

Let us use the following decomposition of a 2-tensor on (M, g D t ): for any symmetric 2-tensor h ∈ C 2,α β, * (g D ), there exists a unique decomposition (71)

h = h T + δ * g D X with (1) a symmetric 2-tensor h T ∈ C 2,α β, * (g D ) satisfying δg D h T = 0, (2) a vector field X ∈ r D C 3,α β, * (g D ) ∩ K⊥ o .
Indeed, according to Lemma 3.4, for any 2-tensor h ∈ C 2,α β, * (g D ), there exists a unique

X ∈ r D C 3,α β, * (g D ) ∩ K⊥ o such that δg D δ * g D X = δg D h.
The decomposition (71) is then h = (h-δ * g D X)+δ * g D X and the sum is L 2 (g D )-orthogonal.

Remark 25 A simple integration by parts shows that a differentiable symmetric 2tensor h on M satisfies δg D if and only if it is

L 2 (g D )-orthogonal to δ * g D (C ∞ (TM) ∩ K⊥ o ).
Similarly, for a symmetric 2-tensor v ∈ r -2 D C α β we have a unique decomposition (72

) v = v T + δ * g D Y
with a symmetric 2-tensor v T orthogonal to δ * g D (C ∞ (TM) ∩ K⊥ o ) and a vector field X ⊥ Ko . Now, we have the following properties:

(1) our metric has almost constant Ricci curvature by (70),

(2) the divergence of the obstructions is arbitrarily small, that is for õ ∈ Õ(g D ), we have

δ g D õ r -1 D C 1,α β õ C 2,α β, * → 0 and δ g D õ r -3 D C 0 β õ r -2 D C α β → 0
as t max → 0 by elliptic regularity .

These imply that for X ∈ r D C 3,α β, * ∩ K⊥ o , one has

(73) π Õ(g D ) ⊥ Pg D (δ * g D X) -δ * g D δg D δ * g D X r -2 D C α β γ(t max ) X r D C 3,α β, *
, for γ : R + → R + with lim 0 γ = 0, and that Consider the decompositions (71) and (72) where we identify the symmetric 2-tensor of the form δ * g D X with the vector field X since

δ * g D : K⊥ o ∩ r D C 3,α β, * → C 2,α β, * and δ * g D : K⊥ o ∩ r -1 D C 1,α β, * → r -2 D C α β, * are injective. Thanks to (73), the operator π Õ(g D ) ⊥ Pg D : C 2,α β, * → r -2 D C α β decomposes blockwise (74) π Õ(g D ) ⊥ Pg D = δg D δ * g D 0 0 π Õ(g D ) ⊥ Pg D + A g D
where A g D is an arbitrarily small (for t max arbitrarily small) operator between the same spaces, and

Pg D (h) := 1 2 ∇ * g D ∇ g D h -2 Rg D (h) -∇ 2 g D tr g D h + (∆ g D tr g D h)g D + R g D 4 (tr g D h)g D .
Given the shape of the matrix in (74), it is enough to show that

δg D δ * g D : K⊥ o ∩ r D C 3,α β, * → K⊥ o ∩ r -1 D C 1,α β, * and π Õ(g D ) ⊥ Pg D : Õ(g D ) ⊥ ∩ C 2,α β, * → Õ(g D ) ⊥ ∩ r -2 D C α β
are invertible with inverse bounded independently of t max . This is already the case for δg D δ * g D thanks to Lemma 3.4.

Let us now focus on π Õ(g D ) ⊥ Pg D . For any symmetric 2-tensor v, we have an L 2 (g D )orthogonal decomposition into a conformal and traceless part

(75) v = tr g D v 4 g D + v - tr g D v 4 g D .
Now, we have

tr g D π Õ(g D ) ⊥ Pg D (h) = tr g D Pg D (h) -tr g D π Õ(g D ) Pg D (h)
and since for an element õ of Õ(g D ), we have (76)

(tr g D õ)g D r -2 D C α β õ r -2 D C α β → 0 and (77) 
(tr g D õ)g D C 2,α β, * õ C 2,α β, *
→ 0 as t max → 0, the operator tr g D (π Õ(g D ) ⊥ Pg D ) is arbitrarily close to the operator tr g D Pg D

(as operators from C 2,α β, * to r -2 D C α β ) which is itself arbitrarily close to ∆ g D + Λ for t max arbitrarily small because our metric is almost Einstein according to (70).

For the traceless part of π Õ(g D ) ⊥ Pg D (h), recall that for any symmetric 2-tensor h, we have the following decomposition

π Õ(g D ) ⊥ Pg D (h) -tr g D π Õ(g D ) ⊥ Pg D (h) g D 4 = π Õ(g D ) ⊥ Pg D (h) -tr g D Pg D (h) g D 4 -tr g D Pg D (h) π Õ(g D ) g D 4 + tr g D π Õ(g D ) Pg D (h) g D 4 . ( 78 
)
Using the control (70) once more together with (76) and (77), we neglect the last two terms of (78) and see that the traceless part of π Õ(g D ) ⊥ Pg D (h) is arbitrarily close to the

firsts term π Õ(g D ) ⊥ Pg D (h) -tr g D Pg D (h) g D 4 , that is, to π Õ(g D ) ⊥ P g D (h) -∇ 2 g D tr g D h -∆ g D (tr g D h) g D 4 .
Let us therefore decompose h and the operator π Õ(g D ) Pg D (h) in conformal and traceless parts. Block-wise, we obtain the following operator:

π Õ(g D ) ⊥ Pg D = ∆ g D + Λ 0 π Õ(g D ) ⊥ ∆ g D tr g D h g D 4 -∇ 2 g D tr g D h π Õ(g D ) ⊥ P g D + A g D where A g D : C 2,α β, * → r -2 D C α
β is an arbitrarily small operator for t max arbitrarily small. There remains to show that the operator

∆ g D + Λ 0 π Õ(g D ) ⊥ ∆ g D tr g D h g D 4 -∇ 2 g D tr g D h π Õ(g D ) ⊥ P g D from C 2,α β, * to r -2 D C α β
is invertible with a uniformly bounded inverse (independently of t) for t max small enough. Given the shape of the matrix, it is enough to show it for the two diagonal blocks since the operator at the bottom left is uniformly bounded. The operator ∆ g D + Λ is invertible with a uniformly bounded inverse thanks to Lichnerowicz eigenvalue estimate, see [And10, Section 5] for instance, and the estimate (70). This is also the case for π Õ(g D ) ⊥ P g D thanks to Proposition 11.

We conclude that the linearization of Ψ at g D is invertible with a bounded inverse as it is arbitrarily close to an invertible operator.

Remark 26 The operator Pg D itself is not self adjoint because the metric g D is not Einstein. Indeed, all of the terms are self adjoint except -∇ 2 g tr g h, -(δ g δ g h)g, and Ric g , h g g, and we remark that the adjoint of h → ∇ 2 g tr g h is h → (δ g δ g h)g. However, the term h → Ric g , h g g whose adjoint is h → (tr g h) Ric g prevents Pg D to be self adjoint when g D is not Einstein.

To apply the inverse function theorem, Lemma 3.5 to the operator Ψ, there remains to control the non-linear terms. Since the variations of the Ricci curvature for a variation h of a metric g, are schematically,

Ric(g + h) = Ric(g) + (g + h) -1 * Rm(g) + (g + h) -2 * ∇ 2 h + (g + h) -3 * ∇h * ∇h,
where * refers to diverse multilinear operations and by Remark 12, the non-linear terms

Q g D (h) := Ψ(g D + h) -Ψ(g D ) -d g D Ψ(h) satisfy the control Q g D (h)-Q g D (h ) r -2 D C α β (g D ) C h C α 0 (g D ) + h C α 0 (g D ) h -h 2 C α 0 (g D ) Rm(g D ) r -2 D C α β (g D ) + h -h C α 0 (g D ) ∇ 2 h r -2 D C α β (g D ) + ∇ 2 h r -2 D C α β (g D ) + h C α 0 (g D ) + h C α 0 (g D ) ∇ 2 (h -h ) r -2 D C α β (g D ) + 2 ∇(h -h ) r -1 D C α β (g D ) ∇h r -1 D C α β (g D ) + ∇(h ) r -1 D C α β (g D ) 3C h C 2,α β, * (g D ) + h C 2,α β, * (g D ) h -h C 2,α β, * (g D ) .
We moreover have the control

Ψ(g D ) r -2 D C α β (g D ) Ct 2-β 4 max .
Hence, according to the inverse function theorem, Lemma 3.5, for t max small enough, there exists a unique solution ĝ with ĝg D ⊥ Õ(g D ), to the equation

Ψ(ĝ) = 0 satisfying moreover g D -ĝ C 2,α β, * (g D ) Ψ(g D ) r -2 D C α β (g D ) Ct 2-β 4 max .
Now, we have only solved the equation in the neighborhood of g D and on the orthogonal of Õ(g D ). For v ∈ Õ(g D ) we study the operator g → Ψ(g + v). The control of the non-linear terms is exactly the same for this operator, and for v arbitrarily small, its linearization at g D is arbitrarily close to d g D Ψ which is invertible. As a consequence, there exists > 0 such that for all v C 0 β (g D ) < , there exists a unique solution ĝv of

Ψ(ĝ v ) = 0 with ĝv -(g D + v) ⊥ Õ(g D ).
Remark 27 By adding v, we however damage the estimate on Ψ(g D + v) which becomes ( 79)

Ψ(g D + v) r -2 D C α β (g D ) C v 2 C 2,α β (g D ) + t 2-β 4
max .

We will see later in Section 5.1 that without an integrability assumption, we cannot hope for a better estimate.

Corollary 4 With the notations of Theorem 4.6, the map v → ĝv is analytic.

Proof This is a consequence of the implicit function theorem for analytic functions, see [START_REF] Whittlesey | Analytic Functions in Banach Spaces[END_REF] for instance. Let us define the map

(v, h) → Ψ(ĝ 0 + v + h) from Õ(g D ) × Õ(g D ) ⊥ ∩ C 2,α β, * to Õ(g D ) ⊥ ∩ r -2 D C α β (g D )
where we denote

Ψ(g) := π Õ(g D ) ⊥ g D (g) = π Õ(g D ) ⊥ E(g) + δ * g δg D (g) ,
like in the proof of Theorem 4.6 and where ĝ0 is the solution of Theorem 4.6 for v = 0.

The map (v, h) → Ψ(ĝ 0 + v + h) is analytic since E and g → δ * g are, and since δg D and π Õ(g D ) ⊥ are linear. We know that ĝ0g D Ct 2-β 4 max , and that d g D Ψ is invertible thanks to the proof of Theorem 4.6, hence d ĝ0 Ψ is also invertible.

The implicit function theorem for analytic functions, see [START_REF] Whittlesey | Analytic Functions in Banach Spaces[END_REF], then implies, by the uniqueness of the solution ĝv of Theorem 4.6 that for v small, the map v → ĝv -(g D + v) is analytic and that v → ĝv is analytic too.

Remark 28 The previous analysis of Theorem 4.6 extends to partial desingularizations.

More precisely, let S o be a subset of the singularities of M o and for each j, S j a subset of the singularities of N j and denote S = (S o , (S j ) j ) and M S := M o # j N j (# means gluing the ALE spaces at orbifold singularities) where the gluings are given by some gluing pattern D.

For t max,S and v small enough, the metric g D S = g D S,t iteratively defined just like in Definition 1.6 can be perturbed to a unique solution ĝS,v = ĝS,t,v to the equation

(80) g D (ĝ S,v ) ∈ Õ(g D S ),
satisfying the following conditions:

(1) ĝS,v -g D S C 2,α β, * (g D S )
2 , where C 2,α β, * (g D S ) is the partial desingularization norm of Remark 9,

(2) ĝS,v -g D S,v is L 2 (g D S )-orthogonal.
Thanks to Corollary 3, we have the following result.

Corollary 5 Let D 0 , v 0 > 0, l ∈ N, and β = β(v 0 , D 0 ) > 0 obtained in Corollary 2. Then, for all > 0, there exists δ = δ( , D 0 , v 0 , l) > 0 such that if (M, g E ) is an Einstein manifold satisfying

• the volume is bounded below by v 0 > 0,

• the diameter is bounded above by D 0 ,

• the Ricci curvature is bounded | Ric | ≤ 3.

and such that for an Einstein orbifold (M o , g o ), we have

d GH (M, g E ), (M o , g o ) δ,
then, there exists a naïve desingularization (M, g D t,v ) of (M o , g o ) by a tree of singularities, and a diffeomorphism ψ : M → M such that

ψ * g E = ĝt,v ,
where ĝt,v is the perturbation of g D t + v of Theorem 4.6. By analogy with the definition of [START_REF] Koiso | Einstein Metrics and Complex Structures[END_REF] of the premoduli space of Einstein metrics around a smooth one, we define de directional premoduli space in the neighborhood of a singular metric in the following way.

Premoduli space of Einstein metrics around a singular one

Definition 4.7 (Directional premoduli space) We define E D go (M), the premoduli space of Einstein metrics on M in the neighborhood of (M o , g o ) and in the direction D, as the set of metrics g on M for which there exists t such that we have gg D t C 2,α β, * (g D t ) < for > 0 the constant of Theorem 4.6 and v ∈ Õ(g D t ) for which we have:

(1) E(g) = 0, Vol(g) = Vol(g o ), (2) g -g D t + v ⊥ g D t Õ(g D t ), (3) δg D t g = 0.
Remark 29 The above premoduli space is directional in the sense that it does not cover all of the Gromov-Hausdorff desingularizations of (M o , g o ), but only the ones whose tree of singularities is D. Given an arbitrary sequence (g i ) i of smooth Einstein metrics on M d GH -converging to (M o , g o ), then, up to considering a subsequence, all of the metrics g i are in a single directional premoduli space E D go (M).

