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ASYMPTOTIC SMOOTHNESS AND UNIVERSALITY
IN BANACH SPACES

BY

R. M. CAUSEY (Middletown, OH) and G. LANCIEN (Besançon)

Abstract. For 1 < p ≤ ∞, we study the complexity and the existence of universal
spaces for two classes of separable Banach spaces, denoted Ap and Np, and related to
asymptotic smoothness in Banach spaces. We show that each of these classes is Borel
in the class of separable Banach spaces. Then we build small families of Banach spaces
that are both injectively and surjectively universal for these classes. Finally, we prove the
optimality of this universality result, by showing in particular that none of these classes
admits a universal space.

1. Introduction. The notion of asymptotic uniform smoothness has
become very important in the recent developments of the linear and non-
linear geometry of Banach spaces. In a recent work [CL] we have proved that
the class Tp ∩ Sep of all separable Banach spaces admitting an equivalent
p-asymptotically uniformly smooth norm is analytic non-Borel in the class
Sep of all separable Banach spaces and that there exists a space Up ∈ Tp∩Sep
such that any space in Tp ∩ Sep is both isomorphic to a subspace and to a
quotient of Up. For a Banach space X, the property Tp can be characterized
in terms of some infinite game and in terms of the existence of upper ℓp-
estimates for weakly null trees of infinite height in BX , the unit ball of X
(see [C18b]).

In Section 2, we introduce the properties Ap and Np, which are both
slightly weaker than Tp (and Np is weaker than Ap). We give their defini-
tions in terms of finite two-player games and recall their main characteriza-
tions. First we give their characterizations in terms of upper ℓp-estimates for
weakly null trees of finite height in the unit ball. We also recall their dual
characterizations. For that purpose we need to introduce the so-called Szlenk
derivation in a dual Banach space and the associated notions of q-summable
Szlenk index and convex Szlenk index for a Banach space. The aim of this
paper is to address, for Ap and Np, the questions solved for Tp in [CL].
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In Section 3, we introduce the necessary framework, built by B. Bossard
[B02], for conducting a meaningful study of the topological complexity of a
class of separable Banach spaces. Then, we use the dual characterizations of
Ap and Np to show the following.

Theorem A. Let p ∈ (1,∞]. The classes Sep ∩ Ap and Sep ∩ Np are
Borel.

Next, we start our construction of universal families for Sep ∩ Ap and
Sep ∩Np. This will take a few steps. In Subsection 4.1, we build a first fam-
ily of model spaces for Ap and Np. If q is the conjugate exponent of p and
θ ∈ (0, 1), we denote by T ∗

q,θ the dual of the q-convexification of Tθ, the
Tsirelson space of parameter θ, and we show that T ∗

q,θ ∈ Ap. We slightly
modify the construction to get a typical Np space U∗

q,θ. In fact, to com-
plete this family, we need to introduce another parameter M , an infinite
sequence in N, and associated spaces T ∗

q,θ,M and U∗
q,θ,M . In Subsection 4.2

we introduce the key notion of press down norm associated with a Banach
space Z with finite-dimensional decomposition E and a Banach space T with
a 1-unconditional basis. The associated Banach space is denoted ZT

∧ (E) and
we show that if T has Ap (resp. Np), then ZT

∧ (E) has Ap (resp. Np). Then, in
Subsection 4.3, we gather technical results about the interaction of gliding
hump arguments and quotient maps.

In Section 5, we take a crucial step, by showing that for any space X in
Sep ∩ Ap (resp. in Sep ∩ Np), there exist θ ∈ (0, 1) and Banach spaces Z, Y
with FDDs F, H, respectively, such that X is isomorphic to a subspace of
Z

T ∗
q,θ

∧ (F), and to a quotient of Y
T ∗
q,θ

∧ (H) (resp. to a subspace of Z
U∗
q,θ

∧ (F), and
to a quotient of Y

U∗
q,θ

∧ (H)).
In Section 6 we take the final step of our construction, which is to use

the complementably universal space for Banach spaces with an FDD built
by Schechtman [S75]. We denote by W this universal space and by J its
finite-dimensional decomposition. Then we show:

Theorem B. Fix 1 < p ≤ ∞ and let q be its conjugate exponent. Let X
be a separable Banach space.
(i) X has Ap if and only if there exist θ ∈ (0, 1) and an infinite sequence M

in N such that X is isomorphic to a subspace of W
T ∗
q,θ,M

∧ (J) if and only
if there exist θ ∈ (0, 1) and an infinite sequence M in N such that X is
isomorphic to a quotient of W

T ∗
q,θ,M

∧ (J).
(ii) X has Np if and only if there exist θ ∈ (0, 1) and an infinite sequence M

in N such that X is isomorphic to a subspace of W
U∗
q,θ,M

∧ (J) if and only
if there exist θ ∈ (0, 1) and an infinite sequence M in N such that X is
isomorphic to a quotient of W

U∗
q,θ,M

∧ (J).
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In the concluding Section 7, we show that this result is optimal. More
precisely, we introduce yet another two-player game to show the following.

Theorem C. Fix 1 < p ≤ ∞. If U is any Banach space with Np, then
there exists a Banach space X with Ap such that X is not isomorphic to any
subspace of any quotient of U . More precisely, if q is the conjugate exponent
of p, then there exists θ ∈ (0, 1) such that T ∗

q,θ is not isomorphic to any
subspace of any quotient of U .

2. The properties and their characterizations. All Banach spaces
are over the field K, which is either R or C. We denote by BX (resp. SX) the
closed unit ball (resp. sphere) of a Banach space X. By subspace, we shall
always mean a closed subspace. Unless otherwise specified, all spaces are as-
sumed to be infinite-dimensional. For a Banach space X, we denote by WX

the set of weak-open neighborhoods of 0 in X, by cof(X) the set of closed
finite-codimensional subspaces of X and by KX the set of norm-compact
subsets of BX . For X,Y Banach spaces, a bounded linear map Q : X → Y
is called a quotient map if it is onto and induces an isometry from X/ker(Q)
onto Y . If X and Y are isomorphic Banach spaces, the Banach–Mazur dis-
tance from X to Y is dBM(X,Y ) = inf {∥T∥ ∥T−1∥ : T an isomorphism from
X onto Y }.

LetD be a set. We denoteD≤n =
⋃n

i=1D
i,D<ω =

⋃∞
i=1D

i, we letDω be
the set of all infinite sequences whose members lie inD andD≤ω = D<ω∪Dω.
For s, t ∈ D<ω, we let s ⌢ t denote the concatenation of s with t. We let |t|
denote the length of t. For 0 ≤ i ≤ |t|, we let t|i denote the initial segment
of t having length i, where t|0 = ∅ is the empty sequence. If s ∈ {∅} ∪D<ω,
we let s ≺ t denote that s is a proper initial segment of t.

We start with the definition of the Szlenk index. For a Banach space X,
K ⊂ X∗ weak∗-compact, and ε > 0, we let sε(K) denote the set of x∗ ∈ K
such that for each weak∗-neighborhood V of x∗, diam(V ∩K) ≥ ε. We define
the transfinite derivations

s0ε(K) = K, sξ+1
ε (K) = sε(s

ξ
ε(K)),

and if ξ is a limit ordinal,

sξε(K) =
⋂
ζ<ξ

sζε(K).

For convenience, we let s0(K) = K. If there exists an ordinal ξ such that
sξε(K) = ∅, we let Sz(K, ε) denote the minimum such ordinal, and otherwise
we write Sz(K, ε) = ∞. We let Sz(K) = supε>0 Sz(K, ε), where Sz(K) = ∞
if Sz(K, ε) = ∞ for some ε > 0. We let Sz(X, ε) = Sz(BX∗ , ε) and Sz(X) =
Sz(BX∗). In this work, we will exclusively be concerned with Banach spaces
X such that Sz(X) ≤ ω, where ω is the first infinite ordinal. By compactness,
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Sz(X) ≤ ω if and only if Sz(X, ε) is a natural number for each ε > 0. We
recall that Sz(X) <∞ if and only if X is Asplund (see [L06] and references
therein). One characterization of Asplund spaces is that every separable
subspace has a separable dual.

For 1 ≤ q < ∞, we say X has q-summable Szlenk index provided there
exists a constant c > 0 such that for any n ∈ N and any ε1, . . . , εn ≥ 0 such
that sε1 . . . sεn(BX∗) ̸= ∅,

∑n
i=1 ε

q
i ≤ cq. In the q = 1 case, we refer to this

as summable Szlenk index rather than 1-summable Szlenk index.
We shall also need a somewhat slower derivation and the corresponding

index, called the convex Szlenk index Cz(X), introduced in [GKL01], which
is defined identically from the following derivation: for K ⊂ X∗ weak∗-
compact, and ε > 0, cε(K) is the weak∗-closed convex hull of sε(K).

We now define the asymptotic smoothness properties that we shall study
by means of two different two-player games on a Banach space X (and their
variants). Fix 1 < p ≤ ∞ and let q be its conjugate exponent. For n ∈ N, we
denote by ℓnp the space Kn equipped with the p-norm: ∥a∥p = (

∑n
i=1 |ai|p)1/p,

a ∈ Kn. For c > 0 and n ∈ N, we define the A(c, p, n) game and the N(c, p, n)
game. In the A(c, p, n) game, Players I and II take turns choosing Ui ∈WX

and xi ∈ Ui ∩BX , respectively, until (xi)ni=1 has been chosen. Player I wins
if

max
{∥∥∥ n∑

i=1

aixi

∥∥∥ : (ai)
n
i=1 ∈ Bℓnp

}
≤ c,

and Player II wins otherwise. The spatial A(c, p, n) game on X is similar,
except Player I chooses Yi ∈ cof(X) and Player II chooses xi ∈ BYi . The
conditions for Player I or Player II winning are the same as in the A(c, p, n)
game. The compact spatial game is also similar, except Player I chooses
Yi ∈ cof(X) and Player II chooses Ci ∈ KYi , where for Y ∈ cof(X), we write
KY for the set of norm-compact subsets of BY . Player I wins if

max
{∥∥∥ n∑

i=1

aixi

∥∥∥ : (ai)
n
i=1 ∈ Bℓnp , (xi)

n
i=1 ∈

n∏
i=1

Ci

}
≤ c,

and Player II wins otherwise.
The N(c, p, n) game is similar to the A(c, p, n) game. Only the winning

condition is modified. Player I wins if ∥
∑n

i=1 xi∥ ≤ cn1/p, and Player II wins
otherwise. The modifications needed to define the spatial N(c, p, n) and the
compact spatial N(c, p, n) game are identical to those for theA(c, p, n) games.

Let us now specify what we mean by strategies in these games. We define
only the notions of strategies and winning strategies for Player I. For a
Banach space X and n ∈ N, an n-strategy is a function χ : B<n

X → WX .
A spatial n-strategy is a function χ : B<n

X → cof(X). A compact spatial
n-strategy is a function χ : K<n

X → cof(X). If χ is an n-strategy, then we



UNIVERSALITY IN BANACH SPACES 5

say (xi)
n
i=1 ⊂ BX is χ-admissible if xj ∈ χ((xi)

j−1
i=1 ) for all 1 ≤ j ≤ n.

The notion of χ-admissibility for a spatial n-strategy is defined similarly.
If χ is a compact spatial n-strategy, we say (Ci)

n
i=1 ∈ Kn

X is χ-admissible
if Cj ⊂ χ((Ci)

j−1
i=1 ) for all 1 ≤ j ≤ n. For any type of strategy in any of

the games defined above, we say the strategy is a winning strategy if any
sequence admissible with respect to it satisfies the winning condition of the
game for Player I.

It is known (see [C18b, Section 3] that each of these games is determined.
That is, in each game, either Player I or Player II has a winning strategy.
We let ap,n(X) denote the infimum of c > 0 such that Player I has a winning
strategy in the A(c, p, n) game, and we let ap(X) = supn ap,n(X). We note
that ap(X) is the infimum of c > 0 such that for each n ∈ N, Player I has
a winning strategy in the A(c, p, n) game if such a c exists, and ap(X) = ∞
otherwise. We let np,n(X) denote the infimum of c > 0 such that Player I
has a winning strategy in the N(c, p, n) game, and np(X) = supn np,n(X).

We shall also use the following infinite game. First, denote by c00 the
space of all finitely supported scalar sequences. Then, for two sequences
(en)

∞
n=1, (fn)

∞
n=1 in (possibly different) Banach spaces and for c > 0, we

write (en)
∞
n=1 ≲c (fn)

∞
n=1 provided that

∀(an)∞n=1 ∈ c00

∥∥∥ ∞∑
n=1

anen

∥∥∥ ≤ c
∥∥∥ ∞∑
n=1

anfn

∥∥∥.
For a Banach space T with basis (ei)

∞
i=1 and c > 0, we define the spatial

(T, c) game on X. Players I and II take turns choosing Yi ∈ cof(X) and
xi ∈ BYi , respectively. Player I wins if (xi)∞i=1 ≲c (ei)

∞
i=1, and Player II wins

otherwise. The notions of ω-strategies, admissibility and ω-winning strategies
are defined identically.

Definition 2.1. Let p ∈ (1,∞]. We define Ap to be the class of all
Banach spaces X such that ap(X) <∞, and Np to be the class of all Banach
spaces X such that np(X) <∞.

The following proposition relies on routine approximation arguments.

Proposition 2.2. Fix 1 < p ≤ ∞ and let X be a Banach space.

(i) X has Ap if and only if there exists c > 0 such that for all n ∈ N, Player I
has a winning strategy in the spatial A(c, p, n) game if and only if there
exists c > 0 such that for all n ∈ N, Player I has a winning strategy in
the compact spatial A(c, p, n) game.

(ii) X has Np if and only if there exists c > 0 such that for all n ∈ N,
Player I has a winning strategy in the spatial N(c, p, n) game if and only
if there exists c > 0 such that for all n ∈ N, Player I has a winning
strategy in the compact spatial N(c, p, n) game.
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We now recall the main characterizations of these classes. We refer to
[CFL] for an overview of these properties and complete references. The re-
sults stated here come from [C18a] and [C21]. To give these characteriza-
tions, we need more notation. Given D a weak neighborhood base of 0 in X
and (xt)t∈D<ω ⊂ X, we say (xt)t∈D<ω is weakly null provided that for each
t ∈ {∅} ∪ D<ω, (xt⌢(U))U∈D is a weakly null net. Here D is directed by
reverse inclusion.

Theorem 2.3 ([C18a]). Fix 1 < p ≤ ∞ and let q be conjugate to p. Let
X be a Banach space. The following are equivalent:

(i) X ∈ Ap.
(ii) There exists a constant c > 0 such that for any weak neighborhood base

D at 0 in X, any n ∈ N, and any weakly null collection (xt)t∈D≤n ⊂ BX ,
there exists t ∈ Dn such that ∥

∑n
i=1 aixt|i∥ ≤ c∥a∥p for all a ∈ Kn.

(iii) X has q-summable Szlenk index.

Theorem 2.4 ([C21]). Fix 1 < p ≤ ∞ and let q be conjugate to p. Let
X be a Banach space. The following are equivalent:

(i) X ∈ Np.
(ii) There exists a constant c > 0 such that for any n ∈ N and any

weakly null collection (xt)t∈D≤n in BX , there exists t ∈ Dn such that
∥
∑n

i=1 xt|i∥ ≤ cn1/p.
(iii) There exists a constant K > 0 such that

∀ε ∈ (0, 1) Cz(X, ε) ≤ Kε−q.

Denote by D1 the class of all Banach spaces with Szlenk index at most ω
and by Tp the “infinite game version” of Ap (see [CFL] for the precise defini-
tion). We recall the following inclusions.

Theorem 2.5.

(i) D1 =
⋃

1<p≤∞ Tp =
⋃

1<p≤∞ Ap =
⋃

1<p≤∞ Np.
(ii) For 1 < p <∞, Tp ⊊ Ap ⊊ Np.
(iii) T∞ ⊊ A∞ = N∞.

3. Descriptive set theory and asymptotic smoothness

3.1. Background. We recall the setting introduced by B. Bossard [B02]
in order to apply the tools from descriptive set theory to the class Sep of
separable Banach spaces.

