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Numerical Simulations of a Spin Dynamics Model Based on a Path Integral Approach
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2Institut Denis Poisson, Université de Tours, Université d’Orléans,
CNRS (UMR7013), Parc de Grandmont, F-37200, Tours, France

Inspired by path integral molecular dynamics, we build a spin model, in terms of spin coherent states, from
which we can compute the quantum expectation values of a spin in a constant magnetic field. This formulation
facilitates the description of a discrete quantum spin system in terms of a continuous classical model and recasts
the quantum spin effects within the framework of path integrals. In particular, it allows for a much more direct
path to the low- and high-temperature limits and to the definition of effective classical Hamiltonians. In this
formalism, the quantum properties of the spins are described through an effective anisotropy. To check this, we
solve the effective classical model using atomistic spin dynamics, we calculate thermodynamic observables and
show that our effective classical models can reproduce accurate quantum expectation values within the relevant
temperature ranges.

INTRODUCTION

Spin models of magnetic materials are usually either quan-
tum or classical in terms of the elementary building blocks on
which they are based. In quantum spin models, the spin states
belong to the quantum space of states that includes all linear
superpositions of the eigenstates of Ŝz and the spin variables
are quantum operators, whereas in classical spin models, the
‘spins’ are actually magnetic moments of fixed length. Even
though there are semi-classical models which describe quan-
tum models in terms of at least “partially classical” systems,
the computed quantities are, in the end, classical objects.

Quantum models allow accurate calculation of both ther-
modynamics and dynamics, which intrinsically include purely
quantum effects such as entanglement and quantum fluctua-
tions. However, the size of systems that can be studied is often
limited to tens or hundreds of spins due to the large compu-
tational cost, as solving quantum problems exactly amounts
to diagonalization of larger and larger matrices, and even ap-
proximation schemes thereof suffer from scaling issues. Nu-
merical methods, such as quantum Monte Carlo (QMC), allow
calculations of very large quantum spin systems (hundreds of
thousands of spins) with very high accuracy. However, there
is no access to dynamical quantities, as QMC is intrinsically
a description of thermodynamics, where time is absent. Other
quantum methods which do provide access to real-time dy-
namics cannot provide results for such large systems. Ad-
ditionally, fundamental issues also arise, such as the ‘sign
problem’ in the case of antiferromagnets, since the Hubbard-
Stratonovich transformation leads to an effective Hamiltonian
that is not hermitian although the evolution operator is uni-
tary1.

Classical spin models are frequently used to study the dy-
namics and thermodynamics of magnetic materials, helping
to interpret experiments at “high” temperatures, where quan-
tum effects-such as entanglement-can be neglected. The com-
putational cost is relatively low, and the formalism is easy
to parallelize, leading to routine simulations of the dynam-
ics of hundreds of thousands or even millions of spins. While
these classical models give a good qualitative description of
the magnetic dynamics, issues arise at lower temperatures,

where the assumption of classical Boltzmann statistics is no
longer appropriate. The magnon Debye temperature tends
to be very high and of the same size as the magnetic order-
ing temperature, so the ‘low-temperature’ regime may cover
most of the temperature range of magnetic ordering2,3. Re-
cent efforts have been made to introduce ad hoc corrections
to classical spin models to produce results that more closely
resemble quantum models and to better agree with experi-
mental measurements2,4–8. However, these approaches are in-
capable of including quantum effects, such as tunneling be-
tween macroscopic states or zero-point fluctuations. These
quantum effects are becoming relevant on larger length scales
and higher temperatures, for example, with the measurement
of the motion of domain walls induced by quantum domain
fluctuations in Cr up to 40K9. Thus, what is still lacking is
a dynamical quantum model whose accuracy can bridge the
gap between a fully quantum simulation of a few atoms and
an effective classical model and that enables simulations scal-
able to the size of spintronic device components of millions of
spins.

Here, we describe a bridge between quantum and classical
spin models by employing a path integral formalism for spin
dynamics. This is inspired by path integral molecular dynam-
ics10 where the efficiency of classical molecular dynamics is
used to calculate quantum properties, by establishing the ap-
propriate evolution equations to move in the phase space of
the quantum system and thus sample configurations therein11.
However, how to take into account spin degrees of freedom
and sample the corresponding phase space is by no means ob-
vious.

First attempts to do so12, in particular for molecular mag-
nets13 express the spin degrees of freedom in terms of equiva-
lent, though fictitious, position and momentum variables and
using the known molecular dynamics formalism in this guise.
Hence, these involve mapping the spin Hamiltonian to a par-
ticle Hamiltonian. This makes the interpretation of the results
in terms of classical magnetic moments, the actual experi-
mental observable, much less straightforward, and this map-
ping is difficult to build for more complex spin interactions.
However, the real problem which we must overcome is that
the space of positions and momenta is flat; while the space
spanned by the spin degrees of freedom is curved.
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It is this problem that is solved by using the basis of spin
coherent states12. While spin coherent states have been used
in some quantum methods14, these methods incur a non-trivial
cost, for large systems, as well as not being well-suited for
extracting the information on the individual (classical) spin
components.