The result of [START_REF] Ozuch | Noncollapsed degeneration of Einstein 4-manifolds I[END_REF] together with Theorem 4.6 yield the following statement.

Corollary 6 The directional premoduli space E D go (M) is the zero-set of E on the set denoted Ŵ of metrics ĝt,v in the C 2,α β, * (g D t )-neighborhoods of the metrics g D t of Theorem 4.6.

Since E is analytic, Koiso's proof of Theorem 0.2 reduces to proving that W is an analytic submanifold by implicit function theorem. Therefore the question of the regularity of the d GH -completion of E(M 4 ), E(M 4 ) ∪ ∂ o E(M 4 ), reduces to the question of the regularity of the set Ŵ of the Einstein modulo obstructions metrics of Theorem 4.6.

Obstructions to the Gromov-Hausdorff desingularization

Let us now come to the main application of this article, which is the obstruction to the desingularization of Einstein orbifolds.

Analysis of integrable Ricci-flat ALE spaces

In order to obtain an obstruction result we will need to assume that the Ricci-flat ALE metrics in the trees of singularities have integrable Ricci-flat deformations.

Integrable Ricci-flat ALE

Since Corollary 2 does not control the convergence speed towards the limit orbifold or the Ricci-flat ALE spaces, like in Theorem 4.6, we have to fix a gauge v ∈ Õ(g D ) on the approximate kernel of the operator P.

Not to damage our controls, we cannot simply use g D + v as an approximate metric. We need to find a better approximation to extend Proposition 13 to the case when v = 0. It turns out that this will only be possible if we assume that the Ricci-flat ALE metrics are integrable. 

Weighted Hölder spaces and asymptotics of Ricci-flat ALE spaces

Let us introduce yet another function space to control the asymptotics of our ALE metrics. This will be crucial to deduce obstructions in the following sections. (81)

C -1 (1 + r b ) 4 Pg b h r -2 b C α β h C 2,α β, * * C (1 + r b ) 4 Pg b h r -2 b C α β .
Proof By the theory of elliptic operators in weighted Hölder spaces (see for instance [PR78, Chapter 2]), the operator Pg

b : (1 + r b ) -4 C 2,α -β → (1 + r b ) -4 r -2 b C α -β
is Fredholm with kernel O(g b ) and cokernel O(g b ) because there is no other exceptional value than 0 between 2 and -4. This implies that Pg

b : (1 + r b ) -4 C 2,α -β ∩ O(g b ) ⊥ → (1 + r b ) -4 r -2 b C α -β ∩ O(g b ) ⊥
is invertible with a bounded inverse.

Moreover, we have P-1

g b (1 + r b ) -4 r -2 b C α β = C 2,α
β, * * since -4 is the first negative exceptional value for P, and the stated inequality comes from the fact that the inverse is bounded.

Similarly for vector fields, we have the following result.

Lemma 5.5 Let (N, g b ) be an ALE orbifold. Then, there exists C > 0 such that for any vector field X on N , we have

(82) X r b C 3,α β, * * C (1 + r b ) 4 δ g b δ * g b X r -1 b C 1,α β .
In particular the analysis of Theorem 4.6 and Proposition 10 extends to the case where (M o , g o ) is a Ricci-flat ALE orbifold and where the norm C 2,α β, * (g o ) is replaced by C 2,α β, * * (g o ) thanks to Lemma 5.4 and r o C 3,α β, * (g o ) is replaced by r o C 3,α β, * * (g o ) thanks to Lemma 5.5. Indeed, all of the controls are local around the singular points or coming from an estimate on the inverse on the rest of the orbifold exactly like (81) and (82). For the operator P, this yields the following control on the asymptotic terms on the ALE end.

Corollary 7 Let (N, g b ) be a Ricci-flat ALE orbifold, and denote (N B , g B t ) a naïve desingularization of (N, g b ) by a tree of Ricci-flat ALE orbifolds glued according to a pattern B with relative scales t.

For v and t small enough depending on the constants of Lemma 4.3, let ḡt,v be the unique metric (according to Theorem 4.6) satisfying for > 0 small enough:

(1)

g B t -ḡt,v C 2,α β, * (g B t ) < 2 , ( 2 
) (g B t + v) -ḡt,v is L 2 (g B t )-orthogonal to Õ(g B t )
, and

(3) π Õ(g B t ) ⊥ g B t (ḡ t,v ) = 0.
Then, for any 0 < β < 1, we have

ḡt,v = g e + H4 t,v + O(r -4-β B ), for | H4 t,v | ∼ r -4
B and H4 t,v → H4 , the asymptotic terms of (N, g b ) as (t, v) → (0, 0).

Similarly, using Lemma 5.5, we can put our ALE metrics in gauge with respect to each other. The nonlinear terms are taken care of like in Proposition 10 by noting that the weight of our norm, (1 + r b ) 4 r -1 b , is this time also larger than 1 at infinity.

Corollary 8 Let 0 < β < 1, let (N, g b ) be a Ricci-flat ALE orbifold, and denote (N B , g B t ) a naïve desingularization of (N, g b ) by a tree of Ricci-flat ALE orbifolds glued according to a pattern B with relative scales t.

Then, there exist B , τ B , C B > 0 which only depend on the metrics g b and the elements of B such that for t max τ B and for any metric g satisfying g -

g B t C 2,α β, * * (g B t )
B , there exists a unique vector field X on M for which,

δg B t (exp * X g) = 0,
where exp X is the diffeomorphism exp

X : x ∈ M → exp g B t x (X(x)).
We moreover have, X r B C 3,α

β, * * (g B t ) C B (1 + r B ) 4 δg B t (g -g B t ) r -1 B C 1,α β (g B t )
, and therefore, there exists η : R + → R + with lim 0 η = 0 such that we have

exp * X g -g C 2,α β, * * (g B t ) η g -g B t C 2,α β, * * (g B t )
.

Approximate Einstein modulo obstructions metric

Let (M o , g o ) be an Einstein orbifold and let p be one of its singular points whose singularity model is R 4 /Γ.

Let us now construct a good approximation of the metric ĝt,v of Theorem 4.6, which we will denote g A t,v . This is a crucial step to understand and approximate the obstructions coming from the Ricci-flat ALE spaces appearing at a singular point p ∈ M o . In all of this section, we will assume the following properties:

• (M, g D t ) is a naïve desingularization of (M o , g o ),
• at the singular point p ∈ M o , there is only one Ricci-flat ALE manifold (N, g b ) glued, and therefore no tree of singularity,

• (N, g b ) is an integrable Ricci-flat ALE manifold.

Consider S the complement of {p} among the singular points of M o , let (M S , g D S = g D S,t S ) be a naïve partial desingularization of (M o , g o ) which only leaves the point p singular and let (M S , ĝS = ĝS,t S ,v S ) be the perturbation of (M S , g D S + v S ) orthogonally to Õ(g D S ) of Theorem 4.6 satisfying For some small v p ∈ O(g b ), we will glue a Ricci-flat deformation ḡb,vp of g b at a scale t p to ĝS . To obtain a better estimate, we will extend the quadratic terms of ĝS in order to minimize the error in the gluing.

Proposition 12 Let (N, g b ) a Ricci-flat ALE orbifold asymptotic to R 4 /Γ, ĤS a quadratic symmetric 2-tensor on R 4 /Γ, λ ∈ R and O S a constant symmetric 2-tensor on R 4 /Γ such that we have:

Pe ĤS + λg e = O S .

Then, there exists a 2-tensor ĥS , and for (o j ) j an L 2 -orthonormal basis of O(g b ), real numbers λj such that ( ĥS , λj ) is a solution of (85) Pb ĥS

+ λg b = χO S + j λj o j , | ĥS -χ ĤS | g b = O(r -2 b )
, where χ is a cut-off function supported in a neighborhood of the infinity of (N, g b ) where the ALE coordinates are defined, and where (86) λj := -

S 3 /Γ 3 ĤS , O 4 j ge + O 4 j ∇ e tr e ĤS , ∂ re dv S 3 /Γ + N χ O S , o j g b dv b .
The set of solutions to the above equation ( 85) is ( ĥS

+ O(g b ), λj ). Proof We have Pb (χ ĤS ) + λg b -χO S ∈ r -2 b C α β (g b ) for 0 < β < 1 because in a neighborhood of infinity, g b -g e = O(r -4
b ) together with the derivatives. Lemma 4.3 also holds by replacing the operator P b by the operator Pb as a consequence of Theorem 4.6 in the case where (M o , g o ) = (N, g b ) is a Ricci-flat ALE manifold. Consequently, there exists ĥ ∈ C 2,α β (g b ) such that Pb (χ ĤS + ĥ ) + λg b = χO S + j λj o j with (87) λj = -

S 3 /Γ 3 ĤS , O 4 j ge + 1 2 O 4 j ∇tr ĤS , ∂ re dv S 3 /Γ + N χ O S , o j g b dv b ,
where O 4 j ∼ r -4 b is the first term of the development of o j at infinity. Indeed, by integration by parts, and using the fact that tr b o j = g b , o j g b = 0 and δ b o j = 0, we get,

Pb (χ ĤS ), o j L 2 = 1 2 lim ρ→∞ r b ρ ∇ * b ∇ b (χ ĤS ) -∇ 2 b (tr b χ ĤS ) , o j dv g b = 1 2 lim ρ→∞ r b =ρ χ ĤS , ∇ n o j -∇ n (χ ĤS ) , o j + o j (∇ b (tr b χ ĤS ) , ∂ re ) dS ρ = - S 3 /Γ 3 ĤS , O 4 j ge + 1 2 O 4 j ∇ e tr e ĤS , ∂ re dv S 3 /Γ . Now, the integral N χ O S , o j g b dv b converges even if O S , o j g b = O(r -4 b ). Indeed, in ALE coordinates, r 4 b o j = φ ij dx i dx j + O(r -1 b )
, where the φ ij : S 3 → R are nonconstant eigenfunctions and therefore have zero mean values, hence, {r b =ρ} O S , o j g b dS ρ = O(ρ -2 ) and the integral converges. The values of λj from (87) therefore ensure that we have Pb (χ ĤS )

+ λg b -χO S - j λj o j ⊥ g b O(g b ).
Choosing t S , t p > 0, v S ∈ Õ(g D S,t S ) and v p ∈ O(g b ), by gluing metric ḡb,vp at scale t p to ĝS,v S ,t S , we reach all of the gauges of Theorem 4.6, that is we attain some element of (g D t + v) + Õ(g D t ) ⊥ for any small v and t.

We define Õtp (ḡ b,vp ) as the cut-off of the elements of O(ḡ b,vp ) as in Definition 4.4 at scale t p . We denote ĥS (t, v) the 2-tensor satisfying ĥS (t, v) ⊥ ḡb,vp Õtp (ḡ b,vp ) obtained in Proposition 12 with the Ricci-flat ALE metric ḡb,vp and ĤS the quadratic terms of ĝS = ĝS,t S ,v S .

Definition 5.6 (Approximate metric g A t,v ) Let v ∈ Õ(g D t ) for (M, g D t ) a naïve desin- gularization of (M o , g o ).
The Riemannian manifold (M, g A = g A t,v ) is obtained by naïve gluing (Definition 1.6) of (N, ḡb,vp + t p ĥS (t, v)) to (M S , ĝS,t S ,v S ) at scale t p > 0.

The numbers t p , t S > 0, v p ∈ O(g b ) and v S ∈ Õ(g D S ) are chosen in order to have

g A t,v -(g D t + v) ⊥ Õ(g D t ).

Better approximation and obstructions

The obstruction will come from the better controls of g A t,v and the following proposition.

Proposition 13 Let 0 < α < 1, and (M, g D t ) be a naïve desingularization, and assume that for t max < τ , the metric (M, ĝ = ĝt,v ) obtained by Theorem 4.6 is an Einstein metric (without obstructions). Then, there exists > 0 and C > 0 only depending on g o and the g b j , such that, denoting

Ψ(g A t,v ) := π Õ(g D ) ⊥ g D t (g A t,v ) and o A t,v := π Õtp (ḡt p,vp )g D t (g A t,v ), we have (88) ĝt,v -g A t,v C 2,α β, * (g D t ) C Ψ(g A t,v ) r -2 D C α β (g D t )
, and

o A t,v L 2 (g D ) Ψ(g A t,v ) r -2 D C α β (g D ) + t 1 2 + β 4 p Ψ(g A t,v ) r -2 D C α β (g D ) . (89) 
Proof Let us denote g A := g A t,v , ĝ := ĝt,v and h A := ĝg A as well as ḡb = ḡb,vp for simplicity. The inequality (88) is a direct consequence of the proof of Theorem 4.6 because the proof uses an inverse function theorem. Indeed, at the linear level, by Lemma 4.3, we have

(90) ĝ -g A C 2,α β, * (g D ) C π Õ(g D ) ⊥ Pg D (ĝ -g A ) r -2 D C α β (g D ) .
Since Ψ(ĝ) = 0, the controls of the nonlinear terms of Ψ imply that

Ψ(g A ) r -2 D C α β (g D ) π Õ(g D ) ⊥ Pg D (ĝ -g A ) r -2 D C α β (g D ) -C ĝ -g D C 2,α β, * (g D ) + g A -g D C 2,α β, * (g D ) ĝ -g A C 2,α β, * (g D ) . (91) 
We moreover know that g

A -g D C 2,α β, * (g D ) 2 and ĝ -g D C 2,α β, * (g D ) = O(t 2-β 4 
max ) thanks to the proof of Theorem 4.6 and by assumption. Therefore, choosing and t max small enough and putting the estimates (90) and (91) together yields the expected control (88).