A Polish space (resp. topology) is a separable completely metrizable space
(resp. topology). A setX equipped with a σ-algebra is called a standard Borel
space if the σ-algebra is generated by a Polish topology on X. A subset of
such a standard Borel space X is called Borel if it is an element of the
σ-algebra, and it is called analytic (or a Σ1

1 set) if there exists a standard
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Borel space Y and a Borel subset B of X × Y such that A is the projection
of B on the first coordinate. The complement of an analytic set is called a
coanalytic set (or a Π1

1 set). A subset A of standard Borel space X is called
Σ1
1-hard if for every Σ1

1 subset B of a standard Borel space Y , there exists
a Borel map f : Y → X such that f−1(A) = B, and it is called Σ1

1-complete
if it is both Σ1

1 and Σ1
1-hard.

Let X be a Polish space. The set F(X) of all closed subsets of X can be
equipped with its Effros–Borel structure, defined as the σ-algebra generated
by the sets {F ∈ F(X) : F ∩ U ̸= ∅}, where U varies over the open subsets
of X. Equipped with this σ-algebra, F(X) is a standard Borel space.

Following Bossard, we now introduce the fundamental coding of separ-
able Banach spaces. It is well known that C(∆), the space of scalar valued
continuous functions on the Cantor space ∆ = {0, 1}N, equipped with the
sup-norm, contains an isometric linear copy of every separable Banach space.
We equip F(C(∆)) with its corresponding Effros–Borel structure and we
denote

SB = {F ∈ F(C(∆)) : F is a linear subspace of C(∆)},
considered as a subspace of F(C(∆)). Then SB is a Borel subset of F(C(∆))
[B02, Proposition 2.2] and therefore a standard Borel space, which we call
the standard Borel space of separable Banach spaces.

Let now ≃ denote the isomorphism equivalence relation on SB. The fun-
damental coding of separable Banach spaces is the quotient map c : SB →
SB/≃. We can now give the following definition.

Definition 3.1. A family G ⊂ SB/≃ is Borel (resp. analytic, coanalytic)
if c−1(G) is Borel (resp. analytic, coanalytic) in SB.

This will allow us to describe the complexity of classes of separable Ba-
nach spaces that are stable under linear isomorphisms, such as Tp, Ap and Np.
It will sometimes be convenient to use another coding of separable Banach
spaces, by using the fact that any separable Banach space is a quotient of ℓ1.
For a sequence x = (xn)

∞
n=1 ∈ ℓω1 , define cd(x) = ⟨ℓ1/span(x)⟩ (where ⟨E⟩

denotes the equivalence class of a separable Banach space in SB/≃). The
following is taken from [B02, Proposition 2.8].

Proposition 3.2. A family G ⊂ SB/≃ is Borel (resp. analytic, coana-
lytic) if and only if c−1

d (G) is Borel (resp. analytic, coanalytic) in ℓω1 .

Let K be the closed unit ball of ℓ∞ equipped with the weak∗-topology
induced by ℓ1. Then K is a metrizable compact space. We denote by F(K)
the set of closed subsets of K. The Vietoris topology on F(K) is the topology
generated by the sets of the form {F ∈ F(K) : F ⊂ O} and {F ∈ F(K) :
F∩O ̸= ∅}, for O an open subset ofK. It is a Polish topology as it is compact
and metrizable. Then the Borel σ-algebra associated with this topology is
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generated by the sets {F ∈ F(K) : F ∩O ̸= ∅}, for O an open subset of K.
It can also be described as the σ-algebra generated by {F ∈ F(K) : F ⊂ O},
for O an open subset ofK. We shall also use the following [B02, Lemma 4.14].

Proposition 3.3. Define k : ℓω1 → F(K) so that, for x ∈ ℓω1 , k(x) is
the closed unit ball of the orthogonal of the linear span of x in ℓ1. Then k is
Borel.

3.2. The classes Sep ∩ Ap and Sep ∩ Np are Borel. For ε > 0, we
consider the following derivations on F(K). For F ∈ F(K),

(i) sε(F ) = F \
⋃
{V : V a weak∗-open set such that diam(S ∩ F ) ≤ ε},

(ii) cε(F ) is the weak∗-closed convex hull of sε(F ),
(iii) kε(F ) = F \

⋃
{S : S a weak∗-open half-space with α(S ∩ F ) ≤ ε},

where α(A) is the Kuratowski index of A ⊂ K defined by

α(A) = sup {δ ≥ 0 : ∀n ∈ N ∃x∗1, . . . , x∗n ∈ A ∥x∗i − x∗j∥ ≥ δ for i ̸= j}.

Associated with the derivations sε, cε and kε we define Sz(F ), the Szlenk
index of F , Cz(F ), the convex Szlenk index of F and Kz(F ). We recall the
following estimates from [HL07].

Proposition 3.4. For any weak∗-closed convex subset F of K and any
ε > 0 we have

c4ε(F ) ⊂ k2ε(F ) ⊂ cε(F ).

For the derivation sε, the following statement is due to B. Bossard. Its
proof can be found in his PhD thesis [B94], but unfortunately not in his
paper [B02]. We detail here an adaptation of this proof for the derivation kε.

Proposition 3.5. Let ε > 0. Then the maps sε : F(K) → F(K) and
kε : F(K) → F(K) are Borel.

Proof. First we fix a dense sequence (xn)
∞
n=1 in ℓ1 and a dense sequence

(rk)
∞
k=1 in R and we denote by S the countable set of weak∗-open slices of

the form {Rexn > rk} or {Rexn < rk}. We also fix a countable base V
of open sets for the topology of K. For x∗ ∈ K, we denote by S(x∗) the
set of elements of S containing x∗ and by V(x∗) the set of elements of V
containing x∗.

Fix now an open subset O of K. We need to show that the set H(O) =
{F ∈ F(K) : kε(F ) ⊂ O} is Borel. First note that an easy approximation
argument implies that

H(O) = {F ∈ F(K) : ∀x∗ ∈ F \O ∃S ∈ S(x∗) α(S ∩ F ) ≤ ε}.
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Then, using weak∗-compactness, we deduce that

H(O) =
⋃

I∈Pf(S)

[{
F ∈ F(K) : F ⊂

(⋃
S∈I

S
)
∪O

}
∩

⋂
S∈I

{F ∈ F(K) : α(S ∩ F ) ≤ ε}
]
,

where Pf (S) denotes the set of finite subsets of S. This set being countable
and the sets {F ∈ F(K) : F ⊂ (

⋃
S∈I S) ∪ O} being open, we only need to

show the following lemma.

Lemma 3.6. For all S ∈ S and ε > 0, the set {F ∈ F(K) : α(S∩F ) ≤ ε}
is Borel.

Fix S ∈ S and ε > 0. Noting that α(S ∩ F ) > ε if and only if there
exists δ > ε such that for all n ∈ N, there exist x∗1, . . . , x∗n in S ∩F such that
∥x∗i − x∗j∥ > δ for all i ̸= j, we only need to show that for all n ∈ N, the set

An = {F ∈ F(K) : ∃x∗1, . . . , x∗n ∈ S ∩ F ∥x∗i − x∗j∥ > δ for all i ̸= j}
is Borel.

It is easy to see that if ∥x∗i − x∗j∥ > δ for all i ̸= j, then there exist
V1, . . . , Vn such that for all i ≤ n, Vi ∈ V(x∗i ) and for all i ̸= j and all
(x∗, y∗) ∈ Vi × Vj , ∥x∗ − y∗∥ > δ. Set

Wn = {(V1 × · · · × Vn) ∈ Vn :

∀(x∗1, . . . , x∗n) ∈ (V1 × · · · × Vn) ∀i ̸= j ∥y∗i − y∗j ∥ > δ}.
Then we can write

An =
⋃

V1×···×Vn∈Wn

n⋂
i=1

{F ∈ F(K) : F ∩ Vi ∩ S ̸= ∅}.

This shows that An is open in F(K) and finishes the proof.

We can now prove our regularity result for the classes Ap and Np.

Theorem 3.7. Let p ∈ (1,∞]. The classes Sep ∩ Ap and Sep ∩ Np are
Borel.

Proof. It follows from Proposition 3.5 that for fixed ε1, . . . , εn > 0, the
set

{F ∈ F(K) : sε1 . . . sεn(F ) ̸= ∅}
is Borel. Let q be the conjugate exponent of p. We know that F has q-
summable Szlenk index if and only if

F ∈
⋃
c≥1

⋂
∑n

i=1 ε
q
i>c

{G ∈ F(K) : sε1 . . . sεn(G) = ∅}.
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Of course this union and this intersection can be taken countable, so that
the condition “having a q-summable Szlenk index” is Borel. We can now
apply Propositions 3.2 and 3.3 to deduce that the class of separable Banach
spaces with q-summable Szlenk index is Borel. Finally, we use the fact that
spaces in Ap are exactly those with q-summable Szlenk index (Theorem 2.3)
to conclude that the class Sep ∩ Ap is Borel.

Similarly, we deduce from Proposition 3.5 that the set of all F ∈ F(K)
such that there exists C ≥ 1 with Kz(F, ε) ≤ Cε−p for all ε ∈ (0, 1) is a
Borel subset of F(K). We recall (Theorem 2.4) that a Banach space is in Np

if and and only if its convex Szlenk index is of power type p. So we conclude,
applying Propositions 3.2–3.4, that the class Sep ∩ Np is Borel.

4. First tools

4.1. Model spaces. In this subsection, we introduce the fundamental
spaces that we will use to build our universal families for Ap ∩ Sep and
Np ∩ Sep.

For subsets F,G of N, we write F < G to mean that either F = ∅, G = ∅,
or maxF < minG. For n ∈ N and F ⊂ N, we write n ≤ F to mean that
F ̸= ∅ and n ≤ minF . For f ∈ c00, we let

supp(f) = {i ∈ N : f(ei) ̸= 0}.

For f, g ∈ c00, we write f < g to mean that supp(f) < supp(g). For n ∈ N
and f ∈ c00, we write n ≤ f to mean that n ≤ supp(f).

Before introducing our spaces, we need to recall the construction of the
q-convexification Xq of a Banach space X. First, if X is a Banach space with
Schauder basis (ej)∞j=1 and C ≥ 1, then (ej)

∞
j=1 is said to be C-unconditional

if for all (aj)∞j=1 ∈ c00 and all (εj)∞j=1 ∈ {−1, 1}N,∥∥∥ ∞∑
j=1

εjajej

∥∥∥
X

≤ C
∥∥∥ ∞∑
j=1

ajej

∥∥∥
X
.

Let now q ∈ [1,∞) and X be a Banach space with a normalized 1-uncondi-
tional basis (ej)

∞
j=1. We set

Xq =
{
x = (xj)

∞
j=1 ∈ KN : xq =

∞∑
j=1

|xj |qej ∈ X
}

and endow it with the norm ∥x∥Xq = ∥xq∥1/qX . We also let (ej)
∞
j=1 be the

sequence of coordinate vectors in Xq. It is clear that (ej)∞j=1 is a normalized
1-unconditional basis of Xq and that X1 is isometric to X. Also, the triangle
inequality implies that Xq is q-convex with constant 1, meaning that for any
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x1, . . . , xn ∈ Xq (we write xk = (xk,j)
∞
j=1 for 1 ≤ k ≤ n), we have∥∥∥ ∞∑

j=1

(|x1,j |q + · · ·+ |xn,j |q)1/qej
∥∥∥
Xq

≤ (∥x1∥qXq + · · ·+ ∥xn∥qXq)
1/q.

Note that that if x1, . . . , xn ∈ Xq have disjoint supports with respect to
(ej)

∞
j=1, then (x1 + · · ·+ xn)

q = xq1 + · · ·+ xqn and

∥x1 + · · ·+ xn∥qXq ≤ ∥x1∥qXq + · · ·+ ∥xn∥qXq .

We now proceed with the construction of our model spaces, starting with
those for property Ap. Fix p ∈ (1,∞] and let q be its conjugate exponent.
Fix also θ ∈ (0, 1). We recall that the Tsirelson space Tθq is the completion
of c00 under the implicitly defined norm

∥x∥Tθq
= max

{
∥x∥c0 , θq sup

{ n∑
i=1

∥Iix∥Tθq
: n ∈ N, n ≤ I1 < · · · < In

}}
.

This norm is built as the limit of the following inductively defined sequence
of norms: ∥x∥0 = ∥x∥∞ and, for l ∈ N,

∥x∥l = max
{
∥x∥l−1, θ

q sup
{ n∑

i=1

∥Iix∥l−1 : n ∈ N, n ≤ I1 < · · · < In

}}
.

We refer the reader to the book by Casazza and Shura [CS89] for all the
necessary background on Tsirelson spaces. We recall that the canonical basis
of Tθq is 1-unconditional and we let Tq,θ be the q-convexification of Tθq .
It follows from our preceding remarks that the canonical basis of Tq,θ is
shrinking. It is also known that Tθq is reflexive, from which we deduce that
its canonical basis is boundedly complete and therefore, so is the canonical
basis of Tq,θ. In particular, Tq,θ is reflexive.

It will be convenient for us to describe Tq,θ through a norming subset of
its dual. So denote by (e∗i )

∞
i=1 the dual basis of the canonical basis of c00 and

define

K0 = {λe∗i : i ∈ N, |λ| ≤ 1},
Kl = Kl−1∪{

θ

n∑
i=1

aifi : n ∈ N, n ≤ f1 < · · · < fn, fi ∈ Kl−1, f1 ̸= 0, (ai)
n
i=1 ∈ Bℓnp

}
,

and K =
⋃∞

l=0Kl.
When necessary, we will write Kθ

i in place of Ki.

Proposition 4.1. For all x ∈ c00, ∥x∥Tq,θ
= supf∈K |f(x)|. Moreover,

the closed unit ball of T ∗
q,θ is co(K), the closed convex hull of K.
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Proof. An easy induction shows that for all x ∈ c00 and all l ∈ {0} ∪ N,
we have ∥xq∥l = supf∈Kl

|f(x)|q. We deduce immediately the first statement.
The second assertion then follows from the reflexivity of Tq,θ.

Proposition 4.2. Let f1, . . . , fn ∈ BT ∗
q,θ

be such that n ≤ f1 < · · · < fn.
Then

∀(bi)ni=1 ∈ Bℓnp θ

n∑
i=1

bifi ∈ BT ∗
q,θ
.

Proof. Since K is closed under interval projections, for positive integers
l ≤ m,

{f ∈ BT ∗
q,θ

: supp(f) ⊂ [l,m]} = co{g ∈ K : supp(g) ⊂ [l,m]}.

Let now n ≤ I1 < · · · < In be intervals such that supp(fi) ⊂ Ii. It is clear
from the definition of K that for g1, . . . , gn with gi ∈ K ∩ span {ej : j ∈ Ii},
θ
∑n

i=1 bigi ∈ K. It then follows that θ
∑n

i=1 bifi ∈ co(K) = BT ∗
q,θ

.

We now turn to our model spaces for property Np and modify the con-
struction of the above norming subset. We let Uq,θ be the completion of c00
with respect to the norm ∥x∥Uq,θ

= supf∈L |f(x)|, where

L0 = {λe∗i : i ∈ N, |λ| ≤ 1},

Ll = Ll−1 ∪
{

θ

n1/p

n∑
i=1

aifi :n∈N, 2≤n≤ f1< · · ·<fn, fi ∈Ll−1, f1 ̸=0

}
,

and L =
⋃∞

l=0 Ll. We also note that the norm ∥ · ∥Uq,θ
can be defined on c00

by
∥x∥Uq,θ

= lim
l
|x|Uq,θ,l

where |x|Uq,θ,0 = ∥x∥c0 and

|x|Uq,θ,l =

max
{
|x|Uq,θ,l−1, sup

{
θn−1/p

n∑
i=1

|Iix|Uq,θ,l−1 : 2 ≤ n ≤ I1 < · · · < In

}}
.

With a similar argument we obtain

Proposition 4.3. Let f1, . . . , fn ∈ BU∗
q,θ

with n ≤ f1 < · · · < fn. Then

θn−1/p
n∑

i=1

fi ∈ BU∗
q,θ
.