We note that spin coherent states have also recently been
used in methods to derive/rederive equations of motion for
magnetization dynamics15.

In this Article we consider the simplest nontrivial spin sys-
tem: a single spin in an external magnetic field, described by
the Zeeman Hamiltonian. We develop a formalism which uses
the spin coherent states and the operators that act on them to
solve for some exact cases, and compare the results obtained
to numerical calculations performed with classical atomistic
spin dynamics methods, augmented with a field, which repre-
sents the quantized nature of the spins. We demonstrate that
this formalism can take into account the quantum effects of
the spin, across a broad range of temperatures, with devia-
tions appearing only at “very low” temperatures, as expected
by intuition.

I. FROM THE CLASSICAL SPIN STATES TO THE SPIN
COHERENT STATES

In molecular dynamics, the dynamical variables of the
quantum system take values in a flat space. This makes the
application of path integrals using classical positions and mo-
menta relatively straightforward. For spin systems, the dy-
namical variables, the components of spin, take values in a
curved space and can only take discrete values due to the dis-
crete spectrum of the spin Hamiltonian

{|s,m〉} , m ∈ J−s, sK, (1)

where s is the principal quantum number and m labels all dif-
ferent possible states with this given spin s. For example, with
s = 2 there are 2s+ 1 = 5 eigenstates:

{|2,−2〉 , |2,−1〉 , |2, 0〉 , |2, 1〉 , |2, 2〉} . (2)

However, all possible states of a quantum system of spin s =
2 are linear combinations of these five states, i.e. they are
described as

|ψ〉 = c−2 |2,−2〉+c−1 |2,−1〉+c0 |2, 0〉+c1 |2, 1〉+c2 |2, 2〉
(3)

The normalization of these states implies that the coefficients
satisfy the constraint

|c−2|2 + |c−1|2 + |c0|2 + |c1|2 + |c2|2 = 1, (4)

which defines a point on the unit sphere in ten dimensions,
but the property that five phases can be modded out reduces
this to a five-dimensional manifold. The real challenge is to
sample this space efficiently.

The partition function of this quantum spin system is the
volume of this five-dimensional manifold, which is finite:

Z =

∫
d2c−2d

2c−1d
2c0d

2c1d
2c2

δ(|c−2|2 + |c−1|2 + |c0|2 + |c1|2 + |c2|2 − 1).
(5)

Upon coupling the magnetic moment to a thermal bath, the
partition function takes the form

Z =

∫
dψ〈ψ|e−βH |ψ〉 =∫

d2c−2d
2c−1d

2c0d
2c1d

2c2

δ(|c−2|2 + |c−1|2 + |c0|2 + |c1|2 + |c2|2 − 1) e−βH(c),
(6)

with β = 1/(kBT ), where kB = 1.381 × 10−23 J/K is
the Boltzman constant and T is the temperature in Kelvin.
From Eq. (6) it is not obvious how the dynamical behav-
ior of the quantum system, defined over the full manifold,
goes over to that of a classical system, localized on the five
states {|2,−2〉 , |2,−1〉 , |2, 0〉 , |2, 1〉 , |2, 2〉} , in the “classi-
cal limit” and how this can be defined.

This requires a careful discussion of what we mean by a
‘quantum’ system. On the one hand, we have the discrete
basis of the eigenstates of the Hamiltonian, but on the other
hand, we have the quantum superposition of states which leads
to a continuous manifold of possible quantum states. Here, we
emphasize that we are dealing with classical measurements of
quantum systems, which means that the outcome of any single
measurement can only be an eigenstate of our Hamiltonian-
which is labeled by an integer for spin systems. The proto-
type of this situation is the experiment by Stern and Gerlach16,
where, even though the possible quantum states of the electron
can belong to a superposition,

|ψ〉 = a |↑〉+ b |↓〉 , (7)

such that a2 + b2 = 1, the outcome of the measurement of
the experiment is either |↑〉 or |↓〉. This is in contrast to a
classical measurement of the projection along the z-axis of a
classical magnetic moment for which a single measurement
could take any value between +µs and −µs where µs is the
total magnetic moment. Thus, if our Hamiltonian is a function
of Ŝz only, then the partition function corresponding to the
classical measurement of said quantum system is given as a
sum over the eigenstates of this Hamiltonian, rather than an
integral over the quantum manifold of states,

Z ≡ Tr(e−βĤ) =

s∑
m=−s

〈s,m| e−βĤ[Ŝz ] |s,m〉 . (8)