Let us focus on the zone N t where the elements of Õtp (ḡ b,vp ) are supported. For õ ∈ Õtp (ḡ b,vp ), we have

| Pg A h A , õ L 2 (g D ) | | ( Pg A -Ptp ḡb )h A , õ L 2 (tp ḡb ) | + | Ptp ḡb h A , õ L 2 (tp ḡb ) | = | ( Pg A -Ptp ḡb )h A , õ L 2 (tp ḡb ) | + | t -1 p h A , Pḡ b õ L 2 (ḡ b ) |, (92) 
since Pḡ b is self dual and since the L 2 -product of 2-tensor is invariant by rescaling in dimension 4 as well as the rescaling behavior of P. Now, we have the following estimates on N t = {r b < 2t p }, and

(3) 88). We can therefore control the terms of (92) in the following way:

r k D |∇ k tp ḡb h A | tp ḡb C(t -1 2 p r D ) -β Ψ(g A ) r -2 D C α β (g D ) by (
| Pg A h A , õ L 2 (g D ) | C Ψ(g A ) r -2 D C α β (g D ) t 1 4 p t 1 2 p r √ t p -β r √ t p -4 r 3 dr + Ψ(g A ) r -2 D C α β (g D ) 2t -1 4 p t -1 4 p t -1 p r -β r -6 r 3 dr C Ψ(g A ) r -2 D C α β (g D ) t 2+ β 4 p + t 1 2 + β 4 p C Ψ(g A ) r -2 D C α β (g D ) t 1 2 + β 4 p . ( 93 
) Let o A = o A t,v := π Õtp (ḡ b,vp )g D (g A ), since g D (ĝ) = 0, and d g A g D = Pg A . We have -o A 2 L 2 (g D ) = g D (ĝ) -o A , o A = Ψ(g A ) + Pg A h A + Q g A (h A ), o A , (94) 
where the non-linear terms

Q g A (h A ) = g D (ĝ) -g D (g A ) -Pg A (h A ) satisfy (95) Q g A (h A ) r -2 D C 0 (M) C h A 2 C 0 β, * C Ψ(g A ) 2 r -2 D C 0 β (g D )
, and by definition of the weighted norms, since r -2

D C α β (g D ) ⊂ L 2 (g D ), we therefore have for o ∈ Õ(g D ), | o, Q g A (h A ) L 2 (g D ) | C o L 2 Ψ(g A ) 2 r -2 D C 0 β (g D ) .
Hence, since Ψ(g A ) ⊥ g D o A by definition of Ψ, we have by (94), and thanks to (93) and (95) we therefore have

o A L 2 (g D ) C Ψ(g A ) r -2 D C α β (g D ) + t 1 2 + β 4 p Ψ(g A ) r -2 D C α β (g D ) .
Remark 31 The inequality (88) means that if we are able to construct a metric g A such that Ψ(g A ) is small, then g A is a good approximation of ĝ, the only zero of Ψ. This allows us to approximate the metrics ĝ, and therefore degenerating Einstein metrics with an arbitrarily good precision.

The inequality (89) is an obstruction result. Indeed, if we construct a good approximation g A , for which Ψ(g A ) is small, but without having o A small, then ĝ cannot be Einstein, and the metric g A (and therefore g D ) cannot be perturbed to an Einstein metric orthogonally to Õ(g D ).

Let us now control the above quantities of (89) for g A t,v .

Proposition 14 For (t S , t p ) > 0 small enough and k ∈ N, denoting (õ j ) j an orthonormal basis of Õtp (ḡ tp,vp ) there exist real numbers ( λj = λj (t, v)) j and C k > 0 such that we have

(96) π Õ(g D ) ⊥ g D (g A t,v ) r -2 D C k β (g D ) C k t 3-β 4 p ,
and, for any i 0 , we have

(97) g D (g A t,v ) -t p j λj õi , õi 0 L 2 (g D ) C 0 t 5 4 p .
Remark 32 If we did not use the partial Einstein modulo obstructions desingularization ĝS , we would only have a control with powers of t max instead of t p . In particular, we would not be able to later prove that an obstruction holds at all of the singular points, but just at one of them.

Proof Let us again use the following notations along this proof: g A := g A t,v , ḡb = ḡb,vp , ĝS = ĝS,t S ,v S for simplicity.

On M 16t

S , we have by assumption (98)

g D S (ĝ S ) = o S ∈ Õ(g D S ),
and on N 16t , we have

tp ḡb (t p (ḡ b,vp + t p ĥS )) = χO S + t p j λj o j + O(r 2 D ). (99) 
Now, since at the point p, the development of ĝS in local coordinates where the metric is divergence-free gauge with respect to g e is (100) ĝS = g e + ĤS + O(r 3 o ), and since t p (ḡ b,vp + t p ĥS ) has the following development for t

-1 4 p r b 2t -1 4 p (101) t p (ḡ b,vp + t p ĥS ) = g e + ĤS + O(t 2 p r -2 b + t p r -4 b )
, with corresponding controls for the derivatives up to order 2. On the annulus of radii p , recalling that r D = r o = √ t p r b , for k ∈ N, we have

r k D |∇ k g D ĝS -(t p ḡb,vp + t p ĥS ) | g D = O(r 3 D + t 2 p (t -1 2 p r D ) -2 + t p (t -1 2 p r D ) -4 ) = O(t 3 4 p + t 3 2 p + t p ) = O(t 3 4 p )
thanks to (100) and (101). By definition of the gluing, this yields

r 2+k D |∇ k g D t π Õ(g D t )g D t (g A t,v ) | = O t 3 4 p , (102) 
According to (98), ( 99) and (102), we have the estimate (96).

Finally, we have the control (97) thanks to (101), (99) and (102):

t p | λj (t, v)| C t 3-β 4 p + t 2+β 4 p t 3-β 4 p Ct 5 4
p Lemma 5.7 Let λj (t, v) be the real numbers of Proposition 12 obtained by extending ĤS , the quadratic terms of ĝS = ĝS,t S ,v S on (N, ḡb,vp ), and let λj be the ones obtained by extending the divergence-free quadratic terms of g o on (N, g b ). Then as t, v → 0, we have

(103) | λj (t, v) -λj | ------→ (t,v)→(0,0) 0.
Proof We have the expression

λj (t, v) = - S 3 /Γ 3 ĤS (t S , v S ), O 4 j (v p ) ge + O 4 j (v p ) ∇ e tr e ĤS (t S , v S ), ∂ re dv S 3 /Γ + N χ O S (t S , v S ), o j (v p ) dv b
thanks to Proposition 12. Since we want to show that it converges, as (t, v) → 0, to λj := -

S 3 /Γ 3 ĤS , O 4 j ge + 1 2 O 4 j ∇ e tr e ĤS , ∂ re dv S 3 /Γ .
We therefore just have to show that as (t, v) → 0, we have

(1) ĤS (t S , v S ) → ĤS in r 2 e C 1 0 (g e ), (2) |O S (t S , v S )| ge → 0, and (3) O 4 j (v p ) → O 4 j in r -4 e C 0 0 (g e ).
Thanks to Theorem 4.6, we know that ĝS,t S ,v S converges smoothly to g o on compacts of M o \S as (t S , v S ) → (0, 0), in particular, we have smooth convergence on small neighborhoods of p. Therefore, the quadratic terms of the expansion of ĝS,t S ,v S converge to those of g o as (t S , v S ) → (0, 0). Consequently, the obstruction O S (t S , v S ) = Pe ĤS (t S , v S ) + λ(t S , v S )g e also converges to Pe ĤS + λg e = 0.

Similarly, thanks to Corollary 7, the asymptotic term of ḡb,vp converge to the asymptotic terms of g b as v p → 0.

Remark 33 We needed to consider partial desingularizations to obtain these controls.

Remark 34 Thanks to the computations of [Biq17, Proposition 4], it turns out that generically (when the self-dual part of the curvature at p, R + is of rank 2 and Λ = 0), the difference λj (t, v)

-λj = v, o j o j (R + ) -Λo j + O( v 2 C 2,α β, *
) does not vanish.

Remark 35 If there were non integrable infinitesimal deformations of g b , we a priori could not expect to prove an obstruction result by the above techniques. Indeed, the metric has an expansion ḡb,vp = g b + v p + w + O(|v p | 3 ), where w satisfies:

Q(2) g b (v p , v p ) + Pg b (w) = π O(g b ) Q(2) g b (v p , v p ) ∈ O(g b ),
and we potentially have

π O(g b ) Q(2) g b (v p , v p ) = O(|v p | 2 ) if v p is not integrable. By considering the metric 1 tp g A t,v , we have the following development of g b on N 16t , g b 1 t p g A t,v = g b (ḡ b,vp ) + t p Pb ( ĥS ) + t p Q (2) g b (v p , ĥS ) + O(t 2 p ).
Up to the order t 2 p there are three different sources of obstructions:

(1) the projection of

g b (ḡ b,vp ) = O(|v p | 2 ) on O(g b ),
(2) the projection of t p P b ( ĥS ) = O(t p ) on O(g b ), and

(3) the projection of

t p Q (2) g b (v p , ĥS ) = O(t p |v p |) on O(g b ).
Hence, we can only "see" the obstructions which are

O(t p ) if Ric(ḡ b,vp ) = 0, or if |v p | 2 t p .
By adapting the end of the proof of [Biq13, Proposition 3.1], we get the following useful result.

Corollary 9 Let H 2 be a quadratic symmetric 2-tensor satisfying d e Ric(H 2 ) = Λg e , and let V ∼ r 3 e be a homogeneous vector field which satisfies δ e δ * e V = -δ e H 2 , and define ĤS := H 2 + δ * e V which satisfies δ e ĤS = 0. Then, we have λj = λ j , where λj := -

S 3 /Γ 3 ĤS , O 4 j ge + 1 2 O 4 j ∇ e tr e ĤS , ∂ re dv S 3 /Γ , and 
λ j := - S 3 /Γ 3 H 2 , O 4 j ge + O 4 j B e H 2 , ∂ re dv S 3 /Γ

Obstruction to the Gromov-Hausdorff desingularization

We can finally conclude that there are obstructions to the desingularization of some Einstein orbifolds.

Theorem 5.8 Let (M o , g o ) be an Einstein orbifold, and (M i , g i ) i a sequence of Einstein manifolds converging to (M o , g o ) in the Gromov-Hausdorff sense and assume that, at a singular point p ∈ M o , the possible non-flat blow-up limits are integrable Ricci-flat ALE manifolds (which implies that there are no tree of singularities forming).

Then, if we denote H 2 the quadratic terms of the development of g o in geodesic coordinates at p, and (O 4 j ) j the r -4 b -terms of a basis of O(g b ), we have:

(104)

S 3 3 H 2 , O 4 j + O 4 j (B e H 2 , ∂ re ) dv S 3 = 0.
Proof Let (M o , g o ) be an Einstein orbifold, and assume that there exists a sequence of Einstein metrics (M i , g i ) i converging to (M o , g o ) in the Gromov-Hausdorff sense whose blow-ups at the singular point p satisfy the assumptions of the theorem. According to Corollary 3, for i large enough, there exists a naïve desingularization of (M o , g o ), (M,

g D ti ), v i ∈ Õ(g D ti ), t i , v i → 0 and a diffeomorphism φ i : M → M such that φ * i g i = ĝti
,vi is the Einstein modulo obstructions perturbation of g D ti + v i of Theorem 4.6. Let us fix p a singular point of M o and denote S the rest of the singularities of M o . Assume that no tree of singularities forms at p and denote (N, g b ) the Ricci-flat ALE manifold limit of blow-ups at p.

According to Proposition 14, there exists an approximation g A ti,vi satisfying

π Õ(g D ti ) g D ti (g A ti,vi ) r -2 D C α β (g D ti ) Ct 3-β 4 p,i , and consequently (105) t p,i j λj (t 
i , v i )õ j ti,vi L 2 t 5 4 p,i
where the (õ j ti,vi ) j form an L 2 -orthonormal basis of elements of Õtp (ḡ b,vp,i ), and (1)

g A ti,vi -g D ti C 2,α β, * (g D ti )
2 ,

(2)

g A ti,vi -(g D ti + v i ) is L 2 (g D ti )-orthogonal to Õ(g D ti )
. The estimate (105) implies that we have

(106) t p,i | λj (t i , v i )| Ct 5 4 p,i t p,i .
Now, we know that t i , v i → 0, and according to Lemma 5.7, this implies that the λj (t i , v i ) converge to λj . Since the λj are only constants depending on the geometry of (M o , g o ) and that of (N, g b ), they must necessarily vanish to satisfy the inequality (106) for t i arbitrarily small. By coming back to the expression of λj of (86) we find the obstruction. We can finally extend it in geodesic coordinates (for example) to obtain (104) thanks to Corollary 9.

Obstructions for known singularity models

The description of the previous section allowed us to find obstructions to the desingularization of Einstein orbifolds by smooth Einstein manifolds. We will now test them on the known examples and first show that the obstruction to the desingularization by gluing-perturbation of an Eguchi-Hanson metric of [START_REF] Biquard | Désingularisation de métriques d'Einstein[END_REF] also holds for any Gromov-Hausdorff desingularization of a finite number of singularities by trees of Kähler ALE Ricci-flat orbifolds in Theorem 6.7. This is conjecturally the only possible way for Einstein metrics to degenerate in a noncollapsed setting.

