Asymptotic smoothness and universality in Banach spaces

R M Causey, Gilles Lancien

To cite this version:

R M Causey, Gilles Lancien. Asymptotic smoothness and universality in Banach spaces. Colloquium Mathematicum, 2023, 172 (2), pp.281-324. 10.4064/cm8923-12-2022 . hal-04011619

HAL Id: hal-04011619

https://hal.science/hal-04011619

Submitted on 2 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

COLLOQUIUM MATHEMATICUM

ASYMPTOTIC SMOOTHNESS AND UNIVERSALITY IN BANACH SPACES

BY
R. M. CAUSEY (Middletown, OH) and G. LANCIEN (Besançon)

Abstract

For $1<p \leq \infty$, we study the complexity and the existence of universal spaces for two classes of separable Banach spaces, denoted A_{p} and N_{p}, and related to asymptotic smoothness in Banach spaces. We show that each of these classes is Borel in the class of separable Banach spaces. Then we build small families of Banach spaces that are both injectively and surjectively universal for these classes. Finally, we prove the optimality of this universality result, by showing in particular that none of these classes admits a universal space.

1. Introduction. The notion of asymptotic uniform smoothness has become very important in the recent developments of the linear and nonlinear geometry of Banach spaces. In a recent work CL we have proved that the class $\mathrm{T}_{p} \cap$ Sep of all separable Banach spaces admitting an equivalent p-asymptotically uniformly smooth norm is analytic non-Borel in the class Sep of all separable Banach spaces and that there exists a space $U_{p} \in \mathrm{~T}_{p} \cap$ Sep such that any space in $T_{p} \cap$ Sep is both isomorphic to a subspace and to a quotient of U_{p}. For a Banach space X, the property T_{p} can be characterized in terms of some infinite game and in terms of the existence of upper $\ell_{p^{-}}$ estimates for weakly null trees of infinite height in B_{X}, the unit ball of X (see [18b]).

In Section 2, we introduce the properties A_{p} and N_{p}, which are both slightly weaker than T_{p} (and N_{p} is weaker than A_{p}). We give their definitions in terms of finite two-player games and recall their main characterizations. First we give their characterizations in terms of upper ℓ_{p}-estimates for weakly null trees of finite height in the unit ball. We also recall their dual characterizations. For that purpose we need to introduce the so-called Szlenk derivation in a dual Banach space and the associated notions of q-summable Szlenk index and convex Szlenk index for a Banach space. The aim of this paper is to address, for A_{p} and N_{p}, the questions solved for T_{p} in CL.

[^0]In Section 3, we introduce the necessary framework, built by B. Bossard [B02], for conducting a meaningful study of the topological complexity of a class of separable Banach spaces. Then, we use the dual characterizations of A_{p} and N_{p} to show the following.

Theorem A. Let $p \in(1, \infty]$. The classes $\operatorname{Sep} \cap \mathrm{A}_{p}$ and $\operatorname{Sep} \cap \mathrm{N}_{p}$ are Borel.

Next, we start our construction of universal families for Sep $\cap A_{p}$ and Sep $\cap \mathrm{N}_{p}$. This will take a few steps. In Subsection 4.1, we build a first family of model spaces for A_{p} and N_{p}. If q is the conjugate exponent of p and $\theta \in(0,1)$, we denote by $T_{q, \theta}^{*}$ the dual of the q-convexification of T_{θ}, the Tsirelson space of parameter θ, and we show that $T_{q, \theta}^{*} \in \mathrm{~A}_{p}$. We slightly modify the construction to get a typical N_{p} space $U_{q, \theta}^{*}$. In fact, to complete this family, we need to introduce another parameter M, an infinite sequence in \mathbb{N}, and associated spaces $T_{q, \theta, M}^{*}$ and $U_{q, \theta, M}^{*}$. In Subsection 4.2 we introduce the key notion of press down norm associated with a Banach space Z with finite-dimensional decomposition E and a Banach space T with a 1-unconditional basis. The associated Banach space is denoted $Z_{\wedge}^{T}(\mathrm{E})$ and we show that if T has $\mathrm{A}_{p}\left(\right.$ resp. $\left.\mathrm{N}_{p}\right)$, then $Z_{\wedge}^{T}(\mathrm{E})$ has A_{p} (resp. N_{p}). Then, in Subsection 4.3, we gather technical results about the interaction of gliding hump arguments and quotient maps.

In Section 5, we take a crucial step, by showing that for any space X in Sep $\cap \mathrm{A}_{p}$ (resp. in Sep $\cap \mathrm{N}_{p}$), there exist $\theta \in(0,1)$ and Banach spaces Z, Y with FDDs F, H, respectively, such that X is isomorphic to a subspace of $Z_{\wedge}^{T_{q, \theta}^{*}}(\mathrm{~F})$, and to a quotient of $Y_{\wedge}^{T_{q, \theta}^{*}}(\mathrm{H})$ (resp. to a subspace of $Z_{\wedge}^{U_{q, \theta}^{*}}(\mathrm{~F})$, and to a quotient of $\left.Y_{\wedge}^{U_{q, \theta}^{*}}(\mathrm{H})\right)$.

In Section 6 we take the final step of our construction, which is to use the complementably universal space for Banach spaces with an FDD built by Schechtman S75. We denote by W this universal space and by J its finite-dimensional decomposition. Then we show:

Theorem B. Fix $1<p \leq \infty$ and let q be its conjugate exponent. Let X be a separable Banach space.
(i) X has A_{p} if and only if there exist $\theta \in(0,1)$ and an infinite sequence M in \mathbb{N} such that X is isomorphic to a subspace of $W_{\wedge}^{T_{q, \theta, M}^{*}}(\mathrm{~J})$ if and only if there exist $\theta \in(0,1)$ and an infinite sequence M in \mathbb{N} such that X is isomorphic to a quotient of $W_{\wedge}^{T_{q, \theta, M}^{*}}(\mathrm{~J})$.
(ii) X has N_{p} if and only if there exist $\theta \in(0,1)$ and an infinite sequence M in \mathbb{N} such that X is isomorphic to a subspace of $W_{\wedge}^{U_{q, \theta, M}^{*}}(\mathrm{~J})$ if and only if there exist $\theta \in(0,1)$ and an infinite sequence M in \mathbb{N} such that X is isomorphic to a quotient of $W_{\wedge}^{U_{q, \theta, M}^{*}}(\mathrm{~J})$.

In the concluding Section 7, we show that this result is optimal. More precisely, we introduce yet another two-player game to show the following.

Theorem C. Fix $1<p \leq \infty$. If U is any Banach space with N_{p}, then there exists a Banach space X with A_{p} such that X is not isomorphic to any subspace of any quotient of U. More precisely, if q is the conjugate exponent of p, then there exists $\theta \in(0,1)$ such that $T_{q, \theta}^{*}$ is not isomorphic to any subspace of any quotient of U.
2. The properties and their characterizations. All Banach spaces are over the field \mathbb{K}, which is either \mathbb{R} or \mathbb{C}. We denote by B_{X} (resp. S_{X}) the closed unit ball (resp. sphere) of a Banach space X. By subspace, we shall always mean a closed subspace. Unless otherwise specified, all spaces are assumed to be infinite-dimensional. For a Banach space X, we denote by W_{X} the set of weak-open neighborhoods of 0 in X, by $\operatorname{cof}(X)$ the set of closed finite-codimensional subspaces of X and by K_{X} the set of norm-compact subsets of B_{X}. For X, Y Banach spaces, a bounded linear map $Q: X \rightarrow Y$ is called a quotient map if it is onto and induces an isometry from $X / \operatorname{ker}(Q)$ onto Y. If X and Y are isomorphic Banach spaces, the Banach-Mazur distance from X to Y is $d_{\mathrm{BM}}(X, Y)=\inf \left\{\|T\|\left\|T^{-1}\right\|: T\right.$ an isomorphism from X onto $Y\}$.

Let D be a set. We denote $D^{\leq n}=\bigcup_{i=1}^{n} D^{i}, D^{<\omega}=\bigcup_{i=1}^{\infty} D^{i}$, we let D^{ω} be the set of all infinite sequences whose members lie in D and $D^{\leq \omega}=D^{<\omega} \cup D^{\omega}$. For $s, t \in D^{<\omega}$, we let $s \frown t$ denote the concatenation of s with t. We let $|t|$ denote the length of t. For $0 \leq i \leq|t|$, we let $\left.t\right|_{i}$ denote the initial segment of t having length i, where $\left.t\right|_{0}=\emptyset$ is the empty sequence. If $s \in\{\emptyset\} \cup D^{<\omega}$, we let $s \prec t$ denote that s is a proper initial segment of t.

We start with the definition of the Szlenk index. For a Banach space X, $K \subset X^{*}$ weak *-compact, and $\varepsilon>0$, we let $s_{\varepsilon}(K)$ denote the set of $x^{*} \in K$ such that for each weak ${ }^{*}$-neighborhood V of $x^{*}, \operatorname{diam}(V \cap K) \geq \varepsilon$. We define the transfinite derivations

$$
s_{\varepsilon}^{0}(K)=K, \quad s_{\varepsilon}^{\xi+1}(K)=s_{\varepsilon}\left(s_{\varepsilon}^{\xi}(K)\right),
$$

and if ξ is a limit ordinal,

$$
s_{\varepsilon}^{\xi}(K)=\bigcap_{\zeta<\xi} s_{\varepsilon}^{\zeta}(K)
$$

For convenience, we let $s_{0}(K)=K$. If there exists an ordinal ξ such that $s_{\varepsilon}^{\xi}(K)=\emptyset$, we let $\mathrm{Sz}(K, \varepsilon)$ denote the minimum such ordinal, and otherwise we write $\mathrm{Sz}(K, \varepsilon)=\infty$. We let $\mathrm{Sz}(K)=\sup _{\varepsilon>0} \mathrm{Sz}(K, \varepsilon)$, where $\mathrm{Sz}(K)=\infty$ if $\mathrm{Sz}(K, \varepsilon)=\infty$ for some $\varepsilon>0$. We let $\mathrm{Sz}(X, \varepsilon)=\mathrm{Sz}\left(B_{X^{*}}, \varepsilon\right)$ and $\mathrm{Sz}(X)=$ $\mathrm{Sz}\left(B_{X^{*}}\right)$. In this work, we will exclusively be concerned with Banach spaces X such that $\mathrm{Sz}(X) \leq \omega$, where ω is the first infinite ordinal. By compactness,
$\operatorname{Sz}(X) \leq \omega$ if and only if $\operatorname{Sz}(X, \varepsilon)$ is a natural number for each $\varepsilon>0$. We recall that $\mathrm{Sz}(X)<\infty$ if and only if X is Asplund (see [L06] and references therein). One characterization of Asplund spaces is that every separable subspace has a separable dual.

For $1 \leq q<\infty$, we say X has q-summable Szlenk index provided there exists a constant $c>0$ such that for any $n \in \mathbb{N}$ and any $\varepsilon_{1}, \ldots, \varepsilon_{n} \geq 0$ such that $s_{\varepsilon_{1}} \ldots s_{\varepsilon_{n}}\left(B_{X^{*}}\right) \neq \emptyset, \sum_{i=1}^{n} \varepsilon_{i}^{q} \leq c^{q}$. In the $q=1$ case, we refer to this as summable Szlenk index rather than 1-summable Szlenk index.

We shall also need a somewhat slower derivation and the corresponding index, called the convex Szlenk index $\mathrm{Cz}(X)$, introduced in [GKL01], which is defined identically from the following derivation: for $K \subset X^{*}$ weak*compact, and $\varepsilon>0, c_{\varepsilon}(K)$ is the weak*-closed convex hull of $s_{\varepsilon}(K)$.

We now define the asymptotic smoothness properties that we shall study by means of two different two-player games on a Banach space X (and their variants). Fix $1<p \leq \infty$ and let q be its conjugate exponent. For $n \in \mathbb{N}$, we denote by ℓ_{p}^{n} the space \mathbb{K}^{n} equipped with the p-norm: $\|a\|_{p}=\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}$, $a \in \mathbb{K}^{n}$. For $c>0$ and $n \in \mathbb{N}$, we define the $A(c, p, n)$ game and the $N(c, p, n)$ game. In the $A(c, p, n)$ game, Players I and II take turns choosing $U_{i} \in W_{X}$ and $x_{i} \in U_{i} \cap B_{X}$, respectively, until $\left(x_{i}\right)_{i=1}^{n}$ has been chosen. Player I wins if

$$
\max \left\{\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|:\left(a_{i}\right)_{i=1}^{n} \in B_{\ell_{p}^{n}}\right\} \leq c,
$$

and Player II wins otherwise. The spatial $A(c, p, n)$ game on X is similar, except Player I chooses $Y_{i} \in \operatorname{cof}(X)$ and Player II chooses $x_{i} \in B_{Y_{i}}$. The conditions for Player I or Player II winning are the same as in the $A(c, p, n)$ game. The compact spatial game is also similar, except Player I chooses $Y_{i} \in \operatorname{cof}(X)$ and Player II chooses $C_{i} \in K_{Y_{i}}$, where for $Y \in \operatorname{cof}(X)$, we write K_{Y} for the set of norm-compact subsets of B_{Y}. Player I wins if

$$
\max \left\{\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|:\left(a_{i}\right)_{i=1}^{n} \in B_{\ell_{p}^{n}},\left(x_{i}\right)_{i=1}^{n} \in \prod_{i=1}^{n} C_{i}\right\} \leq c
$$

and Player II wins otherwise.
The $N(c, p, n)$ game is similar to the $A(c, p, n)$ game. Only the winning condition is modified. Player I wins if $\left\|\sum_{i=1}^{n} x_{i}\right\| \leq c n^{1 / p}$, and Player II wins otherwise. The modifications needed to define the spatial $N(c, p, n)$ and the compact spatial $N(c, p, n)$ game are identical to those for the $A(c, p, n)$ games.

Let us now specify what we mean by strategies in these games. We define only the notions of strategies and winning strategies for Player I. For a Banach space X and $n \in \mathbb{N}$, an n-strategy is a function $\chi: B_{X}^{<n} \rightarrow W_{X}$. A spatial n-strategy is a function $\chi: B_{X}^{<n} \rightarrow \operatorname{cof}(X)$. A compact spatial n-strategy is a function $\chi: K_{X}^{<n} \rightarrow \operatorname{cof}(X)$. If χ is an n-strategy, then we
say $\left(x_{i}\right)_{i=1}^{n} \subset B_{X}$ is χ-admissible if $x_{j} \in \chi\left(\left(x_{i}\right)_{i=1}^{j-1}\right)$ for all $1 \leq j \leq n$. The notion of χ-admissibility for a spatial n-strategy is defined similarly. If χ is a compact spatial n-strategy, we say $\left(C_{i}\right)_{i=1}^{n} \in K_{X}^{n}$ is χ-admissible if $C_{j} \subset \chi\left(\left(C_{i}\right)_{i=1}^{j-1}\right)$ for all $1 \leq j \leq n$. For any type of strategy in any of the games defined above, we say the strategy is a winning strategy if any sequence admissible with respect to it satisfies the winning condition of the game for Player I.

It is known (see [C18b, Section 3] that each of these games is determined. That is, in each game, either Player I or Player II has a winning strategy. We let $\mathrm{a}_{p, n}(X)$ denote the infimum of $c>0$ such that Player I has a winning strategy in the $A(c, p, n)$ game, and we let $\mathrm{a}_{p}(X)=\sup _{n} \mathrm{a}_{p, n}(X)$. We note that $\mathrm{a}_{p}(X)$ is the infimum of $c>0$ such that for each $n \in \mathbb{N}$, Player I has a winning strategy in the $A(c, p, n)$ game if such a c exists, and $\mathrm{a}_{p}(X)=\infty$ otherwise. We let $\mathrm{n}_{p, n}(X)$ denote the infimum of $c>0$ such that Player I has a winning strategy in the $N(c, p, n)$ game, and $\mathrm{n}_{p}(X)=\sup _{n} \mathrm{n}_{p, n}(X)$.

We shall also use the following infinite game. First, denote by c_{00} the space of all finitely supported scalar sequences. Then, for two sequences $\left(e_{n}\right)_{n=1}^{\infty},\left(f_{n}\right)_{n=1}^{\infty}$ in (possibly different) Banach spaces and for $c>0$, we write $\left(e_{n}\right)_{n=1}^{\infty} \lesssim c\left(f_{n}\right)_{n=1}^{\infty}$ provided that

$$
\forall\left(a_{n}\right)_{n=1}^{\infty} \in c_{00} \quad\left\|\sum_{n=1}^{\infty} a_{n} e_{n}\right\| \leq c\left\|\sum_{n=1}^{\infty} a_{n} f_{n}\right\|
$$

For a Banach space T with basis $\left(e_{i}\right)_{i=1}^{\infty}$ and $c>0$, we define the spatial (T, c) game on X. Players I and II take turns choosing $Y_{i} \in \operatorname{cof}(X)$ and $x_{i} \in B_{Y_{i}}$, respectively. Player I wins if $\left(x_{i}\right)_{i=1}^{\infty} \lesssim_{c}\left(e_{i}\right)_{i=1}^{\infty}$, and Player II wins otherwise. The notions of ω-strategies, admissibility and ω-winning strategies are defined identically.

Definition 2.1. Let $p \in(1, \infty]$. We define A_{p} to be the class of all Banach spaces X such that $\mathrm{a}_{p}(X)<\infty$, and N_{p} to be the class of all Banach spaces X such that $\mathrm{n}_{p}(X)<\infty$.

The following proposition relies on routine approximation arguments.
Proposition 2.2. Fix $1<p \leq \infty$ and let X be a Banach space.
(i) X has A_{p} if and only if there exists $c>0$ such that for all $n \in \mathbb{N}$, Player I has a winning strategy in the spatial $A(c, p, n)$ game if and only if there exists $c>0$ such that for all $n \in \mathbb{N}$, Player I has a winning strategy in the compact spatial $A(c, p, n)$ game.
(ii) X has \mathbf{N}_{p} if and only if there exists $c>0$ such that for all $n \in \mathbb{N}$, Player I has a winning strategy in the spatial $N(c, p, n)$ game if and only if there exists $c>0$ such that for all $n \in \mathbb{N}$, Player I has a winning strategy in the compact spatial $N(c, p, n)$ game.

We now recall the main characterizations of these classes. We refer to [CFL for an overview of these properties and complete references. The results stated here come from [18a and [C21]. To give these characterizations, we need more notation. Given D a weak neighborhood base of 0 in X and $\left(x_{t}\right)_{t \in D<\omega} \subset X$, we say $\left(x_{t}\right)_{t \in D<\omega}$ is weakly null provided that for each $t \in\{\emptyset\} \cup D^{<\omega},\left(x_{t \wedge(U)}\right)_{U \in D}$ is a weakly null net. Here D is directed by reverse inclusion.

Theorem 2.3 (C18a). Fix $1<p \leq \infty$ and let q be conjugate to p. Let X be a Banach space. The following are equivalent:
(i) $X \in \mathrm{~A}_{p}$.
(ii) There exists a constant $c>0$ such that for any weak neighborhood base D at 0 in X, any $n \in \mathbb{N}$, and any weakly null collection $\left(x_{t}\right)_{t \in D \leq n} \subset B_{X}$, there exists $t \in D^{n}$ such that $\left\|\sum_{i=1}^{n} a_{i} x_{t \mid i}\right\| \leq c\|a\|_{p}$ for all $a \in \mathbb{K}^{n}$.
(iii) X has q-summable Szlenk index.

Theorem 2.4 ([C21]). Fix $1<p \leq \infty$ and let q be conjugate to p. Let X be a Banach space. The following are equivalent:
(i) $X \in \mathrm{~N}_{p}$.
(ii) There exists a constant $c>0$ such that for any $n \in \mathbb{N}$ and any weakly null collection $\left(x_{t}\right)_{t \in D \leq n}$ in B_{X}, there exists $t \in D^{n}$ such that $\left\|\sum_{i=1}^{n} x_{t \mid i}\right\| \leq c n^{1 / p}$.
(iii) There exists a constant $K>0$ such that

$$
\forall \varepsilon \in(0,1) \quad \mathrm{Cz}(X, \varepsilon) \leq K \varepsilon^{-q} .
$$

Denote by D_{1} the class of all Banach spaces with Szlenk index at most ω and by T_{p} the "infinite game version" of A_{p} (see CFL for the precise definition). We recall the following inclusions.

Theorem 2.5.
(i) $\mathrm{D}_{1}=\bigcup_{1<p \leq \infty} \mathrm{T}_{p}=\bigcup_{1<p \leq \infty} \mathrm{A}_{p}=\bigcup_{1<p \leq \infty} \mathrm{N}_{p}$.
(ii) For $1<p<\infty, \mathrm{T}_{p} \subsetneq \mathrm{~A}_{p} \subsetneq \mathrm{~N}_{p}$.
(iii) $\mathrm{T}_{\infty} \subsetneq \mathrm{A}_{\infty}=\mathrm{N}_{\infty}$.

3. Descriptive set theory and asymptotic smoothness

3.1. Background. We recall the setting introduced by B. Bossard B02] in order to apply the tools from descriptive set theory to the class Sep of separable Banach spaces.

A Polish space (resp. topology) is a separable completely metrizable space (resp. topology). A set X equipped with a σ-algebra is called a standard Borel space if the σ-algebra is generated by a Polish topology on X. A subset of such a standard Borel space X is called Borel if it is an element of the σ-algebra, and it is called analytic (or a Σ_{1}^{1} set) if there exists a standard

Borel space Y and a Borel subset B of $X \times Y$ such that A is the projection of B on the first coordinate. The complement of an analytic set is called a coanalytic set (or a Π_{1}^{1} set). A subset A of standard Borel space X is called Σ_{1}^{1}-hard if for every Σ_{1}^{1} subset B of a standard Borel space Y, there exists a Borel map $f: Y \rightarrow X$ such that $f^{-1}(A)=B$, and it is called Σ_{1}^{1}-complete if it is both Σ_{1}^{1} and Σ_{1}^{1}-hard.

Let X be a Polish space. The set $\mathcal{F}(X)$ of all closed subsets of X can be equipped with its Effros-Borel structure, defined as the σ-algebra generated by the sets $\{F \in \mathcal{F}(X): F \cap U \neq \emptyset\}$, where U varies over the open subsets of X. Equipped with this σ-algebra, $\mathcal{F}(X)$ is a standard Borel space.

Following Bossard, we now introduce the fundamental coding of separable Banach spaces. It is well known that $C(\Delta)$, the space of scalar valued continuous functions on the Cantor space $\Delta=\{0,1\}^{\mathbb{N}}$, equipped with the sup-norm, contains an isometric linear copy of every separable Banach space. We equip $\mathcal{F}(C(\Delta))$ with its corresponding Effros-Borel structure and we denote

$$
\mathrm{SB}=\{F \in \mathcal{F}(C(\Delta)): F \text { is a linear subspace of } C(\Delta)\},
$$

considered as a subspace of $\mathcal{F}(C(\Delta))$. Then SB is a Borel subset of $\mathcal{F}(C(\Delta))$ [B02, Proposition 2.2] and therefore a standard Borel space, which we call the standard Borel space of separable Banach spaces.

Let now \simeq denote the isomorphism equivalence relation on SB. The fundamental coding of separable Banach spaces is the quotient map $c: \mathrm{SB} \rightarrow$ $S B / \simeq$. We can now give the following definition.

Definition 3.1. A family $\mathrm{G} \subset \mathrm{SB} / \simeq$ is Borel (resp. analytic, coanalytic) if $c^{-1}(\mathrm{G})$ is Borel (resp. analytic, coanalytic) in SB.

This will allow us to describe the complexity of classes of separable Banach spaces that are stable under linear isomorphisms, such as $\mathrm{T}_{p}, \mathrm{~A}_{p}$ and N_{p}. It will sometimes be convenient to use another coding of separable Banach spaces, by using the fact that any separable Banach space is a quotient of ℓ_{1}. For a sequence $\bar{x}=\left(x_{n}\right)_{n=1}^{\infty} \in \ell_{1}^{\omega}$, define $c_{d}(\bar{x})=\left\langle\ell_{1} / \overline{\operatorname{span}}(\bar{x})\right\rangle$ (where $\langle E\rangle$ denotes the equivalence class of a separable Banach space in $S B / \simeq$). The following is taken from [B02, Proposition 2.8].

Proposition 3.2. A family $\mathrm{G} \subset \mathrm{SB} / \simeq$ is Borel (resp. analytic, coanalytic) if and only if $c_{d}^{-1}(\mathrm{G})$ is Borel (resp. analytic, coanalytic) in ℓ_{1}^{ω}.