We shall need one last generalization of the above families. For that
purpose, fix also M = (mn)

∞
n=1 ∈ [N]ω (the set of increasing sequences

in N). We define the spaces TM,q,θ and UM,q,θ to be the completions of
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c00 with respect to the norms ∥x∥TM,q,θ
= supf∈KM

|f(x)| and ∥u∥UM,q,θ
=

supf∈LM
|f(x)|, where

K0,M = {λe∗i : i ∈ N, |λ| ≤ 1},
Kl,M = Kl−1,M ∪{

θ
n∑

i=1

aifi :n∈N, mn≤ f1< · · ·<fn, fi ∈Kl−1,M , f1 ̸=0, (ai)
n
i=1 ∈Bℓnp

}
,

and KM =
⋃∞

l=0Kl,M , and

L0,M = {λe∗i : i ∈ N, |λ| ≤ 1},
Ll,M = Ll−1,M ∪{

θ

n1/p

n∑
i=1

aifi : n ∈ N, 2 ≤ n, mn ≤ f1 < · · · < fn, fi ∈ Ll−1,M , f1 ̸= 0

}
,

and LM =
⋃∞

l=0 Ll,M . Of course, Tq,θ = TN,q,θ and Uq,θ = UN,q,θ.
Then we have the following straightforward generalization of the previous

propositions.

Proposition 4.4. Let f1, . . . , fn ∈ BT ∗
M,q,θ

with mn ≤ f1 < · · · < fn.
Then

∀(bi)ni=1 ∈ Bℓnp θ
n∑

i=1

bifi ∈ BT ∗
M,q,θ

.

Let f1, . . . , fn ∈ BU∗
M,q,θ

with mn ≤ f1 < · · · < fn. Then

θn−1/p
n∑

i=1

fi ∈ BU∗
M,q,θ

.

We are now ready to relate these families to properties Ap and Np.

Proposition 4.5. Fix 1 < p ≤ ∞ and let q be its conjugate exponent.
For any θ ∈ (0, 1) and M ∈ [N]ω, T ∗

M,q,θ has Ap and U∗
M,q,θ has Np.

Proof. For c > θ−1, let us quickly describe the winning strategy for
Player I in the spatial A(c, p, n) game in T ∗

M,q,θ. Player I chooses Y1 =
{x ∈ T ∗

M,q,θ : mn ≤ supp(x)}. Then, after each choice of xi by Player II,
Player I picks Yi+1 = {x ∈ T ∗

M,q,θ : ki+1 ≤ supp(x)} for some ki+1 > ki so
that there exist small enough perturbations y1, . . . , yn of x1, . . . , xn satisfy-
ing mn ≤ y1 < · · · < yn to ensure, thanks to the previous proposition, that
for all (ai)ni=1 ∈ Bℓnp ,∥∥∥ n∑

i=1

aiyi

∥∥∥p
T ∗
M,q,θ

≤ θ−p and
∥∥∥ n∑

i=1

aixi

∥∥∥p
T ∗
M,q,θ

≤ c.
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To address property Np in U∗
M,q,θ, we similarly use the fact that for n ∈ N

and mn ≤ f1 < · · · < fn with fi ∈ BU∗
M,q,θ

, the element θn−1/p
∑n

i=1 fi is in
BU∗

M,q,θ
.

The next result goes somewhat in the other direction: any Ap (resp. Np)
space has a T ∗

q,θ (resp. U∗
q,θ) like behavior.

Theorem 4.6. Let X be a Banach space and p ∈ (1,∞]. Let q be the
conjugate exponent of p.

(i) If X has Ap, then there exists θ0 ∈ (0, 1) such that for all θ ∈ (0, θ0]
Player I has a winning strategy in the spatial (T ∗

q,θ, 1) game in X.
(ii) If X has Np, then there exists θ0 ∈ (0, 1) such that for all θ ∈ (0, θ0]

Player I has a winning strategy in the spatial (U∗
q,θ, 1) game in X.

Proof. (i) There exists a constant c > 1 such that for all n ∈ N, Player I
has a winning strategy χn in the compact spatial A(c, p, n) game. We define a
winning spatial ω strategy χ for Player I in the (T ∗

q,θ, 1) game, for θ ∈ (0, 1/c].
Let χ(∅) = χ1(∅). Assume that for some l ∈ N, χ((xi)ki=1) has been

defined for all (xi)ki=1 ∈ B<l
X . Fix (xi)

l
i=1 ∈ BX

l. Define

χ((xi)
l
i=1) =

(l+1⋂
j=1

χj(∅)
)

∩
(l+1⋂
j=1

j−1⋂
k=1

⋂
I1<···<Ik, Ii⊂[1,l]

χj

(
(BX ∩ span {xm : m ∈ Ii})ki=1

))
.

This completes the recursive construction. We now fix (xi)
∞
i=1 χ-admis-

sible. Assume now that 2 ≤ n ∈ N and n ≤ I1 < · · · < In and denote
Ci = BX ∩ span {xm : m ∈ Ii}. We claim that (Ci)

n
i=1 is χn-admissible.

Indeed, for any 1 ≤ j ≤ n and any m ∈ Ij , we have m ≥ n, which implies
that

xm ∈
n−1⋂
k=1

⋂
J1<···<Jk, Ji⊂[1,m−1]

χn

(
(BX ∩ span {xm : m ∈ Ji})ki=1

)
.

In particular, xm ∈ χn(C1, . . . , Cj−1), which proves our claim. Since χn is
a winning strategy for Player I in the compact spatial A(c, p, n) game, we
obtain

∀(ui)ni=1 ∈
n∏

i=1

Ci ∀(ai)ni=1 ∈ Bℓnp θ

n∑
i=1

aiui ∈ BX .

For a = (ai)
∞
i=1 ∈ c00, we now define A(

∑∞
i=1 aie

∗
i ) =

∑∞
i=1 aixi, where

(e∗i )
∞
i=1 is the canonical basis of T ∗

q,θ. It remains to show that A maps
BT ∗

q,θ
∩ c00 into BX . We adopt the notation used in the construction of Tq,θ
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for the sets K =
⋃∞

l=0Kl and recall that BT ∗
q,θ

is the closed convex hull of K.
Therefore, it is sufficient to show that A(K) ⊂ BX . For this we prove by
induction on l that A(Kl) ⊂ BX . The base case follows from the fact that
any admissible sequence must lie in BX . Assume the result has been proved
for l ≥ 0, and let f ∈ Kl \Kl−1. Then there exist n ≥ 2, n ≤ f1 < · · · < fn ∈
Kl−1 and (ai)

n
i=1 ∈ Bℓnp such that f = θ

∑n
i=1 aifi. By induction hypothesis,

we have ui = A(fi) ∈ BX . Note also that 2 ≤ n ≤ u1 < · · · < un. The above
discussion then implies that Af = θ

∑n
i=1 aiui ∈ BX .

The proof of (ii) is an inessential modification of the proof of (i).

Let T be a Banach space with basis (en)
∞
n=1 and C ≥ 1. We recall that

(en)
∞
n=1 is C-right dominant if for all (ak)

n
k=1 ∈ Kn, i1 < · · · < in and

j1 < · · · < jn with ik ≤ jk for all 1 ≤ k ≤ n, we have∥∥∥∑
k=1

akeik

∥∥∥
T
≤ C

∥∥∥∑
k=1

akejk

∥∥∥
T
.

The definition of a C-left dominant basis is obtained by exchanging the
places of ik’s and jk’s in the above inequality.

We will need the following lemma on interlaced subsequences of the
canonical basis (en)

∞
n=1 of our model spaces.

Lemma 4.7. Let p ∈ (1,∞], q be its conjugate exponent and θ ∈ (0, 1). Let
(ki)

∞
i=1, (li)

∞
i=1 be sequences of integers such that 1 ≤ k1 < l1 < k2 < l2 < · · · .

Then, for all (ai)∞i=1 ∈ c00,

(i)
∥∥∑∞

i=1 aieli
∥∥
Tq,θ

≤ 3
∥∥∑∞

i=1 aieki
∥∥
Tq,θ

,

(ii)
∥∥∑∞

i=1 aieli
∥∥
Uq,θ/2

≤
∥∥∑∞

i=1 aieki
∥∥
Uq,θ

.

Proof. (i) This follows from the fact that Tq,θ is the q-convexification
of Tθq , 1-right dominance of the canonical basis of Tθq , and the fact that for
any 1 ≤ n1 < n2 < · · · , (en2i)

∞
i=1 ≲c (eni)

∞
i=1 in Tθq (see [CS89, Proposition

I.12]).
(ii) We prove by induction on r that for any (ai)

∞
i=1 ∈ c00,∣∣∣ ∞∑

i=1

aieli

∣∣∣
θ/2,r

≤
∣∣∣ ∞∑
i=1

aieki

∣∣∣
θ,r
.

The r = 0 case is trivial. Assume the result holds for some r and fix (ai)
∞
i=1

in c00. Let x =
∑∞

i=1 aieli and y =
∑∞

i=1 aieki . If |x|θ/2,r+1 = |x|θ/2,r, then

|x|θ/2,r+1 = |x|θ/2,r ≤ |y|θ,r ≤ |y|θ,r+1.

Assume |x|θ/2,r+1 > |x|θ/2,r. Then for some 2 ≤ n < I1 < · · · < In,

|x|θ/2,r+1 =
θ

2n1/p

n∑
i=1

|Iix|θ/2,r.
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Note that for each 1 ≤ i ≤ n, Iix ̸= 0. Indeed, note first that Iix must
be non-zero for at least two values of i, since otherwise |x|θ/2,r+1 = |x|θ/2,r.
Now, if Iix = 0 for some i, then we could omit all such i’s and replace θ

2n1/p

with θ
2m1/p , where m = |{i : Iix ̸= 0}| ∈ (1, n), which would lead to the

following contradiction:

|x|θ/2,r+1 ≥
θ

2m1/p

∑
i: Iix ̸=0

|Iix|θ/2,r >
θ

2n1/p

n∑
i=1

|Iix|θ/2,r = |x|θ/2,r+1.

So {j ∈ N : lj ∈ I1} ≠ ∅ and we can set t = min {j ∈ N : lj ∈ I1}. Define

Gi =

{
{j ∈ N : lj ∈ Ii}, 1 < i ≤ n,

{j ∈ N : lj ∈ I1} \ {t}, i = 1,

Hi =

{
{j ∈ N : lj ∈ Ii}, 1 < i ≤ n,

{j ∈ N : kj ∈ I1}, i = 1,

and let J1, . . . , Jn be the smallest intervals such that {kj : j ∈ Hi} ⊂ Ji.
Note that n ≤ J1 < · · · < Jn. By the properties of (ki)∞i=1, (li)

∞
i=1, we have

|x|θ/2,r =
θ

2n1/p

n∑
i=1

|Iix|θ/2,r ≤
θ

2n1/p
|at| |elt |θ/2,r+

θ

2n1/p

n∑
i=1

∣∣∣∑
j∈Gi

ajelj

∣∣∣
θ/2,r

≤ 1

2

∣∣∣ ∞∑
i=1

aieki

∣∣∣
θ,0

+
θ

2n1/p

n∑
i=1

∣∣∣∑
j∈Hi

ajekj

∣∣∣
θ,r

(by inductive hypothesis)

=
1

2

∣∣∣ ∞∑
i=1

aieki

∣∣∣
θ,0

+
θ

2n1/p

n∑
i=1

∣∣∣Ji ∞∑
j=1

ajekj

∣∣∣
θ,r

≤ 1

2

∣∣∣ ∞∑
i=1

aieki

∣∣∣
θ,0

+
1

2

∣∣∣ ∞∑
i=1

aieki

∣∣∣
θ,r+1

≤
∣∣∣ ∞∑
i=1

aieki

∣∣∣
θ,r+1

= |y|θ,r+1.

Remark 4.8. If k1 < l1 < k2 < l2 < · · · , then also l1 < k2 < l2 < k3 < · · · ,
k2 < l2 < k3 < l3 < · · · , etc. From this it follows that for m = 0, 1, 2, . . . ,

Tq,θ ⊃ (elm+i
)∞i=1 ≲32m+1 (eki)

∞
i=1 ⊂ Tq,θ,

Uq,2−(2m+1)θ ⊃ (elm+i
)∞i=1 ≲ (eki)

∞
i=1 ⊂ Uq,θ.

4.2. The spaces ZT
∧ (E) and ZT

∨ (E). We recall that a finite-dimensional
decomposition for a Banach space Z is a sequence E = (En)

∞
n=1 of finite-

dimensional, non-zero subspaces of Z such that for any z ∈ Z, there exists
a unique sequence (zn)

∞
n=1 ∈

∏∞
n=1En such that z =

∑∞
n=1 zn. We then let

PE
n denote the canonical projections PE

n (z) = zn, where z =
∑∞

n=1 zn and
(zn)

∞
n=1 ∈

∏∞
n=1En. For a finite or cofinite subset I of N, we let PE

I = IE =∑
n∈I P

E
n . When no confusion can arise, we omit the superscript and simply
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denote IE by I. It follows from the principle of uniform boundedness that
sup {∥IE∥ : I ⊂ N is an interval} is finite. We refer to this quantity as the
projection constant of E in Z. If the projection constant of E in Z is 1, we say
E is bimonotone. It is well known that if E is an FDD for Z, then there exists
an equivalent norm | | on Z such that E is a bimonotone FDD of (Z, | |).
We denote by c00(E) the space of finite linear combinations of elements in
E1, E2, . . . .

A sequence F = (Fn)
∞
n=1 is called a blocking of the FDD E of Z if there

exists an increasing sequence 1 = m0 < m1 < · · · such that for all n ∈ N,
Fn =

⊕mn−1
i=mn−1

Ei.
We also need to recall some basics on dual FDDs. If Z is a Banach space

with FDD E = (En)
∞
n=1, we let E∗ denote the sequence (E∗

n)
∞
n=1. Here, E∗

n

is identified with the sequence ((PE
n )

∗(Z∗))∞n=1. This identification need not
be isometric if E is not bimonotone in Z. We let Z(∗) = c00(E∗) ⊂ Z∗. The
FDD E is said to be shrinking if Z(∗) = Z∗, which occurs if and only if any
bounded block sequence with respect to E is weakly null. The FDD E is said
to be boundedly complete if E∗ is a shrinking FDD of Z(∗) (in that case Z is
canonically isomorphic to (Z(∗))∗).

Given a Banach space Z with FDD E and a Banach space T with nor-
malized 1-unconditional basis, we define two associated spaces, ZT

∧ (E) and
ZT
∨ (E). Each will be the completion of c00(E) with respect to the quantities

∥ · ∥∧, ∥ · ∥∨ defined below.
For z ∈ c00(E), we define

∥z∥∨ = sup
{∥∥∥ ∞∑

i=1

∥IE
i z∥Zemin Ii

∥∥∥
T
: I1 < I2 < · · · , Ii an interval

}
.

We call this norm the lift up norm associated with Z, E and T .
We also define

[z]∧ = inf
{∥∥∥ ∞∑

i=1

∥IE
i z∥Zemin Ii

∥∥∥
T
: I1 < I2 < · · · , N =

∞⋃
i=1

Ii

}
,

∥z∥∧ = inf
{ n∑

i=1

[zi]∧ : n ∈ N, zi ∈ c00(E), z =
n∑

i=1

zi

}
.

We call ∥ · ∥∧ the press down norm associated with Z, E and T .
It is easily checked that E is an FDD for ZT

∧ (E) and ZT
∨ (E). The following

classical convexity lemma will be useful.

Lemma 4.9. Assume moreover that E is a bimonotone FDD of Z. Let
I1 < · · · < In be intervals of N and z1, . . . , zn ∈ c00(E) with supp(zi) ⊂ Ii.
Then

z1 + · · ·+ zn ∈ co{y1 + · · ·+ yn : supp(yi) ⊂ Ii, [yi]∧ ≤ ∥zi∥∧}.
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The duality between press down and lift up norms is described by the
following proposition (see [CN19, Proposition 2.1]).