One way to sample the partition function over the quantum
space of states is to recast the system in terms of the so-called
spin coherent states17. Indeed, not only do the spin coherent
states form a continuous basis for the spin system, enabling
a mapping onto the continuous description in terms of a unit
vector living on a sphere, but it has also been shown that their
behavior is close to the classical limit18. Thus, they enable
us to efficiently sample the manifold of quantum states, in a
way that can offer hints as to the properties of th classical
limit. The spin coherent states have previously been used to
study fundamental aspects such as emerging supersymmetry
in spin systems19, semiclassical transition probabilities20, and
energy gap computations within mean-field quantum pertur-
bation theory21.
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To use the spin coherent states, we work as follows: for a
given quantum spin number s, we set

|p〉 ≡ |s, s− p〉 , (9)

where p ∈ {0, 1, . . . , 2s−1, 2s} using the labeling introduced
above and we define the spin coherent states |z〉 , labeled by a
complex number z, by the action of the lowering operator22,
Ŝ− = Ŝx − iŜy , as

|z〉 ≡ (1 + |z|2)−s ezŜ−/~ |0〉 (10)

where the 1/~ factor is a bookkeeping device needed to keep
the exponential dimensionless. The action of Ŝ+, Ŝ− and Ŝz
on |p〉 produces

Ŝ− |p〉 = ~
√

(2s− p)(p+ 1) |p+ 1〉

Ŝ+ |p〉 = ~
√
p(2s− p+ 1) |p− 1〉

Ŝz |p〉 = ~(s− p) |p〉 .

(11)

The expression in (10) is equivalent to

|z〉 ≡
(
1 + |z|2

)−s 2s∑
p=0

(
2s
p

)1/2

zp |p〉 , (12)

which, as we shall see, is more convenient for computing the
action of spin operators on the spin coherent states. In this
basis, we can write the partition function (8) as an integral
over the complex label z for the spin coherent states as

Z =

∫
dµ(z) 〈z| e−βĤ |z〉 (13)

where the measure must be properly normalized as∫
dµ(z) |z〉 〈z| = 1. In this case

dµ(z) =
2s+ 1

π

dz

(1 + |z|2)
2 . (14)

To study the quantum system close to the classical limit, we
must calculate the matrix elements of Ŝz and its powers on the
states |z〉. The first two powers are

〈z| Ŝz |z〉 = ~s
1− |z|2

1 + |z|2
(15)

〈z| Ŝ2
z |z〉 =

(
~s

1− |z|2

1 + |z|2

)2

+ 2~2s
|z|2

(1 + |z|2)2
. (16)

In general, it can be shown that the higher-order terms are all
of the form

〈z| Ŝkz |z〉 =

(
~s

1− |z|2

1 + |z|2

)k
+ noncommutative terms.

(17)
The first term is the leading term in the classical limit. Non-
commutative terms occur because Ŝz and Ŝ± do not commute.
The second term in (16) is an example, but there is no gen-
eral closed expression for the correction of higher-order pow-
ers. These noncommutative terms describe the contribution

of the curvature of the sphere of quantum states, essentially
the difference in the trajectory between states on a flat surface
compared to a curved surface. However, the noncommutative
terms are always of the same order in ~ as the leading term.
Thus neglecting the noncommutative terms does not simply
correspond to the semi-classical ~ expansion and needs to be
justified differently. We remark that by setting ~s ≡ s, equa-
tion (16) can be written as

〈z| Ŝz |z〉 = ~s
1− |z|2

1 + |z|2
= s

1− |z|2

1 + |z|2

〈z| Ŝ2
z |z〉 =

(
~s

1− |z|2

1 + |z|2

)2

+ 2~2s
|z|2

(1 + |z|2)2
=

s2

{(
1− |z|2

1 + |z|2

)2

+ 2
1

s

|z|2

(1 + |z|2)2

}
,

(18)

which highlights the property that the noncommutative terms,
which are sensitive to the curvature of the manifold of spin
superpositions, are of higher order in an 1/s expansion; and
that the operators, that have a sensible large-spin, i.e. semi-
classical, limit are Ŝkz /s

k. Indeed, this limit entails taking
~→ 0, s→∞ while keeping the product, s ≡ ~s fixed.

In our case, which terms are to be neglected will depend on
both this first expansion, and the β series expansion of e−βĤ

in the partition function. The second expansion being in pow-
ers of β, it is a high temperature expansion. However, it is
not a Taylor expansion around a given value; thus, higher or-
ders of β will improve the temperature range and convergence
towards the quantum solution, and technically going to an in-
finite order in β yields the exact quantum solution.

When ignoring the noncommutative terms, we can rewrite
the first term on the right-hand side of (17) as an exponential
series

∞∑
k=0

1

k!
〈z| Ŝkz |z〉 ≈ exp

(
~s

1− |z|2

1 + |z|2

)
, (19)

and this will be shown later to yield the classical limit.
We now define the Hamiltonian for a single spin (whose

electromagnetic properties will be described by its g−factor)
in an applied magnetic field that is constant along the z-
direction,

Ĥ = −gµB

~
ŜzBz (20)

Fo the electron, g ≈ 2.002 = |ge| is the absolute value of
the electron g-factor, µB = 9.274 × 10−23 J/T is the Bohr
magneton, ~ = 1.05457182× 10−34 J/K is Planck’s constant
and Bz is the applied magnetic field in Tesla. Choosing a
fixed field direction(which can always b taken to be along z)
simplifies the calculation by reducing the noncommutativity
as we work with the exponential of operators.