Let K be the closed unit ball of ℓ_{∞} equipped with the weak ${ }^{*}$-topology induced by ℓ_{1}. Then K is a metrizable compact space. We denote by $\mathcal{F}(K)$ the set of closed subsets of K. The Vietoris topology on $\mathcal{F}(K)$ is the topology generated by the sets of the form $\{F \in \mathcal{F}(K): F \subset O\}$ and $\{F \in \mathcal{F}(K)$: $F \cap O \neq \emptyset\}$, for O an open subset of K. It is a Polish topology as it is compact and metrizable. Then the Borel σ-algebra associated with this topology is
generated by the sets $\{F \in \mathcal{F}(K): F \cap O \neq \emptyset\}$, for O an open subset of K. It can also be described as the σ-algebra generated by $\{F \in \mathcal{F}(K): F \subset O\}$, for O an open subset of K. We shall also use the following [B02, Lemma 4.14].

Proposition 3.3. Define $k: \ell_{1}^{\omega} \rightarrow \mathcal{F}(K)$ so that, for $\bar{x} \in \ell_{1}^{\omega}, k(\bar{x})$ is the closed unit ball of the orthogonal of the linear span of \bar{x} in ℓ_{1}. Then k is Borel.
3.2. The classes Sep $\cap \mathrm{A}_{p}$ and $\operatorname{Sep} \cap \mathrm{N}_{p}$ are Borel. For $\varepsilon>0$, we consider the following derivations on $\mathcal{F}(K)$. For $F \in \mathcal{F}(K)$,
(i) $s_{\varepsilon}(F)=F \backslash \bigcup\{V: V$ a weak*-open set such that $\operatorname{diam}(S \cap F) \leq \varepsilon\}$,
(ii) $c_{\varepsilon}(F)$ is the weak ${ }^{*}$-closed convex hull of $s_{\varepsilon}(F)$,
(iii) $k_{\varepsilon}(F)=F \backslash \bigcup\{S: S$ a weak*-open half-space with $\alpha(S \cap F) \leq \varepsilon\}$, where $\alpha(A)$ is the Kuratowski index of $A \subset K$ defined by

$$
\alpha(A)=\sup \left\{\delta \geq 0: \forall n \in \mathbb{N} \exists x_{1}^{*}, \ldots, x_{n}^{*} \in A\left\|x_{i}^{*}-x_{j}^{*}\right\| \geq \delta \text { for } i \neq j\right\}
$$

Associated with the derivations $s_{\varepsilon}, c_{\varepsilon}$ and k_{ε} we define $\operatorname{Sz}(F)$, the Szlenk index of $F, \mathrm{Cz}(F)$, the convex Szlenk index of F and $\mathrm{Kz}(F)$. We recall the following estimates from HL07.

Proposition 3.4. For any weak*-closed convex subset F of K and any $\varepsilon>0$ we have

$$
c_{4 \varepsilon}(F) \subset k_{2 \varepsilon}(F) \subset c_{\varepsilon}(F)
$$

For the derivation s_{ε}, the following statement is due to B. Bossard. Its proof can be found in his PhD thesis [B94], but unfortunately not in his paper $\left[\mathrm{B} 02\right.$. We detail here an adaptation of this proof for the derivation k_{ε}.

Proposition 3.5. Let $\varepsilon>0$. Then the maps $s_{\varepsilon}: \mathcal{F}(K) \rightarrow \mathcal{F}(K)$ and $k_{\varepsilon}: \mathcal{F}(K) \rightarrow \mathcal{F}(K)$ are Borel.

Proof. First we fix a dense sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in ℓ_{1} and a dense sequence $\left(r_{k}\right)_{k=1}^{\infty}$ in \mathbb{R} and we denote by \mathcal{S} the countable set of weak*-open slices of the form $\left\{\operatorname{Re} x_{n}>r_{k}\right\}$ or $\left\{\operatorname{Re} x_{n}<r_{k}\right\}$. We also fix a countable base \mathcal{V} of open sets for the topology of K. For $x^{*} \in K$, we denote by $\mathcal{S}\left(x^{*}\right)$ the set of elements of \mathcal{S} containing x^{*} and by $\mathcal{V}\left(x^{*}\right)$ the set of elements of \mathcal{V} containing x^{*}.

Fix now an open subset O of K. We need to show that the set $H(O)=$ $\left\{F \in \mathcal{F}(K): k_{\varepsilon}(F) \subset O\right\}$ is Borel. First note that an easy approximation argument implies that

$$
H(O)=\left\{F \in \mathcal{F}(K): \forall x^{*} \in F \backslash O \exists S \in \mathcal{S}\left(x^{*}\right) \alpha(S \cap F) \leq \varepsilon\right\}
$$

Then, using weak*-compactness, we deduce that

$$
\begin{aligned}
H(O)=\bigcup_{I \in \mathcal{P}_{\mathrm{f}}(\mathcal{S})}[\{F \in \mathcal{F}(K): F & \left.\subset\left(\bigcup_{S \in I} S\right) \cup O\right\} \\
& \left.\cap \bigcap_{S \in I}\{F \in \mathcal{F}(K): \alpha(S \cap F) \leq \varepsilon\}\right]
\end{aligned}
$$

where $\mathcal{P}_{f}(\mathcal{S})$ denotes the set of finite subsets of \mathcal{S}. This set being countable and the sets $\left\{F \in \mathcal{F}(K): F \subset\left(\bigcup_{S \in I} S\right) \cup O\right\}$ being open, we only need to show the following lemma.

Lemma 3.6. For all $S \in \mathcal{S}$ and $\varepsilon>0$, the set $\{F \in \mathcal{F}(K): \alpha(S \cap F) \leq \varepsilon\}$ is Borel.

Fix $S \in \mathcal{S}$ and $\varepsilon>0$. Noting that $\alpha(S \cap F)>\varepsilon$ if and only if there exists $\delta>\varepsilon$ such that for all $n \in \mathbb{N}$, there exist $x_{1}^{*}, \ldots, x_{n}^{*}$ in $S \cap F$ such that $\left\|x_{i}^{*}-x_{j}^{*}\right\|>\delta$ for all $i \neq j$, we only need to show that for all $n \in \mathbb{N}$, the set

$$
A_{n}=\left\{F \in \mathcal{F}(K): \exists x_{1}^{*}, \ldots, x_{n}^{*} \in S \cap F\left\|x_{i}^{*}-x_{j}^{*}\right\|>\delta \text { for all } i \neq j\right\}
$$

is Borel.
It is easy to see that if $\left\|x_{i}^{*}-x_{j}^{*}\right\|>\delta$ for all $i \neq j$, then there exist V_{1}, \ldots, V_{n} such that for all $i \leq n, V_{i} \in \mathcal{V}\left(x_{i}^{*}\right)$ and for all $i \neq j$ and all $\left(x^{*}, y^{*}\right) \in V_{i} \times V_{j},\left\|x^{*}-y^{*}\right\|>\delta$. Set

$$
\begin{aligned}
\mathcal{W}_{n}=\left\{\left(V_{1} \times\right.\right. & \left.\cdots \times V_{n}\right) \in \mathcal{V}^{n} \\
& \left.\forall\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \in\left(V_{1} \times \cdots \times V_{n}\right) \forall i \neq j\left\|y_{i}^{*}-y_{j}^{*}\right\|>\delta\right\}
\end{aligned}
$$

Then we can write

$$
A_{n}=\bigcup_{V_{1} \times \cdots \times V_{n} \in \mathcal{W}_{n}} \bigcap_{i=1}^{n}\left\{F \in \mathcal{F}(K): F \cap V_{i} \cap S \neq \emptyset\right\}
$$

This shows that A_{n} is open in $\mathcal{F}(K)$ and finishes the proof.
We can now prove our regularity result for the classes A_{p} and N_{p}.
Theorem 3.7. Let $p \in(1, \infty]$. The classes $\operatorname{Sep} \cap \mathrm{A}_{p}$ and $\operatorname{Sep} \cap \mathrm{N}_{p}$ are Borel.

Proof. It follows from Proposition 3.5 that for fixed $\varepsilon_{1}, \ldots, \varepsilon_{n}>0$, the set

$$
\left\{F \in \mathcal{F}(K): s_{\varepsilon_{1}} \ldots s_{\varepsilon_{n}}(F) \neq \emptyset\right\}
$$

is Borel. Let q be the conjugate exponent of p. We know that F has q summable Szlenk index if and only if

$$
F \in \bigcup_{c \geq 1} \bigcap_{\sum_{i=1}^{n} \varepsilon_{i}^{q}>c}\left\{G \in \mathcal{F}(K): s_{\varepsilon_{1}} \ldots s_{\varepsilon_{n}}(G)=\emptyset\right\}
$$

Of course this union and this intersection can be taken countable, so that the condition "having a q-summable Szlenk index" is Borel. We can now apply Propositions 3.2 and 3.3 to deduce that the class of separable Banach spaces with q-summable Szlenk index is Borel. Finally, we use the fact that spaces in A_{p} are exactly those with q-summable Szlenk index (Theorem 2.3) to conclude that the class Sep $\cap \mathrm{A}_{p}$ is Borel.

Similarly, we deduce from Proposition 3.5 that the set of all $F \in \mathcal{F}(K)$ such that there exists $C \geq 1$ with $\mathrm{Kz}(F, \varepsilon) \leq C \varepsilon^{-p}$ for all $\varepsilon \in(0,1)$ is a Borel subset of $\mathcal{F}(K)$. We recall (Theorem 2.4) that a Banach space is in N_{p} if and and only if its convex Szlenk index is of power type p. So we conclude, applying Propositions $3.2,3.4$, that the class Sep $\cap \mathrm{N}_{p}$ is Borel.

4. First tools

4.1. Model spaces. In this subsection, we introduce the fundamental spaces that we will use to build our universal families for $A_{p} \cap$ Sep and $\mathrm{N}_{p} \cap$ Sep.

For subsets F, G of \mathbb{N}, we write $F<G$ to mean that either $F=\emptyset, G=\emptyset$, or $\max F<\min G$. For $n \in \mathbb{N}$ and $F \subset \mathbb{N}$, we write $n \leq F$ to mean that $F \neq \emptyset$ and $n \leq \min F$. For $f \in c_{00}$, we let

$$
\operatorname{supp}(f)=\left\{i \in \mathbb{N}: f\left(e_{i}\right) \neq 0\right\}
$$

For $f, g \in c_{00}$, we write $f<g$ to mean that $\operatorname{supp}(f)<\operatorname{supp}(g)$. For $n \in \mathbb{N}$ and $f \in c_{00}$, we write $n \leq f$ to mean that $n \leq \operatorname{supp}(f)$.

Before introducing our spaces, we need to recall the construction of the q-convexification X^{q} of a Banach space X. First, if X is a Banach space with Schauder basis $\left(e_{j}\right)_{j=1}^{\infty}$ and $C \geq 1$, then $\left(e_{j}\right)_{j=1}^{\infty}$ is said to be C-unconditional if for all $\left(a_{j}\right)_{j=1}^{\infty} \in c_{00}$ and all $\left(\varepsilon_{j}\right)_{j=1}^{\infty} \in\{-1,1\}^{\mathbb{N}}$,

$$
\left\|\sum_{j=1}^{\infty} \varepsilon_{j} a_{j} e_{j}\right\|_{X} \leq C\left\|\sum_{j=1}^{\infty} a_{j} e_{j}\right\|_{X}
$$

Let now $q \in[1, \infty)$ and X be a Banach space with a normalized 1-unconditional basis $\left(e_{j}\right)_{j=1}^{\infty}$. We set

$$
X^{q}=\left\{x=\left(x_{j}\right)_{j=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}: x^{q}=\sum_{j=1}^{\infty}\left|x_{j}\right|^{q} e_{j} \in X\right\}
$$

and endow it with the norm $\|x\|_{X^{q}}=\left\|x^{q}\right\|_{X}^{1 / q}$. We also let $\left(e_{j}\right)_{j=1}^{\infty}$ be the sequence of coordinate vectors in X^{q}. It is clear that $\left(e_{j}\right)_{j=1}^{\infty}$ is a normalized 1-unconditional basis of X^{q} and that X^{1} is isometric to X. Also, the triangle inequality implies that X^{q} is q-convex with constant 1 , meaning that for any
$x_{1}, \ldots, x_{n} \in X^{q}$ (we write $x_{k}=\left(x_{k, j}\right)_{j=1}^{\infty}$ for $1 \leq k \leq n$), we have

$$
\left\|\sum_{j=1}^{\infty}\left(\left|x_{1, j}\right|^{q}+\cdots+\left|x_{n, j}\right|^{q}\right)^{1 / q} e_{j}\right\|_{X^{q}} \leq\left(\left\|x_{1}\right\|_{X^{q}}^{q}+\cdots+\left\|x_{n}\right\|_{X^{q}}^{q}\right)^{1 / q}
$$

Note that that if $x_{1}, \ldots, x_{n} \in X^{q}$ have disjoint supports with respect to $\left(e_{j}\right)_{j=1}^{\infty}$, then $\left(x_{1}+\cdots+x_{n}\right)^{q}=x_{1}^{q}+\cdots+x_{n}^{q}$ and

$$
\left\|x_{1}+\cdots+x_{n}\right\|_{X^{q}}^{q} \leq\left\|x_{1}\right\|_{X^{q}}^{q}+\cdots+\left\|x_{n}\right\|_{X^{q}}^{q} .
$$

We now proceed with the construction of our model spaces, starting with those for property A_{p}. Fix $p \in(1, \infty]$ and let q be its conjugate exponent. Fix also $\theta \in(0,1)$. We recall that the Tsirelson space $T_{\theta^{q}}$ is the completion of c_{00} under the implicitly defined norm

$$
\|x\|_{T_{\theta}}=\max \left\{\|x\|_{c_{0}}, \theta^{q} \sup \left\{\sum_{i=1}^{n}\left\|I_{i} x\right\|_{T_{\theta}}: n \in \mathbb{N}, n \leq I_{1}<\cdots<I_{n}\right\}\right\}
$$

This norm is built as the limit of the following inductively defined sequence of norms: $\|x\|_{0}=\|x\|_{\infty}$ and, for $l \in \mathbb{N}$,

$$
\|x\|_{l}=\max \left\{\|x\|_{l-1}, \theta^{q} \sup \left\{\sum_{i=1}^{n}\left\|I_{i} x\right\|_{l-1}: n \in \mathbb{N}, n \leq I_{1}<\cdots<I_{n}\right\}\right\}
$$

We refer the reader to the book by Casazza and Shura CS89 for all the necessary background on Tsirelson spaces. We recall that the canonical basis of $T_{\theta^{q}}$ is 1-unconditional and we let $T_{q, \theta}$ be the q-convexification of $T_{\theta^{q}}$. It follows from our preceding remarks that the canonical basis of $T_{q, \theta}$ is shrinking. It is also known that $T_{\theta^{q}}$ is reflexive, from which we deduce that its canonical basis is boundedly complete and therefore, so is the canonical basis of $T_{q, \theta}$. In particular, $T_{q, \theta}$ is reflexive.

It will be convenient for us to describe $T_{q, \theta}$ through a norming subset of its dual. So denote by $\left(e_{i}^{*}\right)_{i=1}^{\infty}$ the dual basis of the canonical basis of c_{00} and define

$$
\begin{aligned}
& K_{0}=\left\{\lambda e_{i}^{*}: i \in \mathbb{N},|\lambda| \leq 1\right\} \\
& K_{l}=K_{l-1} \cup \\
& \quad\left\{\theta \sum_{i=1}^{n} a_{i} f_{i}: n \in \mathbb{N}, n \leq f_{1}<\cdots<f_{n}, f_{i} \in K_{l-1}, f_{1} \neq 0,\left(a_{i}\right)_{i=1}^{n} \in B_{\ell_{p}^{n}}\right\}
\end{aligned}
$$

and $K=\bigcup_{l=0}^{\infty} K_{l}$.
When necessary, we will write K_{i}^{θ} in place of K_{i}.
Proposition 4.1. For all $x \in c_{00},\|x\|_{T_{q, \theta}}=\sup _{f \in K}|f(x)|$. Moreover, the closed unit ball of $T_{q, \theta}^{*}$ is $\overline{\mathrm{co}}(K)$, the closed convex hull of K.

Proof. An easy induction shows that for all $x \in c_{00}$ and all $l \in\{0\} \cup \mathbb{N}$, we have $\left\|x^{q}\right\|_{l}=\sup _{f \in K_{l}}|f(x)|^{q}$. We deduce immediately the first statement. The second assertion then follows from the reflexivity of $T_{q, \theta}$.

Proposition 4.2. Let $f_{1}, \ldots, f_{n} \in B_{T_{q, \theta}^{*}}$ be such that $n \leq f_{1}<\cdots<f_{n}$. Then

$$
\forall\left(b_{i}\right)_{i=1}^{n} \in B_{\ell_{p}^{n}} \quad \theta \sum_{i=1}^{n} b_{i} f_{i} \in B_{q_{q, \theta}^{*}} .
$$

Proof. Since K is closed under interval projections, for positive integers $l \leq m$,

$$
\left\{f \in B_{T_{q, \theta}^{*}}: \operatorname{supp}(f) \subset[l, m]\right\}=\overline{\operatorname{co}}\{g \in K: \operatorname{supp}(g) \subset[l, m]\} .
$$

Let now $n \leq I_{1}<\cdots<I_{n}$ be intervals such that $\operatorname{supp}\left(f_{i}\right) \subset I_{i}$. It is clear from the definition of K that for g_{1}, \ldots, g_{n} with $g_{i} \in K \cap \operatorname{span}\left\{e_{j}: j \in I_{i}\right\}$, $\theta \sum_{i=1}^{n} b_{i} g_{i} \in K$. It then follows that $\theta \sum_{i=1}^{n} b_{i} f_{i} \in \overline{\operatorname{co}}(K)=B_{T_{q, \theta}^{*}}$.

We now turn to our model spaces for property N_{p} and modify the construction of the above norming subset. We let $U_{q, \theta}$ be the completion of c_{00} with respect to the norm $\|x\|_{U_{q, \theta}}=\sup _{f \in L}|f(x)|$, where

$$
\begin{aligned}
L_{0} & =\left\{\lambda e_{i}^{*}: i \in \mathbb{N},|\lambda| \leq 1\right\} \\
L_{l} & =L_{l-1} \cup\left\{\frac{\theta}{n^{1 / p}} \sum_{i=1}^{n} a_{i} f_{i}: n \in \mathbb{N}, 2 \leq n \leq f_{1}<\cdots<f_{n}, f_{i} \in L_{l-1}, f_{1} \neq 0\right\}
\end{aligned}
$$

and $L=\bigcup_{l=0}^{\infty} L_{l}$. We also note that the norm $\|\cdot\|_{U_{q, \theta}}$ can be defined on c_{00} by

$$
\|x\|_{U_{q, \theta}}=\lim _{l}|x|_{U_{q, \theta}, l}
$$

where $|x|_{U_{q, \theta}, 0}=\|x\|_{c_{0}}$ and

$$
|x|_{U_{q, \theta}, l}=
$$

$$
\max \left\{|x|_{U_{q, \theta}, l-1}, \sup \left\{\theta n^{-1 / p} \sum_{i=1}^{n}\left|I_{i} x\right|_{U_{q, \theta}, l-1}: 2 \leq n \leq I_{1}<\cdots<I_{n}\right\}\right\} .
$$

With a similar argument we obtain
Proposition 4.3. Let $f_{1}, \ldots, f_{n} \in B_{U_{q, \theta}^{*}}$ with $n \leq f_{1}<\cdots<f_{n}$. Then

$$
\theta n^{-1 / p} \sum_{i=1}^{n} f_{i} \in B_{U_{q, \theta}^{*}} .
$$

We shall need one last generalization of the above families. For that purpose, fix also $M=\left(m_{n}\right)_{n=1}^{\infty} \in[\mathbb{N}]^{\omega}$ (the set of increasing sequences in \mathbb{N}). We define the spaces $T_{M, q, \theta}$ and $U_{M, q, \theta}$ to be the completions of
c_{00} with respect to the norms $\|x\|_{T_{M, q, \theta}}=\sup _{f \in K_{M}}|f(x)|$ and $\|u\|_{U_{M, q, \theta}}=$ $\sup _{f \in L_{M}}|f(x)|$, where

$$
\begin{aligned}
& K_{0, M}=\left\{\lambda e_{i}^{*}: i \in \mathbb{N},|\lambda| \leq 1\right\} \\
& K_{l, M} \\
& =K_{l-1, M} \cup \\
& \left\{\theta \sum_{i=1}^{n} a_{i} f_{i}: n \in \mathbb{N}, m_{n} \leq f_{1}<\cdots<f_{n}, f_{i} \in K_{l-1, M}, f_{1} \neq 0,\left(a_{i}\right)_{i=1}^{n} \in B_{\ell_{p}^{n}}\right\},
\end{aligned}
$$

and $K_{M}=\bigcup_{l=0}^{\infty} K_{l, M}$, and

$$
\begin{aligned}
& L_{0, M}=\left\{\lambda e_{i}^{*}: i \in \mathbb{N},|\lambda| \leq 1\right\} \\
& L_{l, M}=L_{l-1, M} \cup \\
& \qquad\left\{\frac{\theta}{n^{1 / p}} \sum_{i=1}^{n} a_{i} f_{i}: n \in \mathbb{N}, 2 \leq n, m_{n} \leq f_{1}<\cdots<f_{n}, f_{i} \in L_{l-1, M}, f_{1} \neq 0\right\}
\end{aligned}
$$

and $L_{M}=\bigcup_{l=0}^{\infty} L_{l, M}$. Of course, $T_{q, \theta}=T_{\mathbb{N}, q, \theta}$ and $U_{q, \theta}=U_{\mathbb{N}, q, \theta}$.
Then we have the following straightforward generalization of the previous propositions.

Proposition 4.4. Let $f_{1}, \ldots, f_{n} \in B_{T_{M, q, \theta}^{*}}$ with $m_{n} \leq f_{1}<\cdots<f_{n}$. Then

$$
\forall\left(b_{i}\right)_{i=1}^{n} \in B_{\ell_{p}^{n}} \quad \theta \sum_{i=1}^{n} b_{i} f_{i} \in B_{T_{M, q, \theta}^{*}} .
$$

Let $f_{1}, \ldots, f_{n} \in B_{U_{M, q, \theta}^{*}}$ with $m_{n} \leq f_{1}<\cdots<f_{n}$. Then

$$
\theta n^{-1 / p} \sum_{i=1}^{n} f_{i} \in B_{U_{M, q, \theta}^{*}} .
$$

We are now ready to relate these families to properties A_{p} and N_{p}.
Proposition 4.5. Fix $1<p \leq \infty$ and let q be its conjugate exponent. For any $\theta \in(0,1)$ and $M \in[\mathbb{N}]^{\omega}, T_{M, q, \theta}^{*}$ has A_{p} and $U_{M, q, \theta}^{*}$ has N_{p}.

Proof. For $c>\theta^{-1}$, let us quickly describe the winning strategy for Player I in the spatial $A(c, p, n)$ game in $T_{M, q, \theta}^{*}$. Player I chooses $Y_{1}=$ $\left\{x \in T_{M, q, \theta}^{*}: m_{n} \leq \operatorname{supp}(x)\right\}$. Then, after each choice of x_{i} by Player II, Player I picks $Y_{i+1}=\left\{x \in T_{M, q, \theta}^{*}: k_{i+1} \leq \operatorname{supp}(x)\right\}$ for some $k_{i+1}>k_{i}$ so that there exist small enough perturbations y_{1}, \ldots, y_{n} of x_{1}, \ldots, x_{n} satisfying $m_{n} \leq y_{1}<\cdots<y_{n}$ to ensure, thanks to the previous proposition, that for all $\left(a_{i}\right)_{i=1}^{n} \in B_{\ell_{p}^{n}}$,

$$
\left\|\sum_{i=1}^{n} a_{i} y_{i}\right\|_{T_{M, q, \theta}^{*}}^{p} \leq \theta^{-p} \quad \text { and } \quad\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|_{T_{M, q, \theta}^{*}}^{p} \leq c
$$

To address property N_{p} in $U_{M, q, \theta}^{*}$, we similarly use the fact that for $n \in \mathbb{N}$ and $m_{n} \leq f_{1}<\cdots<f_{n}$ with $f_{i} \in B_{U_{M, q, \theta}^{*}}$, the element $\theta n^{-1 / p} \sum_{i=1}^{n} f_{i}$ is in $B_{U_{M, q, \theta}^{*}}$.