Proposition 4.10. Let Z be a Banach space with bimonotone FDD E
and let T be a Banach space with normalized 1-unconditional basis.

(i) (ZT
∧ (E))

(∗) = (Z(∗))T
(∗)

∨ (E∗).
(ii) (ZT

∨ (E))
(∗) = (Z(∗))T

(∗)
∧ (E∗).

It is known that if the basis of T is shrinking, then the FDD E of ZT
∧ (E)

is shrinking. In item (iii) of the next proposition, we include a separate proof
which is illustrative in the case that T has Np.

Proposition 4.11. Fix 1 < p ≤ ∞ and let T be a Banach space with
normalized 1-unconditional, shrinking basis. Let Z be a Banach space with
FDD E.

(i) If T has Ap, then so does ZT
∧ (E).

(ii) If T has Np, then so does ZT
∧ (E).

(iii) If T has Np, then E is shrinking in ZT
∧ (E).

Proof. Let us explain the argument for (i). First, we assume, as we may
after renorming, that the FDD E of Z is monotone. Since T has Ap, there
exists c > 0 such that for all n ∈ N, Player I has a winning strategy in the
spatial A(c, p, n) game on T . Let us now fix n ∈ N. Let χ : B<n

T → cof(T ) be
a winning spatial strategy for Player I. Since the basis (ei) of T is shrinking,
we may assume, by another approximation argument, that χ takes values in
{Tn : n ∈ N}, where Tn denotes the closed linear span of {ek : k ≥ n}. We
may also assume that whenever u1, . . . , un ∈ c00 are such that (u1, . . . , un) is
χ-admissible, we have u1 < · · · < un. We now try to define a winning strategy
for Player I in the A(c, p, n) game on ZT

∧ (E). For that purpose we denote
by Zn the closed linear span of

⋃
k≥nEk in ZT

∧ (E). Again by approximation
and replacing c by c′ > c, it is enough to define ψ on (BZT

∧ (E) ∩ c00(E)<n.
Then everything is in place to support our next claim. We can build ψ
with the property that if z1, . . . , zn ∈ c00(E) are such that (z1, . . . , zn) is
ψ-admissible, then z1 < · · · < zn and for each 1 ≤ i ≤ n, there exist
intervals Ii,1 < · · · < Ii,ji covering the support of zi so that [zi]∧ = ∥ui∥T ,
where ui =

∑ji
j=1 ∥IE

j zi∥Zemin Ii,j and (v1, . . . , vn) is χ-admissible, where
vi = ui(∥ui∥T )−1. Then∥∥∥ n∑

i=1

aizi

∥∥∥p
∧
≤

[ n∑
i=1

aizi

]p
∧
≤

∥∥∥ n∑
i=1

aiui

∥∥∥p
T
≤ cp

n∑
i=1

|ai|p[zi]p∧.

The second inequality is due to the fact that (Ii,j)(i,j) is an interval cov-
ering of the support of

∑n
i=1 aizi and the last inequality comes from the

χ-admissibility of (v1, . . . , vn). Then the conclusion follows from Lemma 4.9.



UNIVERSALITY IN BANACH SPACES 19

The proof of (ii) is similar.
We prove (iii). Assume T and therefore ZT

∧ (E) have Np. Then ZT
∧ (E) has

Ts for 1 < s < p. It follows that any bounded block sequence (zk)k in ZT
∧ (E)

admits a subsequence which is dominated by the ℓr basis, where r is the
conjugate exponent of s. We then easily deduce that (zk)k is weakly null,
which shows that E is a shrinking FDD of ZT

∧ (E).

As a direct consequence of the previous corollary and Proposition 4.5, we
get

Corollary 4.12. Let p ∈ (1,∞], q be the conjugate exponent of p,
θ ∈ (0, 1) and M ∈ [N]ω. Then, for any Banach space Z with FDD E,

Z
T ∗
q,θ,M

∧ (E) has Ap and Z
U∗
q,θ,M

∧ (E) has Np.

4.3. Gliding hump and quotient maps. In this subsection we gather
a few general results on quotient maps with an application to the general
(T, c) games.

Proposition 4.13. Let X be a Banach space and Z be a Banach space
with shrinking FDD E and let Q : Z → X be a quotient map. For simplicity,
we will identify in our notation X∗ with its image in Z∗ by the isometry Q∗.
Then, for any finite-codimensional subspace Y of X, any δ ∈ (0, 1/20), and
any j ∈ N, there exists l ∈ (j,∞) such that for any interval I ⊂ [l,∞) and
any x∗ ∈ SX∗ such that ∥x∗ − PE∗

I x∗∥ ≤ δ, there exists z ∈ BZ such that
Qz ∈ Y and Rex∗(Qz) ≥ 1/3.

Proof. If the result were not true, then for some j ∈ N and every l > j,
there would exist an interval Il ⊂ [l,∞) and x∗l ∈ SX∗ such that ∥x∗l −PE∗

Il
x∗l ∥

≤ δ and for each z ∈ BZ ∩Q−1(Y ), |x∗l (Qz)| < 1/3. For each l > j, we can
choose xl ∈ (1 − δ)BX such that Rex∗l (xl) > 1 − 2δ. Since Y is finite-
codimensional in X, by passing to a subsequence and relabeling we can
assume, using compactness in a finite-dimensional complement of Y , that
for all l1, l2 > j, xl2 − xl1 ∈ δBX + 2BY .

Fix any l1 > j and z1 ∈ BZ such that Qz1 = xl1 . Note that since E is
shrinking,

lim sup
l

|x∗l (xl1)| = lim sup
l

|x∗l (Qz1)|

≤ lim sup
l

∥x∗l − PE∗

Il
x∗l ∥+ lim sup

l
|PE∗

Il
x∗l (z1)| ≤ δ.

Therefore for sufficiently large l2 > l1, |x∗l2(xl1)| < 2δ. Let y = (xl2−xl1)/2 ∈
δ
2BX +BY and fix u ∈ δ

2BX and v ∈ δBZ such that y−u ∈ BY and Qv = u.
Fix z2 ∈ BZ such that Qz2 = xl2 and let

z0 =
z2 − z1

2
− v ∈ (1 + δ)BZ .
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Note that Qz0 = y − u ∈ BY and

Rex∗l2(Qz0) ≥
1

2
Rex∗l2(xl2)−

1

2
|x∗l2(xl1)| − |x∗l2(v)|

≥ 1− 2δ

2
− δ − δ =

1

2
− 3δ.

Finally, for z = z0
1+δ ∈ BZ , we have Qz ∈ Y and

Rex∗l2(Qz) ≥
1
2 − 3δ

1 + δ
≥

1
2 − 3

20

1 + 1
20

=
1

3
.

This contradiction finishes the proof.

Lemma 4.14. Let M be a metric space and let f :M →M be a function.
Suppose that G ⊂ M is such that f(G) ⊂ K for some compact subset K
of M . Then for any δ > 0, the set {x ∈ G : dM (x, f(x)) ≤ δ} admits a finite
4δ-net whenever it is non-empty.

Proof. Assume H = {x ∈ G : dM (x, f(x)) ≤ δ} ≠ ∅. Fix a finite δ-net
F of K. Define η : H → F by letting η(x) be such that dM (f(x), η(x)) ≤ δ.
Let ν : η(H) → H be such that for each y ∈ η(H), ν(y) ∈ η−1({y}). Note
that ν(η(H)) ⊂ H is finite. We show that ν(η(H)) is a 4δ-net for H. Fix
x ∈ H and let y = η(x) ∈ η(H) and z = ν(y) ∈ ν(η(H)). Then
dM (x, z) ≤ dM (x, f(x)) + dM (f(x), y) + dM (y, f(z)) + dM (f(z), z)

= dM (x, f(x)) + dM (f(x), η(x)) + dM (η(z), f(z)) + dM (f(z), z)

≤ 4δ.

For the next two results, we adopt some convenient notation. For positive
integers 1 ≤ r1 < r2 < · · · and any (xi)

∞
i=1, we let (xi, ri)

∞
i=1 denote the

sequence (uj)
∞
j=1 such that

uj =

{
xi, j = ri,

0, j ∈ N \ {r1, r2, . . .}.
That is, (xi, ri)∞i=1 is the sequence which has x1 in position r1, x2 in position
r2, . . . , and all other positions are occupied by 0. We make a similar definition
for finite sequences (xi, ri)

n
i=1.

Proposition 4.15. Let X be a Banach space, let Z be a Banach space
with shrinking FDD E, and let Q : Z → X be a quotient map. Let χ be a
spatial ω-strategy on X. For any strictly decreasing null sequence (δi)

∞
i=1 ⊂

(0, 1/20), there exists a blocking F of E such that the following holds: For any
integers 1 ≤ r1 < r2 < · · · , any intervals Ii ⊂ (ri, ri+1), and any (x∗i )

∞
i=1 ⊂

SX∗ such that ∥x∗i − P F∗

Ii
x∗i ∥ ≤ δi for all i ∈ N, there exist (y∗i )

∞
i=1 ⊂ SX∗

and (zi)
∞
i=1 ⊂ BZ such that

(i) (Qzi, ri)
∞
i=1 is χ-admissible,

(ii) ∥x∗i − y∗i ∥ ≤ 4δi for all i ∈ N,
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(iii) Re y∗i (Qzi) ≥ 1/3 for all i ∈ N,
(iv) |y∗i (Qzj)| ≤ 2δmax{i,j} for all i, j ∈ N with i ̸= j.

Before the proof, we introduce some notation. For sets Λ, Υ and a subset
B of Λ<ω which is closed under taking non-empty initial segments, we say
a function Σ : B → Υ<ω is monotone if whenever σ is a non-empty initial
segment of τ ∈ B, then Σ(σ) is an initial segment of Σ(τ). If Σ : B → Υ<ω is
monotone and length-preserving, then if Σ((λi)

n
i=1) = (υi)

n
i=1, Σ((λi)

m
i=1) =

(υi)
m
i=1 for all 1 ≤ m ≤ n. The body of B is given by

[B] = {(λi)∞i=1 ∈ Λω : ∀n ∈ N (λi)
n
i=1 ∈ B}.

If Σ : B → Υ<ω is monotone and length-preserving, then there is a natural
extension Σ : [B] → Υω where Σ((λi)

∞
i=1) is the infinite sequence whose

initial segments are given by Σ((λi)
n
i=1), n ∈ N.

Proof of Proposition 4.15. In the proof, for a sequence σ, we let im(σ)
denote the set of members of σ. For a sequence σ = (Ii, xi)

n
i=1 of pairs, we

let im2(σ) = {x1, . . . , xn}, the set of all second members of these pairs.
So let us fix a spatial strategy χ : B<ω

X → cof(X) and (δi)
∞
i=1 ⊂ (0, 1/20)

strictly decreasing to 0. For each non-empty finite interval I and i ∈ N, let

GI,i = {x∗ ∈ SX∗ : ∥x∗ − PE∗

I x∗∥ ≤ δi}.
Clearly, for each I and i, GI,i is non-empty. So, by Lemma 4.14 there exists
a finite 4δi-net NI,i of GI,i. Then we define

B =
{
(Ii, x

∗
i )

n
i=1 : n ∈ N, I1 < · · · < In, Ii intervals, (x∗i )

n
i=1 ∈

n∏
i=1

NIi,i

}
,

which is a subset of (2N × SX∗)<ω that is closed under taking non-empty
initial segments. We will define integers 0 = m0 < m1 < · · · and a monotone,
length-preserving function Σ : B → B<ω

Z as part of the following recursion.
Let m0 = 0.
Let Y1 = χ(∅). By Proposition 4.13, there exists m1 ∈ N such that for

any interval I ⊂ (m1,∞), if x∗ ∈ SX∗ is such that ∥x∗ − PE∗

I x∗∥ ≤ δ1, then
there exists z ∈ BZ such that Qz ∈ BY1 and Rex∗(Qz) ≥ 1/3. Define B1 = ∅
and A1 = {∅}.

Next, suppose that integers m0 < m1 < · · · < mn, Y1, . . . , Yn ∈ cof(X),
finite sets B1, . . . , Bn ⊂ S<ω

X∗ , and finite sets A1, . . . , An ⊂ BX have been
defined. Suppose also that Σ has been defined on Bn and

Bn =
{
(Ii, x

∗
i )

k
i=1 : k ∈ N, I1 < · · · < Ik,

Ii ⊂ [1,mn] intervals, (x∗i )
k
i=1 ∈

k∏
i=1

NIi,i

}
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and that for each 1 ≤ i ≤ n, each x∗ ∈ SX∗ , and each interval I ⊂ (mi,∞)
such that ∥x∗ − PE∗

I x∗∥ ≤ δ1, there exists z ∈ BZ such that Qz ∈ BYi and
Rex∗(Qz) ≥ 1/3. Let

An+1 =
(
{0} ∪

⋃
σ∈Bn

Q
(
im(Σ(σ))

))≤n
,

Y ′
n+1 =

⋂
σ∈An+1

χ(σ), Y ′′
n+1 =

⋂
x∗∈

⋃
σ∈Bn

im2(σ)

ker(x∗),

and let
Yn+1 = Y ′

n+1 ∩ Y ′′
n+1 ∈ cof(X).

By Proposition 4.13, there exists m′
n+1 ∈ (mn,∞) such that for any interval

I ⊂ (m′
n+1,∞) and x∗ ∈SX∗ such that ∥x∗−PE∗

I x∗∥≤ δ1, there exists z ∈BZ

such that Qz ∈BYn+1 and Rex∗(Qz)≥ 1/3. Then there exists m′′
n+1>mn so

large that for any interval I ⊂ (m′′
n+1,∞) and for any z ∈

⋃
σ∈Bn

im(Σ(σ)),
∥PE

I z∥<δn+1. Let mn+1=max {m′
n+1,m

′′
n+1} and let

Bn+1 =
{
(Ii, x

∗
i )

k
i=1 : k ∈ N, I1 < · · · < Ik,

Ii ⊂ [1,mn+1] intervals, (x∗i )
k
i=1 ∈

k∏
i=1

NIi,i

}
.

We now complete the recursion by defining Σ(σ) for each σ = (Ii, x
∗
i )

k
i=1 ∈

Bn+1 \Bn, by induction on k = |σ|.
Case 1, k = 1:
Case 1a, I1 ∩ [1,m1] ̸= ∅: Let Σ(σ) = (0).
Case 1b, I1 ⊂ (m1,∞): Let r be the minimum 1 ≤ i ≤ n such that

I1 ⊂ (mi,∞). Since x∗1 ∈ NI1,1, there exists z ∈ BZ such that Qz ∈ BYr and
Rex∗(Qz) ≥ 1/3. Let Σ(σ) = (z).

Case 2, k > 1: Assume that Σ(σ′) has been defined for each σ′ ≺ σ. Let
σ′ = (Ii, x

∗
i )

k−1
i=1 .

Case 2a, σ′ ∈ Bn+1 \Bn: Let Σ(σ) = Σ(σ′) ⌢ (0).
Case 2b, σ′ ∈ Bn, Ik ∩ [1,m1] ̸= ∅: Let Σ(σ) = Σ(σ′) ⌢ (0).
Case 2c, σ′ ∈ Bn, Ik ⊂ (m1,∞): Let r be the minimum 1 ≤ i ≤ n such

that Ik ⊂ (mi,∞). Since x∗k ∈ SX∗ ∩NIk,k and δk ≤ δ1, there exists z ∈ BZ

such that Qz ∈ BYr and Rex∗(Qz) ≥ 1/3. Let Σ(σ) = Σ(σ′) ⌢ (z). This
completes the recursive construction.