To compute the partition function, we again express the ex-
ponential as a series

exp
(
−βĤ

)
=

∞∑
k=0

1

k!

(
β
gµB

~
ŜzBz

)k
, (21)
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and compute the matrix elements 〈z| exp(−βĤ) |z〉, which,
using equation (19), can be approximated by

〈z| exp(−βĤ) |z〉 ≈
∞∑
k=0

1

k!

(
β
gµB

~

)k (
~s

1− |z|2

1 + |z|2

)k
Bkz .

(22)
Thus, the matrix elements take the simple form

〈z| exp(−βĤ) |z〉 ≈ exp

(
βgµBBzs

1− |z|2

1 + |z|2

)
. (23)

The complex value z (and its conjugate z̄) can then be mapped
onto a unit 2-sphere by defining a unit spin coherent state
vector23, n, with components

nx =
z + z̄

1 + |z|2

ny = −i z − z̄
1 + |z|2

nz =
1− |z|2

1 + |z|2
,

(24)

and using this we can rewrite the matrix elements (23) as

〈z| exp(−βĤ) |z〉 ≈ exp (βgµBBzsnz) . (25)

This leads immediately to the definition of an equivalent clas-
sical Hamiltonian

Heff = −gµBBzsnz = −µsB · S, (26)

where we identify S = n as the classical spin vector (mag-
netic moment) with length µs = sgµB. This recovers the
classical precession of a magnetic moment in a magnetic field.
Therefore, dropping the noncommutative terms, yields the ex-
pected classical limit of this quantum system. We emphasize
that all the powers of Ŝkz are needed to recover the classical
limit–only the noncommutative terms have been dropped. As
we go to the large-spin limit, since the radius of the sphere
is proportional to 1/s, it becomes smaller and smaller, which
justifies neglecting these terms.

The vector n defined by the spin coherent states plays the
role of the spin unit vector, which is commonly used in clas-
sical Heisenberg spin models. Thus, not only does the spin
coherent states basis provide us with a continuous (integral)
description of the quantum system, but it also yields a straight-
forward interpretation of the quantum system (described by its
states and operators) in terms of the continuous classical sys-
tem (described by the magnetization vector).

We shall now use the partition function in the spin coher-
ent state basis to compute expectation values for the quantum
spin Hamiltonian, close to the classical limit, by performing
an expansion in increasing orders of β. We shall then compare
these results to direct numerical calculations.

II. PARTITION FUNCTION AND EXPECTATION VALUES

The expectation value of an operator Ô for the discrete
quantum spin system is

〈Ô〉 =

s∑
m=−s

〈s,m| Ô exp(−βĤ) |s,m〉

s∑
m=−s

〈s,m| exp(−βĤ) |s,m〉
, (27)

where the denominator is the partition function (8). In the
spin coherent state basis, the expectation value is expressed in
terms of integrals, rather than sums, viz.

〈Ô〉 =

∫
dµ(z) 〈z| Ô exp(−βĤ) |z〉∫
dµ(z) 〈z| exp(−βĤ) |z〉

. (28)

As mentioned above, the spin coherent states are not eigen-
states of Ŝz , making the exponentiation more subtle. The ac-
tion of the exponential of Ŝz on |s,m〉 simply yields the ex-
ponentiation of the eigenvalue

eŜz/~ |s,m〉 = em |s,m〉 ; (29)

but in the spin coherent state basis, we cannot exactly compute
the action and must resort to approximations such as the 1/s
expansion and the high- and low-temperature expansions.

We proceed by calculating the expectation value 〈Ŝz〉 as a
function of temperature with the Zeeman Hamiltonian (20).
This is known to be qualitatively different for classical and
quantum spin models due to spin quantisation24. The expec-
tation value 〈Ŝz〉 can be identified with the magnetization in-
duced by an external field (in the limit when the exchange
interaction can be neglected).

The exact quantum expectation value, calculated from the
discrete basis, where the action of Ŝz |s,m〉 = ~m |s,m〉,
gives

〈Ŝz〉 =

s∑
m=−s

~m exp(βgµBmBz)

s∑
m=−s

exp(βgµBmBz)
. (30)

The expectation value in the classical limit is calculated with
the spin coherent states using equation (28) and the approxi-
mation in equation (23) which neglects the terms proportional
to powers of 1/s, yielding

〈Ŝz〉 ≈ ~s

∫
dz

1− |z|2

(1 + |z|2)3
exp

(
βgµBBzs

1− |z|2

1 + |z|2

)
∫
dz

1

(1 + |z|2)2
exp

(
βgµBBzs

1− |z|2

1 + |z|2

) .
(31)

Using these expressions for the discrete quantum model
(30) and the classical limit of the spin coherent state (31), we
plot the expectation value 〈Ŝz〉 as a function of temperature in
Figure 1. Neglecting the terms due to the non-comutativity of
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FIG. 1. Expectation value 〈Ŝz〉 for spin s = 1/2 as a function of
temperature. Red solid line - the exact quantum solution in the dis-
crete spin basis |s,m〉 from Eq. (30). Blue solid line - the classical
limit of the spin coherent state basis from Eq. (31). Dashed lines
are successive corrections to the partition function to include non-
commutative terms such as appear in Eq. (16). The applied field is
Bz = 1 T for all figures.