The next result goes somewhat in the other direction: any A_{p} (resp. N_{p}) space has a $T_{q, \theta}^{*}\left(\right.$ resp. $\left.U_{q, \theta}^{*}\right)$ like behavior.

Theorem 4.6. Let X be a Banach space and $p \in(1, \infty]$. Let q be the conjugate exponent of p.
(i) If X has A_{p}, then there exists $\theta_{0} \in(0,1)$ such that for all $\theta \in\left(0, \theta_{0}\right]$ Player I has a winning strategy in the spatial $\left(T_{q, \theta}^{*}, 1\right)$ game in X.
(ii) If X has N_{p}, then there exists $\theta_{0} \in(0,1)$ such that for all $\theta \in\left(0, \theta_{0}\right]$ Player I has a winning strategy in the spatial $\left(U_{q, \theta}^{*}, 1\right)$ game in X.
Proof. (i) There exists a constant $c>1$ such that for all $n \in \mathbb{N}$, Player I has a winning strategy χ_{n} in the compact spatial $A(c, p, n)$ game. We define a winning spatial ω strategy χ for Player I in the $\left(T_{q, \theta}^{*}, 1\right)$ game, for $\theta \in(0,1 / c]$.

Let $\chi(\emptyset)=\chi_{1}(\emptyset)$. Assume that for some $l \in \mathbb{N}, \chi\left(\left(x_{i}\right)_{i=1}^{k}\right)$ has been defined for all $\left(x_{i}\right)_{i=1}^{k} \in B_{X}^{<l}$. Fix $\left(x_{i}\right)_{i=1}^{l} \in B_{X}{ }^{l}$. Define

$$
\begin{aligned}
\chi\left(\left(x_{i}\right)_{i=1}^{l}\right)= & \left(\bigcap_{j=1}^{l+1} \chi_{j}(\emptyset)\right) \\
& \cap\left(\bigcap_{j=1}^{l+1} \bigcap_{k=1}^{j-1} \bigcap_{I_{1}<\cdots<I_{k}, I_{i} \subset[1, l]} \chi_{j}\left(\left(B_{X} \cap \operatorname{span}\left\{x_{m}: m \in I_{i}\right\}\right)_{i=1}^{k}\right)\right) .
\end{aligned}
$$

This completes the recursive construction. We now fix $\left(x_{i}\right)_{i=1}^{\infty} \chi$-admissible. Assume now that $2 \leq n \in \mathbb{N}$ and $n \leq I_{1}<\cdots<I_{n}$ and denote $C_{i}=B_{X} \cap \operatorname{span}\left\{x_{m}: m \in I_{i}\right\}$. We claim that $\left(C_{i}\right)_{i=1}^{n}$ is χ_{n}-admissible. Indeed, for any $1 \leq j \leq n$ and any $m \in I_{j}$, we have $m \geq n$, which implies that

$$
x_{m} \in \bigcap_{k=1}^{n-1} \bigcap_{J_{1}<\cdots<J_{k}, J_{i} \subset[1, m-1]} \chi_{n}\left(\left(B_{X} \cap \operatorname{span}\left\{x_{m}: m \in J_{i}\right\}\right)_{i=1}^{k}\right) .
$$

In particular, $x_{m} \in \chi_{n}\left(C_{1}, \ldots, C_{j-1}\right)$, which proves our claim. Since χ_{n} is a winning strategy for Player I in the compact spatial $A(c, p, n)$ game, we obtain

$$
\forall\left(u_{i}\right)_{i=1}^{n} \in \prod_{i=1}^{n} C_{i} \forall\left(a_{i}\right)_{i=1}^{n} \in B_{\ell_{p}^{n}} \quad \theta \sum_{i=1}^{n} a_{i} u_{i} \in B_{X} .
$$

For $a=\left(a_{i}\right)_{i=1}^{\infty} \in c_{00}$, we now define $A\left(\sum_{i=1}^{\infty} a_{i} e_{i}^{*}\right)=\sum_{i=1}^{\infty} a_{i} x_{i}$, where $\left(e_{i}^{*}\right)_{i=1}^{\infty}$ is the canonical basis of $T_{q, \theta}^{*}$. It remains to show that A maps $B_{T_{q, \theta}^{*}}^{*} \cap c_{00}$ into B_{X}. We adopt the notation used in the construction of $T_{q, \theta}$
for the sets $K=\bigcup_{l=0}^{\infty} K_{l}$ and recall that $B_{T_{q, \theta}^{*}}$ is the closed convex hull of K. Therefore, it is sufficient to show that $A(K) \subset B_{X}$. For this we prove by induction on l that $A\left(K_{l}\right) \subset B_{X}$. The base case follows from the fact that any admissible sequence must lie in B_{X}. Assume the result has been proved for $l \geq 0$, and let $f \in K_{l} \backslash K_{l-1}$. Then there exist $n \geq 2, n \leq f_{1}<\cdots<f_{n} \in$ K_{l-1} and $\left(a_{i}\right)_{i=1}^{n} \in B_{\ell_{p}^{n}}$ such that $f=\theta \sum_{i=1}^{n} a_{i} f_{i}$. By induction hypothesis, we have $u_{i}=A\left(f_{i}\right) \in B_{X}$. Note also that $2 \leq n \leq u_{1}<\cdots<u_{n}$. The above discussion then implies that $A f=\theta \sum_{i=1}^{n} a_{i} u_{i} \in B_{X}$.

The proof of (ii) is an inessential modification of the proof of (i).
Let T be a Banach space with basis $\left(e_{n}\right)_{n=1}^{\infty}$ and $C \geq 1$. We recall that $\left(e_{n}\right)_{n=1}^{\infty}$ is C-right dominant if for all $\left(a_{k}\right)_{k=1}^{n} \in \mathbb{K}^{n}, i_{1}<\cdots<i_{n}$ and $j_{1}<\cdots<j_{n}$ with $i_{k} \leq j_{k}$ for all $1 \leq k \leq n$, we have

$$
\left\|\sum_{k=1} a_{k} e_{i_{k}}\right\|_{T} \leq C\left\|\sum_{k=1} a_{k} e_{j_{k}}\right\|_{T}
$$

The definition of a C-left dominant basis is obtained by exchanging the places of i_{k} 's and j_{k} 's in the above inequality.

We will need the following lemma on interlaced subsequences of the canonical basis $\left(e_{n}\right)_{n=1}^{\infty}$ of our model spaces.

Lemma 4.7. Let $p \in(1, \infty]$, q be its conjugate exponent and $\theta \in(0,1)$. Let $\left(k_{i}\right)_{i=1}^{\infty},\left(l_{i}\right)_{i=1}^{\infty}$ be sequences of integers such that $1 \leq k_{1}<l_{1}<k_{2}<l_{2}<\cdots$. Then, for all $\left(a_{i}\right)_{i=1}^{\infty} \in c_{00}$,
(i) $\left\|\sum_{i=1}^{\infty} a_{i} e_{l_{i}}\right\|_{T_{q, \theta}} \leq 3\left\|\sum_{i=1}^{\infty} a_{i} e_{k_{i}}\right\|_{T_{q, \theta}}$,
(ii) $\left\|\sum_{i=1}^{\infty} a_{i} e_{l_{i}}\right\|_{U_{q, \theta / 2}} \leq\left\|\sum_{i=1}^{\infty} a_{i} e_{k_{i}}\right\|_{U_{q, \theta}}$.

Proof. (i) This follows from the fact that $T_{q, \theta}$ is the q-convexification of $T_{\theta^{q}}$, 1-right dominance of the canonical basis of $T_{\theta^{q}}$, and the fact that for any $1 \leq n_{1}<n_{2}<\cdots,\left(e_{n_{2 i}}\right)_{i=1}^{\infty} \lesssim_{c}\left(e_{n_{i}}\right)_{i=1}^{\infty}$ in $T_{\theta^{q}}$ (see CS89, Proposition I.12]).
(ii) We prove by induction on r that for any $\left(a_{i}\right)_{i=1}^{\infty} \in c_{00}$,

$$
\left|\sum_{i=1}^{\infty} a_{i} e_{l_{i}}\right|_{\theta / 2, r} \leq\left|\sum_{i=1}^{\infty} a_{i} e_{k_{i}}\right|_{\theta, r}
$$

The $r=0$ case is trivial. Assume the result holds for some r and fix $\left(a_{i}\right)_{i=1}^{\infty}$ in c_{00}. Let $x=\sum_{i=1}^{\infty} a_{i} e_{l_{i}}$ and $y=\sum_{i=1}^{\infty} a_{i} e_{k_{i}}$. If $|x|_{\theta / 2, r+1}=|x|_{\theta / 2, r}$, then

$$
|x|_{\theta / 2, r+1}=|x|_{\theta / 2, r} \leq|y|_{\theta, r} \leq|y|_{\theta, r+1}
$$

Assume $|x|_{\theta / 2, r+1}>|x|_{\theta / 2, r}$. Then for some $2 \leq n<I_{1}<\cdots<I_{n}$,

$$
|x|_{\theta / 2, r+1}=\frac{\theta}{2 n^{1 / p}} \sum_{i=1}^{n}\left|I_{i} x\right|_{\theta / 2, r}
$$

Note that for each $1 \leq i \leq n, I_{i} x \neq 0$. Indeed, note first that $I_{i} x$ must be non-zero for at least two values of i, since otherwise $|x|_{\theta / 2, r+1}=|x|_{\theta / 2, r}$. Now, if $I_{i} x=0$ for some i, then we could omit all such i 's and replace $\frac{\theta}{2 n^{1 / p}}$ with $\frac{\theta}{2 m^{1 / p}}$, where $m=\left|\left\{i: I_{i} x \neq 0\right\}\right| \in(1, n)$, which would lead to the following contradiction:

$$
|x|_{\theta / 2, r+1} \geq \frac{\theta}{2 m^{1 / p}} \sum_{i: I_{i} x \neq 0}\left|I_{i} x\right|_{\theta / 2, r}>\frac{\theta}{2 n^{1 / p}} \sum_{i=1}^{n}\left|I_{i} x\right|_{\theta / 2, r}=|x|_{\theta / 2, r+1}
$$

So $\left\{j \in \mathbb{N}: l_{j} \in I_{1}\right\} \neq \emptyset$ and we can set $t=\min \left\{j \in \mathbb{N}: l_{j} \in I_{1}\right\}$. Define

$$
\begin{aligned}
& G_{i}= \begin{cases}\left\{j \in \mathbb{N}: l_{j} \in I_{i}\right\}, & 1<i \leq n \\
\left\{j \in \mathbb{N}: l_{j} \in I_{1}\right\} \backslash\{t\}, & i=1\end{cases} \\
& H_{i}= \begin{cases}\left\{j \in \mathbb{N}: l_{j} \in I_{i}\right\}, & 1<i \leq n \\
\left\{j \in \mathbb{N}: k_{j} \in I_{1}\right\}, & i=1,\end{cases}
\end{aligned}
$$

and let J_{1}, \ldots, J_{n} be the smallest intervals such that $\left\{k_{j}: j \in H_{i}\right\} \subset J_{i}$. Note that $n \leq J_{1}<\cdots<J_{n}$. By the properties of $\left(k_{i}\right)_{i=1}^{\infty},\left(l_{i}\right)_{i=1}^{\infty}$, we have

$$
\begin{aligned}
|x|_{\theta / 2, r} & =\frac{\theta}{2 n^{1 / p}} \sum_{i=1}^{n}\left|I_{i} x\right|_{\theta / 2, r} \leq \frac{\theta}{2 n^{1 / p}}\left|a_{t}\right|\left|e_{l_{t}}\right|_{\theta / 2, r}+\frac{\theta}{2 n^{1 / p}} \sum_{i=1}^{n}\left|\sum_{j \in G_{i}} a_{j} e_{l_{j}}\right|_{\theta / 2, r} \\
& \leq \frac{1}{2}\left|\sum_{i=1}^{\infty} a_{i} e_{k_{i}}\right|_{\theta, 0}+\frac{\theta}{2 n^{1 / p}} \sum_{i=1}^{n}\left|\sum_{j \in H_{i}} a_{j} e_{k_{j}}\right|_{\theta, r} \text { (by inductive hypothesis) } \\
& =\frac{1}{2}\left|\sum_{i=1}^{\infty} a_{i} e_{k_{i}}\right|_{\theta, 0}+\frac{\theta}{2 n^{1 / p}} \sum_{i=1}^{n}\left|J_{i} \sum_{j=1}^{\infty} a_{j} e_{k_{j}}\right|_{\theta, r} \\
& \leq \frac{1}{2}\left|\sum_{i=1}^{\infty} a_{i} e_{k_{i}}\right|_{\theta, 0}+\frac{1}{2}\left|\sum_{i=1}^{\infty} a_{i} e_{k_{i}}\right|_{\theta, r+1} \leq\left|\sum_{i=1}^{\infty} a_{i} e_{k_{i}}\right|_{\theta, r+1}=|y|_{\theta, r+1} .
\end{aligned}
$$

REMARK 4.8. If $k_{1}<l_{1}<k_{2}<l_{2}<\cdots$, then also $l_{1}<k_{2}<l_{2}<k_{3}<\cdots$, $k_{2}<l_{2}<k_{3}<l_{3}<\cdots$, etc. From this it follows that for $m=0,1,2, \ldots$,

$$
\begin{aligned}
T_{q, \theta} & \supset\left(e_{l_{m+i}}\right)_{i=1}^{\infty} \lesssim 3^{2 m+1}\left(e_{k_{i}}\right)_{i=1}^{\infty} \subset T_{q, \theta}, \\
U_{q, 2^{-(2 m+1)} \theta} & \supset\left(e_{l_{m+i}}\right)_{i=1}^{\infty} \lesssim\left(e_{k_{i}}\right)_{i=1}^{\infty} \subset U_{q, \theta} .
\end{aligned}
$$

4.2. The spaces $Z_{\wedge}^{T}(\mathrm{E})$ and $Z_{\bigvee}^{T}(\mathrm{E})$. We recall that a finite-dimensional decomposition for a Banach space Z is a sequence $\mathrm{E}=\left(E_{n}\right)_{n=1}^{\infty}$ of finitedimensional, non-zero subspaces of Z such that for any $z \in Z$, there exists a unique sequence $\left(z_{n}\right)_{n=1}^{\infty} \in \prod_{n=1}^{\infty} E_{n}$ such that $z=\sum_{n=1}^{\infty} z_{n}$. We then let P_{n}^{E} denote the canonical projections $P_{n}^{\mathrm{E}}(z)=z_{n}$, where $z=\sum_{n=1}^{\infty} z_{n}$ and $\left(z_{n}\right)_{n=1}^{\infty} \in \prod_{n=1}^{\infty} E_{n}$. For a finite or cofinite subset I of \mathbb{N}, we let $P_{I}^{\mathrm{E}}=I^{\mathrm{E}}=$ $\sum_{n \in I} P_{n}^{\mathrm{E}}$. When no confusion can arise, we omit the superscript and simply
denote I^{E} by I. It follows from the principle of uniform boundedness that $\sup \left\{\left\|I^{\mathrm{E}}\right\|: I \subset \mathbb{N}\right.$ is an interval $\}$ is finite. We refer to this quantity as the projection constant of E in Z. If the projection constant of E in Z is 1 , we say E is bimonotone. It is well known that if E is an FDD for Z, then there exists an equivalent norm $|\mid$ on Z such that E is a bimonotone FDD of $(Z,| |)$. We denote by $c_{00}(\mathrm{E})$ the space of finite linear combinations of elements in E_{1}, E_{2}, \ldots.

A sequence $\mathrm{F}=\left(F_{n}\right)_{n=1}^{\infty}$ is called a blocking of the FDD E of Z if there exists an increasing sequence $1=m_{0}<m_{1}<\cdots$ such that for all $n \in \mathbb{N}$, $F_{n}=\bigoplus_{i=m_{n-1}}^{m_{n}-1} E_{i}$.

We also need to recall some basics on dual FDDs. If Z is a Banach space with FDD $\mathrm{E}=\left(E_{n}\right)_{n=1}^{\infty}$, we let E^{*} denote the sequence $\left(E_{n}^{*}\right)_{n=1}^{\infty}$. Here, E_{n}^{*} is identified with the sequence $\left(\left(P_{n}^{\mathrm{E}}\right)^{*}\left(Z^{*}\right)\right)_{n=1}^{\infty}$. This identification need not be isometric if E is not bimonotone in Z. We let $Z^{(*)}=\overline{c_{00}\left(\mathrm{E}^{*}\right)} \subset Z^{*}$. The FDD E is said to be shrinking if $Z^{(*)}=Z^{*}$, which occurs if and only if any bounded block sequence with respect to E is weakly null. The FDD E is said to be boundedly complete if E^{*} is a shrinking FDD of $Z^{(*)}$ (in that case Z is canonically isomorphic to $\left.\left(Z^{(*)}\right)^{*}\right)$.

Given a Banach space Z with FDD E and a Banach space T with normalized 1-unconditional basis, we define two associated spaces, $Z_{\wedge}^{T}(\mathrm{E})$ and $Z_{V}^{T}(\mathrm{E})$. Each will be the completion of $c_{00}(\mathrm{E})$ with respect to the quantities $\|\cdot\|_{\wedge},\|\cdot\|_{\vee}$ defined below.

For $z \in c_{00}(\mathrm{E})$, we define

$$
\|z\|_{\vee}=\sup \left\{\left\|\sum_{i=1}^{\infty}\right\| I_{i}^{\mathrm{E}} z\left\|_{Z} e_{\min I_{i}}\right\|_{T}: I_{1}<I_{2}<\cdots, I_{i} \text { an interval }\right\} .
$$

We call this norm the lift up norm associated with Z, E and T.
We also define

$$
\begin{aligned}
& {[z]_{\wedge}=\inf \left\{\left\|\sum_{i=1}^{\infty}\right\| I_{i}^{\mathrm{E}} z\left\|_{Z} e_{\min } I_{i}\right\|_{T}: I_{1}<I_{2}<\cdots, \mathbb{N}=\bigcup_{i=1}^{\infty} I_{i}\right\},} \\
& \|z\|_{\wedge}=\inf \left\{\sum_{i=1}^{n}\left[z_{i}\right]_{\wedge}: n \in \mathbb{N}, z_{i} \in c_{00}(\mathrm{E}), z=\sum_{i=1}^{n} z_{i}\right\} .
\end{aligned}
$$

We call $\|\cdot\|_{\wedge}$ the press down norm associated with Z, E and T.
It is easily checked that E is an FDD for $Z_{\wedge}^{T}(\mathrm{E})$ and $Z_{\vee}^{T}(\mathrm{E})$. The following classical convexity lemma will be useful.

Lemma 4.9. Assume moreover that E is a bimonotone FDD of Z. Let $I_{1}<\cdots<I_{n}$ be intervals of \mathbb{N} and $z_{1}, \ldots, z_{n} \in c_{00}(\mathrm{E})$ with $\operatorname{supp}\left(z_{i}\right) \subset I_{i}$. Then

$$
z_{1}+\cdots+z_{n} \in \overline{\operatorname{co}}\left\{y_{1}+\cdots+y_{n}: \operatorname{supp}\left(y_{i}\right) \subset I_{i},\left[y_{i}\right]_{\wedge} \leq\left\|z_{i}\right\|_{\wedge}\right\} .
$$

The duality between press down and lift up norms is described by the following proposition (see [CN19, Proposition 2.1]).

Proposition 4.10. Let Z be a Banach space with bimonotone FDD E and let T be a Banach space with normalized 1-unconditional basis.

$$
\begin{align*}
& \text { (i) }\left(Z_{\wedge}^{T}(\mathrm{E})\right)^{(*)}=\left(Z^{(*)}\right)_{V^{(*)}}^{T^{*}}\left(\mathrm{E}^{*}\right) . \tag{i}\\
& \text { (ii) }\left(Z_{\widehat{V}}^{T}(\mathrm{E})\right)^{(*)}=\left(Z^{(*)}\right)_{\wedge}^{T^{(*)}}\left(\mathrm{E}^{*}\right) .
\end{align*}
$$

It is known that if the basis of T is shrinking, then the FDDE of $Z_{\wedge}^{T}(\mathrm{E})$ is shrinking. In item (iii) of the next proposition, we include a separate proof which is illustrative in the case that T has \mathbf{N}_{p}.

Proposition 4.11. Fix $1<p \leq \infty$ and let T be a Banach space with normalized 1-unconditional, shrinking basis. Let Z be a Banach space with $F D D$ E.
(i) If T has A_{p}, then so does $Z_{\wedge}^{T}(\mathrm{E})$.
(ii) If T has N_{p}, then so does $Z_{\wedge}^{T}(\mathrm{E})$.
(iii) If T has N_{p}, then E is shrinking in $Z_{\wedge}^{T}(\mathrm{E})$.

Proof. Let us explain the argument for (i). First, we assume, as we may after renorming, that the FDD E of Z is monotone. Since T has A_{p}, there exists $c>0$ such that for all $n \in \mathbb{N}$, Player I has a winning strategy in the spatial $A(c, p, n)$ game on T. Let us now fix $n \in \mathbb{N}$. Let $\chi: B_{T}^{<n} \rightarrow \operatorname{cof}(T)$ be a winning spatial strategy for Player I. Since the basis $\left(e_{i}\right)$ of T is shrinking, we may assume, by another approximation argument, that χ takes values in $\left\{T_{n}: n \in \mathbb{N}\right\}$, where T_{n} denotes the closed linear span of $\left\{e_{k}: k \geq n\right\}$. We may also assume that whenever $u_{1}, \ldots, u_{n} \in c_{00}$ are such that $\left(u_{1}, \ldots, u_{n}\right)$ is χ-admissible, we have $u_{1}<\cdots<u_{n}$. We now try to define a winning strategy for Player I in the $A(c, p, n)$ game on $Z_{\wedge}^{T}(\mathrm{E})$. For that purpose we denote by Z_{n} the closed linear span of $\bigcup_{k \geq n} E_{k}$ in $Z_{\Lambda}^{T}(\mathrm{E})$. Again by approximation and replacing c by $c^{\prime}>c$, it is enough to define ψ on $\left(B_{Z^{T}(\mathrm{E})} \cap c_{00}(\mathrm{E})^{<n}\right.$. Then everything is in place to support our next claim. We can build ψ with the property that if $z_{1}, \ldots, z_{n} \in c_{00}(\mathrm{E})$ are such that $\left(z_{1}, \ldots, z_{n}\right)$ is ψ-admissible, then $z_{1}<\cdots<z_{n}$ and for each $1 \leq i \leq n$, there exist intervals $I_{i, 1}<\cdots<I_{i, j_{i}}$ covering the support of z_{i} so that $\left[z_{i}\right]_{\wedge}=\left\|u_{i}\right\|_{T}$, where $u_{i}=\sum_{j=1}^{j_{i}}\left\|I_{j}^{\mathrm{E}} z_{i}\right\|_{Z} e_{\min } I_{i, j}$ and $\left(v_{1}, \ldots, v_{n}\right)$ is χ-admissible, where $v_{i}=u_{i}\left(\left\|u_{i}\right\|_{T}\right)^{-1}$. Then

$$
\left\|\sum_{i=1}^{n} a_{i} z_{i}\right\|_{\wedge}^{p} \leq\left[\sum_{i=1}^{n} a_{i} z_{i}\right]_{\wedge}^{p} \leq\left\|\sum_{i=1}^{n} a_{i} u_{i}\right\|_{T}^{p} \leq c^{p} \sum_{i=1}^{n}\left|a_{i}\right|^{p}\left[z_{i}\right]_{\wedge}^{p} .
$$

The second inequality is due to the fact that $\left(I_{i, j}\right)_{(i, j)}$ is an interval covering of the support of $\sum_{i=1}^{n} a_{i} z_{i}$ and the last inequality comes from the χ-admissibility of $\left(v_{1}, \ldots, v_{n}\right)$. Then the conclusion follows from Lemma 4.9 .

The proof of (ii) is similar.
We prove (iii). Assume T and therefore $Z_{\wedge}^{T}(\mathrm{E})$ have N_{p}. Then $Z_{\wedge}^{T}(\mathrm{E})$ has T_{s} for $1<s<p$. It follows that any bounded block sequence $\left(z_{k}\right)_{k}$ in $Z_{\wedge}^{T}(\mathrm{E})$ admits a subsequence which is dominated by the ℓ_{r} basis, where r is the conjugate exponent of s. We then easily deduce that $\left(z_{k}\right)_{k}$ is weakly null, which shows that E is a shrinking FDD of $Z_{\wedge}^{T}(\mathrm{E})$.