In dimension 4, the 2-forms decompose into self-dual and anti self-dual 2-forms which are elements of the eigenspaces of Hodge star operator * (which satisfies * 2 = Id) respectively associated to the eigenvalues 1 and -1. Thanks to this direct sum, the symmetric endomorphism on 2-forms, R given by the Riemannian curvature decomposes into blocks,

R =: R + Ric 0 Ric 0 R -,
where the Ric 0 is the traceless part of the Ricci curvature, and where R ± are the self-dual and anti self-dual parts of the curvature.

Kähler Ricci-flat ALE metrics and obstructions

The first obstructions to the desingularization of an Einstein orbifold (M o , g o ) by a Ricci-flat ALE manifold (N, g b ) come from the infinitesimal deformations of g b decaying as r -4 b at infinity. We will show that for any Kähler Ricci-flat ALE orbifold, there is a common obstruction to the desingularization which was already found in the case of the gluing of an Eguchi-Hanson metric for a particular gluing-perturbation procedure in [START_REF] Biquard | Désingularisation de métriques d'Einstein[END_REF]:

det R + = 0, at the singular point. We will moreover see that generically (see Remark 37), there are additional obstructions corresponding to

R + = 0.
Remark 36 If we glue the Kähler Ricci-flat ALE metrics with the opposite orientation, that is with with a gluing parameter in O(4)\SO(4) the common obstruction becomes det R -= 0 and therefore in general, since the Einstein equation implies that the curvature is block diagonal (Ric 0 = 0), the obstruction is det R = 0.

The only known examples of ALE Ricci-flat orbifolds are Kähler. They have been classified and we have a satisfactory parametrization of the moduli space of these quotients of hyperkähler (hence Ricci-flat) ALE metrics.

Let us precise what the deformations of these known Ricci-flat ALE orbifolds are, in order to extend the obstruction to the desingularization by any Kähler Ricci-flat ALE space.

Proposition 15 Let Γ be a finite subgroup of SU(2), (N, g b ) a hyperkähler ALE manifold asymptotic to R 4 /Γ and (O 4 i ) i a basis of the r -4 b -terms of the elements of O(g b ).

Then, the conditions Proof Denote by (x, y, z, t) the coordinates in an orthonormal basis of R 4 , and define a basis of invariant 1-forms on the sphere S 3 , (α 1 , α 2 , α 3 ) by, Let Γ be a finite subgroup of SU(2). Then, according to [START_REF] Kronheimer | The construction of ALE spaces as hyper-Kähler quotients[END_REF], there exists k Γ ∈ N * and D Γ , a finite union of vector subspaces of R 3k Γ of codimension at least 3 containing 0 such that the set of smooth hyperkähler metrics asymptotic to R 4 /Γ is parametrized as (X ) does not vanish. Just like for the homothetic deformations of the Eguchi-Hanson metric, thanks to an action of SO(4) on the asymptotics of the metric and a homothetic transformation (which yields an action of SO(3) and a common rescaling on all the ζ l ), we are able to reach another metric g ζ with ( ζl 1 , ζl 2 , ζl 3 ) = (1, 0, 0). By differentiating the above expression of h ζ , we see that the infinitesimal variations associated to the variations of ( ζl 1 , ζl 2 , ζl 3 ) are then asymptotic to O 4 1 , O 4 2 and O 4 3 . The obstructions they induce by Theorem 5.8 are therefore the same as for the Eguchi-Hanson metric, and by [START_REF] Biquard | Désingularisation de métriques d'Einstein[END_REF]Theorem 4.1] they imply the condition det R + = 0 which is independent of the above actions of SO(4) and scaling.

S
Remark 37 The case of the Eguchi-Hanson metric, or when the ζ l are parallel, is actually the least obstructed case, and by the formula [START_REF] Biquard | Désingularisation de métriques d'Einstein[END_REF](38)] the obstruction condition is R + = 0 for ζ generic when k Γ > 1.

We find the same obstruction for Kähler Ricci-flat ALE orbifolds which are all asymptotic to R 4 /Γ ∼ C 2 /Γ for a group Γ = 1 dn 2 (1, dnm -1) ⊂ U(2), that is the cyclic group generated by Then, for a quadratic symmetric 2-tensor H 2 such that d e Ric H 2 = Λg e , for i ∈ {1, 2, 3} we have the conditions

S 3 3 H 2 , O 4 i ge + O 4 i (B e H 2 , ∂ re ) dv S 3 = 0 which imply that det R + (H 2 ) = 0.
Proof Let 1 dn 2 (1, dnm -1) ⊂ U(2) be a finite subgroup of U(2), and (N, g b ) a non flat Kähler Ricci-flat ALE orbifold asymptotic to R 4 /Γ. According to [START_REF] Suvaina | ALE Ricci-flat Kähler metrics and deformations of quotient surface singularities[END_REF], ( Ñ, gb ) the universal cover of (N, g b ) is a hyperkähler orbifold asymptotic to Γ = 1 dn (1, -1) ⊂ 1 dn 2 (1, dnm -1). Let H 2 be a quadratic symmetric 2-tensor on R 4 /Γ, we can also lift it to R 4 / Γ as H2 . Remark 38 The above proof (or any proof in this article really) does not use the Kähler nature of the studied metric. It would also apply to any Ricci-flat ALE metric whose order r -4 e terms do not vanish [BH19, Proposition 2.5]. It is however not clear if these terms can vanish (in well chosen coordinates) on a non flat Ricci-flat ALE metric.

Trees of Kähler Ricci-flat ALE orbifolds and obstructions

Let us now treat the case of trees of ALE Kähler Ricci-flat orbifolds.

Uniform controls of gravitational instantons

Let us use the notations of the proof of Proposition 15. Let Γ 1 ∈ SU(2) and ζ 1 ∈ D Γ 1 fixed such that the ALE orbifold (X ζ 1 , g ζ 1 ) has a singularity R 4 /Γ for Γ ⊂ SU(2). For v ∈ O(g ζ 1 ) which we will choose small, let us then denote ḡζ 1 ,v the Ricci-flat (and even hyperkähler) of g ζ 1 given by Definition 5.1. The goal of this section is to show that there exists a common scale τ > 0 such that for any ζ ∈ R 3k Γ with |ζ| = 1, for any t < τ , the naïve gluing of g ζ to ḡζ 1 ,v at scale t, denoted g B v,t,ζ can be perturbed into a Ricci-flat modulo obstructions metric which we will denote ĝv,t,ζ .

The naïve gluing g B v,t,ζ is Ricci-flat everywhere except on the annulus where the gluing takes place. We therefore have the control (107)

g B v,t,ζ (g B v,t,ζ ) r -2 B C α β (g B v,t,ζ ) Ct 2-β 4
where C > 0 only depends on ζ 1 and v because g ζ for |ζ| = 1 is controlled at infinity in the ALE coordinates of [Kro89a, Corollaire 3.14].

Going back to the proof of Theorem 4.6 by inverse function theorem, in order to perturb g B v,t,ζ to a Ricci-flat modulo obstructions metric to to show the existence of ĝv,t,ζ , it would be enough to show that the linearization of π

Õ(g B v,t,ζ ) ⊥ g B v,t,ζ , π Õ(g B v,t,ζ ) ⊥ P g B v,t,ζ : Õ(g B v,t,ζ ) ⊥ ∩ C 2,α β, * (g B v,t,ζ ) → Õ(g B v,t,ζ ) ⊥ ∩ r -2 B C α β (g B v,t,ζ )
is uniformly bounded and has a uniformly bounded inverse for |ζ| = 1 and t small enough and to control the nonlinear terms of g B v,t,ζ

. Fixing ζ 1 and v, It would therefore be enough thanks to Proposition 11 to show that

P g ζ : O(g ζ ) ⊥ ∩ C 2,α β, * (g ζ ) → O(g ζ ) ⊥ ∩ r -2 ζ C α β (g ζ )
is invertible with bounded inverse. This is however not the case when ζ → D Γ , that is when g ζ degenerates to an orbifold. In this situation, we replace the norms with respect to g ζ by norms with respect to a naïve desingularization g B ζ (with additional decay in the neck regions) close to g ζ in order to keep a uniform gluing scale. 

R(g B ζ ) := sup h∈ Õ(g B ) ⊥ ∩C 2,α β, * (g B ) h C 2,α β, * (g B ) P g B h r -2 B C α β (g B ) + sup h∈C 2,α β, * (g B ) P g B h r -2 B C α β (g B ) h C 2,α β, * (g B )
,

we have

(1) g B ζ -g ζ C 2,α β, * (g B ζ ) < R(g B ζ ) , (2) R(g B ζ ) C.
Remark 39 The norms in the above statement are the naïve desingularizations norms (Definition 1.6) with respect to g B ζ . They are needed in order to obtain uniform estimates.

Remark 40 What is crucial in this statement is the fact that the constant C is independent of the metric g ζ and in particular allows ζ to approach D Γ with uniform controls. The constant essentially decides from which proximity we replace the metric g ζ by a naïve desingularization. Indeed, the trivial naïve desingularization g B ζ = g ζ always satisfies the first property of the conclusion.

Proof Let > 0 and let us show the result by induction on the order k of the group at infinity. It holds for Z 2 of order 2 because all the metrics g ζ for ζ ∈ R 3 are isometric for |ζ| = 1, and we can take

g B ζ = g ζ .
Assume now that the conclusion is satisfied for any group of order less than or equal to k -1 2 and consider Γ of order k.

Let us again work by induction, this time on the value of the square of the L 2 -norm of the curvature of the ALE orbifolds asymptotic to R 4 /Γ. This quantity is proportional to the dimension of the (orbifold) L 2 cohomology in degree 2 for these gravitational instantons.

Consider, the orbifolds g ζ , ζ ∈ R 3k Γ , |ζ| = 1 which have the smallest energy. Assume by contradiction that there exists a sequence of orbifolds g ζi , |ζ i | = 1 with the minimal energy such that for any naïve desingularization (Definition 1.6) g B of a hyperkähler orbifold asymptotic to R 4 /Γ, we have

(1) either, g ζi -g B C 2,α β, * (g B ) R(g B ) ,
(2) either, R(g B ) > i.

In the coordinates of [Kro89a, Proposition 3.14], all of the metrics g ζi admit coordinates of order 4 with a uniform control in r -4 ζi C 3 (g ζi ) in a uniform neighborhood of infinity, where r ζi is the function of Definition 1.4. Therefore, there can only be L 2 -concentration of the curvature in a compact of diameter uniformly bounded and volume uniformly bounded below by Bishop-Gromov inequality. By minimality of the L 2 -norm of the curvature, no tree of singularities can form with |ζ i | = 1 because the limit orbifold would then have a smaller L 2 -norm of the curvature. Therefore, there exists g ζ∞ such that the g ζi converge smoothly (considering local covering at the singular points) to g ζ∞ . Since the asymptotic terms converge by [Kro89a, Proposition 3.14], we have g ζig ζ∞ C 2,α β, * (g ζ∞ ) → 0 when i → ∞ where we have . C 2,α β, * (g ζ∞ ) ≈ (1 + r ζ∞ ) β . C 2,α 0 (g ζ∞ ) here since we use local coverings at the singularities instead of weights at the singularities of g ζ∞ . The trivial naïve desingularization g B = g ζ∞ therefore contradicts the assumptions. Indeed, the convergence happens in C 2,α β, * (g ζ∞ ) and since P g ζ∞ is elliptic, there exists C > 0 such that for any h ⊥ O(g ζ∞ ), we have

h C 2,α β, * (g ζ∞ ) C P g ζ∞ h r -2 ζ∞ C α β (g ζ∞ ) .
Consider then a higher value for the L 2 -norm of the curvature E > 0 and assume that our property holds for the hyperkähler orbifolds asymptotic to R 4 /Γ whose L 2 -norm of the curvature is strictly less than E. Let us assume by contradiction that there exists a sequence ζ i ∈ R 3k Γ |ζ i | = 1 satisfying Rm g ζi L 2 (g ζi ) = E for which for any naïve desingularization g B of a hyperkähler orbifold asymptotic to R 4 /Γ, we have

• either, g ζi -g B C 2,α β, * (g B ) R(g B ) ,
• or, R(g B ) > i.

Like in the above argument for the minimal energy, if no singularity was forming, up to taking a subsequence, we would have a C 2,α β, * (g ζ∞ )-convergence to a orbifold g ζ∞ with R(g ζ∞ ) bounded. A tree of singularities is therefore forming. More precisely, up to taking a subsequence, there exists a subsequence naïve desingularizations g B ζi of a hyperkähler orbifold asymptotic to R 4 /Γ, composed of orbifolds g ζo with |ζ o | = 0 asymptotic to R 4 /Γ and g ζ j with |ζ j | = 1 (up to changing the scale of the gluing, we can always assume that since g tζ is isometric to tg ζ ), ζ j ∈ R 3k Γ j , at scales t i,j , for which we have

g ζi -g B ζi C 2,α β, * → 0 as i → ∞.
Moreover, all of the metrics g ζo and g ζ j are hyperkähler according to [START_REF] Bando | Bubbling out of Einstein manifolds[END_REF]. The L 2 -norm of the curvature of g ζo is strictly inferior to E since some of the total L 2 -norm is lost in the singularities by [START_REF] Anderson | Ricci Curvature Bounds and Einstein Metrics on Compact Manifolds[END_REF][START_REF] Bando | On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth[END_REF], and we have |Γ j | < |Γ| = k by Bishop-Gromov inequality. Up to replacing g ζo and the g ζ j by the naïve desingularizations g B ζo and g B ζ j of the previous steps of our inductions, we obtain a naïve desingularization g B ζi for which we uniformly (depending on the constants of the previous steps of the induction only) control the operator P. Thanks to Lemma 4.3, we obtain a uniform control on the inverse of the operator P g B ζi . This contradicts the initial assumptions and proves the statement.