Ŝz and Ŝ±, i.e. working to leading order in the 1/s expansion,
means the representation by the spin coherent states produces
the classical limit (blue solid line), as expected, with an im-
mediate decay of the spin alignment with the external field as
soon as the temperature is non-zero. Equation (31) is, in fact,
identical to the expectation value 〈Sz〉 of a classical spin, as
is expected from Ehrenfest’s theorem–a useful sanity check
(see Appendix A). In the quantum case (red solid line) the ex-
pectation value remains almost flat–at low temperatures–and
displays a slower characteristic decay around the zero temper-
ature value, along with an initial inflection point that is ex-
pected on general grounds7.

These characteristic differences between quantum and clas-
sical models of single spins are well known and well stud-
ied. Of practical interest is that we can obtain an intermediate
approximation for the quantum expectation value by retain-
ing terms related to the commutation of operators. This pulls
quantum features into the classical model in a rigourous man-
ner. To do this, the exponential functions in the spin coherent
state expectation value (28) must be expanded as a series in β,

exp
(
β~Ŝz

)
≈ 1 + β~Ŝz +

1

2

(
β~Ŝz

)2

+ . . . (32)

Higher-order terms beyond Ŝz contain the effects of the non-
commutativity of operators, as seen in (16), and we now in-
clude these terms as we evaluate the expectation value. We
calculate 〈Ŝz〉 in the spin coherent state basis for increasing
orders in the β expansion, which includes the terms due to
noncommutivity of Ŝz to higher orders. The results are shown
with dashed lines in Figure 1. ‘1 correction term’ includes Ŝ2

z ,
‘2 correction terms’ Ŝ3

z and so on. We see that including even
the first noncommuting term in this expansion yields a solu-
tion that is already significantly different from the classical

result and close to the quantum solution at temperatures of
the order of 1 K and above. The agreement improves as the
temperature increases, as expected for an expansion in powers
of β. Evaluating to higher orders in β causes the expectation
value to converge more quickly to the quantum solution (Fig-
ure 1), thus producing a continuous description of the discrete
quantum system, which is one of our main objectives.

For very low temperatures, close to 0 K, the approximation
as a power series in β breaks down and diverges because β is
the inverse of the temperature. We emphasize, however, that
already at first order in β, this semi-classical model accurately
captures the salient features of the thermal spin statistics of
the quantum system at temperatures of the order of 1 K. Next,
we build a numerical sampling technique for this path integral
based on classical spin dynamics.

III. EFFECTIVE HAMILTONIAN AND ATOMISTIC SPIN
DYNAMICS

A. Low-temperature expansion of the matrix elements

Building a classical Hamiltonian dynamics model to emu-
late a quantum system, expressed in the spin coherent states
basis, requires finding an effective classical Hamiltonian Heff

which approximates 〈z| exp(−βĤ) |z〉 as exp(−βHeff). By
finding such an approximate expression, we recast the quan-
tum system with partition function (8) into an effective classi-
cal system with partition function

Z =

∫
dµ(z) 〈z| exp(−βĤ) |z〉

≈
∫
dµ̃(z) exp(−βHeff),

(33)

whereHeff yields the same expectation values as for the quan-
tum case and µ̃(z) describes a potentially enlarged, higher-
dimensional, phase space, as is the case in path integral molec-
ular dynamics approaches25.

We consider the partition function with the first commuta-
tion correction (16), and seek an expression such that

exp (−βHeff) ≈ exp

(
βgµBBzs

1− |z|2

1 + |z|2

)
+ (βgµBBz)

2 s|z|2

(1 + |z|2)
2 ,

(34)

where the first term on the right-hand side is the classical limit
and the second term is the first noncommutation term which
appears on the right-hand side of (16). We ignore all higher-
order non commutation terms in 〈z| Ŝkz |z〉, beyond k = 2.
This is the same level of approximation used in ‘1 correction
term’ in Fig. 1. As a first and very coarse approximation (for
more details, see appendix B) we take

Hlow-T
eff = −gµBBzs

1− |z|2

1 + |z|2
+ gµBBz

√
2s|z|

1 + |z|2
, (35)
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which, written in terms of the spin coherent state vector n, is

Hlow-T
eff = −gµBBzsnz + 1

2gµBBz
√

2s
√

1− n2
z. (36)

The first term is again the purely classical Zeeman Hamilto-
nian (26). The second term arises due to the quantization of
spin and energetically favors the spin to align with the quan-
tization axis (z). It has a form similar to magnetocrystalline
anisotropy, but its origin is the quantum behavior of the spin
rather than any physical interaction. We will refer to this term
asHQeff.