We now consider the blocking F = (Fn)
∞
n=1 of E defined by Fn =⊕mn

i=mn−1+1Ei. Fix 1 ≤ r1 < r2 < · · · in N, J1 < J2 < · · · intervals
with Ji ⊂ (ri, ri+1), and (x∗i )

∞
i=1 ⊂ SX∗ such that ∥x∗i − P F∗

Ji
x∗i ∥ ≤ δi for

all i ∈ N. Denote Ii = (mmin Ji−1,mmax Ji ], so that P F∗

Ji
= PE∗

Ii
for all

i ∈ N. Then (x∗i )
∞
i=1 ∈

∏∞
i=1GIi,i. Therefore there exists (y∗i )

∞
i=1 ∈

∏∞
i=1NIi,i

such that ∥x∗i − y∗i ∥ ≤ 4δi for all i ∈ N. We see that (Ii, y
∗
i )

∞
i=1 ∈ [B].
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Let (zi)
∞
i=1 = Σ((Ii, y

∗
i )

∞
i=1). We will show that (Qzi, ri)

∞
i=1 is χ-admissible,

Re y∗i (Qzi) ≥ 1/3 for all i ∈ N, and |y∗i (Qzi)| ≤ 2δmax{i,j} for all distinct i, j.
This will finish the proof.

Note that for any n ∈ N, since I1 < · · · < In and In ⊂ [1,mmax Jn ] and
max Jn < rn+1, it follows that (Ii, y

∗
i )

n
i=1 ∈ Brn+1−1.

We show that (Qzi, ri)∞i=1 is χ-admissible. Since I1 = (mmin J1−1,mmax J1 ]
and min J1 − 1 ≥ r1, we have

Qz1 ∈ BYr1
⊂ Bχ(0,...,0),

where the sequence in the last subscript contains r1 − 1 zeros. Next, for
n ∈ N, by the preceding paragraph and the definition of Arn+1 , together
with the fact that min In+1 = mmin Jn+1−1 + 1 and min Jn+1 − 1 ≥ rn+1,

Qzn+1 ∈ BYrn+1
⊂ Bχ((Qzi,ri)ni=1⌢(0,...,0)),

with the sequence of rn+1 − rn − 1 zeros. This implies that (Qzi, ri)
∞
i=1 is

χ-admissible.
We next show that whenever 1 ≤ i < j, y∗i (Qzj) = 0 and |y∗j (Qzi)| < 2δj .

The first equality follows from the fact that for such i, j,

Qzj ∈ Y ′′
rj ⊂

⋂
x∗∈

⋃
σ∈Brj−1im2(σ)

ker(x∗).

As noted two paragraphs above, y∗i ∈
⋃

σ∈Brj−1
im2(σ). For the inequality,

it follows from our choice of m′′
rj and the fact that Ij ⊂ (m′′

rj ,∞) and zi ∈⋃
σ∈Brj

im(Σ(σ)) that

|y∗j (Qzi)| ≤ ∥y∗j − PE∗

Ij y
∗
j ∥+ |y∗j (PE

Ijzi)| ≤ δj + min
1≤k≤rj

δk ≤ 2δj .

We last show that for all i ∈ N, Re y∗i (Qzi) ≥ 1/3. This follows from the
definition of Σ together with the fact that we are either in Case 1b or 2c for
each i.

We can now deduce the following general result.

Corollary 4.16. Let X,Z be Banach spaces, Q : Z → X a quotient
map, and E a shrinking FDD for Z. Let T be a Banach space with normalized
1-unconditional basis. Suppose that c > 0 is such that Player I has a winning
strategy in the (T, c) game on X. Then there exist a blocking F of E, ∆ > 0,
and a strictly decreasing sequence (δi)

∞
i=1 ⊂ (0, 1) such that

∑∞
i=1 δi < ∆

and whenever 1 ≤ r0 < r1 < · · · are integers and (x∗i )
∞
i=1 ⊂ SX∗ satisfies

∥x∗i − P F∗

(ri−1,ri)
x∗i ∥ < δi for all i ∈ N, then (e∗ri)

∞
i=1 ≲4c (x

∗
i )

∞
i=1.

Proof. Let χ : B<ω
X → X be a winning strategy for Player I in the (T, c)

game onX. Let (δi)∞i=1 be as in the previous statement and with
∑∞

i=1 δi < ∆
for some ∆ > 0. Let F be the blocking of E given by Proposition 4.15. Let
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1 ≤ r0 < r1 < · · · and (x∗i )
∞
i=1 ⊂ SX∗ be such that ∥x∗i −P F∗

(ri−1,ri)
x∗i ∥ < δi for

all i ∈ N. Let now (y∗i )
∞
i=1 ⊂ SX∗ and (zi)

∞
i=1 ⊂ BZ be also given by the pre-

vious proposition. Since χ is a winning strategy for Player I, we deduce from
Proposition 4.15(i) that (Qzi)

∞
i=1 ≲c (eri)

∞
i=1. Now it follows from Proposi-

tion 4.15(ii, iv), 1-unconditionality of (ei) and elementary duality, that, for
∆ > 0 initially chosen small enough, (e∗ri)

∞
i=1 ≲4c (x

∗
i )

∞
i=1.

5. Reducing to FDDs and press down norms. The goal of this
section is to prove the following crucial intermediate result.

Theorem 5.1. Let p ∈ (1,∞] and q be its conjugate exponent. Let X be
a separable Banach space.

(i) If X has Ap, then there exist θ ∈ (0, 1) and Banach spaces Z, Y with
FDDs F,H, respectively, such that X is isomorphic to a subspace of
Z

T ∗
q,θ

∧ (F) and to a quotient of Y
T ∗
q,θ

∧ (H).
(ii) If X has Np, then there exist θ ∈ (0, 1) and Banach spaces Z, Y with

FDDs F,H, respectively, such that X is isomorphic to a subspace of
Z

U∗
q,θ

∧ (F) and to a quotient of Y
U∗
q,θ

∧ (H).

Let us first prove the following interesting intermediate corollary.

Corollary 5.2. Fix 1 < p ≤ ∞ and let X be a separable Banach space.
Then X has Ap (resp. Np) if and only if there exists a Banach space U with
shrinking FDD such that U has Ap (resp. Np) and X is isomorphic to a
subspace and to a quotient of U .

Proof. By Theorem 5.1, ifX has Ap, we can take U=Z
T ∗
q,θ1

∧ (F)⊕Y
T ∗
q,θ2

∧ (H)
for appropriate Banach spaces Z, Y with FDDs F,H, respectively, and ap-
propriate θ1, θ2 ∈ (0, 1). For Np, we replace T ∗

q,θ with U∗
q,θ.

The remainder of this section is devoted to the proof of Theorem 5.1.
Before the proof proper, we recall three known technical statements and
the corresponding references. The first lemma, based on a gliding hump
argument, is classical and referred to as the Johnson–Zippin blocking lemma.
Its origin can be traced back to [JZ74].

Lemma 5.3 (Johnson–Zippin blocking lemma). Let Y,Z be Banach spaces
with boundedly complete FDDs G,E, respectively. Let T : Y → Z be a weak∗-to-
weak∗-continuous operator. Then for any (εn)∞n=1 ⊂ (0, 1), there exist blockings
H,F of G,E, respectively, such that for any i < j and any y ∈

⊕
n∈(i,j)Hn,

∥P F
[1,i)Ty∥ ≤ εi∥y∥ and ∥P F

[j,∞)Ty∥ ≤ εj∥y∥.
The next proposition can be found in [OSZ07, Lemma 20] in the reflexive

case. It is stated in full generality in [FOSZ09]. We refer to [C14, Proposition
3.12] for a complete proof.
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Proposition 5.4. Suppose Y, Z are Banach spaces with boundedly com-
plete FDDs G, E, respectively. Suppose the projection constant of G in Y
is 1 and the projection constant of E is at most K. Suppose J : Y → X
is a weak∗-to-weak∗-continuous quotient map of Y onto a weak∗-closed sub-
space X of Z. Suppose also that (εi)∞i=1 ⊂ (0, 1) is a strictly decreasing null
sequence such that for any i < j and y ∈

⊕
n∈(i,j)Gn,

∥PE
[1,i)Jy∥ < εi∥y∥/K and ∥PE

[j,∞)y∥ < εi∥y∥/K.

Then there exist 0 = s0 < s1 < · · · such that if for each n ∈ N, we define

Cn =

sn⊕
i=sn−1+1

Gi, Dn =

sn⊕
i=sn−1+1

Ei,

Ln =

{
i ∈ N : sn−1 < i ≤ sn−1 + sn

2

}
,

Rn =

{
i ∈ N :

sn−1 + sn
2

< i ≤ sn

}
,

Cn,L =
⊕
i∈Ln

Gi, Cn,R =
⊕
i∈Rn

Gi,

then the following holds.
For any x ∈ SX , 0 ≤ m < n and ε > 0 such that ∥x−PD

(m,n)x∥ < ε, there
exists y ∈ BY with y ∈ span {Cm,R ∪ (Ci)m<i<n ∪ Cn,L}, where C0,R = {0},
and ∥Jy − x∥ < 2Kε + 6Kεm. If m = 0, we can replace this last inequality
with ∥Qy − x∥ < Kε+ 3Kε1.

We shall also need the following (see [FOSZ09, Proposition 3.1]).

Proposition 5.5. Let X be a Banach space, and Z a Banach space with
shrinking FDD E having projection constant K. Assume that Q : Z → X
is a quotient map and identify X∗ with the weak∗-closed subspace Q∗(X∗)
of Z∗. Let (δi)∞i=1 ⊂ (0, 1) be a strictly decreasing null sequence. Then there
exist 0 = s0 < s1 < · · · such that for any 1 ≤ k0 < k1 < · · · and x∗ ∈ X∗,
there exist (x∗i )

∞
i=1 ⊂ X∗ and (ti)

∞
i=1 ∈

∏∞
i=1(ski−1−1, ski−1

) such that, with
t0 = 0,

(i) x∗ =
∑∞

i=1 x
∗
i ,

and for all i ∈ N,

(ii) either ∥x∗i ∥ ≤ δi or ∥x∗i − PE∗

(ti−1,ti)
x∗i ∥ ≤ δi∥x∗i ∥,

(iii) ∥x∗i − PE∗

(ti−1,ti)
x∗∥ ≤ δi,

(iv) ∥x∗i ∥ ≤ K + 1,
(v) ∥PE∗

ti x
∗∥ ≤ δi.
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The proof of Theorem 5.1 is similar to the proof of [FOSZ09, Theo-
rem 1.1]. However, given that the bases of the spaces T ∗

q,θ, U
∗
q,θ are left

dominant and not right dominant, we include the details to make clear the
modifications required.

Proof of Theorem 5.1. Fix 1 < p ≤ ∞ and let q be its conjugate expo-
nent. LetX be a separable Banach space with Ap (resp. Np). By Theorem 4.6,
there exists θ0 ∈ (0, 1) such that Player I has a winning strategy in the spatial
(T, 1) game, where T = T ∗

q,θ (resp. T = U∗
q,θ) and θ ∈ (0, θ0).

(1) We first prove that there exists a Banach space Z with shrinking
FDD F such that, for any for ϑ ∈ (0, θ0/8], X is isomorphic to a quotient of
ZS
∧(F), where S = T ∗

q,ϑ (resp. S = U∗
q,ϑ). We now fix θ ∈ (0, θ0) and denote

ϑ = θ/8.
Since X∗ is separable, by a theorem of Davis, Figiel, Johnson, and Peł-

czyński [DFJP74, Corollary 8] there exists a Banach space Z with shrink-
ing FDD E (a shrinking basis in fact) and a bounded linear surjection
Q : Z → X. By first renorming Z and then X, we can assume that E is
bimonotone in Z and that Q is a quotient map. Note that Q∗ : X∗ → Z∗

is an isometric embedding. Throughout the proof, we identify X∗ with its
image in Z∗.

By replacing E with a blocking and then relabeling, by Corollary 4.16,
we can assume there exist constants C > 1, ∆ > 0, and (δi)

∞
i=1 ⊂ (0, 1) with∑∞

i=1 δi < ∆ such that for any 1 ≤ r0 < r1 < · · · and any (x∗i )
∞
i=1 ⊂ SX∗

such that ∥x∗i − PE∗

(ri−1,ri)
x∗i ∥ ≤ δi for all i ∈ N, (e∗ri)

∞
i=1 ≲C (x∗i )

∞
i=1, where

(e∗i )
∞
i=1 is the canonical basis of T ∗ (= Tq,θ or Uq,θ). By replacing (δi)

∞
i=1 with

a smaller sequence if necessary, we can assume (δi)
∞
i=1 is strictly decreasing.

Next, suppose that D is a blocking of E, say Dn =
⊕jn

i=jn−1+1Ei. Suppose
also that 1 ≤ r0 < r1 < · · · and (Ii)

∞
i=1 are intervals and (x∗i )

∞
i=1 ⊂ SX∗ are

such that ri−1 + 1 = min Ii < ri and ∥x∗i − PD∗

Ii
x∗i ∥ ≤ δi for all i ∈ N. By

bimonotonicity, this implies that

∥x∗i − PE∗

(jri−1 ,jri )
x∗i ∥ ≤ δi,

from which it follows that (e∗jri
)∞i=1 ≲C (x∗i )

∞
i=1. By 1-right dominance of

the basis of T ∗, it follows that (e∗ri−1
)∞i=1 ≲C (x∗i )

∞
i=1. In other words, the

property of E which we have just deduced from the asymptotic T property
is stable under passing to blockings.

By passing to a blocking and relabeling, we can assume that for any sub-
sequent blocking D of E, there exists (f∗i )

∞
i=1 ⊂ SX∗ such that for all i ∈ N,

∥f∗i −PD∗
i f∗i ∥ ≤ δi/2. Let 0 = s0 < s1 < · · · be the sequence given by Propo-

sition 5.5 applied to X, Z, E, and (δi)
∞
i=1. Let Fn =

⊕sn
i=sn−1+1Ei for all

n ∈ N. We claim thatQ∗ is an isomorphic embedding ofX∗ into (Z∗)
(S∗)
∨ (F∗),
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and that Q∗ is still weak∗-to-weak∗-continuous. Here, (Z∗)
(S∗)
∨ (F∗) has the

weak∗ topology it inherits as the dual space of ZS
∧(F). From this it will follow

that Q∗ is the adjoint of a bounded linear surjection from ZS
∧(F) onto X,

which will finish (1). For the remainder of the proof, choose (f∗i )
∞
i=1 ⊂ SX∗

such that ∥f∗i − P F∗
i f∗i ∥ ≤ δi/2 for all i ∈ N.

Fix 1 ≤ n0 < n1 < · · · and x∗ ∈ SX∗ . Let ℓi = sni−1 and note that
PE∗

(ℓi−1,ℓi]
= P F∗

[ni−1,ni)
for all i ∈ N. By our choice of (si)

∞
i=0, we can find

(x∗i )
∞
i=1 ⊂ X∗ and (ti)

∞
i=0 ⊂ N with 0 = t0 < t1 < · · · satisfying the conclu-

sions of Proposition 5.5.
For i ∈ N, if ∥x∗i+1∥ ≥ δi+1, let ai = ∥x∗i+1∥ and let y∗i = a−1

i x∗i+1. If
∥x∗i+1∥ < δi+1, let ai = 0 and let y∗i = f∗ℓi . Since ti < ℓi = sni−1 < ti+1, it
follows that for all i ∈ N,

∥y∗i − P F∗

(ti,ti+1)
y∗i ∥ ≤ δi.

Therefore (e∗ti)
∞
i=1 ≲C (y∗i )

∞
i=1. Thus

1 = ∥x∗∥ =
∥∥∥ ∞∑
i=1

x∗i

∥∥∥ ≥
∥∥∥ ∞∑
i=1

aiy
∗
i

∥∥∥− ∥x∗1∥ −∆

≥ 1

C

∥∥∥ ∞∑
i=1

aie
∗
ti

∥∥∥
T ∗

− 2−∆ ≥ 1

C

∥∥∥ ∞∑
i=1

∥x∗i+1∥e∗ti
∥∥∥
T ∗

− 2− 2∆.

From this it follows that∥∥∥ ∞∑
i=1

∥x∗i+1∥e∗ti
∥∥∥
T ∗

≤ C(3 + 2∆).

Moreover,

∥P F∗

(ℓi−1,ℓi]
x∥ ≤ ∥P F∗

(ti−1,ti+1)
x∗∥ ≤ ∥P F∗

(ti−1,ti)
x∗∥+ ∥P F∗

ti x
∗∥+ ∥P F∗

(ti,ti+1)
x∗∥

≤ ∥x∗i ∥+ ∥x∗i+1∥+ 3δi.