As a direct consequence of the previous corollary and Proposition 4.5, we get

Corollary 4.12. Let $p \in(1, \infty], q$ be the conjugate exponent of p, $\theta \in(0,1)$ and $M \in[\mathbb{N}]^{\omega}$. Then, for any Banach space Z with $F D D E$, $Z_{\wedge}^{T_{q, \theta, M}^{*}}(\mathrm{E})$ has A_{p} and $Z_{\wedge}^{U_{\dot{\sigma}, \theta, M}^{*}}(\mathrm{E})$ has N_{p}.
4.3. Gliding hump and quotient maps. In this subsection we gather a few general results on quotient maps with an application to the general (T, c) games.

Proposition 4.13. Let X be a Banach space and Z be a Banach space with shrinking FDD E and let $Q: Z \rightarrow X$ be a quotient map. For simplicity, we will identify in our notation X^{*} with its image in Z^{*} by the isometry Q^{*}. Then, for any finite-codimensional subspace Y of X, any $\delta \in(0,1 / 20)$, and any $j \in \mathbb{N}$, there exists $l \in(j, \infty)$ such that for any interval $I \subset[l, \infty)$ and any $x^{*} \in S_{X^{*}}$ such that $\left\|x^{*}-P_{I}^{\mathrm{E}^{*}} x^{*}\right\| \leq \delta$, there exists $z \in B_{Z}$ such that $Q z \in Y$ and $\operatorname{Re} x^{*}(Q z) \geq 1 / 3$.

Proof. If the result were not true, then for some $j \in \mathbb{N}$ and every $l>j$, there would exist an interval $I_{l} \subset[l, \infty)$ and $x_{l}^{*} \in S_{X^{*}}$ such that $\left\|x_{l}^{*}-P_{I_{l}}^{\mathrm{E}^{*}} x_{l}^{*}\right\|$ $\leq \delta$ and for each $z \in B_{Z} \cap Q^{-1}(Y),\left|x_{l}^{*}(Q z)\right|<1 / 3$. For each $l>j$, we can choose $x_{l} \in(1-\delta) B_{X}$ such that $\operatorname{Re} x_{l}^{*}\left(x_{l}\right)>1-2 \delta$. Since Y is finitecodimensional in X, by passing to a subsequence and relabeling we can assume, using compactness in a finite-dimensional complement of Y, that for all $l_{1}, l_{2}>j, x_{l_{2}}-x_{l_{1}} \in \delta B_{X}+2 B_{Y}$.

Fix any $l_{1}>j$ and $z_{1} \in B_{Z}$ such that $Q z_{1}=x_{l_{1}}$. Note that since E is shrinking,

$$
\begin{aligned}
\limsup _{l}\left|x_{l}^{*}\left(x_{l_{1}}\right)\right| & =\underset{l}{\lim \sup }\left|x_{l}^{*}\left(Q z_{1}\right)\right| \\
& \leq \limsup _{l}\left\|x_{l}^{*}-P_{I_{l}}^{\mathrm{E}^{*}} x_{l}^{*}\right\|+\limsup _{l}\left|P_{I_{l}}^{\mathrm{E}^{*}} x_{l}^{*}\left(z_{1}\right)\right| \leq \delta .
\end{aligned}
$$

Therefore for sufficiently large $l_{2}>l_{1},\left|x_{l_{2}}^{*}\left(x_{l_{1}}\right)\right|<2 \delta$. Let $y=\left(x_{l_{2}}-x_{l_{1}}\right) / 2 \in$ $\frac{\delta}{2} B_{X}+B_{Y}$ and fix $u \in \frac{\delta}{2} B_{X}$ and $v \in \delta B_{Z}$ such that $y-u \in B_{Y}$ and $Q v=u$. Fix $z_{2} \in B_{Z}$ such that $Q z_{2}=x_{l_{2}}$ and let

$$
z_{0}=\frac{z_{2}-z_{1}}{2}-v \in(1+\delta) B_{Z} .
$$

Note that $Q z_{0}=y-u \in B_{Y}$ and

$$
\begin{aligned}
\operatorname{Re} x_{l_{2}}^{*}\left(Q z_{0}\right) & \geq \frac{1}{2} \operatorname{Re} x_{l_{2}}^{*}\left(x_{l_{2}}\right)-\frac{1}{2}\left|x_{l_{2}}^{*}\left(x_{l_{1}}\right)\right|-\left|x_{l_{2}}^{*}(v)\right| \\
& \geq \frac{1-2 \delta}{2}-\delta-\delta=\frac{1}{2}-3 \delta
\end{aligned}
$$

Finally, for $z=\frac{z_{0}}{1+\delta} \in B_{Z}$, we have $Q z \in Y$ and

$$
\operatorname{Re} x_{l_{2}}^{*}(Q z) \geq \frac{\frac{1}{2}-3 \delta}{1+\delta} \geq \frac{\frac{1}{2}-\frac{3}{20}}{1+\frac{1}{20}}=\frac{1}{3}
$$

This contradiction finishes the proof.
LEmma 4.14. Let M be a metric space and let $f: M \rightarrow M$ be a function. Suppose that $G \subset M$ is such that $f(G) \subset K$ for some compact subset K of M. Then for any $\delta>0$, the set $\left\{x \in G: d_{M}(x, f(x)) \leq \delta\right\}$ admits a finite 4δ-net whenever it is non-empty.

Proof. Assume $H=\left\{x \in G: d_{M}(x, f(x)) \leq \delta\right\} \neq \emptyset$. Fix a finite δ-net F of K. Define $\eta: H \rightarrow F$ by letting $\eta(x)$ be such that $d_{M}(f(x), \eta(x)) \leq \delta$. Let $\nu: \eta(H) \rightarrow H$ be such that for each $y \in \eta(H), \nu(y) \in \eta^{-1}(\{y\})$. Note that $\nu(\eta(H)) \subset H$ is finite. We show that $\nu(\eta(H))$ is a 4δ-net for H. Fix $x \in H$ and let $y=\eta(x) \in \eta(H)$ and $z=\nu(y) \in \nu(\eta(H))$. Then

$$
\begin{aligned}
d_{M}(x, z) & \leq d_{M}(x, f(x))+d_{M}(f(x), y)+d_{M}(y, f(z))+d_{M}(f(z), z) \\
& =d_{M}(x, f(x))+d_{M}(f(x), \eta(x))+d_{M}(\eta(z), f(z))+d_{M}(f(z), z) \\
& \leq 4 \delta
\end{aligned}
$$

For the next two results, we adopt some convenient notation. For positive integers $1 \leq r_{1}<r_{2}<\cdots$ and any $\left(x_{i}\right)_{i=1}^{\infty}$, we let $\left(x_{i}, r_{i}\right)_{i=1}^{\infty}$ denote the sequence $\left(u_{j}\right)_{j=1}^{\infty}$ such that

$$
u_{j}= \begin{cases}x_{i}, & j=r_{i} \\ 0, & j \in \mathbb{N} \backslash\left\{r_{1}, r_{2}, \ldots\right\}\end{cases}
$$

That is, $\left(x_{i}, r_{i}\right)_{i=1}^{\infty}$ is the sequence which has x_{1} in position r_{1}, x_{2} in position r_{2}, \ldots, and all other positions are occupied by 0 . We make a similar definition for finite sequences $\left(x_{i}, r_{i}\right)_{i=1}^{n}$.

Proposition 4.15. Let X be a Banach space, let Z be a Banach space with shrinking $F D D \mathrm{E}$, and let $Q: Z \rightarrow X$ be a quotient map. Let χ be a spatial ω-strategy on X. For any strictly decreasing null sequence $\left(\delta_{i}\right)_{i=1}^{\infty} \subset$ $(0,1 / 20)$, there exists a blocking F of E such that the following holds: For any integers $1 \leq r_{1}<r_{2}<\cdots$, any intervals $I_{i} \subset\left(r_{i}, r_{i+1}\right)$, and any $\left(x_{i}^{*}\right)_{i=1}^{\infty} \subset$ $S_{X^{*}}$ such that $\left\|x_{i}^{*}-P_{I_{i}}^{F^{*}} x_{i}^{*}\right\| \leq \delta_{i}$ for all $i \in \mathbb{N}$, there exist $\left(y_{i}^{*}\right)_{i=1}^{\infty} \subset S_{X^{*}}$ and $\left(z_{i}\right)_{i=1}^{\infty} \subset B_{Z}$ such that
(i) $\left(Q z_{i}, r_{i}\right)_{i=1}^{\infty}$ is χ-admissible,
(ii) $\left\|x_{i}^{*}-y_{i}^{*}\right\| \leq 4 \delta_{i}$ for all $i \in \mathbb{N}$,
(iii) $\operatorname{Re} y_{i}^{*}\left(Q z_{i}\right) \geq 1 / 3$ for all $i \in \mathbb{N}$,
(iv) $\left|y_{i}^{*}\left(Q z_{j}\right)\right| \leq 2 \delta_{\max \{i, j\}}$ for all $i, j \in \mathbb{N}$ with $i \neq j$.

Before the proof, we introduce some notation. For sets Λ, Υ and a subset B of $\Lambda^{<\omega}$ which is closed under taking non-empty initial segments, we say a function $\Sigma: B \rightarrow \Upsilon^{<\omega}$ is monotone if whenever σ is a non-empty initial segment of $\tau \in B$, then $\Sigma(\sigma)$ is an initial segment of $\Sigma(\tau)$. If $\Sigma: B \rightarrow \Upsilon^{<\omega}$ is monotone and length-preserving, then if $\Sigma\left(\left(\lambda_{i}\right)_{i=1}^{n}\right)=\left(v_{i}\right)_{i=1}^{n}, \Sigma\left(\left(\lambda_{i}\right)_{i=1}^{m}\right)=$ $\left(v_{i}\right)_{i=1}^{m}$ for all $1 \leq m \leq n$. The body of B is given by

$$
[B]=\left\{\left(\lambda_{i}\right)_{i=1}^{\infty} \in \Lambda^{\omega}: \forall n \in \mathbb{N}\left(\lambda_{i}\right)_{i=1}^{n} \in B\right\}
$$

If $\Sigma: B \rightarrow \Upsilon^{<\omega}$ is monotone and length-preserving, then there is a natural extension $\bar{\Sigma}:[B] \rightarrow \Upsilon^{\omega}$ where $\bar{\Sigma}\left(\left(\lambda_{i}\right)_{i=1}^{\infty}\right)$ is the infinite sequence whose initial segments are given by $\Sigma\left(\left(\lambda_{i}\right)_{i=1}^{n}\right), n \in \mathbb{N}$.

Proof of Proposition 4.15. In the proof, for a sequence σ, we let $\operatorname{im}(\sigma)$ denote the set of members of σ. For a sequence $\sigma=\left(I_{i}, x_{i}\right)_{i=1}^{n}$ of pairs, we let $\operatorname{im}_{2}(\sigma)=\left\{x_{1}, \ldots, x_{n}\right\}$, the set of all second members of these pairs.

So let us fix a spatial strategy $\chi: B_{X}^{<\omega} \rightarrow \operatorname{cof}(X)$ and $\left(\delta_{i}\right)_{i=1}^{\infty} \subset(0,1 / 20)$ strictly decreasing to 0 . For each non-empty finite interval I and $i \in \mathbb{N}$, let

$$
G_{I, i}=\left\{x^{*} \in S_{X^{*}}:\left\|x^{*}-P_{I}^{\mathrm{E}^{*}} x^{*}\right\| \leq \delta_{i}\right\}
$$

Clearly, for each I and $i, G_{I, i}$ is non-empty. So, by Lemma 4.14 there exists a finite $4 \delta_{i}$-net $N_{I, i}$ of $G_{I, i}$. Then we define

$$
B=\left\{\left(I_{i}, x_{i}^{*}\right)_{i=1}^{n}: n \in \mathbb{N}, I_{1}<\cdots<I_{n}, I_{i} \text { intervals, }\left(x_{i}^{*}\right)_{i=1}^{n} \in \prod_{i=1}^{n} N_{I_{i}, i}\right\}
$$

which is a subset of $\left(2^{\mathbb{N}} \times S_{X^{*}}\right)^{<\omega}$ that is closed under taking non-empty initial segments. We will define integers $0=m_{0}<m_{1}<\cdots$ and a monotone, length-preserving function $\Sigma: B \rightarrow B_{Z}^{<\omega}$ as part of the following recursion.

Let $m_{0}=0$.
Let $Y_{1}=\chi(\emptyset)$. By Proposition 4.13, there exists $m_{1} \in \mathbb{N}$ such that for any interval $I \subset\left(m_{1}, \infty\right)$, if $x^{*} \in S_{X^{*}}$ is such that $\left\|x^{*}-P_{I}^{\mathrm{E}^{*}} x^{*}\right\| \leq \delta_{1}$, then there exists $z \in B_{Z}$ such that $Q z \in B_{Y_{1}}$ and $\operatorname{Re} x^{*}(Q z) \geq 1 / 3$. Define $B_{1}=\emptyset$ and $A_{1}=\{\emptyset\}$.

Next, suppose that integers $m_{0}<m_{1}<\cdots<m_{n}, Y_{1}, \ldots, Y_{n} \in \operatorname{cof}(X)$, finite sets $B_{1}, \ldots, B_{n} \subset S_{X^{*}}^{<\omega}$, and finite sets $A_{1}, \ldots, A_{n} \subset B_{X}$ have been defined. Suppose also that Σ has been defined on B_{n} and

$$
\begin{aligned}
B_{n}=\left\{\left(I_{i}, x_{i}^{*}\right)_{i=1}^{k}: k \in \mathbb{N},\right. & I_{1}<\cdots<I_{k} \\
& \left.I_{i} \subset\left[1, m_{n}\right] \text { intervals, }\left(x_{i}^{*}\right)_{i=1}^{k} \in \prod_{i=1}^{k} N_{I_{i}, i}\right\}
\end{aligned}
$$

and that for each $1 \leq i \leq n$, each $x^{*} \in S_{X^{*}}$, and each interval $I \subset\left(m_{i}, \infty\right)$ such that $\left\|x^{*}-P_{I}^{\mathrm{E}^{*}} x^{*}\right\| \leq \delta_{1}$, there exists $z \in B_{Z}$ such that $Q z \in B_{Y_{i}}$ and $\operatorname{Re} x^{*}(Q z) \geq 1 / 3$. Let

$$
\begin{aligned}
& A_{n+1}=\left(\{0\} \cup \bigcup_{\sigma \in B_{n}} Q(\operatorname{im}(\Sigma(\sigma)))\right)^{\leq n}, \\
& Y_{n+1}^{\prime}=\bigcap_{\sigma \in A_{n+1}} \chi(\sigma), \quad Y_{n+1}^{\prime \prime}=\bigcap_{x^{*} \in \bigcup_{\sigma \in B_{n}} \mathrm{im}_{2}(\sigma)} \operatorname{ker}\left(x^{*}\right),
\end{aligned}
$$

and let

$$
Y_{n+1}=Y_{n+1}^{\prime} \cap Y_{n+1}^{\prime \prime} \in \operatorname{cof}(X) .
$$

By Proposition 4.13, there exists $m_{n+1}^{\prime} \in\left(m_{n}, \infty\right)$ such that for any interval $I \subset\left(m_{n+1}^{\prime}, \infty\right)$ and $x^{*} \in S_{X^{*}}$ such that $\left\|x^{*}-P_{I}^{\mathrm{E}^{*}} x^{*}\right\| \leq \delta_{1}$, there exists $z \in B_{Z}$ such that $Q z \in B_{Y_{n+1}}$ and $\operatorname{Re} x^{*}(Q z) \geq 1 / 3$. Then there exists $m_{n+1}^{\prime \prime}>m_{n}$ so large that for any interval $I \subset\left(m_{n+1}^{\prime \prime}, \infty\right)$ and for any $z \in \bigcup_{\sigma \in B_{n}} \operatorname{im}(\Sigma(\sigma))$, $\left\|P_{I}^{\mathrm{E}} z\right\|<\delta_{n+1}$. Let $m_{n+1}=\max \left\{m_{n+1}^{\prime}, m_{n+1}^{\prime \prime}\right\}$ and let

$$
\begin{aligned}
& B_{n+1}=\left\{\left(I_{i}, x_{i}^{*}\right)_{i=1}^{k}: k \in \mathbb{N}, I_{1}<\cdots<I_{k},\right. \\
&\left.I_{i} \subset\left[1, m_{n+1}\right] \text { intervals, }\left(x_{i}^{*}\right)_{i=1}^{k} \in \prod_{i=1}^{k} N_{I_{i}, i}\right\} .
\end{aligned}
$$

We now complete the recursion by defining $\Sigma(\sigma)$ for each $\sigma=\left(I_{i}, x_{i}^{*}\right)_{i=1}^{k} \in$ $B_{n+1} \backslash B_{n}$, by induction on $k=|\sigma|$.

Case 1, $k=1$:
Case 1a, $I_{1} \cap\left[1, m_{1}\right] \neq \emptyset$: Let $\Sigma(\sigma)=(0)$.
Case 1b, $I_{1} \subset\left(m_{1}, \infty\right)$: Let r be the minimum $1 \leq i \leq n$ such that $I_{1} \subset\left(m_{i}, \infty\right)$. Since $x_{1}^{*} \in N_{I_{1}, 1}$, there exists $z \in B_{Z}$ such that $Q z \in B_{Y_{r}}$ and $\operatorname{Re} x^{*}(Q z) \geq 1 / 3$. Let $\Sigma(\sigma)=(z)$.

Case 2, $k>1$: Assume that $\Sigma\left(\sigma^{\prime}\right)$ has been defined for each $\sigma^{\prime} \prec \sigma$. Let $\sigma^{\prime}=\left(I_{i}, x_{i}^{*}\right)_{i=1}^{k-1}$.

Case 2a, $\sigma^{\prime} \in B_{n+1} \backslash B_{n}$: Let $\Sigma(\sigma)=\Sigma\left(\sigma^{\prime}\right) \frown(0)$.
Case $2 \mathrm{~b}, \sigma^{\prime} \in B_{n}, I_{k} \cap\left[1, m_{1}\right] \neq \emptyset$: Let $\Sigma(\sigma)=\Sigma\left(\sigma^{\prime}\right) \frown(0)$.
Case 2c, $\sigma^{\prime} \in B_{n}, I_{k} \subset\left(m_{1}, \infty\right)$: Let r be the minimum $1 \leq i \leq n$ such that $I_{k} \subset\left(m_{i}, \infty\right)$. Since $x_{k}^{*} \in S_{X^{*}} \cap N_{I_{k}, k}$ and $\delta_{k} \leq \delta_{1}$, there exists $z \in B_{Z}$ such that $Q z \in B_{Y_{r}}$ and $\operatorname{Re} x^{*}(Q z) \geq 1 / 3$. Let $\Sigma(\sigma)=\Sigma\left(\sigma^{\prime}\right) \frown(z)$. This completes the recursive construction.

We now consider the blocking $\mathrm{F}=\left(F_{n}\right)_{n=1}^{\infty}$ of E defined by $F_{n}=$ $\bigoplus_{i=m_{n-1}+1}^{m_{n}} E_{i}$. Fix $1 \leq r_{1}<r_{2}<\cdots$ in $\mathbb{N}, J_{1}<J_{2}<\cdots$ intervals with $J_{i} \subset\left(r_{i}, r_{i+1}\right)$, and $\left(x_{i}^{*}\right)_{i=1}^{\infty} \subset S_{X^{*}}$ such that $\left\|x_{i}^{*}-P_{J_{i}}^{\mathrm{F}^{*}} x_{i}^{*}\right\| \leq \delta_{i}$ for all $i \in \mathbb{N}$. Denote $I_{i}=\left(m_{\min J_{i}-1}, m_{\max J_{i}}\right]$, so that $P_{J_{i}}^{\mathrm{F}^{*}}=P_{I_{i}}^{\mathrm{E}^{*}}$ for all $i \in \mathbb{N}$. Then $\left(x_{i}^{*}\right)_{i=1}^{\infty} \in \prod_{i=1}^{\infty} G_{I_{i}, i}$. Therefore there exists $\left(y_{i}^{*}\right)_{i=1}^{\infty} \in \prod_{i=1}^{\infty} N_{I_{i}, i}$ such that $\left\|x_{i}^{*}-y_{i}^{*}\right\| \leq 4 \delta_{i}$ for all $i \in \mathbb{N}$. We see that $\left(I_{i}, y_{i}^{*}\right)_{i=1}^{\infty} \in[B]$.

Let $\left(z_{i}\right)_{i=1}^{\infty}=\bar{\Sigma}\left(\left(I_{i}, y_{i}^{*}\right)_{i=1}^{\infty}\right)$. We will show that $\left(Q z_{i}, r_{i}\right)_{i=1}^{\infty}$ is χ-admissible, $\operatorname{Re} y_{i}^{*}\left(Q z_{i}\right) \geq 1 / 3$ for all $i \in \mathbb{N}$, and $\left|y_{i}^{*}\left(Q z_{i}\right)\right| \leq 2 \delta_{\max \{i, j\}}$ for all distinct i, j. This will finish the proof.

Note that for any $n \in \mathbb{N}$, since $I_{1}<\cdots<I_{n}$ and $I_{n} \subset\left[1, m_{\max } J_{n}\right]$ and $\max J_{n}<r_{n+1}$, it follows that $\left(I_{i}, y_{i}^{*}\right)_{i=1}^{n} \in B_{r_{n+1}-1}$.

We show that $\left(Q z_{i}, r_{i}\right)_{i=1}^{\infty}$ is χ-admissible. Since $I_{1}=\left(m_{\min J_{1}-1}, m_{\max J_{1}}\right]$ and $\min J_{1}-1 \geq r_{1}$, we have

$$
Q z_{1} \in B_{Y_{r_{1}}} \subset B_{\chi(0, \ldots, 0)}
$$

where the sequence in the last subscript contains $r_{1}-1$ zeros. Next, for $n \in \mathbb{N}$, by the preceding paragraph and the definition of $A_{r_{n+1}}$, together with the fact that $\min I_{n+1}=m_{\min J_{n+1}-1}+1$ and $\min J_{n+1}-1 \geq r_{n+1}$,

$$
Q z_{n+1} \in B_{Y_{r_{n+1}}} \subset B_{\chi\left(\left(Q z_{i}, r_{i}\right)_{i=1}^{n} \wedge(0, \ldots, 0)\right)}
$$

with the sequence of $r_{n+1}-r_{n}-1$ zeros. This implies that $\left(Q z_{i}, r_{i}\right)_{i=1}^{\infty}$ is χ-admissible.

We next show that whenever $1 \leq i<j, y_{i}^{*}\left(Q z_{j}\right)=0$ and $\left|y_{j}^{*}\left(Q z_{i}\right)\right|<2 \delta_{j}$. The first equality follows from the fact that for such i, j,

$$
Q z_{j} \in Y_{r_{j}}^{\prime \prime} \subset \bigcap_{x^{*} \in \cup_{\sigma \in B_{r_{j}-1} \mathrm{im}_{2}(\sigma)}} \operatorname{ker}\left(x^{*}\right) .
$$

As noted two paragraphs above, $y_{i}^{*} \in \bigcup_{\sigma \in B_{r_{j}-1}} \mathrm{im}_{2}(\sigma)$. For the inequality, it follows from our choice of $m_{r_{j}}^{\prime \prime}$ and the fact that $I_{j} \subset\left(m_{r_{j}}^{\prime \prime}, \infty\right)$ and $z_{i} \in$ $\bigcup_{\sigma \in B_{r_{j}}} \operatorname{im}(\Sigma(\sigma))$ that

$$
\left|y_{j}^{*}\left(Q z_{i}\right)\right| \leq\left\|y_{j}^{*}-P_{I_{j}}^{\mathrm{E}_{j}^{*}} y_{j}^{*}\right\|+\left|y_{j}^{*}\left(P_{I_{j}}^{\mathrm{E}} z_{i}\right)\right| \leq \delta_{j}+\min _{1 \leq k \leq r_{j}} \delta_{k} \leq 2 \delta_{j} .
$$

We last show that for all $i \in \mathbb{N}, \operatorname{Re} y_{i}^{*}\left(Q z_{i}\right) \geq 1 / 3$. This follows from the definition of Σ together with the fact that we are either in Case 1b or 2c for each i.