To calculate the classical expectation values of this effective
Hamiltonian, we use the techniques of atomistic spin dynam-
ics (ASD)26–30. This is usually used to model the dynamics of
localized spin magnetic moments µ = µsS where S is a unit
vector and µs = gsµB is the size of the spin magnetic mo-
ment. The moments interact with a local effective magnetic
field Beff obtained from a Hamiltonian Heff that encodes the
different magnetic interactions of the system. Here we will
retain our use of the vector n rather than S to emphasize that
we are solving the dynamics of the spin coherent state vector
rather than making an a priori assumption of classical spin
magnetic moments.

Calculations of the thermodynamic quantities of classical
spins can be performed with ASD or Monte Carlo calcula-
tions, but ASD is trivial to parallelize across large ensembles
of spins, allowing efficient calculation as well as the ability to
calculate real-time dynamics. The classical spin dynamics is
described by the Landau-Lifshitz-Gilbert (LLG) equation of
motion

ṅ = − γ

1 + α2
(n×Beff + αn× (n×Beff)) , (37)

where γ is the gyromagnetic ratio in rad · s−1 · T−1, α is a
dimensionless damping parameter, and the effective field Beff
in Tesla is calculated as

Beff = − 1

µs
∇nH. (38)

thus, the field from our effective Hamiltonian (36) is

Blow-T
eff = Bzez +

√
2

2
√
s
Bz

nz√
n2
x + n2

y

ez, (39)

where ez is the unit vector along z. This expression is ap-
parently singular for nz = 1; this singularity simply indicates
that the magnetic field doesn’t have any effect on a moment
that is aligned with it; we realize, indeed, that such an initial
condition, which must be treated separately, is very improba-
ble at any finite temperature.

Temperature is included in the formalism by adding a
stochastic field Beff → Beff+η that turns the Landau-Lifshitz-
Gilbert equation of motion (37) into a Langevin equation. The
stochastic field is defined through the fluctuation dissipation
theorem, which in the classical case requires η to be a white
noise with the properties

〈ηi(t)〉 = 0

〈ηi(t)ηj(t′)〉 =
2αδijδ(t− t′)

βµsγ
,

(40)

where i, j are Cartesian components. Recently, stochastic
fields using the quantum fluctuation dissipation theorem have
been used, enforcing a Bose-Einstein statistical distribution
for the noise2. This assumes that the relevant thermally oc-
cupied objects in this case are magnons, which should obey
Planck statistics. Here, our work differs in that the quantum
nature of the spin will be included directly into the effective
field without making any assumption of the statistical distri-
bution.

We numerically integrate the LLG equation (37) using a
symplectic integration scheme31 with a timestep of 0.05 ps.
The expectation values from the numerical method are calcu-
lated as averages over time and multiple realizations of the
stochastic dynamics

〈Sz〉 =
1

Ns

1

Nt

Ns∑
i=1

Nt∑
t=1

ni,z(t), (41)

where Ns is the number of independent spin trajectories and
Nt is the number of time samples. The average in time is
taken after an equilibration period where the system relaxes
from the initial state to a thermalized state. The simulations
performed here equilibrate within a few nanoseconds; there-
fore, we started the averaging procedure after an equilibration
period of 5 ns. The averaging time is 15 ns and Ns = 20.

From the effective Hamiltonian (35), we compute the ex-
pectation values for Ŝz , from the approximate partition func-
tion

〈Ŝz〉 ≈

∫
dµ(z)~s 1−|z|2

1+|z|2 exp(−βHeff)∫
dµ(z) exp(−βHeff)

, (42)

and compare these to the results we obtain from atomistic sim-
ulations of the same system. The results for different values
of the principal quantum number s = 1/2, 2, 5 are shown in
Figure 2.

All three models, classical, quantum and the effective
Hamiltonian (42) converge to the same values in the high-
temperature limit. In figure 2a for s = 1/2 the effective model
only has small corrections to the classical model and the over-
all behavior is not close to the quantum solution. Only the
slope at zero temperature shows any of the quantum behav-
ior with a small inflection point. This is a feature which sev-
eral effective models have attempted to force artificially on
the studied spin systems to reproduce the experimental be-
havior for magnetization curves32. However, our model does
not impose any hypotheses on the system and has no fitting
parameters. The additional computational cost of making the
classical system more closely resemble its quantum avatar is
minimal, requiring only the addition of a field that amounts to
an effective anisotropy.