Therefore, for S = T ∗
q,ϑ if T = T ∗

q,θ and S = U∗
q,ϑ if T = U∗

q,θ, we have

∥∥∥ ∞∑
i=1

∥P F∗

(ℓi−1,ℓi]
x∗∥e∗ni−1

∥∥∥
S∗

≤
∥∥∥ ∞∑
i=1

∥x∗i ∥e∗ni−1

∥∥∥
S∗

+
∥∥∥ ∞∑
i=1

∥x∗i+1∥e∗ni−1

∥∥∥
S∗

+ 3∆

≤
∥∥∥ ∞∑
i=1

∥x∗i+1∥e∗sni

∥∥∥
S∗

+
∥∥∥ ∞∑
i=1

∥x∗i+1∥e∗sni−1

∥∥∥
S∗

+ ∥x∗1∥+ 3∆
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≤ 33
∥∥∥ ∞∑
i=1

∥x∗i+1∥e∗ti
∥∥∥
T ∗

+ 3
∥∥∥ ∞∑
i=1

∥x∗i+1∥e∗ti
∥∥∥
T ∗

+ 2 + 3∆

≤ [33 + 3]C(3 + 2∆) + 2 + 3∆ =M.

The first inequality follows from Proposition 5.5, the second from the 1-right
dominance of the canonical basis of S∗, and the third from Lemma 4.7
and the remark after it with m = 0 and m = 1, using the fact that ti ∈
(sni−1−1, sni−1) for all i ∈ N, so t1 < sn0 < t2 < sn1 < · · · . This shows that
for all x∗ ∈ X∗, ∥x∗∥

(Z∗)
(S∗)
∨ (F∗)

≤M∥x∗∥. Of course ∥x∗∥
(Z∗)

(S∗)
∨ (F∗)

≥ ∥x∗∥
and this finishes the proof of the fact that Q∗ is an embedding from X∗ into
(Z∗)

(S∗)
∨ (F∗)

Since the proof of the weak∗-to-weak∗-continuity of Q∗ in [FOSZ09] did
not use right dominance or block stability, it goes through unchanged.

(2) We now prove that there exists a Banach space Z with shrinking
FDD H such that, for any for ϑ ∈ (0, θ0/4], X is isomorphic to a subspace of
ZS
∧(H), where S = T ∗

q,ϑ (resp. S = U∗
q,ϑ). We now fix θ ∈ (0, θ0) and denote

ϑ = θ/4.
Since X∗ is separable, we use again the result of Davis, Figiel, Johnson,

and Pełczyński [DFJP74] ensuring the existence of a Banach space Z with
shrinking FDD E and a quotient map Q : Z → X. By [OS02, Lemma 3.1],
there exist a Banach space Y with shrinking FDD G and an isomorphic
embedding ι : X → Y such that c00(G) ∩ X is dense in X (identified with
its image ι(X)). By first renorming Y , then X, then Z, we can assume that
G is bimonotone in Y , that ι is an isometric embedding, and that Q is still
a quotient map. We consider X∗ as a subspace of Z∗ and we consider ι∗ as
mapping Y ∗ to either X∗ or Z∗, as is convenient. Let K be the projection
constant of E in Z.

Since Player I has a winning strategy in the (T, 1) game on X, by Corol-
lary 4.16 there exist a blocking, which we can assume after relabeling is E,
C ≥ 1, ∆ > 0, and a strictly decreasing sequence (δi)

∞
i=1 ⊂ (0, 1) such that∑∞

i=1 δi < ∆, and if (x∗i )
∞
i=1 ⊂ SX∗ is such that ∥x∗i − PE∗

(ri−1,ri)
x∗i ∥ ≤ 2Kδi

for all i ∈ N, then (e∗ri)
∞
i=1 ≲C (x∗i )

∞
i=1. By taking (δi)

∞
i=1 smaller if necessary,

we can assume that for any (ri)
∞
i=0 and (x∗i )

∞
i=1 as above, and if (z∗i )

∞
i=1 ⊂ Z∗

satisfies ∥x∗i − z∗i ∥ ≤ δi for all i ∈ N, then (z∗i )
∞
i=1 is basic with projection

constant not more than 2K. We can also assume that
∑∞

i=1 δi < 1/7.
Observe that if D is any further blocking of E, say Dn=

⊕jn
i=jn−1+1Ei,

and if (x∗i )
∞
i=1⊂SX∗ and 1≤r0<r1< · · · are such that ∥x∗i −PD∗

(ri−1,ri)
x∗i ∥≤δi,

thenwithmi=jri , it follows that ∥x∗i −PE
(jri−1 ,jri )

x∗i ∥≤2Kδi, and (e∗ri−1
)∞i=1≲1

(e∗jri
)∞i=1≲C (x∗i )

∞
i=1. Here we have used 1-right dominance of the basis of T ∗.

We will use this fact as we pass to further blockings in the proof.
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Fix a strictly decreasing sequence (εi)
∞
i=1 ⊂ (0, 1) such that for each

n ∈ N,

10K(K + 1)
∞∑
i=n

εi < δ2n.

After blocking E if necessary, we may assume that for each further block-
ing D of E, there exists (f∗i )

∞
i=1 ⊂ SX∗ such that for each i ∈ N, ∥f∗i −PD∗

i f∗i ∥
< εi+1

2K . After blocking G, we can assume that for each i ∈ N, ι∗(G∗
i ) ̸= {0}.

Using Lemma 5.3, after blocking and relabeling E and G we can assume
that for each i < j and each y∗ ∈

⊕
n∈(i,j) G∗

n,

∥PE∗

[1,i)ι
∗y∗∥ < εi∥y∗∥/K and ∥PE∗

[j,∞)ι
∗y∗∥ < εi∥y∗∥/K,

and that this property is preserved if we pass to any further blocking of one
FDD and the corresponding blocking of the other.

Let C,D be the blockings of G,E, respectively, determined by Proposi-
tion 5.4 applied with the sequence (εi)

∞
i=1. More precisely, Proposition 5.4

is applicable to G∗ and E∗ rather than G and E, but we actually apply it to
the dual FDDs and let C,D be the corresponding blockings of the original
FDDs. Apply Proposition 5.5 to the FDD D with the sequence (εi)

∞
i=1 to ob-

tain 0 = s0 < s1 < · · · . Define Hn =
⊕sn

i=sn−1+1Ci and Fn =
⊕sn

i=sn−1+1Di

for all n ∈ N. For n ∈ N, define H̃∗
n = H∗

n/ker(ι
∗|H∗

n
), endowed with the

quotient norm
∥ỹ∗∥∼ = ∥ι∗y∗∥.

Note that H̃∗
n ̸= {0}, since for each n ∈ N, ι∗(G∗

n) ̸= {0}. Given y∗ =∑∞
n=1 y

∗
n ∈ c00(H

∗), we set ỹ∗ =
∑∞

n=1 ỹ
∗
n ∈ c00(H̃∗). We set

∥ỹ∗∥∼ = max
i≤j

∥∥∥ι∗( j∑
n=i

y∗n

)∥∥∥ = max
i≤j

∥ι∗PH∗

[i,j]y
∗∥.

Clearly H̃∗ is a bimonotone FDD for the completion W of c00(H̃∗) under
∥ ∥∼.

Note that y 7→ ỹ extends to a norm 1 operator from Y ∗ into W . By the
definition of ∥ · ∥∼, ∥ι∗y∗∥ ≤ ∥ỹ∗∥∼ for all y ∈ c00(H

∗). Thus ỹ∗ 7→ ι∗y∗

extends to a norm 1 operator ι̃∗ : W → X∗. Moreover, ι∗y∗ = ι̃∗ỹ∗ for all
y∗ ∈W .

The proof of the following claim is unchanged from [FOSZ09]; we omit it.

Claim 1.

(i) ι̃∗ is a quotient map. More precisely, if x∗ ∈ SX∗ and y∗ ∈ SY ∗ are such
that ι∗y∗ = x∗, then ỹ∗ ∈ SW and ι̃∗y∗ = x∗.
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(ii) If (ỹ∗n)
∞
n=1 is a subnormalized block sequence in W with respect to H̃

such that (ι∗ỹ∗n)
∞
n=1 is basic with projection constant not more than K̃

and a = infn ∥ι̃∗ỹ∗n∥ > 0, then for all (an)∞n=1 ∈ c00,∥∥∥ ∞∑
n=1

anι̃∗ỹ∗n

∥∥∥ ≤
∥∥∥ ∞∑
n=1

anỹ∗n

∥∥∥
∼
≤ 3K̃

a

∞∑
n=1

∥∥∥ ∞∑
n=1

anι̃∗ỹ∗n

∥∥∥.
Since the inclusion of W in WS∗

∨ (H̃∗) is of norm 1, we can consider ι̃∗ as
an operator from W T ∗

∨ (H̃∗) into X∗. We will prove the following.
Claim 2. There exists a constant A > 0 such that for any x∗ ∈ SX∗,

there exists ỹ∗ ∈WS∗
∨ (H̃∗) with ∥ỹ∗∥∨ ≤ A such that ∥ι̃∗ỹ∗ − x∗∥ < 1/2.

This will show that ι̃∗ : WS∗
∨ (H̃∗) → X∗ is a surjection. Then, WS∗

∨ (H̃∗)

is naturally the dual space of (W (∗))S∧(H̃
∗∗), and as such naturally has a

weak∗-topology determined by this predual. We then conclude the proof by
arguing that ι̃∗ is weak∗-to-weak∗-continuous, and is therefore the adjoint of
an embedding of X into (W (∗))S∧(H̃

∗∗). As in part (1), the argument that
ι̃∗ is weak∗-to-weak∗-continuous goes through unchanged from [FOSZ09], so
we omit it.

We now proceed with the proof of Claim 2. Fix x∗∈SX∗ and (f∗i )
∞
i=1⊂SX∗

such that for each i ∈ N, ∥f∗i −PD∗
i f∗i ∥ <

εi+1

2K . Fix (x∗i )
∞
i=1 ⊂ X∗ and 0 = t0 <

t1 < · · · according to Proposition 5.5 such that for each i ∈ N, ti ∈ (si−1, si),
x∗ =

∑∞
i=1 x

∗
i , and either ∥x∗i ∥ ≤ εi or ∥x∗i − PD∗

(ti−1,i)
x∗i ∥ ≤ εi∥x∗i ∥.

If ∥x∗i+1∥ > εi+1, let w∗
i = ∥x∗i+1∥−1x∗i+1 and ai = ∥x∗i+1∥. If ∥x∗i+1∥ <

εi+1, let w∗
i = f∗si and let ai = 0. Note that ∥w∗

i −PD∗

(ti,ti+1)
w∗
i ∥ < εi+1 for all

i ∈ N, so (e∗ti)
∞
i=1 ≲ (e∗ti+1

)∞i=1 ≲C (w∗
i )

∞
i=1. By Proposition 5.4, there exists a

sequence (y∗i )
∞
i=1 ⊂ BY ∗ with

y∗i ∈ span {C∗
ti,R ∪ (C∗

j )ti<j<ti+1 ∪ C∗
ti+1,L}

such that

∥ι∗y∗i − w∗
i ∥ ≤ 2Kεi+1 + 6Kεi ≤ 4K(K + 1)

∞∑
j=i

εj < δi.

If ∥x∗1∥ ≤ ε1, let y∗0 = 0. Otherwise, we use Proposition 5.4 again to find
y∗0 ∈ Y ∗ with ∥y∗0∥ < K + 1 such that

y∗0 ∈ span {(C∗
i )i<t1 ∪ C∗

t1,L}
and

∥ι∗y∗0 − x∗1∥ < 4Kε1∥x∗1∥ < 4K(K + 1)ε1.

Set w∗ = x∗1 +
∑∞

i=1 aiw
∗
i . Note that this series converges and

∥x∗ − w∗∥ ≤
∞∑
i=2

εi < 1/4.
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By our choice of (δi)∞i=1, and since ∥ι̃∗ỹ∗i − w∗
i ∥ < δi for all i ∈ N, (ι̃∗ỹ∗i )

∞
i=1

is basic with projection constant at most 2K and equivalent to (w∗
i )

∞
i=1.

Furthermore,
inf
i
∥ι̃∗ỹ∗i ∥ ≥ inf

i
(∥w∗

i ∥ − δi) > 6/7.

By Claim 1, ∥∥∥ ∞∑
i=1

ciι̃∗ỹ∗i

∥∥∥ ≤
∥∥∥ ∞∑
i=1

ỹ∗i

∥∥∥ ≤ 7K
∥∥∥ ∞∑
i=1

ciι̃∗ỹ∗i

∥∥∥
for any (ci)

∞
i=1 ∈ c00. Thus (ỹ∗i )

∞
i=1 is basic, equivalent to (w∗

i )
∞
i=1, and∑∞

i=1 aiỹ
∗
i converges.

We recall that we have fixed θ ∈ (0, θ0] and denoted ϑ = θ/4, T = T ∗
q,θ

(resp. T = U∗
q,θ) and S = T ∗

q,ϑ (resp. S = U∗
q,ϑ).

Let ỹ∗ = y∗0 +
∑∞

i=1 aiỹ
∗
i . We have

∥ι̃∗ỹ∗ − w∗∥ ≤ ∥ι̃∗ỹ∗0 − x∗1∥+
∞∑
i=1

|ai| ∥ι̃∗ỹ∗i − w∗
i ∥

≤ 10K(K + 1)
∞∑
i=1

εi < 1/4.

Thus ∥ι̃∗ỹ∗ − x∗∥ < 1/2.
We next prove the norm estimate. Fix 1 ≤ n0 < n1 < · · · . Note that

ỹ∗i ∈ H̃i ⊕ H̃i+1 and ỹ∗0 ∈ H̃1. It follows that∥∥∥ ∞∑
i=1

∥P H̃∗
[ni−1,ni)

ỹ∗∥∼e∗ni−1

∥∥∥
S∗

≤ ∥ỹ∗0∥∼ +
∥∥∥ ∞∑
i=1

ani−1−1eni−1

∥∥∥
S∗

+

∥∥∥∥ ∞∑
i=1

∥∥∥ ni−1∑
j=ni−1

aj ỹ∗j

∥∥∥
∼
eni−1

∥∥∥∥
S∗
,

where we put a0 = 0 if n0 = 1. This is because ỹ∗0 may have non-zero image
only under the first projection P H̃∗

[n0,n1)
, which accounts for the first term

on the right. If j ∈ [ni−1, ni), ỹ∗i may have non-zero image only under the
projection P H̃∗

[ni−1,ni)
. For i ≥ 1, w̃ni−1−1 may have non-zero image under

either P H̃∗
[ni−1,ni)

or P H̃∗
[ni,ni+1)

. The images P H̃∗
[ni,ni+1)

ỹ∗ni−1−1 account for the
second term on the right.

We first compute, applying Lemma 4.7 for the second line,∥∥∥ ∞∑
i=1

ani−1−1eni−1

∥∥∥
S∗
≤
∥∥∥ ∞∑
i=1

aiei+1

∥∥∥
S∗

≤
∥∥∥ ∞∑
i=1

aieti

∥∥∥
S∗

≤ |a1|+
∥∥∥ ∞∑
i=2

aieti

∥∥∥
S∗



32 R. M. CAUSEY AND G. LANCIEN

≤ K + 1 + 9
∥∥∥ ∞∑
i=2

aieti−1

∥∥∥
T ∗

≤ K + 1 + 9C
∥∥∥ ∞∑
i=2

aiw
∗
i

∥∥∥
≤ (9C + 1)(K + 1) + 9C

∥∥∥ ∞∑
i=1

aiw
∗
i

∥∥∥
= (9C + 1)(K + 1) + 9C∥w∗ − x∗1∥
≤ (9C + 1)(K + 1) + 9C[∥x∗∥+ ∥x∗1∥+ ∥x∗ − w∗∥]
< (9C + 1)(K + 1) + 9C(K + 3).

For each i ∈ N, let

h∗i =

ni−1∑
j=ni−1

aj ỹ∗j and g∗i =

ni−1∑
j=ni−1

ajw
∗
j .