The following lemma lets us approximate the kernel of the operator P g ζ thanks to the approximate kernel Õ(g B ζ ).

Lemma 6.1 Let P and P be two operators between Banach spaces X and Y for which there exists C > 0, 1 100C > > 0, a finite dimensional space K ⊂ X and S a complement of K in X such that we have:

(1) for any x ∈ X , (P -P )x Y x X ,

(2) for any x ∈ S , x X C P x Y ,

(3) for any x ∈ K , P x Y x X , (4) and dim(ker P) = dim(K ).

Then, for any k ∈ ker P, there exists k ∈ K such that

(108) k -k X 2C 1 -C k X .
Proof Let k ∈ ker P, and consider its decomposition k = k + s in the direct sum X = K ⊕ S . Thanks to the first hypothesis, we have

(109) P k Y k X ,
thanks to the second, (110) s X C P s Y and thanks to the third one, we have

(111) P k Y k X .
Putting (109), ( 110) and (111) together, we find

(112) k X P s Y -P k Y s X C -k X , hence, since k = k + s , s X C k X + k X 2C k X + C s X ,
and finally

k -k X = s X 2C 1 -C k X .
Remark 41 With the three first assumptions of Lemma 6.1, we still have

dim ker P dimK ,
and any element of ker P is close to an element of K (its projection on K parallel to S ) in the sens of (108).

We conclude from Lemma 6.1 and the estimates 1 and 2 of Proposition 16 that for any Γ ⊂ SU(2) and any > 0 small enough depending on Γ only, for any ζ ∈ R 3k Γ and for the metric g B ζ obtained by Proposition 16, we have the following control for

C = C(Γ, ) > 0 : for any h ⊥ O(g ζ ), (113) 1 C h C 2,α β, * (g B ζ ) < P g ζ h r -2 B C α β (g B ζ ) < C h C 2,α β, * (g B ζ )
.

We therefore conclude that we can define Ricci-flat modulo obstructions perturbations of our naïve desingularizations. 2τ (notice the naïve desingularization norm g BB v,t,ζ ), and

• g B v,t,ζ (ĝ v,t,ζ ) ∈ Õ(g B v,t,ζ
). Moreover, the metric ĝv,t,ζ depends smoothly on v, t and ζ .

Proof As discussed at the beginning of this section, for the naïve gluing g B v,t,ζ , we have a control

g B v,t,ζ (g B v,t,ζ ) r -2 B C α β (g BB v,t,ζ ) Ct 2-β 4
where C > 0 only depends on ζ 1 . Now, using the control (113) to replace the controls of Lemma 4.3, we adapt the proof of Proposition 11 to show that for τ small enough depending on Γ and ζ 1 alone, the operator

π Õ(g B v,t,ζ ) ⊥ P g B v,t,ζ : Õ(g B v,t,ζ ) ⊥ ∩ C 2,α β, * (g BB v,t,ζ ) → Õ(g B v,t,ζ ) ⊥ ∩ r -2 B C α β (g BB v,t,ζ ),
is uniformly bounded (independently of ζ and of t and v small enough) and invertible with a uniformly bounded inverse. Notice the norms g BB v,t,ζ again. The proof of Theorem 4.6 by inverse function theorem extends here, and there exists a unique solution ĝv,t,ζ to the equations of the statement.

Like in Corollary 4, the smooth dependence of the metric is a consequence of the implicit function theorem applied to

Ψ : (v, t, ζ, h) → π Õ(g B v,t,ζ ) ⊥ g B v,t,ζ (g B v,t,ζ + h) for h ⊥ Õ(g B v,t,ζ ).

Gluing-perturbation of gravitational instantons

Let us first make sure that all of the gluing gauges given by the isometries of R Proof Let Γ ⊂ SU(2) be a finite subgroup. Having ψ ∈ Isom(R 4 /Γ) implies that ψ is in the normalizer of Γ in SO(4) and therefore that ψ ∈ φ(S 3 × N Γ ), where N Γ is the normalizer of Γ in SU(2) (see [START_REF] Mccullough | Isometries of elliptic 3-manifolds[END_REF] for an explicit expression) and where φ : S 3 × S 3 → SO(4) is the double covering of SO(4) where the first S 3 is the left multiplication by a unit quaternion and the second a right multiplication. In this identification, we have SU(2) = φ({1} × S 3 ) and we will denote SU(2) = φ(S 3 × {1}).

Let us now study the action of the normalizer of Γ, which is φ(S 3 × N Γ ), on a metric of [START_REF] Kronheimer | The construction of ALE spaces as hyper-Kähler quotients[END_REF] in the coordinates of [Kro89a, Proposition 3.14]. Let us come back from their construction in [START_REF] Kronheimer | The construction of ALE spaces as hyper-Kähler quotients[END_REF] starting with

P := C 2 ⊗ End(R),
where C 2 is the standard representation of SU(2) and where R is its regular representation SU(2). Denote P Γ the set of Γ-invariant elements of P, F the set of elements commuting with Γ seen as a subset of the unitary transformations of R, and finally denote T the subgroup of complex numbers of unit norm acting trivially. The gravitational instantons asymptotic to C 2 /Γ are the hyperkähler quotients of P Γ by F/T .

By definition, the normalizer φ(S 3 × N Γ ) acts on P Γ and commutes to the action of F . It consequently acts on the set of solutions of the moment map µ :

P Γ → (f/t) * ⊗ R 3
where f and t are the Lie algebras of F and T respectively. More precisely, denoting I k , k ∈ {1, 2, 3} the 3 complex structures of P Γ given by the identification of C 2 with the quaternions, for all ξ ∈ f/t, the three coordinates of µ satisfy the equations

grad(µ k .ξ) = I k (V ξ ),
where V ξ is the vector field on P Γ generated by the action of ξ . The SU(2) in which Γ and N Γ commutes to the three complex structures since it is identified to the right multiplication by a unit-norm quaternion. We conclude that N Γ acts by isometry on the hyperkähler metric µ -1 (ζ)/(F/T) for all ζ ∈ (f/t) * ⊗ R 3 . The part SU(2) of the normalizer, acts by rotation on the three complex structures. And more precisely, an element n -∈ SU(2) sends µ -1 (ζ)/(F/T) to µ -1 (Ad(n -)ζ)/(F/T) where Ad(n -) is the standard action of SU(2)/± ≈ SO(3) on the factor R 3 of (f/t) * ⊗ R 3 .

To conclude there remains to ensure that this action of the normalizer is the standard action on the asymptotic cone R 4 /Γ in the coordinates of [Kro89a, Proposition 3.14].

To prove this, we use the identification R 4 /Γ ≈ µ -1 (0)/(F/T) of [Kro89a, Corollary 3.2]. The correspondence between the infinities of µ -1 (ζ)/(F/T) and µ -1 (0)/(F/T) for the coordinates of [Kro89a, Proposition 3.14] given by [Kro89a, (3.13)] lets us conclude that the action of the normalizer is indeed the standard action on the asymptotic cone R 4 /Γ.

Therefore, the gluing (X

ζ , g ζ ) ≈ µ -1 (ζ)/(F/T) for ζ ∈ R 3k Γ ≈ (f/t) * ⊗ R 3 composed with the isometry ψ = φ(ψ -, ψ + ) of R 4 /Γ is isometric to the gluing of (X ζ , g ζ ) with ζ = Ad(ψ -)ζ .
Let us then remark that any ALE hyperkähler orbifold can be desingularized by a sequence of ALE hyperkähler manifolds.

Lemma 6.3 ([Ban90]) Let (X ζ 1 , g ζ 1 )
be an ALE hyperkähler orbifold with a singularity R 4 /Γ. Then, for any t > 0, there exists

ζ t 0 ∈ R 3k Γ \D Γ and v t ∈ O(g ζ 1 ) satisfying lim t→0 v t = 0 and lim t→0 X ζ t 0 = X ζ 0 ∈ R 3k Γ \D Γ , such that the Einstein modulo obstructions desingularization (X ζ 1 #X ζ 0 , ĝvt,t,ζ t 0 ) of Corollary 11 is hyperkähler.
Proof The result of [Ban90, Theorem 4] shows that for t small enough, there exists ζ 0 for which there is a hyperkähler metric g t satisfying

g t -g B 0,t,ζ 0 (1+r B ) -β C 2,α 0 (g B 0,t,ζ 0 ) γ(t),
where lim t→0 γ(t) = 0. We can then apply our construction of coordinates of [START_REF] Ozuch | Noncollapsed degeneration of Einstein 4-manifolds I[END_REF] to (X ζ 1 #X ζ 0 , g t ) in order to obtain a diffeomorphism φ :

X ζ 1 #X ζ 0 → X ζ 1 #X ζ 0 thanks to which we have the better control φ * g t -g B 0,t,ζ 0 C 2,α β, * (g B 0,t,ζ 0 ) Cγ(t).
Thanks to Proposition 10, there exists a small diffeomorphism ψ : Remark 42 Note that [HV20, Theorem 6.2] provides such gluings-perturbations in all directions ζ ∈ R 3k Γ \D Γ . The admissible scales are however not independent on |ζ| = 1, and arbitrary trees of singularities are not allowed.

X ζ 1 #X ζ 0 → X ζ 1 #X ζ 0 such that δg B 0,t,ζ 0 ψ * φ * g t = 0.
Proposition 17 There exists τ > 0 such that for all

(v, t, ζ) ∈ B C 2,α β, * (g ζ 1 ) (0, τ ) ∩ O(g ζ 1 ) × (0, τ ) × (S 3k Γ -1 \D Γ )
, the metric ĝv,t,ζ of Proposition 11 is isometric to a hyperkähler metric of [START_REF] Kronheimer | The construction of ALE spaces as hyper-Kähler quotients[END_REF].

Proof Let us start by noting that the set

B C 2,α β, * (g ζ 1 ) (0, τ ) ∩ O(g ζ 1 ) × (0, τ ) × (S 3k Γ -1 \D Γ ) is connected since D Γ
is a finite union of spaces of codimension at least 2 in S 3k Γ -1 . We therefore just need to prove that the set

E = {(v, t, ζ) ∈ B C 2,α β, * (g ζ 1 ) (0, τ ) ∩ O(g ζ 1 ) × (0, τ ) × (S 3k Γ -1 \D Γ ), Ric(ĝ v,t,ζ ) = 0}, which is non empty by Lemma 6.3 is open and closed. It is therefore isometric to g ξ(v,t,ζ) for ξ(v, t, ζ) ∈ R 3k Γ 1 \D Γ 1 .
The set E is closed by the continuity of

(v, t, ζ) ∈ B C 2,α β, * (g ζ 1 ) (0, τ ) ∩ O(g ζ 1 ) × (0, τ ) × (S 3k Γ -1 \D Γ ) → Ric(ĝ v,t,ζ )
proven in Corollary 11.

For the openness, let us assume that for (v, t, ζ) fixed, we have Ric(ĝ v,t,ζ ) = 0. The metric ĝv,t,ζ is therefore one of the metrics of [START_REF] Kronheimer | The construction of ALE spaces as hyper-Kähler quotients[END_REF]. There exists a space of the same dimension as Õ(g B v,t,ζ ) of hyperkähler deformations in the neighborhood of g ξ(v,t,ζ) and therefore the Ricci-flat modulo obstructions deformations of ĝv,t,ζ are hyperkähler. Indeed, since the metrics ḡζ 1 ,v , g ζ 2 and g ξ(v,t,ζ) are hyperkähler, they have a hyperkähler deformation space of dimension three times that of their L 2 -cohomology in degree 2, and the dimension of this cohomology is additive for our gluings.

According to Lemma 6.1 applied to P = P ĝv,t,ζ , 

P = P g B v,t,ζ , K = Õ(g B v,
(v , t , ζ ) in a neighborhood of (v, t, ζ) in B C 2,α β, * (g ζ 1 ) (0, τ ) ∩ O(g ζ 1 ) × (0, τ ) × (S 3k Γ -1 \D Γ ).
The set E is therefore open.

Obstruction for trees of Kähler Ricci-flat ALE orbifolds

Let us use the notations of the proof of Proposition 15, and parametrize the set of Kähler Ricci-flat manifolds asymptotic to R 4 /Γ as (X ζ , g ζ ) ζ∈R 3k Γ \D Γ in the following statement. Lemma 6.4 Let (X ζ 0 , g ζ 0 ) be a Kähler Ricci-flat orbifold asymptotic to R 4 /Γ, and let ζ ∈ R d Γ \D Γ be close to ζ 0 . Then, there exists a naïve desingularization g B t of (X ζ 0 , g ζ 0 ) by Kähler Ricci-flat ALE orbifolds glued in the same orientation and v ∈ Õ(g B t ) such that (X ζ , g ζ ) = (N, ḡb,t,v ) is the (iterated) perturbation of Lemma 17 of (N, g B t + v). Moreover, there exists > 0 such that for ζ close enough to ζ 0 , there exists a diffeomorphism Φ ζ between neighborhoods of the infinities of (X ζ , g ζ ) and of R 4 /Γ such that there exists o .