We can now deduce the following general result.
Corollary 4.16. Let X, Z be Banach spaces, $Q: Z \rightarrow X$ a quotient map, and E a shrinking FDD for Z. Let T be a Banach space with normalized 1-unconditional basis. Suppose that $c>0$ is such that Player I has a winning strategy in the (T, c) game on X. Then there exist a blocking F of $\mathrm{E}, \Delta>0$, and a strictly decreasing sequence $\left(\delta_{i}\right)_{i=1}^{\infty} \subset(0,1)$ such that $\sum_{i=1}^{\infty} \delta_{i}<\Delta$ and whenever $1 \leq r_{0}<r_{1}<\cdots$ are integers and $\left(x_{i}^{*}\right)_{i=1}^{\infty} \subset S_{X^{*}}$ satisfies $\left\|x_{i}^{*}-P_{\left(r_{i-1}, r_{i}\right)}^{\mathrm{F}^{*}} x_{i}^{*}\right\|<\delta_{i}$ for all $i \in \mathbb{N}$, then $\left(e_{r_{i}}^{*}\right)_{i=1}^{\infty} \lesssim 4 c\left(x_{i}^{*}\right)_{i=1}^{\infty}$.

Proof. Let $\chi: B_{X}^{<\omega} \rightarrow X$ be a winning strategy for Player I in the (T, c) game on X. Let $\left(\delta_{i}\right)_{i=1}^{\infty}$ be as in the previous statement and with $\sum_{i=1}^{\infty} \delta_{i}<\Delta$ for some $\Delta>0$. Let F be the blocking of E given by Proposition 4.15. Let
$1 \leq r_{0}<r_{1}<\cdots$ and $\left(x_{i}^{*}\right)_{i=1}^{\infty} \subset S_{X^{*}}$ be such that $\left\|x_{i}^{*}-P_{\left(r_{i-1}, r_{i}\right)}^{F^{*}} x_{i}^{*}\right\|<\delta_{i}$ for all $i \in \mathbb{N}$. Let now $\left(y_{i}^{*}\right)_{i=1}^{\infty} \subset S_{X^{*}}$ and $\left(z_{i}\right)_{i=1}^{\infty} \subset B_{Z}$ be also given by the previous proposition. Since χ is a winning strategy for Player I, we deduce from Proposition 4.15 (i) that $\left(Q z_{i}\right)_{i=1}^{\infty} \lesssim_{c}\left(e_{r_{i}}\right)_{i=1}^{\infty}$. Now it follows from Proposition 4.15 (ii, iv), 1-unconditionality of $\left(e_{i}\right)$ and elementary duality, that, for $\Delta>0$ initially chosen small enough, $\left(e_{r_{i}}^{*}\right)_{i=1}^{\infty} \lesssim 4 c\left(x_{i}^{*}\right)_{i=1}^{\infty}$.
5. Reducing to FDDs and press down norms. The goal of this section is to prove the following crucial intermediate result.

THEOREM 5.1. Let $p \in(1, \infty]$ and q be its conjugate exponent. Let X be a separable Banach space.
(i) If X has A_{p}, then there exist $\theta \in(0,1)$ and Banach spaces Z, Y with $F D D s \mathrm{~F}, \mathrm{H}$, respectively, such that X is isomorphic to a subspace of $Z_{\wedge}^{T_{q, \theta}^{*}}(\mathrm{~F})$ and to a quotient of $Y_{\wedge}^{T_{q, \theta}^{*}}(\mathrm{H})$.
(ii) If X has N_{p}, then there exist $\theta \in(0,1)$ and Banach spaces Z, Y with $F D D s \mathrm{~F}, \mathrm{H}$, respectively, such that X is isomorphic to a subspace of $Z_{\wedge}^{U_{q}^{*}, \theta}(\mathrm{~F})$ and to a quotient of $Y_{\wedge}^{U_{q, \theta}^{*}}(\mathrm{H})$.
Let us first prove the following interesting intermediate corollary.
Corollary 5.2. Fix $1<p \leq \infty$ and let X be a separable Banach space. Then X has $\mathrm{A}_{p}\left(\right.$ resp. $\left.\mathrm{N}_{p}\right)$ if and only if there exists a Banach space U with shrinking $F D D$ such that U has $\mathrm{A}_{p}\left(\right.$ resp. $\left.\mathrm{N}_{p}\right)$ and X is isomorphic to a subspace and to a quotient of U.

Proof. By Theorem 5.1, if X has A_{p}, we can take $U=Z_{\wedge}^{T_{q, \theta_{1}}^{*}}(\mathrm{~F}) \oplus Y_{\wedge}^{T_{q, \theta_{2}}^{*}}(\mathrm{H})$ for appropriate Banach spaces Z, Y with FDDs F, H, respectively, and appropriate $\theta_{1}, \theta_{2} \in(0,1)$. For N_{p}, we replace $T_{q, \theta}^{*}$ with $U_{q, \theta}^{*}$ -

The remainder of this section is devoted to the proof of Theorem 5.1. Before the proof proper, we recall three known technical statements and the corresponding references. The first lemma, based on a gliding hump argument, is classical and referred to as the Johnson-Zippin blocking lemma. Its origin can be traced back to JZ74.

Lemma 5.3 (Johnson-Zippin blocking lemma). Let Y, Z be Banach spaces with boundedly complete FDDs G, E, respectively. Let $T: Y \rightarrow Z$ be a weak*-to-weak*-continuous operator. Then for any $\left(\varepsilon_{n}\right)_{n=1}^{\infty} \subset(0,1)$, there exist blockings H, F of G, E, respectively, such that for any $i<j$ and any $y \in \bigoplus_{n \in(i, j)} H_{n}$,

$$
\left\|P_{[1, i)}^{\mathrm{F}} T y\right\| \leq \varepsilon_{i}\|y\| \quad \text { and } \quad\left\|P_{[j, \infty)}^{\mathrm{F}} T y\right\| \leq \varepsilon_{j}\|y\|
$$

The next proposition can be found in OSZ07, Lemma 20] in the reflexive case. It is stated in full generality in [FOSZ09]. We refer to [C14, Proposition 3.12] for a complete proof.

Proposition 5.4. Suppose Y, Z are Banach spaces with boundedly complete FDDs G, E, respectively. Suppose the projection constant of G in Y is 1 and the projection constant of E is at most K. Suppose $J: Y \rightarrow X$ is a weak*-to-weak*-continuous quotient map of Y onto a weak*-closed subspace X of Z. Suppose also that $\left(\varepsilon_{i}\right)_{i=1}^{\infty} \subset(0,1)$ is a strictly decreasing null sequence such that for any $i<j$ and $y \in \bigoplus_{n \in(i, j)} G_{n}$,

$$
\left\|P_{[1, i)}^{\mathrm{E}} J y\right\|<\varepsilon_{i}\|y\| / K \quad \text { and } \quad\left\|P_{[j, \infty)}^{\mathrm{E}} y\right\|<\varepsilon_{i}\|y\| / K .
$$

Then there exist $0=s_{0}<s_{1}<\cdots$ such that if for each $n \in \mathbb{N}$, we define

$$
\begin{aligned}
C_{n} & =\bigoplus_{i=s_{n-1}+1}^{s_{n}} G_{i}, \quad D_{n}=\bigoplus_{i=s_{n-1}+1}^{s_{n}} E_{i}, \\
L_{n} & =\left\{i \in \mathbb{N}: s_{n-1}<i \leq \frac{s_{n-1}+s_{n}}{2}\right\}, \\
R_{n} & =\left\{i \in \mathbb{N}: \frac{s_{n-1}+s_{n}}{2}<i \leq s_{n}\right\}, \\
C_{n, L} & =\bigoplus_{i \in L_{n}} G_{i}, \quad C_{n, R}=\bigoplus_{i \in R_{n}} G_{i},
\end{aligned}
$$

then the following holds.
For any $x \in S_{X}, 0 \leq m<n$ and $\varepsilon>0$ such that $\left\|x-P_{(m, n)}^{D} x\right\|<\varepsilon$, there exists $y \in B_{Y}$ with $y \in \operatorname{span}\left\{C_{m, R} \cup\left(C_{i}\right)_{m<i<n} \cup C_{n, L}\right\}$, where $C_{0, R}=\{0\}$, and $\|J y-x\|<2 K \varepsilon+6 K \varepsilon_{m}$. If $m=0$, we can replace this last inequality with $\|Q y-x\|<K \varepsilon+3 K \varepsilon_{1}$.

We shall also need the following (see [FOSZ09, Proposition 3.1]).
Proposition 5.5. Let X be a Banach space, and Z a Banach space with shrinking FDD E having projection constant K. Assume that $Q: Z \rightarrow X$ is a quotient map and identify X^{*} with the weak*-closed subspace $Q^{*}\left(X^{*}\right)$ of Z^{*}. Let $\left(\delta_{i}\right)_{i=1}^{\infty} \subset(0,1)$ be a strictly decreasing null sequence. Then there exist $0=s_{0}<s_{1}<\cdots$ such that for any $1 \leq k_{0}<k_{1}<\cdots$ and $x^{*} \in X^{*}$, there exist $\left(x_{i}^{*}\right)_{i=1}^{\infty} \subset X^{*}$ and $\left(t_{i}\right)_{i=1}^{\infty} \in \prod_{i=1}^{\infty}\left(s_{k_{i-1}-1}, s_{k_{i-1}}\right)$ such that, with $t_{0}=0$,
(i) $x^{*}=\sum_{i=1}^{\infty} x_{i}^{*}$,
and for all $i \in \mathbb{N}$,
(ii) either $\left\|x_{i}^{*}\right\| \leq \delta_{i}$ or $\left\|x_{i}^{*}-P_{\left(t_{i-1}, t_{i}\right)}^{\mathrm{E}^{*}} x_{i}^{*}\right\| \leq \delta_{i}\left\|x_{i}^{*}\right\|$,
(iii) $\left\|x_{i}^{*}-P_{\left(t_{i-1}, t_{i}\right)}^{\mathrm{E}^{*}} x^{*}\right\| \leq \delta_{i}$,
(iv) $\left\|x_{i}^{*}\right\| \leq K+1$,
(v) $\left\|P_{t_{i}}^{\mathrm{E}^{*}} x^{*}\right\| \leq \delta_{i}$.

The proof of Theorem 5.1 is similar to the proof of FOSZ09, Theorem 1.1]. However, given that the bases of the spaces $T_{q, \theta}^{*}, U_{q, \theta}^{*}$ are left dominant and not right dominant, we include the details to make clear the modifications required.

Proof of Theorem 5.1. Fix $1<p \leq \infty$ and let q be its conjugate exponent. Let X be a separable Banach space with A_{p} (resp. N_{p}). By Theorem 4.6, there exists $\theta_{0} \in(0,1)$ such that Player I has a winning strategy in the spatial $(T, 1)$ game, where $T=T_{q, \theta}^{*}\left(\right.$ resp. $\left.T=U_{q, \theta}^{*}\right)$ and $\theta \in\left(0, \theta_{0}\right)$.
(1) We first prove that there exists a Banach space Z with shrinking FDD F such that, for any for $\vartheta \in\left(0, \theta_{0} / 8\right], X$ is isomorphic to a quotient of $Z_{\wedge}^{S}(\mathrm{~F})$, where $S=T_{q, \vartheta}^{*}$ (resp. $\left.S=U_{q, \vartheta}^{*}\right)$. We now fix $\theta \in\left(0, \theta_{0}\right)$ and denote $\vartheta=\theta / 8$.

Since X^{*} is separable, by a theorem of Davis, Figiel, Johnson, and Pełczyński [DFJP74, Corollary 8] there exists a Banach space Z with shrinking FDD E (a shrinking basis in fact) and a bounded linear surjection $Q: Z \rightarrow X$. By first renorming Z and then X, we can assume that E is bimonotone in Z and that Q is a quotient map. Note that $Q^{*}: X^{*} \rightarrow Z^{*}$ is an isometric embedding. Throughout the proof, we identify X^{*} with its image in Z^{*}.

By replacing E with a blocking and then relabeling, by Corollary 4.16, we can assume there exist constants $C>1, \Delta>0$, and $\left(\delta_{i}\right)_{i=1}^{\infty} \subset(0,1)$ with $\sum_{i=1}^{\infty} \delta_{i}<\Delta$ such that for any $1 \leq r_{0}<r_{1}<\cdots$ and any $\left(x_{i}^{*}\right)_{i=1}^{\infty} \subset S_{X^{*}}$ such that $\left\|x_{i}^{*}-P_{\left(r_{i-1}, r_{i}\right)}^{\mathrm{E}^{*}} x_{i}^{*}\right\| \leq \delta_{i}$ for all $i \in \mathbb{N},\left(e_{r_{i}}^{*}\right)_{i=1}^{\infty} \lesssim C\left(x_{i}^{*}\right)_{i=1}^{\infty}$, where $\left(e_{i}^{*}\right)_{i=1}^{\infty}$ is the canonical basis of $T^{*}\left(=T_{q, \theta}\right.$ or $\left.U_{q, \theta}\right)$. By replacing $\left(\delta_{i}\right)_{i=1}^{\infty}$ with a smaller sequence if necessary, we can assume $\left(\delta_{i}\right)_{i=1}^{\infty}$ is strictly decreasing.

Next, suppose that D is a blocking of E , say $D_{n}=\bigoplus_{i=j_{n-1}+1}^{j_{n}} E_{i}$. Suppose also that $1 \leq r_{0}<r_{1}<\cdots$ and $\left(I_{i}\right)_{i=1}^{\infty}$ are intervals and $\left(x_{i}^{*}\right)_{i=1}^{\infty} \subset S_{X^{*}}$ are such that $r_{i-1}+1=\min I_{i}<r_{i}$ and $\left\|x_{i}^{*}-P_{I_{i}}^{\mathrm{D}^{*}} x_{i}^{*}\right\| \leq \delta_{i}$ for all $i \in \mathbb{N}$. By bimonotonicity, this implies that

$$
\left\|x_{i}^{*}-P_{\left(j_{r_{i-1}}, j_{r_{i}}\right)}^{\mathrm{E}^{*}} x_{i}^{*}\right\| \leq \delta_{i},
$$

from which it follows that $\left(e_{j_{r_{i}}}^{*}\right)_{i=1}^{\infty} \lesssim_{C}\left(x_{i}^{*}\right)_{i=1}^{\infty}$. By 1-right dominance of the basis of T^{*}, it follows that $\left(e_{r_{i-1}}^{*}\right)_{i=1}^{\infty} \lesssim_{C}\left(x_{i}^{*}\right)_{i=1}^{\infty}$. In other words, the property of E which we have just deduced from the asymptotic T property is stable under passing to blockings.

By passing to a blocking and relabeling, we can assume that for any subsequent blocking D of E, there exists $\left(f_{i}^{*}\right)_{i=1}^{\infty} \subset S_{X^{*}}$ such that for all $i \in \mathbb{N}$, $\left\|f_{i}^{*}-P_{i}^{\mathrm{D}^{*}} f_{i}^{*}\right\| \leq \delta_{i} / 2$. Let $0=s_{0}<s_{1}<\cdots$ be the sequence given by Proposition 5.5 applied to X, Z, E, and $\left(\delta_{i}\right)_{i=1}^{\infty}$. Let $F_{n}=\bigoplus_{i=s_{n-1}+1}^{s_{n}} E_{i}$ for all $n \in \mathbb{N}$. We claim that Q^{*} is an isomorphic embedding of X^{*} into $\left(Z^{*}\right)_{\vee}^{\left(S^{*}\right)}\left(\mathrm{F}^{*}\right)$,
and that Q^{*} is still weak*-to-weak*-continuous. Here, $\left(Z^{*}\right)_{\vee}^{\left(S^{*}\right)}\left(\mathrm{F}^{*}\right)$ has the weak* topology it inherits as the dual space of $Z_{\wedge}^{S}(\mathrm{~F})$. From this it will follow that Q^{*} is the adjoint of a bounded linear surjection from $Z_{\wedge}^{S}(\mathrm{~F})$ onto X, which will finish (1). For the remainder of the proof, choose $\left(f_{i}^{*}\right)_{i=1}^{\infty} \subset S_{X^{*}}$ such that $\left\|f_{i}^{*}-P_{i}^{\mathrm{F}^{*}} f_{i}^{*}\right\| \leq \delta_{i} / 2$ for all $i \in \mathbb{N}$.

Fix $1 \leq n_{0}<n_{1}<\cdots$ and $x^{*} \in S_{X^{*}}$. Let $\ell_{i}=s_{n_{i}-1}$ and note that $P_{\left(\ell_{i-1}, \ell_{i}\right]}^{\mathrm{E}^{*}}=P_{\left[n_{i-1}, n_{i}\right)}^{\mathrm{F}^{*}}$ for all $i \in \mathbb{N}$. By our choice of $\left(s_{i}\right)_{i=0}^{\infty}$, we can find $\left(x_{i}^{*}\right)_{i=1}^{\infty} \subset X^{*}$ and $\left(t_{i}\right)_{i=0}^{\infty} \subset \mathbb{N}$ with $0=t_{0}<t_{1}<\cdots$ satisfying the conclusions of Proposition 5.5 .

For $i \in \mathbb{N}$, if $\left\|x_{i+1}^{*}\right\| \geq \delta_{i+1}$, let $a_{i}=\left\|x_{i+1}^{*}\right\|$ and let $y_{i}^{*}=a_{i}^{-1} x_{i+1}^{*}$. If $\left\|x_{i+1}^{*}\right\|<\delta_{i+1}$, let $a_{i}=0$ and let $y_{i}^{*}=f_{\ell_{i}}^{*}$. Since $t_{i}<\ell_{i}=s_{n_{i}-1}<t_{i+1}$, it follows that for all $i \in \mathbb{N}$,

$$
\left\|y_{i}^{*}-P_{\left(t_{i}, t_{i+1}\right)}^{\mathrm{F}^{*}} y_{i}^{*}\right\| \leq \delta_{i} .
$$

Therefore $\left(e_{t_{i}}^{*}\right)_{i=1}^{\infty} \lesssim_{C}\left(y_{i}^{*}\right)_{i=1}^{\infty}$. Thus

$$
\begin{aligned}
1 & =\left\|x^{*}\right\|=\left\|\sum_{i=1}^{\infty} x_{i}^{*}\right\| \geq\left\|\sum_{i=1}^{\infty} a_{i} y_{i}^{*}\right\|-\left\|x_{1}^{*}\right\|-\Delta \\
& \geq \frac{1}{C}\left\|\sum_{i=1}^{\infty} a_{i} e_{t_{i}}^{*}\right\|_{T^{*}}-2-\Delta \geq \frac{1}{C}\left\|\sum_{i=1}^{\infty}\right\| x_{i+1}^{*}\left\|e_{t_{i}}^{*}\right\|_{T^{*}}-2-2 \Delta .
\end{aligned}
$$

From this it follows that

$$
\left\|\sum_{i=1}^{\infty}\right\| x_{i+1}^{*}\left\|e_{t_{i}}^{*}\right\|_{T^{*}} \leq C(3+2 \Delta)
$$

Moreover,

$$
\begin{aligned}
\left\|P_{\left(\ell_{i-1}, \ell_{i}\right]}^{\mathrm{F}^{*}} x\right\| \leq\left\|P_{\left(t_{i-1}, t_{i+1}\right)}^{\mathrm{F}^{*}} x^{*}\right\| & \leq\left\|P_{\left(t_{i-1}, t_{i}\right)}^{\mathrm{F}^{*}} x^{*}\right\|+\left\|P_{t_{i}}^{\mathrm{F}^{*}} x^{*}\right\|+\left\|P_{\left(t_{i}, t_{i+1}\right)}^{\mathrm{F}^{*}} x^{*}\right\| \\
& \leq\left\|x_{i}^{*}\right\|+\left\|x_{i+1}^{*}\right\|+3 \delta_{i} .
\end{aligned}
$$

Therefore, for $S=T_{q, \vartheta}^{*}$ if $T=T_{q, \theta}^{*}$ and $S=U_{q, \vartheta}^{*}$ if $T=U_{q, \theta}^{*}$, we have

$$
\begin{aligned}
& \left\|\sum_{i=1}^{\infty}\right\| P_{\left(\ell_{i-1}, \ell_{i}\right]}^{\mathrm{F}^{*}} x^{*}\left\|e_{n_{i-1}}^{*}\right\|_{S^{*}} \\
& \quad \leq\left\|\sum_{i=1}^{\infty}\right\| x_{i}^{*}\left\|e_{n_{i-1}}^{*}\right\|_{S^{*}}+\left\|\sum_{i=1}^{\infty}\right\| x_{i+1}^{*}\left\|e_{n_{i-1}}^{*}\right\|_{S^{*}}+3 \Delta \\
& \quad \leq\left\|\sum_{i=1}^{\infty}\right\| x_{i+1}^{*}\left\|e_{s_{n_{i}}}^{*}\right\|_{S^{*}}+\left\|\sum_{i=1}^{\infty}\right\| x_{i+1}^{*}\left\|e_{s_{n_{i-1}}}^{*}\right\|_{S^{*}}+\left\|x_{1}^{*}\right\|+3 \Delta
\end{aligned}
$$

$$
\begin{aligned}
& \leq 3^{3}\left\|\sum_{i=1}^{\infty}\right\| x_{i+1}^{*}\left\|e_{t_{i}}^{*}\right\|_{T^{*}}+3\left\|\sum_{i=1}^{\infty}\right\| x_{i+1}^{*}\left\|e_{t_{i}}^{*}\right\|_{T^{*}}+2+3 \Delta \\
& \leq\left[3^{3}+3\right] C(3+2 \Delta)+2+3 \Delta=M
\end{aligned}
$$

The first inequality follows from Proposition 5.5, the second from the 1-right dominance of the canonical basis of S^{*}, and the third from Lemma 4.7 and the remark after it with $m=0$ and $m=1$, using the fact that $t_{i} \in$ $\left(s_{n_{i-1}-1}, s_{n_{i-1}}\right)$ for all $i \in \mathbb{N}$, so $t_{1}<s_{n_{0}}<t_{2}<s_{n_{1}}<\cdots$. This shows that for all $x^{*} \in X^{*},\left\|x^{*}\right\|_{\left(Z^{*}\right) V^{\left(S^{*}\right)}\left(\mathrm{F}^{*}\right)} \leq M\left\|x^{*}\right\|$. Of course $\left\|x^{*}\right\|_{\left(Z^{*}\right)_{V}^{\left(S^{*}\right)}\left(\mathrm{F}^{*}\right)} \geq\left\|x^{*}\right\|$ and this finishes the proof of the fact that Q^{*} is an embedding from X^{*} into $\left(Z^{*}\right)_{V}^{\left(S^{*}\right)}\left(\mathrm{F}^{*}\right)$

Since the proof of the weak ${ }^{*}$-to-weak ${ }^{*}$-continuity of Q^{*} in [FOSZ09] did not use right dominance or block stability, it goes through unchanged.
(2) We now prove that there exists a Banach space Z with shrinking FDD H such that, for any for $\vartheta \in\left(0, \theta_{0} / 4\right], X$ is isomorphic to a subspace of $Z_{\wedge}^{S}(H)$, where $S=T_{q, \vartheta}^{*}\left(\right.$ resp. $\left.S=U_{q, \vartheta}^{*}\right)$. We now fix $\theta \in\left(0, \theta_{0}\right)$ and denote $\vartheta=\theta / 4$.

Since X^{*} is separable, we use again the result of Davis, Figiel, Johnson, and Pełczyński [DFJP74] ensuring the existence of a Banach space Z with shrinking FDD E and a quotient map $Q: Z \rightarrow X$. By OS02, Lemma 3.1], there exist a Banach space Y with shrinking FDD G and an isomorphic embedding $\iota: X \rightarrow Y$ such that $c_{00}(\mathrm{G}) \cap X$ is dense in X (identified with its image $\iota(X)$). By first renorming Y, then X, then Z, we can assume that G is bimonotone in Y, that ι is an isometric embedding, and that Q is still a quotient map. We consider X^{*} as a subspace of Z^{*} and we consider ι^{*} as mapping Y^{*} to either X^{*} or Z^{*}, as is convenient. Let K be the projection constant of E in Z.