First note that ∥h∗i ∥∼ ≤ 7K∥ι̃∗h∗i ∥. Next,

∥g∗i − PD∗

(tni−1 ,tni )
g∗i ∥ ≤

ri−1∑
j=ni−1

|aj |2K∥w∗
j − PD∗

(ti,ti+1)
∥

< 2K(K + 1)

∞∑
j=ri−1

εj < δ2i .

If ∥g∗i ∥ > δi, let u∗i = ∥g∗i ∥−1g∗i and bi = ∥g∗i ∥. Otherwise let u∗i = yni−1

and bi = 0. Then (u∗i )
∞
i=1 ⊂ SX∗ is such that

∥u∗i − PD∗

(tni−1 ,tni )
u∗i ∥ < δi.

This means (u∗i )
∞
i=1 is a basic sequence with projection constant not more

than 2K. Then∥∥∥ ∞∑
i=1

∥h∗i ∥∼eni−1

∥∥∥
S∗

≤
∥∥∥ ∞∑
i=1

∥h∗i ∥∼eni−1

∥∥∥
T ∗

≤ 7K
∥∥∥ ∞∑
i=1

∥ι̃∗h∗i ∥eni−1

∥∥∥
T ∗

≤ 7K
∥∥∥ ∞∑
i=1

∥g∗i ∥eni−1

∥∥∥
T ∗

+ 7K∆

≤ 7K
∥∥∥ ∞∑
i=1

bieni−1

∥∥∥
T ∗

+ 14K∆

≤ 7K
∥∥∥ ∞∑
i=1

bietni−1

∥∥∥
T ∗

+ 14K∆
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≤ 7CK
∥∥∥ ∞∑
i=1

biu
∗
i

∥∥∥+ 14K∆

≤ 7CK
∥∥∥ ∞∑
i=n0

aiw
∗
i

∥∥∥+ 14K∆(C + 1)

≤ 14CK2
∥∥∥ ∞∑
i=1

aiw
∗
i

∥∥∥+ 14K∆(C + 1)

≤ 14CK2(K + 3) + 14K∆(C + 1) =: A.

This finishes the proof that ∥ỹ∥∧ ≤ A.

6. Small universal families. The final step, as in [FOSZ09], is to use
the complementably universal space for Banach spaces with an FDD built by
Schechtman [S75], who proved the existence of a Banach space W with bi-
monotone FDD J (where J is a sequence of finite-dimensional normed spaces
which is dense in the space of all finite-dimensional normed spaces for the
Banach–Mazur distance) such that if Z is any Banach space with bimono-
tone FDD H, then there exist a sequence of integers m1 < m2 < · · · and a
bounded, linear operator A : Z → W such that A(Hn) = Jmn for all n ∈ N
and

∀z ∈ Z 1
2∥z∥Z ≤ ∥Az∥W ≤ 2∥z∥Z

and such that A(Z) = span {Jmn : n ∈ N} is 1-complemented in W via the
map P : w 7→

∑∞
n=1 P

J
mn
w.

For M = (mn)
∞
n=1 ∈ [N]ω, 1 ≤ q < ∞, and 0 < θ < 1, we refer to

Subsection 4.1 for the definition of the spaces TM,q,θ and UM,q,θ. Then we
have the following.

Proposition 6.1. Let Z be a Banach space with FDD H. Let A : Z →W
and m1 < m2 < · · · be the operator and the sequence given by Schechtman’s
theorem exactly as in the introductory paragraph. Fix 1 < p ≤ ∞ and let q
be its conjugate exponent. If (T,U) is either of the pairs

(i) (T ∗
q,θ, T

∗
M,q,θ),

(ii) (U∗
q,θ, U

∗
M,q,θ),

then A : c00(H) → c00(J) extends to an isomorphic embedding Ã : ZT
∧ (H) →

WU
∧ (J), the range of which is still 1-complemented in WU

∧ (J) by P .

Proof. Let (T,U) be one of the indicated pairs. Let (en)
∞
n=1 denote the

canonical basis of c00. Note that (en)
∞
n=1 ⊂ T is isometrically equivalent to

(emn)
∞
n=1 ⊂ U .

Fix z ∈ c00(H). Fix intervals I1 < I2 < · · · such that N =
⋃∞

n=1 In. Let
Jn = [mmin In ,mmin In+1). Let J0 = [1,m1), which is empty if m1 = 1. Note
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that J0Az = 0. Since AInz = JnAz for all n ∈ N, we have∥∥∥ ∞∑
n=1

∥Inz∥Zemin In

∥∥∥
T
=

∥∥∥ ∞∑
n=1

∥Inz∥Zemmin In

∥∥∥
U
=

∥∥∥ ∞∑
n=1

∥Inz∥Zemin Jn

∥∥∥
U

≥ 1

2

∥∥∥ ∞∑
n=0

∥JnAz∥Y emin Jn

∥∥∥
U
≥ 1

2
[Az]∧.

Taking the infimum over such (In)
∞
n=1 yields [z]∧ ≥ 1

2 [Az]∧. Now,

∥z∥∧ = inf
{ n∑

i=1

[zi]∧ : n ∈ N, zi ∈ c00(H), z =
n∑

i=1

zi

}
≥ 1

2
inf

{ n∑
i=1

[Azi]∧ : n ∈ N, zi ∈ c00(H), z =
n∑

i=1

zi

}
≥ 1

2
inf

{ n∑
i=1

[wi]∧ : n ∈ N, wi ∈ c00(J), Az =
n∑

i=1

wi

}
=

1

2
∥Az∥∧.

So A extends to a bounded operator Ã : ZT
∧ (H) →WU

∧ (J) of norm at most 2.
Let P : c00(J) → c00(J) be given by Pw =

∑∞
n=1 P

J
mn
w. Fix w ∈ c00(J)

and intervals I1 < I2 < · · · such that N =
⋃∞

n=1 In. Then∥∥∥ ∞∑
n=1

∥InPw∥W emin In

∥∥∥
U
=
∥∥∥ ∞∑
n=1

∥PInw∥W emin In

∥∥∥
U
≤
∥∥∥ ∞∑
n=1

∥Inw∥W emin In

∥∥∥
U
.

Taking the infimum over such (In)
∞
n=1 shows that [Pw]∧ ≤ [w]∧ for all

w ∈ c00(J). From this, the equality PA = A and the injectivity of A, it
follows that for z ∈ c00(H),

∥Az∥∧ = inf
{ n∑

i=1

[wi]∧ : n ∈ N, wi ∈ c00(J), Az =
n∑

i=1

wi

}
≥ inf

{ n∑
i=1

[Pwi]∧ : n ∈ N, wi ∈ c00(J), Az =
n∑

i=1

wi

}
= inf

{ n∑
i=1

[w′
i]∧ : n ∈ N, wi ∈ c00(J) ∩ P (W ), Az =

n∑
i=1

w′
i

}
≥ inf

{ n∑
i=1

[Azi]∧ : n ∈ N, zi ∈ c00(H), z =
n∑

i=1

zi

}
.

The other inequality being obvious, we get

∥Az∥∧ = inf
{ n∑

i=1

[Azi]∧ : n ∈ N, zi ∈ c00(H), z =
n∑

i=1

zi

}
.
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With z ∈ c00(H) still fixed, choose intervals J1 < J2 < · · · such that⋃∞
n=1 Jn = N. Let

N = {n1 < n2 < · · · } = {n ∈ N : Jn ∩M ̸= ∅}.
For n ∈ N , let J ′

n = [minJn,min(Jn ∩M)) and let J ′′
n = [min(Jn ∩M),

min Jn+1). Note that J ′
n = ∅ if min Jn = min(Jn ∩M). For n ∈ N \ N , let

J ′
n = ∅ and let J ′′

n = Jn. For all n ∈ N, let Kn = J ′′
n ∪ J ′

n+1 and note that⋃∞
n=n1

Kn = [m1,∞). Note also that minKn ≥ min Jn and KnAz = JnAz
for all n ∈ N. For each n ∈ N, define In = {i ∈ N : mi ∈ Kn} and note that
I1 < I2 < · · · , N =

⋃∞
n=1 In, and mmin In = minKn for all n ∈ N. Moreover,

AInz = KnAz for all n ∈ N. Therefore

[z]∧≤
∥∥∥ ∞∑
n=1

∥Inz∥Zemin In

∥∥∥
T
=
∥∥∥ ∞∑
n=1

∥Inz∥Zemmin In

∥∥∥
U
=
∥∥∥ ∞∑
n=1

∥Inz∥ZeminKn

∥∥∥
U

≤ 2
∥∥∥ ∞∑
n=1

∥KnAz∥W eminKn

∥∥∥
U
= 2

∥∥∥ ∞∑
n=1

∥JnAz∥W eminKn

∥∥∥
U
.

Taking the infimum over such (Jn)
∞
n=1 yields [z]∧≤ 2[Az]∧ for any z ∈ c00(H).

Therefore,

∥z∥∧ = inf
{ n∑

i=1

[zi]∧ : n ∈ N, zi ∈ c00(H), z =
n∑

i=1

zi

}
≤ 2 inf

{ n∑
i=1

[Azi]∧ : n ∈ N, zi ∈ c00(H), z =
n∑

i=1

}
= 2∥Az∥∧.

This shows that Ã is an isomorphic embedding of ZT
∧ (H) into WU

∧ (J).
Finally, note that we can essentially repeat the argument for ∥Az∥∧ to

show that

∥Pw∥∧ = inf
{ n∑

i=1

[Pwi]∧ : n ∈ N, wi ∈ c00(J), w =

n∑
i=1

wi

}
.

We then use the inequality [Pw]∧ ≤ [w]∧ to deduce that P is still a norm 1
projection onto the closure of c00(K) in ZU

∧ (J), where Kn = Jmn .

We can now conclude the construction of our small universal families.

Theorem 6.2. Fix 1 < p ≤ ∞ and let q be its conjugate exponent. Let
X be a separable Banach space.

(i) X has Ap if and only if there exist θ ∈ (0, 1) and M ∈ [N]ω such that

X is isomorphic to a subspace of W
T ∗
M,q,θ

∧ (J) if and only if there exist
θ ∈ (0, 1) and M ∈ [N]ω such that X is isomorphic to a quotient of
W

T ∗
M,q,θ

∧ (J).
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(ii) X has Np if and only if there exist θ ∈ (0, 1) and M ∈ [N]ω such that

X is isomorphic to a subspace of W
U∗
M,q,θ

∧ (J) if and only if there exist
θ ∈ (0, 1) and M ∈ [N]ω such that X is isomorphic to a quotient of
W

U∗
M,q,θ

∧ (J).

Proof. We only detail the proof for Ap, as the argument for Np is similar.
So assume that X is a separable Banach space with Ap. By Theorem 5.1,
there exist θ ∈ (0, 1) and Banach spaces Z, Y with FDDs F,H, respectively,
such that X is isomorphic to a subspace of Z

T ∗
q,θ

∧ (F), and to a quotient of
Y

T ∗
q,θ

∧ (H). But Proposition 6.1 asserts that there exist M,N ∈ [N]ω such
that Z

T ∗
q,θ

∧ (F) is isomorphic to a complemented subspace of W
T ∗
M,q,θ

∧ (J) and
Y

T ∗
q,θ

∧ (H) is isomorphic to a complemented subspace of W
T ∗
N,q,θ

∧ (J). So X is
isomorphic to a subspace of W

T ∗
M,q,θ

∧ (J) and to a quotient of W
T ∗
N,q,θ

∧ (J).
For the remaining implications we recall (Proposition 4.5) that T ∗

M,q,θ
has Ap and that Ap passes to isomorphic quotients and subspaces.

7. Non-existence of a universal space. We conclude this article by
showing that our result on small universal families is essentially optimal.

Theorem 7.1. Fix 1 < p ≤ ∞. If U is any Banach space with Np, then
there exists a Banach space X with Ap such that X is not isomorphic to any
subspace of any quotient of U . More precisely, if q is the conjugate exponent
of p, then there exists θ ∈ (0, 1) such that T ∗

q,θ is not isomorphic to any
subspace of any quotient of U .

We first recall the Schreier families, Sl, for k = 0, 1, . . . . We let

S0 = {∅} ∪ {(n) : n ∈ N},

Sk+1 = {∅} ∪
{ n⋃
i=1

Ei : n ∈ N, n ≤ E1 < · · · < En, Ei ̸= ∅, Ei ∈ Sk

}
.

We note the following associative property: For all l,m ∈ N,

Sl+m = {∅} ∪
{ n⋃
i=1

Ei : Ei ̸= ∅, Ei ∈ Sl, (minEi)
n
i=1 ∈ Sm

}
.

We let MAX(Sk) denote the members of Sk which are maximal with respect
to inclusion.

For each k = 0, 1, . . . and each F ∈ MAX(Sk), we define SkF : N → [0, 1]
by induction on k. We first set

S0(i)(j) =

{
1, i = j,

0, i ̸= j.
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Next, suppose that SkE has been defined for each E ∈ MAX(Sk). Fix F ∈
MAX(Sk+1). If F =

⋃n
i=1 Fi for n ∈ N and n ≤ F1 < · · · < Fn, Fi ∈ Sk, then

it must be the case that n = minF1 and Fi ∈ MAX(Sk) for each 1 ≤ i ≤ n.
We then define

Sk+1
F (j) =

{
1
nS

k
Fi
(j), j ∈ Fi,

0, j ∈ N \ F.

It is easily checked that for F ∈ MAX(Sk),
∑

j∈N SkF (j) =
∑

j∈F SkF (j) = 1.
For a Banach space X, 1 ≤ p ≤ ∞, l ∈ N, and C ∈ [0,∞], we define yet

another two-player game. The confusingly named Player II chooses m1 ∈ N.
Player I chooses a weak neighborhood U1 of 0 in X, and Player II chooses
x1 ∈ U1 ∩ BX . This is the first round of the game. If (m1) is maximal
in Sl, the game terminates. Otherwise Player II chooses m2 ∈ N such that
m1 < m2 and (m1,m2) ∈ Sl. Player I then chooses a weak neighborhood U2

of 0 in X, and Player II chooses x2 ∈ U2 ∩ BX . Play continues in this way
until m1 < · · · < mn are chosen such that F := (mi)

n
i=1 ∈ MAX(Sl) and

x1, . . . , xn ∈ BX are chosen. Player I wins if∥∥∥ n∑
i=1

SlF (mi)
1/pxi

∥∥∥ ≤ C

and Player II wins otherwise. We call this the Φ(l, p, C) game on X. We
let ϕl(X, p) be the infimum of C ∈ [0,∞] such that Player I has a winning
strategy in the Φ(l, p, C) game on X. These values need not be finite. Note
also that ϕl(X, p) ≥ 1.

Proposition 7.2. Fix 1 < p ≤ ∞.

(i) For any Banach space X, ϕ1(X, p) <∞ if and only if X has Np.
(ii) For any Banach space X, ϕk+l(X, p) ≤ ϕk(X, p)ϕl(X, p) for all k, l ∈ N.
(iii) For Banach spaces X,Y and l ∈ N, ϕl(X, p) ≤ dBM(X,Y )ϕl(Y, p).
(iv) For a Banach space X and a subspace Y of X, ϕl(Y, p) ≤ ϕl(X, p) for

all l ∈ N.
(v) For a Banach space X and a subspace Y of X, ϕl(X/Y, p) ≤ 3ϕl(X, p)

for all l ∈ N.

Proof. (i) Observe that for the Φ(1, p, C) game, a set (m1, . . . ,mn) is
maximal in S1 if and only if n = m1. Therefore in the Φ(1, p, C) game,
only the initial choice of m1 affects the game, since it determines how many
rounds the game will have. The later values of m2, . . . ,mm1 do not matter
in the l = 1 case. Moreover, if F = (mi)

n
i=1 ∈ MAX(S1), then n = m1 and

S1F (mi)
1/p = m

−1/p
1 for all 1 ≤ i ≤ m1. Therefore the winning condition

for Player I at the end of the Φ(1, p, C) game with initial choice m1 is that
∥
∑m1

i=1 xi∥ ≤ Cm
1/p
1 .