Although this coarse approximation scheme provides re-
sults that are closer to the quantum results, there is no way to
systematically improve the approximation scheme. For each
higher-order commutation correction we must again try to de-
rive a Heff ad hoc that satisfies equation (33). Therefore, we
continue by developing a more systematic method for which
computing the expectation values to higher orders of accuracy
is straightforward.
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FIG. 2. Expectation value for Ŝz as a function of temperature for
the classical limit (green solid curve), quantum solution (red solid
curve) and effective model (blue solid curve) from partition func-
tion. Equivalent results from enhanced atomistic spin dynamics sim-
ulation for classical limit (purple dashed curve) and effective model
(orange dashed curve). (a) Top pane s = 1/2, (b) middle pane s = 2
and (c) bottom pane s = 5

B. High-temperature spin coherent states expansion

The effective model in the previous section produced by ap-
proximating the integrand of the partition function by an ex-
ponential is very coarse but yields some quantum corrections
and at a very low computational cost. We now improve on
this to try to recover a behavior more similar to the expansion
of the partition function in Figure 1. We do this by includ-
ing higher-order noncommutative terms in the expansion of
exp(−βĤ) (21) in a more systematic way.

We return to the partition function (13) and, similar to the
path-integral molecular dynamics approaches, introduce the
resolution of unity as

2s∑
p=0

|p〉 〈p| = 1, (43)

in the |s,m〉 basis, in which Ŝz is diagonal, resulting in

Z =

∫ 2s∑
p=0

dµ(z) 〈z| e
βgµB

~ BzŜz |p〉 〈p|z〉 . (44)

Using the definition of |z〉 and the action of Ŝz on |p〉 we find

Z =

∫
dµ(z)

[
e−βgµBsBz

(
eβgµBBz + |z|2

1 + |z|2

)2s
]
, (45)

for which we need to rewrite the integrand

F [β, z] ≡ e−βgµBsBz

(
eβgµBBz + |z|2

1 + |z|2

)2s

, (46)

as a single exponential of the form F [β, z] ≡ exp(−βHeff)
to identify a Hamiltonian from which to construct an effective
model. Through a series of identities (see appendix C), we
can write

F [β, z] = exp

{
2s

[
ln(2) + ln

(
|z|

1 + |z|2

)
+ ln

(
cosh

(
e
βgµBBz

2 − ln (|z|)
))]}

.

(47)

We then approximate (47) with a Taylor expansion for β → 0.
Thus in the high-temperature limit (which we later find to be
quite low)

ln(F [β, z]) ≈
(
1− |z|2

)
βgµBsBz

1 + |z|2
+
|z|2β2 (gµB)

2
sB2

z

(1 + |z|2)
2

−
|z|2

(
1− |z|2

)
β3 (gµB)

3
sB3

z

3 (1 + |z|2)
3 +O(β4).

(48)
Mapping to the spin coherent state vector components using
(1− |z|2)/(1 + |z|2) = nz and |z|2/(1 + |z|2) = (1−n2

z)/4,
we can write a temperature-dependent effective Hamiltonian:

Hhigh-T
eff ≈− gµBsBznz − 1

4β (gµB)
2
sB2

z (1− n2
z)

+ 1
12β

2 (gµB)
3
sB3

znz(1− n2
z).

(49)

From the temperature-dependent Hamiltonian (49) and the
definition of the effective field (38), we derive

Bhigh-T
eff = Bz − 1

2βgµBB
2
znz − 1

12β
2 (gµB)

2
B3
z (1− 3n2

z).
(50)

We use this effective field in numerical atomistic simula-
tions and compare with the expectation values computed di-
rectly from the partition function (42) and the relevant terms,
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FIG. 3. Expectation value for Ŝz for s = 2 as a function of tem-
perature for classical limit (green solid curve) and quantum solution
(red solid curve) and effective model with the first correction (light
blue solid curve) and second correction (dark blue solid curve) from
partition function. Equivalent results from enhanced atomistic spin
dynamics simulation for classical limit (purple dashed curve) and
second effective model with first correction (orange dashed curve)
and second correction (yellow dashed curve)

according to the order of the approximation, of the effective
Hamiltonian (49). The results are shown in Figure 3.

When we include only the first correction for the effective
field, namely the first and second terms on the right-hand side
of (49) then, contrary to the previous section (Figure 2), the
low-temperature limit is far from both classical and quantum
solutions. However, around 1 K, the results become very close
to the quantum solution and converge to be almost identical as
the temperature increases.

Including higher-order terms (for example, using all the
terms in (50)) we see that although at low temperatures the
model moves further away from the quantum solution, the rate
of convergence towards it is much faster. For the first correc-
tion, once close to the quantum solution, it takes a while be-
fore both curves are indistinguishable, and this happens much
quicker when including the second term (see the inset of Fig-
ure 3). As our approximation is computed to higher orders, the
convergence becomes faster. We note that there is no reason
why this high-temperature expansion should become valid at
much lower temperatures as we go to higher orders.

The second drawback that we have to deal with is that these
expectation curves have to be normalized in order for the
atomistic simulations to overlap with the direct computation
from the partition function. Indeed, when we compute the ex-
pectation value for 〈Ŝz〉 we should be using an expression of

the form of Eq. (28) as

〈Ŝz〉 ≈

∫
dµ(z) 〈z| Ŝz exp

(
βgµB

~ BzŜz

)
|z〉∫

dµ(z)e−βµsBz
(
eβgµBBz+|z|2

1+|z|2

)2s , (51)

but instead (see appendix D), we define

〈Ŝz〉app ≡

∫
dµ(z)~s 1−|z|2

1+|z|2 e
−βµsBz

(
eβgµBBz+|z|2

1+|z|2

)2s

∫
dµ(z)e−βµsBz

(
eβgµBBz+|z|2

1+|z|2

)2s .