1 (ζ), o 2 (ζ) and o 3 (ζ) elements of O(g ζ ) satisfying for all i ∈ {1, 2, 3}, Φ * ζ o i (ζ) = O 4 i + O(r 4+β B ), where O 4 i = O(r -4 B )
Lemma 6.5 Let g B t be a naïve gluing of Kähler Ricci-flat ALE orbifolds, and ḡb,t its Kähler Ricci-flat pertubation of Lemma 17.

Then, for any symmetric 2-tensor w

∈ r -2 B C α β (g B t ), there exists a unique symmetric 2-tensor u ∈ O(ḡ b,t ) ⊥ḡ b,t ∩ C 2,α β, * (g B t ), such that (114) Pḡ b,t u = π O(ḡ b,t ) ⊥ w.
We moreover have the following control for

C = C(g B t ) > 0, u C 2,α β, * (g B t ) C π O(ḡ b,t ) ⊥ w r -2 B C α β (g B t )
.

Remark 43 The crucial part of this lemma is the fact that the solution is controlled in the tree of singularities norm C 2,α β, * (g B t ) which behaves well as t → 0.

Proof According to Theorem 4.6, we have

(115) ḡb,t -g B t C 2,α β, * (g B t ) Ct 2-β 4 max ,
which, combined with the proof of Theorem 4.6 implies that, for t max small enough, the operator Pḡ b,t is injective on Õ Corollary 12 Let t = (t 1 = 1, ..., t k ) > 0, and let • (N k , g b k ) k be a tree of ALE Kähler Ricci-flat orbifolds desingularizing R 4 /Γ,

(g B t ) ⊥ ∩ C 2,α β, * (g B t ). Moreover, for 0 < β < 1, its cokernel on r -2 D C α β (g B t ) is equal to its kernel on r -2 D C α -β (g B t ) which is equal to O(ḡ b,t ). Indeed,
• (N, g B t ) the naïve gluing of the (N k , g b k ) at the relative scales t k to (N 1 , g b 1 ), small enough for k = 1, and • (N, ḡb,t ) be the Kähler Ricci-flat ALE perturbation of (N, g B t ) of Lemma 17. Let us assume that (N 1 , g b 1 ) is asymptotic to R 4 /Γ, consider ĤS a quadratic symmetric 2-tensor on R 4 /Γ such that Pe ĤS + λg e = O S for a constant symmetric 2-tensor O S .

Then, there exists C > 0 independent of the t k and χ, a cut-off function supported in a neighborhood of infinity of (N, ḡb,t ) independent of the t k , and there exists ĥ2 a symmetric 2-tensor on N such that we have

Pḡ b,t ĥ2 + λḡ b,t -χO S = i λi o i ∈ O(ḡ b,t ), and ĥS -χ ĤS C 2,α β, * (g B t )
C ĤS r 2 e C 0 (ge) .

Proof Let us consider ĤS a quadratic symmetric 2-tensor on R 4 /Γ such that Pe ĤS + λg e = O S , and let χ be a cut-off function on N 1 supported in a neighborhood of infinity where (N 1 , g b 1 ) has ALE coordinates we will also denote χ on N the cut-off function extended by 0 on the deeper ALE orbifolds.

We then have Pḡ b,t (χ ĤS ) + λḡ b,t -χO S r -2

D C α β (g B t ) C ĤS r 2 e C 0 0 .
Indeed, in a neighborhood of infinity where χ ≡ 1, since ḡb,tg e = O(r -4 B ), we have Pḡ b,t (χ ĤS ) + λḡ b,t = O S + O(r -4 B ), and on the rest of the manifold, we have the expected control by definition of the norm r -2 D C α β (g B t ). According to Lemma 6.5 applied to g = ḡb,t , there exists a unique symmetric 2-tensor h

∈ C 2,α β, * (g B t ) ∩ O(ḡ b,t ) ⊥ , such that we have Pḡ b,t (χ ĤS + h ) + λḡ b,t -χO S ∈ O(ḡ b,t ).
Moreover, according to Proposition 12, the element of O(ḡ b,t ) is explicit. More precisely, consider (o i ) i an orthonormal basis of O(ḡ b,t ), and thanks to the diffeomorphism Φ t of Lemma 6.4, let us assume that the three first elements are asymptotic to c

i Φ t, * O 4 i for c i > 1 . We have Pḡ b,t (χ ĤS + h ) + λḡ b,t -χO S = i λi o i ∈ O(ḡ b,t ),
where, for i = 1, 2, 3, λi := - We have the following control whose proof is the same as Theorem 5.8.

S 3 /Γ 3 ĤS
Corollary 13 Let β > 0, and let us use the above notations. For t max > 0 small enough we have the following controls: for all k ∈ N there exists

C k > 0, (116) π Õ(g D ) ⊥ g D (ĝ A ) r -2 D C k β (g D ) C k t 3-β 4 1
, and for all õ ∈ Õt 1 (ḡ b,t ), and denoting (õ i ) i and orthonormal basis of Õt 1 (ḡ b,t ) (2) ĝAg D is L 2 (g D )-orthogonal to Õ(g D ),

Remark 44 The crucial part here is that, by considering the right weighted spaces, C 2,α β, * (g B t ), and Kähler Ricci-flat perturbations of our tree of singularities, we obtain a control by powers of t 1 only.

We then conclude, exactly like in Theorem 5.8 that the obstruction is satisfied in the limit at every singular point of (M o , g o ) where the trees of singularities appearing are composed of Kähler Ricci-flat orbifolds ALE. Theorem 6.7 Let (M o , g o ) an Einstein orbifold, and assume that there exists (M i , g i ) i a sequence of Einstein manifolds such that

(M i , g i ) GH --→ (M o , g o ).
Then, (M o , g o ) satisfies det R(g o ) = 0 at every singular point where the trees of singularities forming in the Gromov-Hausdorff sense according to Corollary 2 are composed of ALE Kähler Ricci-flat orbifolds glued in the same orientation.

Remark 45 The result is optimal in the sense that it is the only local obstruction to the desingularization of a R 4 /Z 2 singularity. Indeed, together with the existence of Einstein desingularizations of [START_REF] Biquard | Désingularisation de métriques d'Einstein[END_REF], proven in the case of rigid asymptotically hyperbolic Einstein metrics with a singularity R 4 /Z 2 singularity, we see that there exists a desingularization in the Gromov-Hausdorff sense by Eguchi-Hanson metrics if and only if the condition det R(g o ) = 0 is satisfied.

Remark 46 For now, we cannot prove any obstruction result if trees of non Kähler Ricci-flat ALE orbifolds were to appear. The reason is that it might not be possible to glue and perturb them into a single Ricci-flat ALE manifold. The obstructions to such a gluing could possibly compensate the ones coming from the gluing to the orbifold.

Example 2 Like in Example 1, let us consider the sphere S 4 as S 4 ⊂ R 5 = R × R 4 . We define S 4 /Γ, the orbifold obtained as the quotient of S 4 by the action of Γ for the first 4 coordinates of R 5 . S 4 /Γ has its sectional curvatures constant equal to 1, and two singularities modeled on R 4 /Γ. The condition det R = 0 is therefore not satisfied for this orbifold.

Obstructions under topological assumptions

Let us now give topological conditions which will ensure that the Ricci-flat ALE orbifolds appearing as blow ups in our degenerations are Kähler and glued in the same orientation, and therefore that the obstruction det R = 0 holds. All of these topological conditions come from the topological characterization of [START_REF] Nakajima | Self-Duality of ALE Ricci-Flat 4-Manifolds and Positive Mass Theorem[END_REF], see also [START_REF] Lock | Quotient singularities, eta invariants, and self-dual metrics[END_REF] for a generalization. Basically, if a desingularization has the topology of a minimal resolution of a SU(2)-singularity (or a quotient for the U(2) singularities) in a neighborhood of a singularity, then, all of the bubbles are Kähler and glued in the same orientation and we can apply Theorem 6.7. We will state more global topological conditions based on Hitchin-Thorpe inequality in Theorem 7.2, and a spin condition in Theorem 7.4. We will then finally comment on the desingularization of Einstein orbifolds with various pinching conditions and bound on the Ricci curvature in Corollary 15 and Remark 51.

Hitchin-Thorpe inequality and desingularization of Einstein orbifolds

Let us first notice that desingularizing an Einstein orbifold by smooth Einstein manifolds necessarily damages the Hitchin-Thorpe inequality satisfied by the orbifold, see Theorem 7.2. The equality case is exactly when all the Ricci-flat ALE orbifolds are Kähler and glued in a common orientation.

For an Einstein manifold of dimension 4, Chern-Gauss-Bonnet formula implies, with equality if and only if (M, g) is a quotient of the flat torus or of a hyperkähler metric on the K3 surface.

In the case of orbifolds and ALE metrics, to be consistent with Chern-Gauss-Bonnet and Hirzebruch formulas, (118) and (119) for compact Einstein manifolds of dimension 4, we have to modify the Euler characteristic and the signature thanks to a boundary term. The integral quantities (118) and (119) above are topological invariants for Einstein orbifolds and Ricci-flat ALE orbifolds. We will denote them χ and τ .

For Ricci-flat ALE manifolds, Nakajima obtained an Hitchin-Thorpe inequality. Since every term is nonnegative by Hitchin-Thorpe inequality and Lemma 7.1, we see that there is equality if and only if for all j we have 2 χ(N j ) -3| τ (N j )| = 0 and that the gluings are done in the same orientation for which τ (M o ) and all the τ (N j ) have the same sign.

Example 3 If (M o , g o ) is a hyperkähler orbifold, then the only Gromov-Hausdorff desingularizations preserving the inequality are hyperkähler and correspond to gluing hyperkähler ALE in the same orientation.

Example 4 For Γ ⊂ SU(2), an Einstein desingularization of S 4 /Γ preserving Hitchin-Thorpe inequality is diffeomorphic to M = S 4 /Γ#X Γ #X Γ for X Γ a minimal resolution of the singularity C 2 /Γ.

By studying the equality case in the previous inequalities, we get a quite restrictive situation.

Theorem 7.2 Let (M o , g o ) be an Einstein orbifold oriented so that τ (M o ) 0, and assume that (M, g i ) i is a sequence of Einstein metrics converging in the Gromov-Hausdorff sense to (M o , g o ).

We then have the following inequality, Remark 48 The equality condition limits the possible group actions of the singularities.

This for example implies the following.

Corollary 14 Let Γ ⊂ SU(2), (M i , g i ) i be a sequence of Einstein manifolds converging in the Gromov-Hausdorff sense to the spherical orbifold S 4 /Γ. Then, for i large enough, we have 2χ(M i ) -3|τ (M i )| > 2 χ(M o ) -3| τ (M o )|.

Spin manifolds

Another way to ensure that the Ricci-flat ALE orbifolds appearing are Kähler and glued in the same orientation is to impose that the sequence of differentiable manifolds is spin. Our result is essentially an application of the following Lemma of Nakajima. As a consequence, there is also an obstruction to the desingularizations of Einstein orbifolds by smooth Einstein metrics on spin manifolds. The proof of Theorem 1.1 of [START_REF] Kapovitch | On noncollapsed almost Ricci-flat 4-manifolds[END_REF] whose main tool is Lemma 7.3 implies that the limit orbifold and the Ricci-flat ALE metrics are spin and glued in the same orientation for a degeneration of Einstein metrics on spin manifolds. If the group at infinity of the ALE spaces, which are also the groups of the singularities of the orbifold are in SU(2), we use Lemma 7.3 to get the following obstruction.

Theorem 7.4 Let (M i , g i ) i be a sequence of Einstein spin manifolds of dimension 4 converging to an Einstein orbifold (M o , g o ). Then, (M o , g o ) is spin and at its singular points whose groups are in SU(2), we have det R = 0.

Remark 49 There is no restriction on the group singularities in [START_REF] Kapovitch | On noncollapsed almost Ricci-flat 4-manifolds[END_REF]. This comes from their additional assumption on the kernel of the Dirac operator of the sequence which actually implies that all singularities have their group in SU(2).

Pinched Ricci curvature and the Einstein condition

Our result shows that there is a fundamental difference between the Einstein condition and some pinching conditions on the Ricci curvature once we authorize the formation of singularities. From Theorems 7.2 and 7.4, we deduce that there exists an obstruction to the desingularization of Einstein orbifolds by smooth Einstein metrics which is not there if we consider pinching conditions on the Ricci curvature. Let us illustrate this with the simple example of a spherical orbifold, even though a similar result obviously holds for general orbifolds with singularity groups in SU(2).

Corollary 15 Let Γ be a finite subgroup of SU(2), and M = S 4 /Γ#X Γ #X Γ (# means gluing at both orbifold singularities in an orientation), where X Γ is the minimal resolution of the singularity C 2 /Γ. Then, for all 1 p < +∞,

(1) there exists a sequence of metrics (M, g i ) i such that we have

• Ric(g i ) -3g i L p (gi) 1 i , and • M, g i --→ GH S 4 /Γ, g S 4 /Γ , but,

(2) there does not exist any sequence of Einstein metrics (M, g E i ) such that • Ric(g E i ) = 3g E i , and • M, g E i --→ GH S 4 /Γ, g S 4 /Γ .

Proof The second part is a consequence of Theorem 5.8 because the curvature of the sphere never satisfies the condition det R = 0 since R = Id for such a metric.

For the first part, we can just remark that our approximation metric g A t with fixed Kähler Ricci-flat ALE metrics satisfies Ric(g A t ) -Λg A t L ∞ (g A t ) = O(1) and that Ric(g A t ) -Λg A t is supported in regions with a volume of order t, therefore, if we choose t small enough, we have the control in L p -norm for p < +∞.