Since Player I has a winning strategy in the $(T, 1)$ game on X, by Corollary 4.16 there exist a blocking, which we can assume after relabeling is E , $C \geq 1, \Delta>0$, and a strictly decreasing sequence $\left(\delta_{i}\right)_{i=1}^{\infty} \subset(0,1)$ such that $\sum_{i=1}^{\infty} \delta_{i}<\Delta$, and if $\left(x_{i}^{*}\right)_{i=1}^{\infty} \subset S_{X^{*}}$ is such that $\left\|x_{i}^{*}-P_{\left(r_{i-1}, r_{i}\right)}^{\mathrm{E}^{*}} x_{i}^{*}\right\| \leq 2 K \delta_{i}$ for all $i \in \mathbb{N}$, then $\left(e_{r_{i}}^{*}\right)_{i=1}^{\infty} \lesssim_{C}\left(x_{i}^{*}\right)_{i=1}^{\infty}$. By taking $\left(\delta_{i}\right)_{i=1}^{\infty}$ smaller if necessary, we can assume that for any $\left(r_{i}\right)_{i=0}^{\infty}$ and $\left(x_{i}^{*}\right)_{i=1}^{\infty}$ as above, and if $\left(z_{i}^{*}\right)_{i=1}^{\infty} \subset Z^{*}$ satisfies $\left\|x_{i}^{*}-z_{i}^{*}\right\| \leq \delta_{i}$ for all $i \in \mathbb{N}$, then $\left(z_{i}^{*}\right)_{i=1}^{\infty}$ is basic with projection constant not more than $2 K$. We can also assume that $\sum_{i=1}^{\infty} \delta_{i}<1 / 7$.

Observe that if D is any further blocking of E , say $D_{n}=\bigoplus_{i=j_{n-1}+1}^{j_{n}} E_{i}$, and if $\left(x_{i}^{*}\right)_{i=1}^{\infty} \subset S_{X^{*}}$ and $1 \leq r_{0}<r_{1}<\cdots$ are such that $\left\|x_{i}^{*}-P_{\left(r_{i-1}, r_{i}\right)}^{\mathrm{D}^{*}} x_{i}^{*}\right\| \leq \delta_{i}$, then with $m_{i}=j_{r_{i}}$, it follows that $\left\|x_{i}^{*}-P_{\left(j_{r_{i-1}}, j_{r_{i}}\right)}^{\mathrm{E}} x_{i}^{*}\right\| \leq 2 K \delta_{i}$, and $\left(e_{r_{i-1}}^{*}\right)_{i=1}^{\infty} \lesssim 1$ $\left(e_{j_{r_{i}}}^{*}\right)_{i=1}^{\infty} \lesssim_{C}\left(x_{i}^{*}\right)_{i=1}^{\infty}$. Here we have used 1-right dominance of the basis of T^{*}. We will use this fact as we pass to further blockings in the proof.

Fix a strictly decreasing sequence $\left(\varepsilon_{i}\right)_{i=1}^{\infty} \subset(0,1)$ such that for each $n \in \mathbb{N}$,

$$
10 K(K+1) \sum_{i=n}^{\infty} \varepsilon_{i}<\delta_{n}^{2} .
$$

After blocking E if necessary, we may assume that for each further blocking D of E, there exists $\left(f_{i}^{*}\right)_{i=1}^{\infty} \subset S_{X^{*}}$ such that for each $i \in \mathbb{N},\left\|f_{i}^{*}-P_{i}^{\mathrm{D}^{*}} f_{i}^{*}\right\|$ $<\frac{\varepsilon_{i+1}}{2 K}$. After blocking G, we can assume that for each $i \in \mathbb{N}, \iota^{*}\left(\mathrm{G}_{i}^{*}\right) \neq\{0\}$.

Using Lemma 5.3, after blocking and relabeling E and G we can assume that for each $i<j$ and each $y^{*} \in \bigoplus_{n \in(i, j)} \mathrm{G}_{n}^{*}$,

$$
\left\|P_{[1, i)}^{\mathrm{E}^{*}} \iota^{*} y^{*}\right\|<\varepsilon_{i}\left\|y^{*}\right\| / K \quad \text { and } \quad\left\|P_{[j, \infty)}^{\mathrm{E}^{*}} \iota^{*} y^{*}\right\|<\varepsilon_{i}\left\|y^{*}\right\| / K
$$

and that this property is preserved if we pass to any further blocking of one FDD and the corresponding blocking of the other.

Let C, D be the blockings of G, E, respectively, determined by Proposition 5.4 applied with the sequence $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$. More precisely, Proposition 5.4 is applicable to G^{*} and E^{*} rather than G and E, but we actually apply it to the dual FDDs and let C, D be the corresponding blockings of the original FDDs. Apply Proposition 5.5 to the FDD D with the sequence $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$ to obtain $0=s_{0}<s_{1}<\cdots$. Define $H_{n}=\bigoplus_{i=s_{n-1}+1}^{s_{n}} C_{i}$ and $F_{n}=\bigoplus_{i=s_{n-1}+1}^{s_{n}} D_{i}$ for all $n \in \mathbb{N}$. For $n \in \mathbb{N}$, define $\widetilde{H_{n}^{*}}=H_{n}^{*} / \operatorname{ker}\left(\left.\iota^{*}\right|_{H_{n}^{*}}\right)$, endowed with the quotient norm

$$
\left\|\tilde{y}^{*}\right\|_{\sim}=\left\|\iota^{*} y^{*}\right\| .
$$

Note that $\widetilde{H_{n}^{*}} \neq\{0\}$, since for each $n \in \mathbb{N}, \iota^{*}\left(G_{n}^{*}\right) \neq\{0\}$. Given $y^{*}=$ $\sum_{n=1}^{\infty} y_{n}^{*} \in c_{00}\left(\mathrm{H}^{*}\right)$, we set $\widetilde{y^{*}}=\sum_{n=1}^{\infty} \widetilde{y_{n}^{*}} \in c_{00}\left(\widetilde{\mathrm{H}^{*}}\right)$. We set

$$
\left\|\widetilde{y^{*}}\right\|\left\|_{\sim}=\max _{i \leq j}\right\| \iota^{*}\left(\sum_{n=i}^{j} y_{n}^{*}\right)\left\|=\max _{i \leq j}\right\| \iota^{*} P_{[i, j]}^{\mathrm{H}^{*}} y^{*} \| .
$$

Clearly $\widetilde{H^{*}}$ is a bimonotone FDD for the completion W of $c_{00}\left(\widetilde{\mathrm{H}^{*}}\right)$ under $\|\|$.

Note that $y \mapsto \widetilde{y}$ extends to a norm 1 operator from Y^{*} into W. By the definition of $\|\cdot\| \sim,\left\|\iota^{*} y^{*}\right\| \leq\left\|\widetilde{y}^{*}\right\|_{\sim}$ for all $y \in c_{00}\left(\mathrm{H}^{*}\right)$. Thus $\widetilde{y^{*}} \mapsto \iota^{*} y^{*}$ extends to a norm 1 operator $\widetilde{\iota}^{*}: W \rightarrow X^{*}$. Moreover, $\iota^{*} y^{*}=\widetilde{\iota^{*} y^{*}}$ for all $y^{*} \in W$.

The proof of the following claim is unchanged from [FOSZ09]; we omit it.

Claim 1.

(i) $\widetilde{\iota}^{*}$ is a quotient map. More precisely, if $x^{*} \in S_{X^{*}}$ and $y^{*} \in S_{Y^{*}}$ are such that $\iota^{*} y^{*}=x^{*}$, then $\widetilde{y^{*}} \in S_{W}$ and $\widetilde{\iota} y^{*}=x^{*}$.
(ii) If $\left(\widetilde{y_{n}^{*}}\right)_{n=1}^{\infty}$ is a subnormalized block sequence in W with respect to $\tilde{\mathrm{H}}$ such that $\left(\iota^{*} y_{n}^{*}\right)_{n=1}^{\infty}$ is basic with projection constant not more than \tilde{K} and $a=\inf _{n}\left\|\widetilde{\iota^{*}} \vec{y}_{n}^{*}\right\|>0$, then for all $\left(a_{n}\right)_{n=1}^{\infty} \in c_{00}$,

$$
\left\|\sum_{n=1}^{\infty} a_{n} \widetilde{\iota^{*}} \widetilde{y_{n}^{*}}\right\| \leq\left\|\sum_{n=1}^{\infty} a_{n} \widetilde{y_{n}^{*}}\right\|_{\sim} \leq \frac{3 \tilde{K}}{a} \sum_{n=1}^{\infty}\left\|\sum_{n=1}^{\infty} a_{n} \widetilde{\iota^{*} y_{n}^{*}}\right\| .
$$

Since the inclusion of W in $W_{V}^{S^{*}}\left(\widetilde{\mathrm{H}}^{*}\right)$ is of norm 1 , we can consider $\widetilde{\iota}^{*}$ as an operator from $W_{V}^{T^{*}}\left(\widetilde{H}^{*}\right)$ into X^{*}. We will prove the following.

Claim 2. There exists a constant $A>0$ such that for any $x^{*} \in S_{X^{*}}$, there exists $\widetilde{y^{*}} \in W_{\vee}^{S^{*}}\left(\widetilde{\mathrm{H}}{ }^{*}\right)$ with $\left\|\widetilde{y^{*}}\right\|_{\vee} \leq A$ such that $\left\|\widetilde{\iota^{*}} \widetilde{y}^{*}-x^{*}\right\|<1 / 2$.

This will show that $\widetilde{\iota^{*}}: W_{\vee}^{S^{*}}\left(\widetilde{\mathrm{H}^{*}}\right) \rightarrow X^{*}$ is a surjection. Then, $W_{\mathrm{V}}^{S^{*}}\left(\widetilde{\mathrm{H}^{*}}\right)$ is naturally the dual space of $\left(W^{(*)}\right)_{\wedge}^{S}\left(\widetilde{\mathrm{H}^{* *}}\right)$, and as such naturally has a weak*-topology determined by this predual. We then conclude the proof by arguing that ι^{*} is weak ${ }^{*}$-to-weak ${ }^{*}$-continuous, and is therefore the adjoint of $\underset{\sim}{a n}$ embedding of X into $\left(W^{(*)}\right)_{\wedge}^{S}\left(\widetilde{\mathrm{H}^{* *}}\right)$. As in part (1), the argument that τ^{*} is weak*-to-weak ${ }^{*}$-continuous goes through unchanged from [FOSZ09], so we omit it.

We now proceed with the proof of Claim 2, Fix $x^{*} \in S_{X^{*}}$ and $\left(f_{i}^{*}\right)_{i=1}^{\infty} \subset S_{X^{*}}$ such that for each $i \in \mathbb{N},\left\|f_{i}^{*}-P_{i}^{\mathrm{D}^{*}} f_{i}^{*}\right\|<\frac{\varepsilon_{i+1}}{2 K}$. Fix $\left(x_{i}^{*}\right)_{i=1}^{\infty} \subset X^{*}$ and $0=t_{0}<$ $t_{1}<\cdots$ according to Proposition 5.5 such that for each $i \in \mathbb{N}, t_{i} \in\left(s_{i-1}, s_{i}\right)$, $x^{*}=\sum_{i=1}^{\infty} x_{i}^{*}$, and either $\left\|x_{i}^{*}\right\| \leq \varepsilon_{i}$ or $\left\|x_{i}^{*}-P_{\left(t_{i-1}, i\right)}^{\mathrm{D}^{*}} x_{i}^{*}\right\| \leq \varepsilon_{i}\left\|x_{i}^{*}\right\|$.

If $\left\|x_{i+1}^{*}\right\|>\varepsilon_{i+1}$, let $w_{i}^{*}=\left\|x_{i+1}^{*}\right\|^{-1} x_{i+1}^{*}$ and $a_{i}=\left\|x_{i+1}^{*}\right\|$. If $\left\|x_{i+1}^{*}\right\|<$ ε_{i+1}, let $w_{i}^{*}=f_{s_{i}}^{*}$ and let $a_{i}=0$. Note that $\left\|w_{i}^{*}-P_{\left(t_{i}, t_{i+1}\right)}^{\mathrm{D}^{*}} w_{i}^{*}\right\|<\varepsilon_{i+1}$ for all $i \in \mathbb{N}$, so $\left(e_{t_{i}}^{*}\right)_{i=1}^{\infty} \lesssim\left(e_{t_{i+1}}^{*}\right)_{i=1}^{\infty} \lesssim C\left(w_{i}^{*}\right)_{i=1}^{\infty}$. By Proposition 5.4, there exists a sequence $\left(y_{i}^{*}\right)_{i=1}^{\infty} \subset B_{Y^{*}}$ with

$$
y_{i}^{*} \in \operatorname{span}\left\{C_{t_{i}, R}^{*} \cup\left(C_{j}^{*}\right)_{t_{i}<j<t_{i+1}} \cup C_{t_{i+1}, L}^{*}\right\}
$$

such that

$$
\left\|\iota^{*} y_{i}^{*}-w_{i}^{*}\right\| \leq 2 K \varepsilon_{i+1}+6 K \varepsilon_{i} \leq 4 K(K+1) \sum_{j=i}^{\infty} \varepsilon_{j}<\delta_{i}
$$

If $\left\|x_{1}^{*}\right\| \leq \varepsilon_{1}$, let $y_{0}^{*}=0$. Otherwise, we use Proposition 5.4 again to find $y_{0}^{*} \in Y^{*}$ with $\left\|y_{0}^{*}\right\|<K+1$ such that

$$
y_{0}^{*} \in \operatorname{span}\left\{\left(C_{i}^{*}\right)_{i<t_{1}} \cup C_{t_{1}, L}^{*}\right\}
$$

and

$$
\left\|\iota^{*} y_{0}^{*}-x_{1}^{*}\right\|<4 K \varepsilon_{1}\left\|x_{1}^{*}\right\|<4 K(K+1) \varepsilon_{1} .
$$

Set $w^{*}=x_{1}^{*}+\sum_{i=1}^{\infty} a_{i} w_{i}^{*}$. Note that this series converges and

$$
\left\|x^{*}-w^{*}\right\| \leq \sum_{i=2}^{\infty} \varepsilon_{i}<1 / 4
$$

By our choice of $\left(\delta_{i}\right)_{i=1}^{\infty}$, and since $\left\|\widetilde{\iota^{*}} \widetilde{y}_{i}^{*}-w_{i}^{*}\right\|<\delta_{i}$ for all $i \in \mathbb{N},\left(\widetilde{\iota^{*}} \tilde{y}_{i}^{*}\right)_{i=1}^{\infty}$ is basic with projection constant at most $2 K$ and equivalent to $\left(w_{i}^{*}\right)_{i=1}^{\infty}$. Furthermore,

$$
\inf _{i}\left\|\widetilde{\iota^{*}} \widetilde{y_{i}^{*}}\right\| \geq \inf _{i}\left(\left\|w_{i}^{*}\right\|-\delta_{i}\right)>6 / 7
$$

By Claim 1,

$$
\left\|\sum_{i=1}^{\infty} c_{i} \widetilde{\iota^{*}} \widetilde{y_{i}^{*}}\right\| \leq\left\|\sum_{i=1}^{\infty} \widetilde{y_{i}^{*}}\right\| \leq 7 K\left\|\sum_{i=1}^{\infty} c_{i} \widetilde{\iota^{*}} \widetilde{y_{i}^{*}}\right\|
$$

for any $\left(c_{i}\right)_{i=1}^{\infty} \in c_{00}$. Thus $\left(\widetilde{y_{i}^{*}}\right)_{i=1}^{\infty}$ is basic, equivalent to $\left(w_{i}^{*}\right)_{i=1}^{\infty}$, and $\sum_{i=1}^{\infty} a_{i} \tilde{y}_{i}^{*}$ converges.

We recall that we have fixed $\theta \in\left(0, \theta_{0}\right]$ and denoted $\vartheta=\theta / 4, T=T_{q, \theta}^{*}$ (resp. $T=U_{q, \theta}^{*}$) and $S=T_{q, \vartheta}^{*}\left(\right.$ resp. $S=U_{q, \vartheta}^{*}$).

Let $\widetilde{y^{*}}=y_{0}^{*}+\sum_{i=1}^{\infty} a_{i} \widetilde{y_{i}^{*}}$. We have

$$
\begin{aligned}
\left\|\widetilde{\iota^{*}} \widetilde{y^{*}}-w^{*}\right\| & \leq\left\|\widetilde{\iota^{*}} \tilde{y}_{0}^{*}-x_{1}^{*}\right\|+\sum_{i=1}^{\infty}\left|a_{i}\right|\left\|\widetilde{\iota^{*}} \tilde{y}_{i}^{*}-w_{i}^{*}\right\| \\
& \leq 10 K(K+1) \sum_{i=1}^{\infty} \varepsilon_{i}<1 / 4
\end{aligned}
$$

Thus $\left\|\widetilde{\iota^{*}} \widetilde{y^{*}}-x^{*}\right\|<1 / 2$.
We next prove the norm estimate. Fix $1 \leq n_{0}<n_{1}<\cdots$. Note that $\widetilde{y_{i}^{*}} \in \tilde{H}_{i} \oplus \tilde{H}_{i+1}$ and $\widetilde{y_{0}^{*}} \in \tilde{H}_{1}$. It follows that

$$
\begin{aligned}
\left\|\sum_{i=1}^{\infty}\right\| P_{\left[n_{i-1}, n_{i}\right)}^{\widetilde{\mathrm{H}^{*}}} \widetilde{y^{*}}\left\|\sim e_{n_{i-1}}^{*}\right\|_{S^{*}} \leq & \left\|\widetilde{y_{0}^{*}}\right\|_{\sim}+\left\|\sum_{i=1}^{\infty} a_{n_{i-1}-1} e_{n_{i-1}}\right\|_{S^{*}} \\
& +\left\|\sum_{i=1}^{\infty}\right\| \sum_{j=n_{i-1}}^{n_{i}-1} a_{j} \widetilde{y_{j}^{*}}\left\|_{\sim} e_{n_{i-1}}\right\|_{S^{*}}
\end{aligned}
$$

where we put $a_{0}=0$ if $n_{0}=1$. This is because $\widetilde{y_{0}^{*}}$ may have non-zero image only under the first projection $P_{\left[n_{0}, n_{1}\right)}^{\widetilde{\mathrm{H}^{*}}}$, which accounts for the first term on the right. If $j \in\left[n_{i-1}, n_{i}\right), \widetilde{y_{i}^{*}}$ may have non-zero image only under the projection $P_{\left[n_{i-1}, n_{i}\right)}^{\widetilde{\mathrm{H}^{*}}}$. For $i \geq 1$, $\tilde{w}_{n_{i-1}-1}$ may have non-zero image under either $P_{\left[n_{i-1}, n_{i}\right)}^{\widetilde{\mathrm{H}^{*}}}$ or $P_{\left[n_{i}, n_{i+1}\right)}^{\widetilde{\mathrm{H}^{*}}}$. The images $P_{\left[n_{i}, n_{i+1}\right)}^{\widetilde{\mathrm{H}^{*}}} \widetilde{y_{n_{i-1}-1}^{*}}$ account for the second term on the right.

We first compute, applying Lemma 4.7 for the second line,

$$
\left\|\sum_{i=1}^{\infty} a_{n_{i-1}-1} e_{n_{i-1}}\right\|_{S^{*}} \leq\left\|\sum_{i=1}^{\infty} a_{i} e_{i+1}\right\|_{S^{*}} \leq\left\|\sum_{i=1}^{\infty} a_{i} e_{t_{i}}\right\|_{S^{*}} \leq\left|a_{1}\right|+\left\|\sum_{i=2}^{\infty} a_{i} e_{t_{i}}\right\|_{S^{*}}
$$

$$
\begin{aligned}
& \leq K+1+9\left\|\sum_{i=2}^{\infty} a_{i} e_{t_{i-1}}\right\|_{T^{*}} \leq K+1+9 C\left\|\sum_{i=2}^{\infty} a_{i} w_{i}^{*}\right\| \\
& \leq(9 C+1)(K+1)+9 C\left\|\sum_{i=1}^{\infty} a_{i} w_{i}^{*}\right\| \\
& =(9 C+1)(K+1)+9 C\left\|w^{*}-x_{1}^{*}\right\| \\
& \leq(9 C+1)(K+1)+9 C\left[\left\|x^{*}\right\|+\left\|x_{1}^{*}\right\|+\left\|x^{*}-w^{*}\right\|\right] \\
& <(9 C+1)(K+1)+9 C(K+3) .
\end{aligned}
$$

For each $i \in \mathbb{N}$, let

$$
h_{i}^{*}=\sum_{j=n_{i-1}}^{n_{i}-1} a_{j} \widetilde{y_{j}^{*}} \quad \text { and } \quad g_{i}^{*}=\sum_{j=n_{i-1}}^{n_{i}-1} a_{j} w_{j}^{*} .
$$

First note that $\left\|h_{i}^{*}\right\|_{\sim} \leq 7 K\|\overbrace{}^{*} h_{i}^{*}\|$. Next,

$$
\begin{aligned}
\left\|g_{i}^{*}-P_{\left(t_{n_{i-1}}, t_{n}\right)}^{\mathrm{D}^{*}} g_{i}^{*}\right\| & \leq \sum_{j=n_{i-1}}^{r_{i}-1}\left|a_{j}\right| 2 K\left\|w_{j}^{*}-P_{\left(t_{i}, t_{i+1}\right)}^{\mathrm{D}^{*}}\right\| \\
& <2 K(K+1) \sum_{j=r_{i-1}}^{\infty} \varepsilon_{j}<\delta_{i}^{2} .
\end{aligned}
$$

If $\left\|g_{i}^{*}\right\|>\delta_{i}$, let $u_{i}^{*}=\left\|g_{i}^{*}\right\|^{-1} g_{i}^{*}$ and $b_{i}=\left\|g_{i}^{*}\right\|$. Otherwise let $u_{i}^{*}=y_{n_{i-1}}$ and $b_{i}=0$. Then $\left(u_{i}^{*}\right)_{i=1}^{\infty} \subset S_{X^{*}}$ is such that

$$
\left\|u_{i}^{*}-P_{\left(t_{n_{i-1}}, t_{n_{i}}\right)}^{\mathrm{D}_{i}^{*}} u_{i}^{*}\right\|<\delta_{i} .
$$

This means $\left(u_{i}^{*}\right)_{i=1}^{\infty}$ is a basic sequence with projection constant not more than $2 K$. Then

$$
\begin{aligned}
\left\|\sum_{i=1}^{\infty}\right\| h_{i}^{*}\left\|_{\sim} e_{n_{i-1}}\right\|_{S^{*}} & \leq\left\|\sum_{i=1}^{\infty}\right\| h_{i}^{*}\left\|_{\sim} e_{n_{i-1}}\right\|_{T^{*}} \leq 7 K\left\|\sum_{i=1}^{\infty}\right\| \widetilde{\iota^{*}} h_{i}^{*}\left\|e_{n_{i-1}}\right\|_{T^{*}} \\
& \leq 7 K\left\|\sum_{i=1}^{\infty}\right\| g_{i}^{*}\left\|e_{n_{i-1}}\right\|_{T^{*}}+7 K \Delta \\
& \leq 7 K\left\|\sum_{i=1}^{\infty} b_{i} e_{n_{i-1}}\right\|_{T^{*}}+14 K \Delta \\
& \leq 7 K\left\|\sum_{i=1}^{\infty} b_{i} e_{t_{n_{i-1}}}\right\|_{T^{*}}+14 K \Delta
\end{aligned}
$$

$$
\begin{aligned}
& \leq 7 C K\left\|\sum_{i=1}^{\infty} b_{i} u_{i}^{*}\right\|+14 K \Delta \\
& \leq 7 C K\left\|\sum_{i=n_{0}}^{\infty} a_{i} w_{i}^{*}\right\|+14 K \Delta(C+1) \\
& \leq 14 C K^{2}\left\|\sum_{i=1}^{\infty} a_{i} w_{i}^{*}\right\|+14 K \Delta(C+1) \\
& \leq 14 C K^{2}(K+3)+14 K \Delta(C+1)=: A
\end{aligned}
$$

This finishes the proof that $\|\widetilde{y}\|_{\wedge} \leq A$.
6. Small universal families. The final step, as in [FOSZ09, is to use the complementably universal space for Banach spaces with an FDD built by Schechtman [575], who proved the existence of a Banach space W with bimonotone FDD J (where J is a sequence of finite-dimensional normed spaces which is dense in the space of all finite-dimensional normed spaces for the Banach-Mazur distance) such that if Z is any Banach space with bimonotone FDD H, then there exist a sequence of integers $m_{1}<m_{2}<\cdots$ and a bounded, linear operator $A: Z \rightarrow W$ such that $A\left(H_{n}\right)=J_{m_{n}}$ for all $n \in \mathbb{N}$ and

$$
\forall z \in Z \quad \frac{1}{2}\|z\|_{Z} \leq\|A z\|_{W} \leq 2\|z\|_{Z}
$$

and such that $A(Z)=\overline{\operatorname{span}}\left\{J_{m_{n}}: n \in \mathbb{N}\right\}$ is 1-complemented in W via the $\operatorname{map} P: w \mapsto \sum_{n=1}^{\infty} P_{m_{n}}^{\mathrm{J}} w$.