We will argue that np(X) = ϕ1(X, p), which yields (i).
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If np(X) < ∞, then for any C > np(X) and any n ∈ N, Player I has a
winning strategy χn in the N(n, p, C) game. We will show that Player I has
a winning strategy in the Φ(1, p, C) game. If Player II begins the Φ(1, p, C)
game with the choice m1, then Player I plays the rest of the game according
to χm1 , ignoring all choices of m2, . . . ,mm1 . It follows from our initial ob-
servation that this is a winning strategy for Player I in the Φ(1, p, C) game.
Therefore ϕ1(X, p) ≤ np(X).

Conversely, if ϕ1(X, p) < ∞, then for any C > ϕ1(X, p), Player I has
a winning strategy χ in the Φ(1, p, C) game. We will show that for any
n ∈ N, Player I has a winning strategy in the N(n, p, C) game. Note that
the Φ(1, p, C) game includes integers mi, while the N(n, p, C) game does
not, so we rather than Player II will decide the values of the mi’s. We choose
m1 = n and mi+1 = n+ i for 1 ≤ i < n. This results in a game with m1 = n
rounds, as noted in the preceding paragraph. It follows from the fact that χ
is a winning strategy for the Φ(1, p, C) game that this strategy is a winning
strategy in the N(n, p, C) game. Therefore np(X) ≤ ϕ1(X, p).

(ii) Assume, as we may, that ϕk(X, p), ϕl(X, p) < ∞. Fix C > ϕk(X, p)
and C ′ > ϕl(X, p) and winning strategies χk, χl for Player I in the Φ(k, p, C),
Φ(l, p, C ′) games, respectively. Let n0 = 0 and recursively choose

m1, U1 ∩
1

21
V1, x1,m2, U2 ∩

1

22
V1, x2,m3, . . . , xn1 ,

mn1+1, Un1+1 ∩
1

21
V2, xn1+1,mn1+2, . . . , xn2 ,

...

mnr−1+1, Unr−1+1 ∩
1

21
Vr, xnr−1+1,mnr−1+2, . . . , xnr .

Here, mi and xi are the choices of Player II in the Φ(k + l, p, CC ′) game,
for which we still have to describe the strategy of Player I for choosing the
weak-open sets Uni−1+j ∩ 1

2j
Vi. For a given 1 ≤ i ≤ r, the choices

mni−1+1, Uni−1+1 ∩
1

21
Vi, xni−1+1,mni−1+2, . . . , xni

are made by Player I as follows. Each set Uni−1+s is chosen according to the
strategy χk and we proceed until Fi := (mj)

ni
j=ni−1+1 is maximal in Sk. This

implies that

yi :=
1

C

ni∑
j=ni−1+1

SkFi
(j − n1 − · · · − ni−1)

1/pxj ∈ BX .

Each set Vi is chosen to be a weak neighborhood of 0 which is a convex
symmetric subset of Wi, where the set Wi is chosen according to the strategy
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χl in the Φ(l, p, C ′) game where the choices proceed as

m1,W1, y1,mn1+1,W2, y2, . . . ,Wr, yr.

Note that our construction implies that yi ∈ Wi, which allows the strategy
χl to apply.

This game terminates when G := (mni−1+1)
r
i=1 ∈ MAX(Sl). Then F :=⋃r

i=1 Fi = (mi)
nr
i=1 ∈ MAX(Sk+l). Moreover,∥∥∥ nr∑

i=1

Sk+l
F (i)1/pxi

∥∥∥
= C

∥∥∥ r∑
i=1

SlG(i)1/p
1

C

ni∑
j=ni−1+1

SkFi
(j − n1 − · · · − ni−1)

1/pxj

∥∥∥ ≤ CC ′.

Player I playing in this way defines a winning strategy in the Φ(k+ l, p, CC ′)
game. Since C > ϕk(X, p) and C ′ > ϕl(X, p) were arbitrary, this yields (ii).

Items (iii) and (iv) are clear.
(v) Let Y be a closed subspace of a Banach space X. Let Q : X → X/Y

be the quotient map. We shall use the following lemma, which can be found
for instance in [C18a, Proposition 5.6].

Lemma 7.3. For any weak-open neighborhood V of 0 in X, there exists a
weak-open neighborhood U of 0 in X/Y such that U ∩ 1

3BX/Y ⊂ Q(BX ∩V ).

Let l ∈ N and assume that C > 3ϕ(X, p) and let χl be a winning strat-
egy for Player I in the Φ(l, p, C/3) game in X. We now describe a winning
strategy for Player I in the Φ(l, p, C) game in X/Y . The players choose
recursively

m1, U1, z1,m2, U2, z2, . . . , Ur, zr.

The choices of Player II are mi ∈ N and zi ∈ Ui ∩ BX/Y , while the choices
of Player I are weak-open neighborhoods Ui of 0 in X/Y that are convex
and symmetric. In the course of the game we insert choices of xi ∈ BX and
weak-open neighborhoods Vi of 0 in X in the following order:

m1, V1, U1, z1, x1,m2, V2, U2, z2, x2, . . . , Vr, Ur, zr, xr.

We now describe the choices. Denote V1 = χl(m1); then Player I picks U1,
given by Lemma 7.3, so that U1 ∩ 1

3BX/Y ⊂ Q(BX ∩ V1). Next Player II
picks z1 ∈ U1 ∩ BX/Y . The choice of U1 implies the existence of x1 ∈
BX ∩ V1 such that Q(x1) =

1
3z1. After Player II chooses m2, we pick V2 =

χl(m1, V1, x1,m2) and Player I chooses U2 so that U2∩ 1
3BX/Y ⊂ Q(BX∩V2).

The strategy of Player I should now be clear. Since χl is a winning strategy
for Player I in the Φ(l, p, C/3) game on X, when the game finishes after r
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rounds, we have F := (mi)
r
i=1 ∈ MAX(Sl) and∥∥∥ r∑

i=1

SlF (mi)
1/pzi

∥∥∥
X/Y

≤ 3
∥∥∥ r∑
i=1

SlF (mi)
1/pxi

∥∥∥
X

≤ C.

This finishes the proof of (v).

In the next proposition, we give a lower estimate for ϕl(T ∗
q,θ, p).

Proposition 7.4. Fix θ ∈ (0, 1), 1 < p ≤ ∞ and let q be the conjugate
exponent of p.

(i) Fix ε, a > 0. Suppose that I1 < · · · < In are intervals and x1 < · · · < xm
with xi ∈ aBTθ

and 2n/m < ε. Then

θ

m

n∑
i=1

∥∥∥Ii m∑
j=1

xj

∥∥∥
Tθ

≤ (θ + ε)a.

(ii) Fix ε ∈ (0, 1−θ) and l ∈ N. Assume that M = (mi)
∞
i=1 and R = (ri)

∞
i=1

∈ [N]ω are such that θm1 >
1
θ , m1 >

2
ε

(
1 − θ − ε

2

)
, and 2ri

mi+1
< ε

2 for
all i ∈ N. If F = (mi)

n
i=1 ∈ MAX(S2l−1), then∥∥∥ n∑

i=1

S2l−1
F (mi)eri

∥∥∥
Tθ

≤ (θ + ε)l,

where (ej)
∞
j=1 is the canonical basis of Tθ.

(iii) ϕ2l−1(T
∗
q,θ, p) ≥ θ−l/q.

Proof. (i) For 1 ≤ i ≤ n, we let

Ai = {j ≤ m : supp(xj) ⊂ [min Ii,max Ii]},
Bi = {i ≤ m : supp(xj) ∩ Ii ̸= ∅}.

Of course,
∑n

i=1 |Ai| ≤ m and |Ai \Bi| ≤ 2. Then

θ

n∑
i=1

∥∥∥Ii m∑
j=1

xj

∥∥∥
Tθ

≤ θ

n∑
i=1

∑
j∈Ai

∥xj∥Tθ
+

n∑
i=1

∑
j∈Bi\Ai

∥xj∥Tθ
≤ θam+ 2an.

Therefore

θ

m

n∑
i=1

∥∥∥Ii m∑
j=1

xj

∥∥∥
Tθ

≤
(
θ +

2n

m

)
a ≤ (θ + ε)a.
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(ii) We work by induction on l. We note that

∥∥∥ n∑
i=1

S1F (mi)eri

∥∥∥
Tθ

= max
{∥∥∥ n∑

i=1

S1F (mi)eri

∥∥∥
c0
,

θ sup
{ k∑
j=1

∥∥∥Ij n∑
i=1

S1F (mi)eri

∥∥∥
Tθ

: I1 < · · · < Ik, (min Ij)
k
j=1 ∈ S1

}}
≤ max

{∥∥∥ n∑
i=1

S1F (mi)eri

∥∥∥
c0
, θ
∥∥∥ n∑
i=1

S1F (mi)eri

∥∥∥
ℓ1

}
≤ max

{
1

m1
, θ

}
= θ.

Next, suppose the result holds for some l ∈ N. Suppose also that M,R
are as in the statement and F = (mi)

n
i=1 ∈ MAX(S2l+1). Then we can write

F =
⋃t

i=1 Fi, F1 < · · · < Ft, Fi ∈ MAX(S2l−1). For each 1 ≤ i ≤ t, let
Gi = {rj : mj ∈ Fi}, Mi =M \

⋃i−1
j=1 Fj , and Ri = R \

⋃i−1
j=1Gj . We observe

the convention that the empty union is the empty set, so M1 = M and
R1 = R. Note that for each 1 ≤ i ≤ t, Fi is the maximal initial segment
of Mi which is also a member of S2l−1, and the pair (Mi, Ri) also satisfies the
hypotheses of statement (ii). So by the inductive hypothesis, for all 1 ≤ i ≤ t,
∥xi∥Tθ

≤ (θ + ε)l, where xi =
∑∞

j=1 S
2l−1
Fi

(mj)erj .

Next, note that since F =
⋃t

i=1 Fi, F ∈ MAX(S2l+1), F1 < · · · < Ft,
and Fi ∈ MAX(S2l−1), it follows that H := (minFi)

t
i=1 ∈ MAX(S2). This

means we can write H =
⋃s

i=1Hi, where H1 < · · · < Hs, Hi ∈ MAX(S1),
and E := (minHi)

s
i=1 ∈ MAX(S1). Since E ∈ MAX(S1), we deduce that

m1 = minM = minF = minH = minE = |E| = s.

Moreover,

x :=

n∑
i=1

S2l+1
F (mi)eri =

1

m1

m1∑
i=1

1

|Hi|
∑

j:minFj∈Hi

xj .

For 1 ≤ i ≤ m1, let yi = 1
|Hi|

∑
j:minFj∈Hi

xj , so that x = 1
m1

∑t
i=1 yi. Note

also that ∥yi∥Tθ
≤ (θ + ε)l. Fix I1 < · · · < Ik such that (min Il)

k
l=1 ∈ S1. By

omitting any Il such that Ilyi = 0 for all 1 ≤ i ≤ m1, we can assume that
I1yi ̸= 0 for some i. Let i0 be the minimum such i. Note that k ≤ min I1 ≤
max supp(yi0) = eri1 for some i1. Note also that for each i0 < i ≤ m1, since
Hi ∈ MAX(S1), |Hi| = minHi = mi2 for some i2 > i1. Therefore

k

|Hi|
≤ ri1
mi2

<
ε

4
.

By (i) applied with a = (θ + ε)l and with ε/2 in place of ε it follows that



42 R. M. CAUSEY AND G. LANCIEN

for i0 < i ≤ m1,

θ
k∑

l=1

∥Ilyi∥Tθ
=

θ

|Hi|

k∑
l=1

∥∥∥Il ∑
j:minFj∈Hi

xj

∥∥∥
Tθ

≤
(
θ +

ε

2

)
(θ + ε)l.

Therefore

θ

m1

k∑
l=1

∥∥∥Il m1∑
i=1

yi

∥∥∥
Tθ

≤ θ

m1

m1∑
i=i0

k∑
l=1

∥Ilyi∥Tθ

≤ 1

m1

(
∥yi0∥Tθ

+

m1∑
i=i0+1

(
θ +

ε

2

)
(θ + ε)l

)
≤ (θ + ε)l

(
1

m1
· 1 + m1 − 1

m1
·
(
θ +

ε

2

))
≤ (θ + ε)l+1.

Here we have used the fact that since m1 > 2(1− θ − ε/2)/ε, we have

1

m1
+
m1 − 1

m1

(
θ +

ε

2

)
< θ + ε.

We also note that∥∥∥∥ 1

m1

m1∑
i=1

yi

∥∥∥∥
c0

=
1

m1
max

1≤i≤m1

∥yi∥c0 ≤ (θ + ε)l

m1
≤ θ(θ + ε)l < (θ + ε)l+1.

Therefore∥∥∥∥ 1

m1

m1∑
i=1

yi

∥∥∥∥
Tθ

= max

{∥∥∥∥ 1

m1

m1∑
i=1

yi

∥∥∥∥
c0

, sup

{
θ

m1

k∑
l=1

∥∥∥∥Il m1∑
i=1

yi

∥∥∥∥
Tθ

: (min Il)
k
l=1 ∈ S1

}}
≤ (θ + ε)l+1.

(iii) Fix ε ∈ (0, 1 − θ). For C < (θ + ε)−l/q, we construct a winning
strategy for Player II in the Φ(2l − 1, p, C) game on T ∗

q,θ. Recall that the
canonical basis (e∗j )

∞
j=1 of T ∗

q,θ is normalized and weakly null. First Player II
chooses m1 so large that θm1 > 1 and m1 > 2

ε (1 − θ − ε/2). Player I
chooses some weak neighborhood U1 of 0 in T ∗

q,θ. Player II then chooses
some r1 so large that e∗r1 ∈ U1. Assuming m1, U1, r1, . . . ,mj , Uj , rj have
been chosen and (mi)

j
i=1 ∈ S2l−1 \ MAX(S2l−1), Player II chooses some

mj+1 so large that rj/mj+1 < ε/4 and mj+1 > mj . Player I then chooses
Uj+1. Player II chooses rj+1 > rj such that e∗rj+1

∈ Uj+1. When the game
terminates at some F = (mi)

n
i=1 ∈ MAX(S2l−1), we arbitrarily choose

mn+1, rn+1,mn+2, rn+2, . . . such that rn < rn+1 < · · · , mn < mn+1 < · · · ,
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and ri/mi+1 < ε/4 for all i ∈ N. By (ii),∥∥∥ n∑
i=1

S2l−1
F (mi)

1/qeri

∥∥∥
Tq,θ

=
∥∥∥ n∑
i=1

S2l−1
F (mi)eri

∥∥∥1/q
Tθ

≤ (θ + ε)l/q.

Therefore∥∥∥ n∑
i=1

S2l−1
F (mi)

1/pe∗ri

∥∥∥
T ∗
q,θ

≥ (θ + ε)−l/q
( n∑
i=1

S2l−1
F (mi)

1/pe∗ri

)( n∑
i=1

S2l−1
F (mi)

1/qeri

)
= (θ + ε)−l/q

n∑
i=1

S2l−1
F (mi) = (θ + ε)−l/q.

This shows that the strategy outlined above is a winning strategy for Player II
in the Φ(2l− 1, p, C) game. Since we can do this for any C < (θ+ ε)−l/q and
0 < ε < 1− θ, ϕ2l−1(T

∗
q,θ, p) ≥ θ−l/q.

Proof of Theorem 7.1. Assume U is an infinite-dimensional Banach space
which has Np. Then by items (i) and (ii) of Proposition 7.2, a = ϕ1(U) ∈
[1,∞) and ϕl(U) ≤ al for all l ∈ N. Fix now θ ∈ (0, 1) such that θ−1/q > a2

and let X = T ∗
q,θ (remember that X has Ap). If X were isomorphic to a

subspace of a quotient of U , then by Proposition 7.2(iii)–(v), there would
exist a constant C such that for all l ∈ N,

(θ−1/q)l ≤ ϕ2l−1(X, p) ≤ Cϕ2l−1(U, p) ≤ C(a2)l.

But this is impossible, since θ−1/q > a2.
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