Question: Can we desingularize S 4 /Z 2 thanks to the Eguchi-Hanson metric by metrics with Ricci curvature converging to 3 in the L ∞ -sense?

Remark 50 By being more precise in the expression of the obstructions to the desingularization of S 4 /Z 2 by two Eguchi-Hanson metrics, for t max small enough,

(120) | Ric(g A t ) -3g A t | g A t 1 + η(t max )
where η(t max ) → 0 when t max → 0. Assume that → 0, b → +∞ and b → 0, the orbifold metric therefore becomes arbitrarily close in the Gromov-Hausdorff sense to S 4 /Γ. Moreover, the sectional curvatures of g b, are bounded below by 1 -C log b → 1 for some uniform C > 0. Let us finally glue t(g EH + 2th 2 ), where h 2 is asymptotic to -1 3 r 2 e g S 3 /Γ at the singular points for t max 2 , so that the gluing happens in 0 r < where the metric g b, equals dr 2 + sin 2 (2r)g S 3 /Γ just like on the sphere of radius 1 2 whose sectional curvatures are constant equal to 4. For r < , the controls are the same as on g A t 4 , and therefore the metric satisfies Ric 3 by (120) since 4 3 -(1 -η(t max )) > 3. Since the metric satisfies Ric 3 -C log(b) for larger r, we can simply rescale it a little to ensure that we have Ric > 3 everywhere.

A general obstruction for spherical and hyperbolic orbifolds

Let us finally exhibit an obstruction to the desingularization of spherical and hyperbolic orbifolds by general Ricci-flat orbifolds (not necessarily Kähler) in Theorem 8.1. We will deduce from it that there does not exist any smooth desingularization of spherical or hyperbolic orbifolds whose blow ups are integrable Ricci-flat ALE spaces in Corollary 16.

8.1 A general infinitesimal deformation for Ricci-flat ALE spaces

On (R 4 /Γ, g e ), the vector field 2r e ∂ re is a conformal Killing vector field. It is moreover the gradient of the function u := r 2 e which is a solution to -∇ * e ∇ e u = 8, and we have L ∇eu g e = Hess ge u = 4g e . On a Ricci-flat ALE we can approximate this by an infinitesimal deformation.

Proposition 18 Let (N, g b ) be a Ricci-flat ALE orbifold asymptotic to R 4 /Γ, and consider a diffeomorphism Φ between neighborhoods of the infinities of N and R 4 /Γ.

Then, there exists a unique vector field X on (N, g b ) such that Φ * X = 2r b ∂ r b +o(r b ), and ∇ * ∇X = 0. We actually have X = ∇u, where u is the unique solution of -∇ * ∇u = 8, such that u = r 2 b + o(1).

Moreover, (L X g b ) • = L X g b -4g b , the traceless part of L X g b is an infinitesimal Ricci-flat deformation of g b which is trace-free and divergence-free.

Proof The proof of the existence and the uniqueness of the function u can be found in the proof of Theorem B of [START_REF] Biquard | The renormalized volume of a 4-dimensional Ricci-flat ALE space[END_REF]. The symmetric 2-tensor (L ∇u g b ) • is indeed an infinitesimal deformation of g b because the equation Ric = 0 is invariant by scaling and pull-back by diffeomorphisms, and the divergence and the trace of (L ∇u g b ) • = 2Hess g b u -4g b vanish because -∇ * ∇u = 8.

Moreover, (L ∇u g b ) • vanishes exactly for flat cones. Indeed, if it vanishes, then ∇u is a conformal Killing vector field and therefore generates a family of conformal diffeomorphisms. By considering the maximum of the pointwise norm of the curvature of (N, g b ) which is preserved by this family of diffeomorphism, we see that it has to vanish.

Remark 52 This deformation is integrable because it simply comes from a rescaling and a change of coordinates.

Obstructions to the desingularization of spherical and hyperbolic orbifolds

Let us now use the above deformation o 1 := (2Hess g b u -4g b ) in order to deduce some general obstructions to the desingularization of spherical and hyperbolic orbifolds.

For the other part of the obstruction, we have B e r 4 e (α 2 1 + α 2 2 + α 2 3 ) = 6r e ∂ re . Indeed, r 4 e (α 2 1 + α 2 2 + α 2 3 ) = r 2 e g er 2 e dr 2 e , and we have Remark 53 It is also possible to extend the deformations given by the Killing vector fields at infinity to generate more obstructions, but it is not clear if a Ricci-flat ALE space can have vanishing terms of order r -4 b . Indeed, the quantity V is global and does not tell anything on the asymptotics of the metrics, but as we just saw, it tells something about their derivatives along the deformation (L ∇ b u g b ) • .

We deduce that we get a general obstruction to a Gromov-Hausdorff desingularization if we assume that the Ricci-flat ALE spaces are integrable.

Corollary 16 Let (M o , g o ) be a compact spherical or hyperbolic orbifold. Then, there does not exist any sequence of Einstein manifolds (M i , g i ) such that

(M i , g i ) GH --→ (M o , g o ),
while the non-flat limits of M i , gi ti , p i for t i → 0, t i > 0 and p i ∈ M i converge to smooth and integrable Ricci-flat ALE manifolds (which means that there are no trees of singularities forming).

  1.4 (The function r b on an ALE orbifold) We define r b a smooth function on N satisfying r b := (Ψ k ) * r e on each U k , and r b := (Ψ ∞ ) * r e on U ∞ , and such that 0

Now, consider a

  subset S o of the singular points of M o (respectively S of N ). Definition 1.5 (Functionals r o,So and r b,S ) We define the functional r o,So (respectively r b,S ) exactly like in Definitions 1.2 (respectively 1.4) by only considering the sets U k containing points of S o (respectively S).

  w r -m-m |s * s | uniformly and this is done using the definitions of the norms which yield wr -m |s| s r m C 0 β and w r -m |s | s r m C 0 β for any of the above spaces. The derivatives are treated thanks to the second above inequality and Leibniz rule.

  Definition 2.5 (Norm . C k,α β, * on symmetric 2-tensors) Let h be a symmetric 2-tensor on (M, g D ), (respectively (M o , g o ) or (N, g b )). We define its C k,α β, * -norm by

Remark 17

 17 By definition, we have . C k,α β, * . C k,α β , and . rC k,α β, * . rC k,α β , and the spaces (C k,α β, * , . C k,α β, *) and (rC k,α β, * , . rC k,α β, *

  Lemma 4.1 ([CT94, Proposition 4.65]) On R 4 /Γ for Γ = {e}, there is no harmonic homogeneous symmetric 2-tensor whose coefficients are of order 1, -2 or -3 in divergence-free gauge. Kernel of the operator P on the model spaces. Let us start by describing the kernel of P on our model spaces. Lemma 4.2 Let (N, g b ) be a Ricci-flat ALE orbifold, and denote P b := 1 2 ∇ * b ∇ b -Rb , and O(g b ), the kernel of P g b on C 2,α β, * (g b ). The elements of O(g b ) decay at least like r -4 b at infinity, and for all o b ∈ O(g b ), we have the following development coordinates at infinity, o b = O 4 + O(r -5 b ), with O 4 ∼ r -4 b a harmonic homogeneous symmetric 2-tensor. Let also (M o , g o ) be a compact Einstein orbifold, we denote O(g o ) the kernel of P o on C 2,α β, * for all 0 < β < 1. An element o o ∈ O(g o ) has a development o o = O 0 + O 2 + O(r 3 o ), for harmonic homogeneous symmetric 2-tensors O i ∼ r i o . Proof Let us consider o ∈ O(g b ), for which P b o = 0, and o = O(r -β b

  b ), where O 0 and O 2 are harmonic homogeneous symmetric 2-tensors in r 0 o and r 2 o respectively.

Lemma 4. 3

 3 Let (N, g b ) be a Ricci-flat ALE orbifold and (M o , g o ) an Einstein orbifold, and 0 < β < 1.

  ) . Moreover, their respective cokernels are O(g b ) and O(g o ).

  and its cokernel is the kernel of P b on r -2+β b C α 0 (g b ) which is reduced to O(g b ).

  Let o o ∈ O(g o ) and o j ∈ O(g b j ), and define o o = o o, * + k χ Bo(p k , 0 ) o o,k and o j = o j, * + k χ B j (p k , 0 ) o j,k their respective decompositions as a symmetric 2-tensor of C 2,α β and constant symmetric 2-tensors truncated in the neighborhoods of the singular points. Thanks to the cut-off functions of Definition 5, we define on M the following symmetric 2-tensors õo,t := χ M t o o o, * + k χ A k (t, 0 ) o o,k , and õj,t := χ N t j o j, * + k χ A k o j,k . Remark 22 We have õo,t = o o on M 16t o , and õj,t = o j on N 16t j . Definition 4.4 (Space of truncated obstructions) Let (M, g D t ) be a naïve desingularization of a Einstein orbifold (M o , g o ). On M , we will denote Õ(g D ) := õo,t + j õj,t , o o ∈ O(g o ), o j ∈ O(g b j ) , the space of truncated obstructions. Remark 23 For 0 < β < 2, by elliptic regularity for the elements of O(g o ) and the O(g b j ), and the C 4 0 -control of the cut-off functions we have õo,t + j T j õj,t C 0 (g D )

Theorem 4. 6

 6 Let (M o , g o ) be a compact or ALE Einstein orbifold of dimension 4 such that Ric(g o ) = Λg o , for Λ ∈ R, and let (N j , g b j ) j be a tree of singularities desingularizing (M o , g o ) with pattern D, and 0 < β < 1.

  Let us now explain how the Einstein modulo obstructions metrics of Theorem 4.6 are analogous to the metrics in the set W of Theorem 0.2. Let M a differentiable 4-manifold and consider an orbifold (M o , g o ) ∈ ∂ o E(M) ⊂ E(M) GH \E(M). According to Corollary 5, the Einstein metrics which are sufficiently close to (M o , g o ) in the Gromov-Hausdorff are results of the gluing-perturbation procedure of Theorem 4.6.

  Definition 5.1 (Integrable Ricci-flat ALE orbifold) We will say that a Ricci-flat metric ALE g b is integrable if for all v ∈ O(g b ) small enough, there exists a Ricci-flat metric ALE ḡb,v satisfying ḡb,v -(g b + v) ⊥ O(g b ) and ḡb,vg b L 2 (g b ) 2 v L 2 , and such that δ g b ḡb,v = 0. Remark 30 All of the known examples of Ricci-flat ALE spaces are integrable since they are quotients of hyperkähler spaces. Moreover, any infinitesimal L 2 -deformation of ALE Ricci-flat orbifolds is automatically divergence-free and trace-free by the proof of Lemma 4.2.

  Definition 5.2 (C 2,α β, * * -norm on a ALE orbifold) Let (N, g b ) be an ALE orbifold, and let h be a symmetric 2-tensor on N , and assume that h = H 4 + O(r -4-β b ) for β > 0 and H 4 a homogeneous harmonic symmetric 2-tensor with |H 4 | ∼ r -4 e . We define its C 2,α β, * * -norm by h C 2,α β, * * := sup r 4 e |H 4 | ge + (1 + r b ) 4 (h -χ( r b )H 4 ) C 2,α β, * . Definition 5.3 (r b C 3,α β, * * -norm on a ALE orbifold) Let (N, g b ) be an ALE orbifold, and let X be a vector field on N , and assume that X = Y 3 + O(r -3-β b ) for β > 0 and Y 3 a homogeneous element of the kernel of δ e δ * e with |Y 3 | ∼ r -3 e . We define its r b C 3,α β, * * -norm by X r b C 3,α β, * * := sup r 3 e |Y 3 | ge + (1 + r b ) 4 (X -χ( r b )Y 3 ) r b C 3,α β, * . These norms are motivated by the following Lemmata. Lemma 5.4 Let (N, g b ) be an ALE orbifold. Then, there exists C > 0 such that we have, for any h ⊥ O(g b ),

S

  (ĝ S ) = o S ∈ Õ(g D S ). At p, the metric ĝS has the following development in local coordinates where it is in divergence-free gauge with respect to g e , (83) ĝS = g e + ĤS + O(r 3 o ) and we know that g D S (ĝ S ) = o S = O S + O(r 2 e ) with |O S | ge ∼ r 0 e , tr ge O S = 0 and δ ge O S = 0. We therefore have 0 = g D S (ĝ S ) -O S = λg e + Pe ( ĤS ) -O S + O(r 2 e ), (84) where λ = n-2 2n R(ĝ S ). Consequently Pe ĤS + λg e = O S , where O S is the limit of o S at p.

  for k ∈ {0, 1, 2}, there exists C > 0 such that: (1) r k D |∇ k tp ḡb (g At p ḡb )| tp ḡb Cr 2 D since g A = t p ḡb + t 2 p ĥS on N 16t by construction and because of the controls of the cut-off functions, (2) r k b |∇ k ḡb õ| Cr -4 b as well as Pḡ b õ = 0 on N 16t ⊂ {r D < t 1 4

  tdx + ydzzdy).Manifestly, from Theorem 5.8 these obstructions do not particularly depend on the Eguchi-Hanson metric, but on the r -4 b -terms of the development of its deformations, O 4 i , which are, by[START_REF] Biquard | Désingularisation de métriques d'Einstein[END_REF] (27)

,

  where d 1, n 2 and, n and m are mutually prime. Corollary 10 Let Γ be a group 1 dn 2 (1, dnm -1) ⊂ U(2) for d 1, n 2 and n and m mutually prime, and let (N, g b ) be a Kähler Ricci-flat ALE metric asymptotic to R 4 /Γ, and (O 4 i ) i a basis of the r -4 b -terms of the elements of O(g b ).