For $M=\left(m_{n}\right)_{n=1}^{\infty} \in[\mathbb{N}]^{\omega}, 1 \leq q<\infty$, and $0<\theta<1$, we refer to Subsection 4.1 for the definition of the spaces $T_{M, q, \theta}$ and $U_{M, q, \theta}$. Then we have the following.

Proposition 6.1. Let Z be a Banach space with $F D D \mathrm{H}$. Let $A: Z \rightarrow W$ and $m_{1}<m_{2}<\cdots$ be the operator and the sequence given by Schechtman's theorem exactly as in the introductory paragraph. Fix $1<p \leq \infty$ and let q be its conjugate exponent. If (T, U) is either of the pairs
(i) $\left(T_{q, \theta}^{*}, T_{M, q, \theta}^{*}\right)$,
(ii) $\left(U_{q, \theta}^{*}, U_{M, q, \theta}^{*}\right)$,
then $A: c_{00}(\mathrm{H}) \rightarrow c_{00}(\mathrm{~J})$ extends to an isomorphic embedding $\tilde{A}: Z_{\wedge}^{T}(\mathrm{H}) \rightarrow$ $W_{\wedge}^{U}(\mathrm{~J})$, the range of which is still 1-complemented in $W_{\wedge}^{U}(\mathrm{~J})$ by P.

Proof. Let (T, U) be one of the indicated pairs. Let $\left(e_{n}\right)_{n=1}^{\infty}$ denote the canonical basis of c_{00}. Note that $\left(e_{n}\right)_{n=1}^{\infty} \subset T$ is isometrically equivalent to $\left(e_{m_{n}}\right)_{n=1}^{\infty} \subset U$.

Fix $z \in c_{00}(\mathrm{H})$. Fix intervals $I_{1}<I_{2}<\cdots$ such that $\mathbb{N}=\bigcup_{n=1}^{\infty} I_{n}$. Let $J_{n}=\left[m_{\min I_{n}}, m_{\min I_{n+1}}\right)$. Let $J_{0}=\left[1, m_{1}\right)$, which is empty if $m_{1}=1$. Note
that $J_{0} A z=0$. Since $A I_{n} z=J_{n} A z$ for all $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\left\|\sum_{n=1}^{\infty}\right\| I_{n} z\left\|_{Z} e_{\min I_{n}}\right\|_{T} & =\left\|\sum_{n=1}^{\infty}\right\| I_{n} z\left\|_{Z} e_{m_{\min I_{n}}}\right\|_{U}=\left\|\sum_{n=1}^{\infty}\right\| I_{n} z\left\|_{Z} e_{\min J_{n}}\right\|_{U} \\
& \geq \frac{1}{2}\left\|\sum_{n=0}^{\infty}\right\| J_{n} A z\left\|_{Y} e_{\min J_{n}}\right\|_{U} \geq \frac{1}{2}[A z]_{\wedge}
\end{aligned}
$$

Taking the infimum over such $\left(I_{n}\right)_{n=1}^{\infty}$ yields $[z]_{\wedge} \geq \frac{1}{2}[A z]_{\wedge}$. Now,

$$
\begin{aligned}
\|z\|_{\wedge} & =\inf \left\{\sum_{i=1}^{n}\left[z_{i}\right]_{\wedge}: n \in \mathbb{N}, z_{i} \in c_{00}(\mathrm{H}), z=\sum_{i=1}^{n} z_{i}\right\} \\
& \geq \frac{1}{2} \inf \left\{\sum_{i=1}^{n}\left[A z_{i}\right]_{\wedge}: n \in \mathbb{N}, z_{i} \in c_{00}(\mathrm{H}), z=\sum_{i=1}^{n} z_{i}\right\} \\
& \geq \frac{1}{2} \inf \left\{\sum_{i=1}^{n}\left[w_{i}\right]_{\wedge}: n \in \mathbb{N}, w_{i} \in c_{00}(\mathrm{~J}), A z=\sum_{i=1}^{n} w_{i}\right\}=\frac{1}{2}\|A z\|_{\wedge}
\end{aligned}
$$

So A extends to a bounded operator $\tilde{A}: Z_{\Lambda}^{T}(\mathrm{H}) \rightarrow W_{\wedge}^{U}(\mathrm{~J})$ of norm at most 2 .
Let $P: c_{00}(\mathrm{~J}) \rightarrow c_{00}(\mathrm{~J})$ be given by $P w=\sum_{n=1}^{\infty} P_{m_{n}}^{\mathrm{J}} w$. Fix $w \in c_{00}(\mathrm{~J})$ and intervals $I_{1}<I_{2}<\cdots$ such that $\mathbb{N}=\bigcup_{n=1}^{\infty} I_{n}$. Then

$$
\left\|\sum_{n=1}^{\infty}\right\| I_{n} P w\left\|_{W} e_{\min I_{n}}\right\|_{U}=\left\|\sum_{n=1}^{\infty}\right\| P I_{n} w\left\|_{W} e_{\min I_{n}}\right\|_{U} \leq\left\|\sum_{n=1}^{\infty}\right\| I_{n} w\left\|_{W} e_{\min I_{n}}\right\|_{U}
$$

Taking the infimum over such $\left(I_{n}\right)_{n=1}^{\infty}$ shows that $[P w]_{\wedge} \leq[w]_{\wedge}$ for all $w \in c_{00}(J)$. From this, the equality $P A=A$ and the injectivity of A, it follows that for $z \in c_{00}(\mathrm{H})$,

$$
\begin{aligned}
\|A z\|_{\wedge} & =\inf \left\{\sum_{i=1}^{n}\left[w_{i}\right]_{\wedge}: n \in \mathbb{N}, w_{i} \in c_{00}(\mathrm{~J}), A z=\sum_{i=1}^{n} w_{i}\right\} \\
& \geq \inf \left\{\sum_{i=1}^{n}\left[P w_{i}\right]_{\wedge}: n \in \mathbb{N}, w_{i} \in c_{00}(\mathrm{~J}), A z=\sum_{i=1}^{n} w_{i}\right\} \\
& =\inf \left\{\sum_{i=1}^{n}\left[w_{i}^{\prime}\right]_{\wedge}: n \in \mathbb{N}, w_{i} \in c_{00}(\mathrm{~J}) \cap P(W), A z=\sum_{i=1}^{n} w_{i}^{\prime}\right\} \\
& \geq \inf \left\{\sum_{i=1}^{n}\left[A z_{i}\right]_{\wedge}: n \in \mathbb{N}, z_{i} \in c_{00}(\mathrm{H}), z=\sum_{i=1}^{n} z_{i}\right\}
\end{aligned}
$$

The other inequality being obvious, we get

$$
\|A z\|_{\wedge}=\inf \left\{\sum_{i=1}^{n}\left[A z_{i}\right]_{\wedge}: n \in \mathbb{N}, z_{i} \in c_{00}(\mathrm{H}), z=\sum_{i=1}^{n} z_{i}\right\}
$$

With $z \in c_{00}(\mathrm{H})$ still fixed, choose intervals $J_{1}<J_{2}<\cdots$ such that $\bigcup_{n=1}^{\infty} J_{n}=\mathbb{N}$. Let

$$
N=\left\{n_{1}<n_{2}<\cdots\right\}=\left\{n \in \mathbb{N}: J_{n} \cap M \neq \emptyset\right\} .
$$

For $n \in N$, let $J_{n}^{\prime}=\left[\min J_{n}, \min \left(J_{n} \cap M\right)\right)$ and let $J_{n}^{\prime \prime}=\left[\min \left(J_{n} \cap M\right)\right.$, $\left.\min J_{n+1}\right)$. Note that $J_{n}^{\prime}=\emptyset$ if $\min J_{n}=\min \left(J_{n} \cap M\right)$. For $n \in \mathbb{N} \backslash N$, let $J_{n}^{\prime}=\emptyset$ and let $J_{n}^{\prime \prime}=J_{n}$. For all $n \in \mathbb{N}$, let $K_{n}=J_{n}^{\prime \prime} \cup J_{n+1}^{\prime}$ and note that $\bigcup_{n=n_{1}}^{\infty} K_{n}=\left[m_{1}, \infty\right)$. Note also that $\min K_{n} \geq \min J_{n}$ and $K_{n} A z=J_{n} A z$ for all $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, define $I_{n}=\left\{i \in \mathbb{N}: m_{i} \in K_{n}\right\}$ and note that $I_{1}<I_{2}<\cdots, \mathbb{N}=\bigcup_{n=1}^{\infty} I_{n}$, and $m_{\min } I_{n}=\min K_{n}$ for all $n \in \mathbb{N}$. Moreover, $A I_{n} z=K_{n} A z$ for all $n \in \mathbb{N}$. Therefore

$$
\begin{aligned}
{[z]_{\wedge} } & \leq\left\|\sum_{n=1}^{\infty}\right\| I_{n} z\left\|_{Z} e_{\min I_{n}}\right\|_{T}=\left\|\sum_{n=1}^{\infty}\right\| I_{n} z\left\|_{Z} e_{m_{\min I_{n}}}\right\|_{U}=\left\|\sum_{n=1}^{\infty}\right\| I_{n} z\left\|_{Z} e_{\min K_{n}}\right\|_{U} \\
& \leq 2\left\|\sum_{n=1}^{\infty}\right\| K_{n} A z\left\|_{W} e_{\min K_{n}}\right\|_{U}=2\left\|\sum_{n=1}^{\infty}\right\| J_{n} A z\left\|_{W} e_{\min K_{n}}\right\|_{U}
\end{aligned}
$$

Taking the infimum over such $\left(J_{n}\right)_{n=1}^{\infty}$ yields $[z]_{\wedge} \leq 2[A z]_{\wedge}$ for any $z \in c_{00}(\mathrm{H})$. Therefore,

$$
\begin{aligned}
\|z\|_{\wedge} & =\inf \left\{\sum_{i=1}^{n}\left[z_{i}\right]_{\wedge}: n \in \mathbb{N}, z_{i} \in c_{00}(\mathrm{H}), z=\sum_{i=1}^{n} z_{i}\right\} \\
& \leq 2 \inf \left\{\sum_{i=1}^{n}\left[A z_{i}\right]_{\wedge}: n \in \mathbb{N}, z_{i} \in c_{00}(\mathrm{H}), z=\sum_{i=1}^{n}\right\}=2\|A z\|_{\wedge} .
\end{aligned}
$$

This shows that \tilde{A} is an isomorphic embedding of $Z_{\wedge}^{T}(\mathrm{H})$ into $W_{\wedge}^{U}(\mathrm{~J})$.
Finally, note that we can essentially repeat the argument for $\|A z\|_{\wedge}$ to show that

$$
\|P w\|_{\wedge}=\inf \left\{\sum_{i=1}^{n}\left[P w_{i}\right]_{\wedge}: n \in \mathbb{N}, w_{i} \in c_{00}(J), w=\sum_{i=1}^{n} w_{i}\right\} .
$$

We then use the inequality $[P w]_{\wedge} \leq[w]_{\wedge}$ to deduce that P is still a norm 1 projection onto the closure of $c_{00}(\mathrm{~K})$ in $Z_{\wedge}^{U}(\mathrm{~J})$, where $K_{n}=J_{m_{n}}$.

We can now conclude the construction of our small universal families.
Theorem 6.2. Fix $1<p \leq \infty$ and let q be its conjugate exponent. Let X be a separable Banach space.
(i) X has A_{p} if and only if there exist $\theta \in(0,1)$ and $M \in[\mathbb{N}]^{\omega}$ such that X is isomorphic to a subspace of $W_{\wedge}^{T_{M, q, \theta}^{*}}(\mathrm{~J})$ if and only if there exist $\theta \in(0,1)$ and $M \in[\mathbb{N}]^{\omega}$ such that X is isomorphic to a quotient of $W_{\wedge}^{T_{M, q, \theta}^{*}}(\mathrm{~J})$.
(ii) X has N_{p} if and only if there exist $\theta \in(0,1)$ and $M \in[\mathbb{N}]^{\omega}$ such that X is isomorphic to a subspace of $W_{\wedge}^{U_{M, q, \theta}^{*}}(\mathrm{~J})$ if and only if there exist $\theta \in(0,1)$ and $M \in[\mathbb{N}]^{\omega}$ such that X is isomorphic to a quotient of $W_{\wedge}^{U_{M, q, \theta}^{*}}(\mathrm{~J})$.
Proof. We only detail the proof for A_{p}, as the argument for N_{p} is similar. So assume that X is a separable Banach space with A_{p}. By Theorem 5.1, there exist $\theta \in(0,1)$ and Banach spaces Z, Y with FDDs F, H, respectively, such that X is isomorphic to a subspace of $Z_{\Lambda}^{T_{q, \theta}^{*}}(\mathrm{~F})$, and to a quotient of $Y_{\wedge}^{T_{q, \theta}^{*}}(\mathrm{H})$. But Proposition 6.1 asserts that there exist $M, N \in[\mathbb{N}]^{\omega}$ such that $Z_{\wedge}^{T_{q, \theta}^{*}}(\mathrm{~F})$ is isomorphic to a complemented subspace of $W_{\wedge}^{T_{M, q, \theta}^{*}}(\mathrm{~J})$ and $Y_{\wedge}^{T_{q, \theta}^{*}}(\mathrm{H})$ is isomorphic to a complemented subspace of $W_{\wedge}^{T_{\Lambda, q, \theta}^{*}}(\mathrm{~J})$. So X is isomorphic to a subspace of $W_{\wedge}^{T_{M, q, \theta}^{*}}(\mathrm{~J})$ and to a quotient of $W_{\wedge}^{T_{N, q, \theta}^{*}}(\mathrm{~J})$.

For the remaining implications we recall (Proposition 4.5) that $T_{M, q, \theta}^{*}$ has A_{p} and that A_{p} passes to isomorphic quotients and subspaces.
7. Non-existence of a universal space. We conclude this article by showing that our result on small universal families is essentially optimal.

Theorem 7.1. Fix $1<p \leq \infty$. If U is any Banach space with N_{p}, then there exists a Banach space X with A_{p} such that X is not isomorphic to any subspace of any quotient of U. More precisely, if q is the conjugate exponent of p, then there exists $\theta \in(0,1)$ such that $T_{q, \theta}^{*}$ is not isomorphic to any subspace of any quotient of U.

We first recall the Schreier families, \mathcal{S}_{l}, for $k=0,1, \ldots$ We let

$$
\begin{aligned}
\mathcal{S}_{0} & =\{\emptyset\} \cup\{(n): n \in \mathbb{N}\} \\
\mathcal{S}_{k+1} & =\{\emptyset\} \cup\left\{\bigcup_{i=1}^{n} E_{i}: n \in \mathbb{N}, n \leq E_{1}<\cdots<E_{n}, E_{i} \neq \emptyset, E_{i} \in \mathcal{S}_{k}\right\} .
\end{aligned}
$$

We note the following associative property: For all $l, m \in \mathbb{N}$,

$$
\mathcal{S}_{l+m}=\{\emptyset\} \cup\left\{\bigcup_{i=1}^{n} E_{i}: E_{i} \neq \emptyset, E_{i} \in \mathcal{S}_{l},\left(\min E_{i}\right)_{i=1}^{n} \in \mathcal{S}_{m}\right\}
$$

We let $\operatorname{MAX}\left(\mathcal{S}_{k}\right)$ denote the members of \mathcal{S}_{k} which are maximal with respect to inclusion.

For each $k=0,1, \ldots$ and each $F \in \operatorname{MAX}\left(\mathcal{S}_{k}\right)$, we define $\mathbb{S}_{F}^{k}: \mathbb{N} \rightarrow[0,1]$ by induction on k. We first set

$$
\mathbb{S}_{(i)}^{0}(j)= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

Next, suppose that \mathbb{S}_{E}^{k} has been defined for each $E \in \operatorname{MAX}\left(\mathcal{S}_{k}\right)$. Fix $F \in$ $\operatorname{MAX}\left(\mathcal{S}_{k+1}\right)$. If $F=\bigcup_{i=1}^{n} F_{i}$ for $n \in \mathbb{N}$ and $n \leq F_{1}<\cdots<F_{n}, F_{i} \in \mathcal{S}_{k}$, then it must be the case that $n=\min F_{1}$ and $F_{i} \in \operatorname{MAX}\left(\mathcal{S}_{k}\right)$ for each $1 \leq i \leq n$. We then define

$$
\mathbb{S}_{F}^{k+1}(j)= \begin{cases}\frac{1}{n} \mathbb{S}_{F_{i}}^{k}(j), & j \in F_{i}, \\ 0, & j \in \mathbb{N} \backslash F\end{cases}
$$

It is easily checked that for $F \in \operatorname{MAX}\left(\mathcal{S}_{k}\right), \sum_{j \in \mathbb{N}} \mathbb{S}_{F}^{k}(j)=\sum_{j \in F} \mathbb{S}_{F}^{k}(j)=1$.
For a Banach space $X, 1 \leq p \leq \infty, l \in \mathbb{N}$, and $C \in[0, \infty]$, we define yet another two-player game. The confusingly named Player II chooses $m_{1} \in \mathbb{N}$. Player I chooses a weak neighborhood U_{1} of 0 in X, and Player II chooses $x_{1} \in U_{1} \cap B_{X}$. This is the first round of the game. If (m_{1}) is maximal in \mathcal{S}_{l}, the game terminates. Otherwise Player II chooses $m_{2} \in \mathbb{N}$ such that $m_{1}<m_{2}$ and $\left(m_{1}, m_{2}\right) \in \mathcal{S}_{l}$. Player I then chooses a weak neighborhood U_{2} of 0 in X, and Player II chooses $x_{2} \in U_{2} \cap B_{X}$. Play continues in this way until $m_{1}<\cdots<m_{n}$ are chosen such that $F:=\left(m_{i}\right)_{i=1}^{n} \in \operatorname{MAX}\left(\mathcal{S}_{l}\right)$ and $x_{1}, \ldots, x_{n} \in B_{X}$ are chosen. Player I wins if

$$
\left\|\sum_{i=1}^{n} \mathbb{S}_{F}^{l}\left(m_{i}\right)^{1 / p} x_{i}\right\| \leq C
$$

and Player II wins otherwise. We call this the $\Phi(l, p, C)$ game on X. We let $\phi_{l}(X, p)$ be the infimum of $C \in[0, \infty]$ such that Player I has a winning strategy in the $\Phi(l, p, C)$ game on X. These values need not be finite. Note also that $\phi_{l}(X, p) \geq 1$.

Proposition 7.2. Fix $1<p \leq \infty$.
(i) For any Banach space $X, \phi_{1}(X, p)<\infty$ if and only if X has N_{p}.
(ii) For any Banach space $X, \phi_{k+l}(X, p) \leq \phi_{k}(X, p) \phi_{l}(X, p)$ for all $k, l \in \mathbb{N}$.
(iii) For Banach spaces X, Y and $l \in \mathbb{N}, \phi_{l}(X, p) \leq d_{\mathrm{BM}}(X, Y) \phi_{l}(Y, p)$.
(iv) For a Banach space X and a subspace Y of $X, \phi_{l}(Y, p) \leq \phi_{l}(X, p)$ for all $l \in \mathbb{N}$.
(v) For a Banach space X and a subspace Y of $X, \phi_{l}(X / Y, p) \leq 3 \phi_{l}(X, p)$ for all $l \in \mathbb{N}$.
Proof. (i) Observe that for the $\Phi(1, p, C)$ game, a set $\left(m_{1}, \ldots, m_{n}\right)$ is maximal in \mathcal{S}_{1} if and only if $n=m_{1}$. Therefore in the $\Phi(1, p, C)$ game, only the initial choice of m_{1} affects the game, since it determines how many rounds the game will have. The later values of $m_{2}, \ldots, m_{m_{1}}$ do not matter in the $l=1$ case. Moreover, if $F=\left(m_{i}\right)_{i=1}^{n} \in \operatorname{MAX}\left(\mathcal{S}_{1}\right)$, then $n=m_{1}$ and $\mathbb{S}_{F}^{1}\left(m_{i}\right)^{1 / p}=m_{1}^{-1 / p}$ for all $1 \leq i \leq m_{1}$. Therefore the winning condition for Player I at the end of the $\Phi(1, p, C)$ game with initial choice m_{1} is that $\left\|\sum_{i=1}^{m_{1}} x_{i}\right\| \leq C m_{1}^{1 / p}$.

We will argue that $\mathrm{n}_{p}(X)=\phi_{1}(X, p)$, which yields (i).

If $\mathrm{n}_{p}(X)<\infty$, then for any $C>\mathrm{n}_{p}(X)$ and any $n \in \mathbb{N}$, Player I has a winning strategy χ_{n} in the $N(n, p, C)$ game. We will show that Player I has a winning strategy in the $\Phi(1, p, C)$ game. If Player II begins the $\Phi(1, p, C)$ game with the choice m_{1}, then Player I plays the rest of the game according to $\chi_{m_{1}}$, ignoring all choices of $m_{2}, \ldots, m_{m_{1}}$. It follows from our initial observation that this is a winning strategy for Player I in the $\Phi(1, p, C)$ game. Therefore $\phi_{1}(X, p) \leq \mathrm{n}_{p}(X)$.

Conversely, if $\phi_{1}(X, p)<\infty$, then for any $C>\phi_{1}(X, p)$, Player I has a winning strategy χ in the $\Phi(1, p, C)$ game. We will show that for any $n \in \mathbb{N}$, Player I has a winning strategy in the $N(n, p, C)$ game. Note that the $\Phi(1, p, C)$ game includes integers m_{i}, while the $N(n, p, C)$ game does not, so we rather than Player II will decide the values of the m_{i} 's. We choose $m_{1}=n$ and $m_{i+1}=n+i$ for $1 \leq i<n$. This results in a game with $m_{1}=n$ rounds, as noted in the preceding paragraph. It follows from the fact that χ is a winning strategy for the $\Phi(1, p, C)$ game that this strategy is a winning strategy in the $N(n, p, C)$ game. Therefore $\mathrm{n}_{p}(X) \leq \phi_{1}(X, p)$.
(ii) Assume, as we may, that $\phi_{k}(X, p), \phi_{l}(X, p)<\infty$. Fix $C>\phi_{k}(X, p)$ and $C^{\prime}>\phi_{l}(X, p)$ and winning strategies χ_{k}, χ_{l} for Player I in the $\Phi(k, p, C)$, $\Phi\left(l, p, C^{\prime}\right)$ games, respectively. Let $n_{0}=0$ and recursively choose

$$
\begin{aligned}
& m_{1}, U_{1} \cap \frac{1}{2^{1}} V_{1}, x_{1}, m_{2}, U_{2} \cap \frac{1}{2^{2}} V_{1}, x_{2}, m_{3}, \ldots, x_{n_{1}} \\
& m_{n_{1}+1}, U_{n_{1}+1} \cap \frac{1}{2^{1}} V_{2}, x_{n_{1}+1}, m_{n_{1}+2}, \ldots, x_{n_{2}} \\
& \vdots \\
& m_{n_{r-1}+1}, U_{n_{r-1}+1} \cap \frac{1}{2^{1}} V_{r}, x_{n_{r-1}+1}, m_{n_{r-1}+2}, \ldots, x_{n_{r}}
\end{aligned}
$$

Here, m_{i} and x_{i} are the choices of Player II in the $\Phi\left(k+l, p, C C^{\prime}\right)$ game, for which we still have to describe the strategy of Player I for choosing the weak-open sets $U_{n_{i-1}+j} \cap \frac{1}{2^{j}} V_{i}$. For a given $1 \leq i \leq r$, the choices

$$
m_{n_{i-1}+1}, U_{n_{i-1}+1} \cap \frac{1}{2^{1}} V_{i}, x_{n_{i-1}+1}, m_{n_{i-1}+2}, \ldots, x_{n_{i}}
$$

are made by Player I as follows. Each set $U_{n_{i-1}+s}$ is chosen according to the strategy χ_{k} and we proceed until $F_{i}:=\left(m_{j}\right)_{j=n_{i-1}+1}^{n_{i}}$ is maximal in \mathcal{S}_{k}. This implies that

$$
y_{i}:=\frac{1}{C} \sum_{j=n_{i-1}+1}^{n_{i}} \mathbb{S}_{F_{i}}^{k}\left(j-n_{1}-\cdots-n_{i-1}\right)^{1 / p} x_{j} \in B_{X}
$$

Each set V_{i} is chosen to be a weak neighborhood of 0 which is a convex symmetric subset of W_{i}, where the set W_{i} is chosen according to the strategy
χ_{l} in the $\Phi\left(l, p, C^{\prime}\right)$ game where the choices proceed as

$$
m_{1}, W_{1}, y_{1}, m_{n_{1}+1}, W_{2}, y_{2}, \ldots, W_{r}, y_{r}
$$

Note that our construction implies that $y_{i} \in W_{i}$, which allows the strategy χ_{l} to apply.

This game terminates when $G:=\left(m_{n_{i-1}+1}\right)_{i=1}^{r} \in \operatorname{MAX}\left(\mathcal{S}_{l}\right)$. Then $F:=$ $\bigcup_{i=1}^{r} F_{i}=\left(m_{i}\right)_{i=1}^{n_{r}} \in \operatorname{MAX}\left(\mathcal{S}_{k+l}\right)$. Moreover,

$$
\begin{aligned}
& \left\|\sum_{i=1}^{n_{r}} \mathbb{S}_{F}^{k+l}(i)^{1 / p} x_{i}\right\| \\
& \quad=C\left\|\sum_{i=1}^{r} \mathbb{S}_{G}^{l}(i)^{1 / p} \frac{1}{C} \sum_{j=n_{i-1}+1}^{n_{i}} \mathbb{S}_{F_{i}}^{k}\left(j-n_{1}-\cdots-n_{i-1}\right)^{1 / p} x_{j}\right\| \leq C C^{\prime}
\end{aligned}
$$

Player I playing in this way defines a winning strategy in the $\Phi\left(k+l, p, C C^{\prime}\right)$ game. Since $C>\phi_{k}(X, p)$ and $C^{\prime}>\phi_{l}(X, p)$ were arbitrary, this yields (ii).

Items (iii) and (iv) are clear.
(v) Let Y be a closed subspace of a Banach space X. Let $Q: X \rightarrow X / Y$ be the quotient map. We shall use the following lemma, which can be found for instance in C18a, Proposition 5.6].

Lemma 7.3. For any weak-open neighborhood V of 0 in X, there exists a weak-open neighborhood U of 0 in X / Y such that $U \cap \frac{1}{3} B_{X / Y} \subset Q\left(B_{X} \cap V\right)$.

Let $l \in \mathbb{N}$ and assume that $C>3 \phi(X, p)$ and let χ_{l} be a winning strategy for Player I in the $\Phi(l, p, C / 3)$ game in X. We now describe a winning strategy for Player I in the $\Phi(l, p, C)$ game in X / Y. The players choose recursively

$$
m_{1}, U_{1}, z_{1}, m_{2}, U_{2}, z_{2}, \ldots, U_{r}, z_{r}
$$

The choices of Player II are $m_{i} \in \mathbb{N}$ and $z_{i} \in U_{i} \cap B_{X / Y}$, while the choices of Player I are weak-open neighborhoods U_{i} of 0 in X / Y that are convex and symmetric. In the course of the game we insert choices of $x_{i} \in B_{X}$ and weak-open neighborhoods V_{i} of 0 in X in the following order:

$$
m_{1}, V_{1}, U_{1}, z_{1}, x_{1}, m_{2}, V_{2}, U_{2}, z_{2}, x_{2}, \ldots, V_{r}, U_{r}, z_{r}, x_{r}
$$

We now describe the choices. Denote $V_{1}=\chi_{l}\left(m_{1}\right)$; then Player I picks U_{1}, given by Lemma 7.3 , so that $U_{1} \cap \frac{1}{3} B_{X / Y} \subset Q\left(B_{X} \cap V_{1}\right)$. Next Player II picks $z_{1} \in U_{1} \cap B_{X / Y}$. The choice of U_{1} implies the existence of $x_{1} \in$ $B_{X} \cap V_{1}$ such that $Q\left(x_{1}\right)=\frac{1}{3} z_{1}$. After Player II chooses m_{2}, we pick $V_{2}=$ $\chi_{l}\left(m_{1}, V_{1}, x_{1}, m_{2}\right)$ and Player I chooses U_{2} so that $U_{2} \cap \frac{1}{3} B_{X / Y} \subset Q\left(B_{X} \cap V_{2}\right)$. The strategy of Player I should now be clear. Since χ_{l} is a winning strategy for Player I in the $\Phi(l, p, C / 3)$ game on X, when the game finishes after r
rounds, we have $F:=\left(m_{i}\right)_{i=1}^{r} \in \operatorname{MAX}\left(\mathcal{S}_{l}\right)$ and

$$
\left\|\sum_{i=1}^{r} \mathbb{S}_{F}^{l}\left(m_{i}\right)^{1 / p} z_{i}\right\|_{X / Y} \leq 3\left\|\sum_{i=1}^{r} \mathbb{S}_{F}^{l}\left(m_{i}\right)^{1 / p} x_{i}\right\|_{X} \leq C
$$

This finishes the proof of (v).
In the next proposition, we give a lower estimate for $\phi_{l}\left(T_{q, \theta}^{*}, p\right)$.
Proposition 7.4. Fix $\theta \in(0,1), 1<p \leq \infty$ and let q be the conjugate exponent of p.
(i) Fix ε, $a>0$. Suppose that $I_{1}<\cdots<I_{n}$ are intervals and $x_{1}<\cdots<x_{m}$ with $x_{i} \in a B_{T_{\theta}}$ and $2 n / m<\varepsilon$. Then

$$
\frac{\theta}{m} \sum_{i=1}^{n}\left\|I_{i} \sum_{j=1}^{m} x_{j}\right\|_{T_{\theta}} \leq(\theta+\varepsilon) a
$$

(ii) Fix $\varepsilon \in(0,1-\theta)$ and $l \in \mathbb{N}$. Assume that $M=\left(m_{i}\right)_{i=1}^{\infty}$ and $R=\left(r_{i}\right)_{i=1}^{\infty}$ $\in[\mathbb{N}]^{\omega}$ are such that $\theta m_{1}>\frac{1}{\theta}, m_{1}>\frac{2}{\varepsilon}\left(1-\theta-\frac{\varepsilon}{2}\right)$, and $\frac{2 r_{i}}{m_{i+1}}<\frac{\varepsilon}{2}$ for all $i \in \mathbb{N}$. If $F=\left(m_{i}\right)_{i=1}^{n} \in \operatorname{MAX}\left(\mathcal{S}_{2 l-1}\right)$, then

$$
\left\|\sum_{i=1}^{n} \mathbb{S}_{F}^{2 l-1}\left(m_{i}\right) e_{r_{i}}\right\|_{T_{\theta}} \leq(\theta+\varepsilon)^{l}
$$

where $\left(e_{j}\right)_{j=1}^{\infty}$ is the canonical basis of T_{θ}.
(iii) $\phi_{2 l-1}\left(T_{q, \theta}^{*}, p\right) \geq \theta^{-l / q}$.

Proof. (i) For $1 \leq i \leq n$, we let

$$
\begin{aligned}
& A_{i}=\left\{j \leq m: \operatorname{supp}\left(x_{j}\right) \subset\left[\min I_{i}, \max I_{i}\right]\right\} \\
& B_{i}=\left\{i \leq m: \operatorname{supp}\left(x_{j}\right) \cap I_{i} \neq \emptyset\right\}
\end{aligned}
$$

Of course, $\sum_{i=1}^{n}\left|A_{i}\right| \leq m$ and $\left|A_{i} \backslash B_{i}\right| \leq 2$. Then

$$
\theta \sum_{i=1}^{n}\left\|I_{i} \sum_{j=1}^{m} x_{j}\right\|_{T_{\theta}} \leq \theta \sum_{i=1}^{n} \sum_{j \in A_{i}}\left\|x_{j}\right\|_{T_{\theta}}+\sum_{i=1}^{n} \sum_{j \in B_{i} \backslash A_{i}}\left\|x_{j}\right\|_{T_{\theta}} \leq \theta a m+2 a n .
$$

Therefore

$$
\frac{\theta}{m} \sum_{i=1}^{n}\left\|I_{i} \sum_{j=1}^{m} x_{j}\right\|_{T_{\theta}} \leq\left(\theta+\frac{2 n}{m}\right) a \leq(\theta+\varepsilon) a
$$

(ii) We work by induction on l. We note that

$$
\begin{aligned}
& \left\|\sum_{i=1}^{n} \mathbb{S}_{F}^{1}\left(m_{i}\right) e_{r_{i}}\right\|_{T_{\theta}}=\max \left\{\left\|\sum_{i=1}^{n} \mathbb{S}_{F}^{1}\left(m_{i}\right) e_{r_{i}}\right\|_{c_{0}}\right. \\
& \left.\quad \theta \sup \left\{\sum_{j=1}^{k}\left\|I_{j} \sum_{i=1}^{n} \mathbb{S}_{F}^{1}\left(m_{i}\right) e_{r_{i}}\right\|_{T_{\theta}}: I_{1}<\cdots<I_{k}, \quad\left(\min I_{j}\right)_{j=1}^{k} \in \mathcal{S}_{1}\right\}\right\} \\
& \quad \leq \max \left\{\left\|\sum_{i=1}^{n} \mathbb{S}_{F}^{1}\left(m_{i}\right) e_{r_{i}}\right\|_{c_{0}}, \theta\left\|\sum_{i=1}^{n} \mathbb{S}_{F}^{1}\left(m_{i}\right) e_{r_{i}}\right\|_{\ell_{1}}\right\} \leq \max \left\{\frac{1}{m_{1}}, \theta\right\}=\theta
\end{aligned}
$$

Next, suppose the result holds for some $l \in \mathbb{N}$. Suppose also that M, R are as in the statement and $F=\left(m_{i}\right)_{i=1}^{n} \in \operatorname{MAX}\left(\mathcal{S}_{2 l+1}\right)$. Then we can write $F=\bigcup_{i=1}^{t} F_{i}, F_{1}<\cdots<F_{t}, F_{i} \in \operatorname{MAX}\left(\mathcal{S}_{2 l-1}\right)$. For each $1 \leq i \leq t$, let $G_{i}=\left\{r_{j}: m_{j} \in F_{i}\right\}, M_{i}=M \backslash \bigcup_{j=1}^{i-1} F_{j}$, and $R_{i}=R \backslash \bigcup_{j=1}^{i-1} G_{j}$. We observe the convention that the empty union is the empty set, so $M_{1}=M$ and $R_{1}=R$. Note that for each $1 \leq i \leq t, F_{i}$ is the maximal initial segment of M_{i} which is also a member of $\mathcal{S}_{2 l-1}$, and the pair $\left(M_{i}, R_{i}\right)$ also satisfies the hypotheses of statement (ii). So by the inductive hypothesis, for all $1 \leq i \leq t$, $\left\|x_{i}\right\|_{T_{\theta}} \leq(\theta+\varepsilon)^{l}$, where $x_{i}=\sum_{j=1}^{\infty} \mathbb{S}_{F_{i}}^{2 l-1}\left(m_{j}\right) e_{r_{j}}$.

Next, note that since $F=\bigcup_{i=1}^{t} F_{i}, F \in \operatorname{MAX}\left(\mathcal{S}_{2 l+1}\right), F_{1}<\cdots<F_{t}$, and $F_{i} \in \operatorname{MAX}\left(\mathcal{S}_{2 l-1}\right)$, it follows that $H:=\left(\min F_{i}\right)_{i=1}^{t} \in \operatorname{MAX}\left(\mathcal{S}_{2}\right)$. This means we can write $H=\bigcup_{i=1}^{s} H_{i}$, where $H_{1}<\cdots<H_{s}, H_{i} \in \operatorname{MAX}\left(\mathcal{S}_{1}\right)$, and $E:=\left(\min H_{i}\right)_{i=1}^{s} \in \operatorname{MAX}\left(\mathcal{S}_{1}\right)$. Since $E \in \operatorname{MAX}\left(\mathcal{S}_{1}\right)$, we deduce that

$$
m_{1}=\min M=\min F=\min H=\min E=|E|=s
$$

Moreover,

$$
x:=\sum_{i=1}^{n} \mathbb{S}_{F}^{2 l+1}\left(m_{i}\right) e_{r_{i}}=\frac{1}{m_{1}} \sum_{i=1}^{m_{1}} \frac{1}{\left|H_{i}\right|} \sum_{j: \min F_{j} \in H_{i}} x_{j} .
$$

For $1 \leq i \leq m_{1}$, let $y_{i}=\frac{1}{\left|H_{i}\right|} \sum_{j: \min F_{j} \in H_{i}} x_{j}$, so that $x=\frac{1}{m_{1}} \sum_{i=1}^{t} y_{i}$. Note also that $\left\|y_{i}\right\|_{T_{\theta}} \leq(\theta+\varepsilon)^{l}$. Fix $I_{1}<\cdots<I_{k}$ such that $\left(\min I_{l}\right)_{l=1}^{k} \in \mathcal{S}_{1}$. By omitting any I_{l} such that $I_{l} y_{i}=0$ for all $1 \leq i \leq m_{1}$, we can assume that $I_{1} y_{i} \neq 0$ for some i. Let i_{0} be the minimum such i. Note that $k \leq \min I_{1} \leq$ $\max \operatorname{supp}\left(y_{i_{0}}\right)=e_{r_{i_{1}}}$ for some i_{1}. Note also that for each $i_{0}<i \leq m_{1}$, since $H_{i} \in \operatorname{MAX}\left(\mathcal{S}_{1}\right),\left|H_{i}\right|=\min H_{i}=m_{i_{2}}$ for some $i_{2}>i_{1}$. Therefore

$$
\frac{k}{\left|H_{i}\right|} \leq \frac{r_{i_{1}}}{m_{i_{2}}}<\frac{\varepsilon}{4}
$$

By (i) applied with $a=(\theta+\varepsilon)^{l}$ and with $\varepsilon / 2$ in place of ε it follows that
for $i_{0}<i \leq m_{1}$,

$$
\theta \sum_{l=1}^{k}\left\|I_{l} y_{i}\right\|_{T_{\theta}}=\frac{\theta}{\left|H_{i}\right|} \sum_{l=1}^{k}\left\|I_{l} \sum_{j: \min F_{j} \in H_{i}} x_{j}\right\|_{T_{\theta}} \leq\left(\theta+\frac{\varepsilon}{2}\right)(\theta+\varepsilon)^{l}
$$

Therefore

$$
\begin{aligned}
\frac{\theta}{m_{1}} \sum_{l=1}^{k}\left\|I_{l} \sum_{i=1}^{m_{1}} y_{i}\right\|_{T_{\theta}} & \leq \frac{\theta}{m_{1}} \sum_{i=i_{0}}^{m_{1}} \sum_{l=1}^{k}\left\|I_{l} y_{i}\right\|_{T_{\theta}} \\
& \leq \frac{1}{m_{1}}\left(\left\|y_{i_{0}}\right\|_{T_{\theta}}+\sum_{i=i_{0}+1}^{m_{1}}\left(\theta+\frac{\varepsilon}{2}\right)(\theta+\varepsilon)^{l}\right) \\
& \leq(\theta+\varepsilon)^{l}\left(\frac{1}{m_{1}} \cdot 1+\frac{m_{1}-1}{m_{1}} \cdot\left(\theta+\frac{\varepsilon}{2}\right)\right) \leq(\theta+\varepsilon)^{l+1}
\end{aligned}
$$

Here we have used the fact that since $m_{1}>2(1-\theta-\varepsilon / 2) / \varepsilon$, we have

$$
\frac{1}{m_{1}}+\frac{m_{1}-1}{m_{1}}\left(\theta+\frac{\varepsilon}{2}\right)<\theta+\varepsilon
$$

We also note that

$$
\left\|\frac{1}{m_{1}} \sum_{i=1}^{m_{1}} y_{i}\right\|_{c_{0}}=\frac{1}{m_{1}} \max _{1 \leq i \leq m_{1}}\left\|y_{i}\right\|_{c_{0}} \leq \frac{(\theta+\varepsilon)^{l}}{m_{1}} \leq \theta(\theta+\varepsilon)^{l}<(\theta+\varepsilon)^{l+1}
$$

Therefore

$$
\begin{aligned}
& \left\|\frac{1}{m_{1}} \sum_{i=1}^{m_{1}} y_{i}\right\|_{T_{\theta}} \\
& \quad=\max \left\{\left\|\frac{1}{m_{1}} \sum_{i=1}^{m_{1}} y_{i}\right\|_{c_{0}}, \sup \left\{\frac{\theta}{m_{1}} \sum_{l=1}^{k}\left\|I_{l} \sum_{i=1}^{m_{1}} y_{i}\right\|_{T_{\theta}}:\left(\min I_{l}\right)_{l=1}^{k} \in \mathcal{S}_{1}\right\}\right\} \\
& \quad \leq(\theta+\varepsilon)^{l+1}
\end{aligned}
$$

(iii) Fix $\varepsilon \in(0,1-\theta)$. For $C<(\theta+\varepsilon)^{-l / q}$, we construct a winning strategy for Player II in the $\Phi(2 l-1, p, C)$ game on $T_{q, \theta}^{*}$. Recall that the canonical basis $\left(e_{j}^{*}\right)_{j=1}^{\infty}$ of $T_{q, \theta}^{*}$ is normalized and weakly null. First Player II chooses m_{1} so large that $\theta m_{1}>1$ and $m_{1}>\frac{2}{\varepsilon}(1-\theta-\varepsilon / 2)$. Player I chooses some weak neighborhood U_{1} of 0 in $T_{q, \theta}^{*}$. Player II then chooses some r_{1} so large that $e_{r_{1}}^{*} \in U_{1}$. Assuming $m_{1}, U_{1}, r_{1}, \ldots, m_{j}, U_{j}, r_{j}$ have been chosen and $\left(m_{i}\right)_{i=1}^{j} \in \mathcal{S}_{2 l-1} \backslash \operatorname{MAX}\left(\mathcal{S}_{2 l-1}\right)$, Player II chooses some m_{j+1} so large that $r_{j} / m_{j+1}<\varepsilon / 4$ and $m_{j+1}>m_{j}$. Player I then chooses U_{j+1}. Player II chooses $r_{j+1}>r_{j}$ such that $e_{r_{j+1}}^{*} \in U_{j+1}$. When the game terminates at some $F=\left(m_{i}\right)_{i=1}^{n} \in \operatorname{MAX}\left(\mathcal{S}_{2 l-1}\right)$, we arbitrarily choose $m_{n+1}, r_{n+1}, m_{n+2}, r_{n+2}, \ldots$ such that $r_{n}<r_{n+1}<\cdots, m_{n}<m_{n+1}<\cdots$,
and $r_{i} / m_{i+1}<\varepsilon / 4$ for all $i \in \mathbb{N}$. By (ii),

$$
\left\|\sum_{i=1}^{n} \mathbb{S}_{F}^{2 l-1}\left(m_{i}\right)^{1 / q} e_{r_{i}}\right\|_{T_{q, \theta}}=\left\|\sum_{i=1}^{n} \mathbb{S}_{F}^{2 l-1}\left(m_{i}\right) e_{r_{i}}\right\|_{T_{\theta}}^{1 / q} \leq(\theta+\varepsilon)^{l / q}
$$

Therefore

$$
\begin{aligned}
& \left\|\sum_{i=1}^{n} \mathbb{S}_{F}^{2 l-1}\left(m_{i}\right)^{1 / p} e_{r_{i}}^{*}\right\|_{T_{q, \theta}^{*}} \\
& \geq(\theta+\varepsilon)^{-l / q}\left(\sum_{i=1}^{n} \mathbb{S}_{F}^{2 l-1}\left(m_{i}\right)^{1 / p} e_{r_{i}}^{*}\right)\left(\sum_{i=1}^{n} \mathbb{S}_{F}^{2 l-1}\left(m_{i}\right)^{1 / q} e_{r_{i}}\right) \\
& \quad=(\theta+\varepsilon)^{-l / q} \sum_{i=1}^{n} \mathbb{S}_{F}^{2 l-1}\left(m_{i}\right)=(\theta+\varepsilon)^{-l / q}
\end{aligned}
$$

This shows that the strategy outlined above is a winning strategy for Player II in the $\Phi(2 l-1, p, C)$ game. Since we can do this for any $C<(\theta+\varepsilon)^{-l / q}$ and $0<\varepsilon<1-\theta, \phi_{2 l-1}\left(T_{q, \theta}^{*}, p\right) \geq \theta^{-l / q}$.

Proof of Theorem 7.1. Assume U is an infinite-dimensional Banach space which has N_{p}. Then by items (i) and (ii) of Proposition $7.2, a=\phi_{1}(U) \in$ $[1, \infty)$ and $\phi_{l}(U) \leq a^{l}$ for all $l \in \mathbb{N}$. Fix now $\theta \in(0,1)$ such that $\theta^{-1 / q}>a^{2}$ and let $X=T_{q, \theta}^{*}$ (remember that X has A_{p}). If X were isomorphic to a subspace of a quotient of U, then by Proposition 7.2 (iii)-(v), there would exist a constant C such that for all $l \in \mathbb{N}$,

$$
\left(\theta^{-1 / q}\right)^{l} \leq \phi_{2 l-1}(X, p) \leq C \phi_{2 l-1}(U, p) \leq C\left(a^{2}\right)^{l} .
$$

But this is impossible, since $\theta^{-1 / q}>a^{2}$.
Acknowledgements. The second-named author received support from the EIPHI Graduate School (contract ANR-17-EURE-0002).

REFERENCES

[B94] B. Bossard, Théorie descriptive des ensembles en géométrie des espaces de Banach, thèse de doctorat, Univ. Paris VI, 1994.
[B02] B. Bossard, A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces, Fund. Math. 172 (2002), 117-152.
[CS89] P. G. Casazza and T. J. Shura, Tsirelson's Space, Lecture Notes Math. 1363, Springer, Berlin, 1989.
[C14] R. M. Causey, Szlenk index, upper estimates and embedding in Banach spaces, PhD Dissertation, Texas A\&M Univ., 2014.
[C18a] R. M. Causey, Concerning q-summable Szlenk index, Illinois J. Math. 62 (2018), 381-426.
[C18b] R. M. Causey, Power type asymptotically uniformly smooth and asymptotically uniformly flat norms, Positivity 22 (2018), 1197-1221.
[C21] R. M. Causey, Three and a half asymptotic properties, Studia Math. 257 (2021), 155-212.
[CFL] R. M. Causey, A. Fovelle and G. Lancien, Asymptotic smoothness in Banach spaces, three-space properties and applications, Trans. Amer. Math. Soc. (online, 2022).
[CL] R. M. Causey and G. Lancien, Universality, complexity and asymptotically uniformly smooth Banach spaces, Comment. Math. Univ. Carolin., to appear.
[CN19] R. M. Causey and K. V. Navoyan, Factorization of Asplund operators, J. Math. Anal. Appl. 479 (2019), 1324-1354.
[DFJP74] W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.
[FOSZ09] D. Freeman, E. Odell, Th. Schlumprecht and A. Zsák, Banach spaces of bounded Szlenk index. II, Fund. Math. 205 (2009), 162-177.
GKL01] G. Godefroy, N. J. Kalton and G. Lancien, Szlenk indices and uniform homeomorphisms, Trans. Amer. Math. Soc. 353 (2001), 3895-3918.
[HL07] P. Hájek and G. Lancien, Various slicing indices on Banach spaces, Mediterr. J. Math. 4 (2007), 179-190.
[JZ74] W. B. Johnson and M. Zippin, Subspaces and quotient spaces of $\left(\sum G_{n}\right)_{l_{p}}$ and $\left(\sum G_{n}\right)_{c_{0}}$, Israel J. Math. 17 (1974), 50-55.
[L06] G. Lancien, A survey on the Szlenk index and some of its applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 100 (2006), 209-235.
[OS02] E. Odell and Th. Schlumprecht, Trees and branches in Banach spaces, Trans. Amer. Math. Soc. 354 (2002), 4085-4108.
[OSZ07] E. Odell, Th. Schlumprecht and A. Zsák, A new infinite game in Banach spaces with applications, in: Banach Spaces and Their Applications in Analysis (Oxford, OH, 2006): In Honor of Nigel Kalton's 60th Birthday, de Gruyter, Berlin, 2007, 147-182.
[S75] G. Schechtman, On Petczyński's paper 'Universal bases', Israel J. Math. 22 (1975), 181-184.
R. M. Causey

Middletown, OH 45044, USA
E-mail: rmcausey1701@gmail.com
G. Lancien

Laboratoire de Mathématiques de Besançon
Université de Franche-Comté
CNRS - UMR 6623
25000 Besançon, France
E-mail: gilles.lancien@univ-fcomte.fr

[^0]: 2020 Mathematics Subject Classification: Primary 46B20; Secondary 46B03, 46B06.
 Key words and phrases: asymptotic smoothness in Banach spaces, universality, complexity. Received 8 July 2022; revised 23 November 2022.
 Published online *.