  Let us come back to the origin of the obstruction in Proposition 13, and more precisely the existence of a symmetric 2-tensor h 2 asymptotic to H 2 such that d g b Ric(h 2 ) = Λg b . If such a symmetric 2-tensor exists on (N, g b ), we can lift it as a symmetric 2-tensor h2 on ( Ñ, gb ) asymptotic to H2 and satisfying d gb Ric( h2 ) = Λg b which implies, again according to Proposition 13 and to Proposition 15, the condition det R + ( H2 ) = 0, and finally det R + (H 2 ) = 0.

Proposition 16

 16 For any Γ ⊂ SU(2) and > 0, there exists C = C(Γ, ) > 1 such that for any ζ ∈ R 3k Γ with |ζ| = 1, there exists a naïve desingularization (partial if ζ ∈ D Γ and total if ζ / ∈ D Γ , see Definition 1.6) g B ζ of an orbifold g ζo with ζ o ∈ R 3k Γ and |ζ o | = 1 by hyperkähler orbifolds g ζ j for |ζ j | = 1 and ζ j ∈ R k Γ j with |Γ j | < |Γ|, for which, denoting

  for any g b a Ricci-flat ALE metric, the kernel and the cokernel of Pg b : C 2,α β, * (g b ) → r -2 b C α β (g b ) are equal to O(g b ) because taking the divergence of Pg b (h) = 0 for h ∈ C 2,α β, * (g b ), yields δ g b δ * g b (δ g b h) = 0, and finally δ g b h = 0 by Proposition 9. By taking the trace of the remaining of the equation, we find that ∇ * g b ∇ g b (tr g b h) = 0, and since h decays at infinity, tr g b h = 0. Finally P g b (h) = 0, and we conclude that the kernel of Pg b : C 2,α β, * → r -2 b C α β is O(g b ), and similarly, its cokernel is also O(g b ).

  ) g D (ĝ A )t 1 i λi õi , õ L 2 (g D ) C 0 o L 2 (g b ) t

+M

  |W + | 2 + |W -| 2 dv,and Hirzebruch's signature formula gives,|W + | -|W -| 2 dv.Simply because M |W ± | 2 dv 0 and M R 2 dv 0, thanks to (118) and (119), we have the following Hitchin-Thorpe inequality for Einstein 4-manifolds, 2χ(M) 3|τ (M)|.

  Lemma 7.1 ([Nak90, Theorem 4.2]) Let (N, g b ) be a Ricci-flat ALE manifold of dimension 4. Then, we have the following inequality between the modified Euler characteristic and the modified signature of Ricci-flat ALE orbifolds, 2 χ(N) 3| τ (N)|, with equality if and only if (N, g b ) is a Kähler Ricci-flat ALE orbifold.Remark 47 In particular, the only Ricci-flat ALE manifolds diffeomorphic to a minimal resolution of a singularity C 2 /Γ for Γ ⊂ SU(2) or one of its quotients are Kähler.The topological invariants τ and χ are additive by gluing ALE spaces to orbifold singularities like in Definition 1.6. If M = M o # j N j , we then haveτ (M) = τ (M o ) + j τ (N j ),andχ(M) = χ(M o ) + j χ(N j ).This directly implies:2χ(M) -3|τ (M)| = 2 χ(M o ) + j χ(N j ) -3 τ (M o ) + j τ (N j ) 2 χ(M o ) -3| τ (M o )| + j 2 χ(N j ) -3| τ (N j )| 2 χ(M o ) -3| τ (M o )|.

  2χ(M) -3|τ (M)| 2 χ(M o ) -3 τ (M o ).Moreover, we have equality, if and only if M is a desingularization of M o by gluing trees of Kähler Ricci-flat ALE orbifolds in the same orientation (that is with gluing parameters in SO(4)), and in this equality case we have the condition det R + (g o ) = 0 at all of the singular points of M o .

  Lemma 7.3 ([Nak90, Corollary 3.3]) Let (N, g b ) be a Ricci-flat ALE metric on a spin manifold which is asymptotic to R 4 /Γ for Γ a finite subgroup of SU(2), then, (N, g b ) is a hyperkähler metric.

Remark 51

 51 It is possible to desingularize a spherical orbifold S 4 /Γ for Γ ⊂ SU(2) by metrics with Ric 3 (or Ric 3) while Ric is pinched in L p . Consider for > 0 and b > 1, choose a cut-off function, χ b, , supported on [0, b ] and equal to 1 on [0, ] whose k-th derivatives are O 1 log(b) -k , and define the metric g b, := dr 2 + sin (1 + χ b, )r g S 3 /Γ .

=

  -2r e g e (∂ re , .) + 4rdr e = 2r e dr e , and B e (r 2 e dr 2 e ) = δ e (r 2 e dr 2 e ) j dx i dx j + r e dr e =i =j x j dx j -2 j x j dx j + r e dr e = -4r e dr e . Finally, for r e = 1, ∂ re ) = 6O 4 1 (∂ re , ∂ re ). The obstruction generated by o 1 , that is S 3 3 H 2 , O 4 1 ge + O 4 1 (B e H 2 , ∂ re ) dv therefore never vanishes by (124) and (125).

  where K o is the set of k such that the annulus A k has a nonempty intersection with M t o . By construction, X * = X o, * on M t o and we therefore have the following obvious control.

				t/16 o	such that
	o χ M t/16	≡ 1 on M t	
				l
	(39)		t	4
	Denoting X o, * := χ M t/16 o	X * , we have
	(40)	X o, * roC 3,α β (go)

the cut-off function χ M t/16 o of Definition 1.10 supported in M o and such that for all l ∈ N, there exists C l > 0 for which in each A k , k |∇ l χ M t/16 o | g D C l .

We then define a vector field X o on M o by

X o := χ M t/16 o X * + k∈Ko χ Bo(p k , ) X k ,

  3 3 H 2 , O 4 i ge + O 4 i (B e H 2 , ∂ re ) dv S 3 = 0 for a quadratic symmetric 2-tensor H 2 satisfying d e Ric H 2 = Λg e imply that det R + (H 2 ) = 0, where R + (H 2 ) is the common selfdual part of the curvature of metrics with a development g e + H 2 + O(r 3 e ).

  ζ , g ζ ) ζ∈R 3k Γ \D Γ . Moreover, by [Auv18, Theorem 2.1], for each ζ = (ζ 1 , ζ 2 , ζ 3 ) ∈ R 3k Γ \D Γ , there exists a diffeomorphism Φ ζ from a neighborhood of the infinity of R 4 /Γ to the infinity of X ζ such that Φ * ζ g ζ = g e + h ζ + O(r -6where the first sum is taken on the (j, k, l) satisfying l ≡ k + 1 ≡ j + 2 mod 3. Without loss of generality, we can assume that the first coordinates of ζ 1 , ζ 2 and ζ 3 ∈ R k Γ are 1, 0 and 0. Indeed, there exists l ∈ {1, ..., k Γ } such that the l-th coordinate of (ζ 1 , ζ 2 , ζ 3 ), (ζ l 1 , ζ l 2 , ζ l 3

				e ), where,
	h ζ = -	j,k,l	e + r 2 e α 2 j -r 2 e α 2 k -r 2 e α 2 l |ζ j | 2 dr 2 r 4 e
	-ζ 1 , ζ 2	r 2 e α 1 .α 2 -r e dr e .α 3 r 4 e
	-ζ 1 , ζ 3	r 2 e α 1 .α 3 + r e dr e .α 2 r 4 e
	-ζ 2 , ζ 3	r 2 e α 2 .α 3 -r e dr e .α 1 e r 4	,

  The uniqueness of Theorem 4.6 and the fact that the infinitesimal deformations of (X ζ 0 , g ζo ) integrate to curves t → (X ζ 0 (t) , g ζ 0 (t) ) by the classification of[START_REF] Kronheimer | The construction of ALE spaces as hyper-Kähler quotients[END_REF][START_REF] Kronheimer | A Torelli-type theorem for gravitational instantons[END_REF] ensures that there exists v t ∈ Õ(g B

	0,t,ζ 0 ) and ζ t 0 such
	that we have
	ψ

* (φ * g t ) = ĝvt,t,ζ t 0 , with ĝvt,t,ζ t 0 one of the metrics of Theorem 4.6.

  t,ζ ) and S = Õ(g B v,t,ζ ) ⊥ , the Ricci-flat deformations of ĝv,t,ζ are arbitrarily close to elements of Õ(g B v,t,ζ ). By Corollary 7, the metrics g B v ,t ,ζ approximate the small Ricci-flat deformations ĝv ,t ,ζ of ĝv,t,ζ staying in B C 2,α β, * (g B v,t,ζ ,2 ) , for > 0 the constant of Theorem 4.6. We therefore reach metrics isometric to all the ĝv ,t ,ζ for

  is the homogeneous symmetric 2-tensor used in the proof of Proposition 15, and with o i (ζ) L 2 (g ζ ).-4 e terms of (X ζ , g ζ ) converge to those of (X ζ 0 , g ζ 0 ) as ζ → ζ 0 by Corollary 7. By assumption, there exists l ∈ {1, ..., k Γ } such that ζ l 0 = 0, hence, for ζ close enough to ζ 0 , ζ l = 0 by continuity. Just like in the proof of Proposition 15, this implies that there exists a diffeomorphism Φ ζ between neighborhoods of the infinities of (X ζ , g ζ ) and of R 4 /Γ and infinitesimal deformations of g ζ , o 1 (ζ), o 2 (ζ) and o 3 (ζ) such that there exists C > 0 independent of ζ for which we have for all i ∈ {1, 2, 3}, In particular, since O 4 i = 0, there exists > 0 depending on C and β , but independent of ζ such that we have o i (ζ) L 2 (g ζ )

	|Φ * ζ o i (ζ) -O 4 i | Cr -4-β B
	by Corollary 7.

Proof According to Corollary 7, (X ζ , g ζ ) = (N, ḡb,t ) is a Kähler Ricci-flat perturbation of a naïve desingularization (N, g B t ) for some small t depending on ζ . Moreover, the r

  , O 4 i ge + O 4 i ∇ e tr e ĤS , ∂ re dv S 3 /Γ + S , o i g b dv b . Let (M o , g o ) be an Einstein orbifold and p one of its singular points of singularity R 4 /Γ, S the set of singularities of M o \{p}, and let (N k , g b k ) k be a tree of ALE Kähler Ricci-flat orbifolds desingularizing R 4 /Γ. Let moreover ĝS be a naïve desingularization modulo obstructions of (M o , g o , S) and ĤS the quadratic terms of a development in divergence-free gauge at p ∈ M o , t 1 > 0, ḡb,t a Kähler Ricci-flat gluing of the (N k , g b k ) k at relative scales t = (t k ) k > 0 produced by Lemma 17, and a symmetric 2-tensor ĥ2 on N and the real numbers λi of Lemma 12.

N

χ O Definition 6.6 (Metric ĝA ) Let us define the approximate metric ĝA as the naïve gluing (Definition 1.6) of ĝS and t 1 ḡb,t + t 1 ĥS .
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Theorem 8.1 Let (N, g b ) be a Ricci-flat ALE orbifold and H 2 be the quadratic terms of a spherical or hyperbolic metric in geodesic coordinates, and O 4 1 terms of order r -4 b of the deformation o 1 = (2Hess g b u -4g b ).

Then, we have

and therefore the perturbation of g D t to an Einstein metric orthogonally to Õ(g D t ) is always obstructed.

Proof Let (N, g b ) be a Ricci-flat ALE orbifold asymptotic to a flat cone R 4 /Γ, and let

b ) be the infinitesimal deformation of Proposition 18. Let us start by proving that O 4 1 (∂ re , ∂ re ) does not vanish. There exists a compact K ⊂ M such that M\K is foliated by hypersurfaces Σ ρ whose mean curvature is constant equal to 3 ρ . If we denote Ω ρ the interior of Σ ρ , then, by [BH19, Theorem A] the following limit exists and is finite:

and we actually have V 0, with equality if and only if (N, g b ) = (R 4 /Γ, g e ).

Moreover, let u be the unique solution of -∇ * ∇u = 8 with u = r 2 b + o(1), then, we actually have

and by the proof of [BH19, Theorem B], we have the explicit value b = -4 V |∂B(0, 1)/Γ| 0.

We also deduce the following development of

which is strictly positive if g b is not flat. Now, for a hyperbolic metric, we have H 2 = r 4 e 3 (α 2 1 + α 2 2 + α 2 3 ) in geodesic coordinates, and for a spherical metric, H 2 = -r 4 e 3 (α 2 1 + α 2 2 + α 2 3 ). Notice moreover that, since g e = dr 2 e +r 2 e (α 2 1 +α 2 2 +α 2 3 ), we have 0

Proof According to Theorem 5.8, if the quadratic terms of the development of g o are H 2 , the obstruction induced by the deformation o 1 is

which is never satisfied according to Theorem 8.1.

The obstruction of Theorem 5.8 is therefore never satisfied for spherical and hyperbolic metrics, and it is impossible to desingularize it by Ricci-flat ALE manifolds which are integrable.

The obstruction to the desingularization of spherical and hyperbolic manifolds is therefore identified, but we need the technical integrability assumption to deduce a Gromov-Hausdorff obstruction thanks to it. We believe that this is only a technicality and conjecture the following statement.

Conjecture 8.2 Singular spherical and hyperbolic orbifolds cannot be Gromov-Hausdorff limits of smooth Einstein manifolds.