(52)
We know that in the quantum case given by Eq. (30),
〈Ŝz〉quantum goes to s as β → ∞. We can show that in the
same limit, for Eq. (D3), we have

〈Ŝz〉app −−−−→
β→∞

s2

s+ 1
(53)

hence our expectation values need to be normalized by this
factor to yield the correct results (see appendix D for more
details).

In summary, using this approximation scheme, we can
compute expectation values for the quantum system from
an equivalent classical atomistic simulation where the quan-
tum nature of the system is represented by a temperature-
dependent effective field. In contrast to the previous section
(III A), these then need to be properly rescaled. However,
we can compute a closed expression for this rescaling fac-
tor, which once again depends only on the principal quantum
spin number s. Once this step is fulfilled, the results are al-
most identical to the fully quantum expectation values for high
enough temperatures, which are of the order of 1 K for the sin-
gle spin in a magnetic field studied here. The low-temperature
behavior of this scheme is not as well behaved as in Section
III A, which is not surprising, as this is a high-temperature ex-
pansion (see Appendix E).

IV. CONCLUSION

In this Article, we have built an effective, classical, dynam-
ical model for quantum spin systems from a path integral ap-
proach inspired by path integral molecular dynamics in the
simplest case of a single spin of arbitrary size in a constant
magnetic field described by a Zeeman Hamiltonian. While
path integral models of spin have a long history and have
been investigated in fundamental contexts such as supersym-
metry or, more closely related to our work for molecular mag-
nets, a systematic approach bridging the gap from small-size
fully quantum simulations to large-scale dynamical simula-
tions with quantum features has been lacking. Our work here
is the first step towards this direction.

We have started by expressing the partition function for spin
systems in the spin coherent state basis to obtain a continu-
ous description in terms of an integral rather than a sum, to
make the connection to classical spin dynamics. This allows
the use of highly efficient atomistic spin dynamics simulations
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for quantum spin systems and makes the connection between
the quantum system defined by its states and the Hamiltonian
operator and classical spin dynamics more explicit. We then
proceeded to expand the relevant matrix elements of the par-
tition function in powers of β to compute the expectation val-
ues of Ŝz directly from the partition function and from atom-
istic spin dynamics. Here, we have seen that in this first ap-
proximation this could be done very simply and efficiently by
adding an anisotropic effective field, which could be directly
inferred from the quantum spin number of the system. For
small spin values, we have seen that the improvement is quite
small but increases with the spin. Of course, spin s = 1/2
represents the most extreme limit of spin quantization. As the
magnitude of the spin increases to s = 2 and s = 5 (Fig. 2b,c)
the corrections in the effective model take the system closer
to the quantum solution. Many magnetic materials of prac-
tical relevance have s in the range 3/2 to 7/2 so having an
improved quantum description for these larger spin values is
already very useful.

We also investigated a different method of approximating
the integrand of the partition function by an exponential by
allowing the effective Hamiltonian of the system to be explic-
itly temperature-dependent, yielding a temperature-dependent
effective field for describing in this way the quantum nature
of the system. This method proved to be more accurate for
higher temperatures, above 1 K, than the low-temperature ex-
pansion, but with the drawback that the expectation values
computed using this method require renormalization. How-
ever, this renormalization factor has a closed general expres-
sion that depends only on the quantum spin number s of the
system.

The next step we aim to investigate is the more general
case of a general, time-dependent, magnetic field. This intro-
duces more noncommutativity issues with operators Ŝx, Ŝy
and Ŝ±. Beyond this more complex Hamiltonians including
the exchange interaction and magnetocrystalline anisotropy in
a quantum fashion will allow the large-scale calculation of the
thermodyamics of magnetic materials including quantum ef-
fects with a relatively low computational cost. In the present
case of a constant magnetic field and for a single spin, we
have seen that, conversely to path integral methods for molec-
ular dynamics, we did not need to introduce copies of the spin
which interact with itself. We do not expect this to hold in
more complex Hamiltonians.
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Appendix A: Correspondence of the spin coherent states with
the classical limit

Here we show that the observable 〈Ŝz〉 from the spin co-
herent states with the commutators neglected (i.e. in the clas-
sical limit (31)) is identical to 〈Sz〉 calculated from the clas-
sical Heisenberg model. For a classical Heisenberg spin with
Hamiltonian

H = −µsB · S, (A1)

where S lives on the unit sphere, the partition function is

Z =

∫
dSδ(S2−1)e−βH =

∫
dSδ(S2−1)eβµsB·S, (A2)

for which the expectation value of the z-component of S is
given by

〈Sz〉 =

∫
dSδ(S2 − 1)Sze

βµsB·S∫
dSδ(S2 − 1)eβµsB·S

. (A3)

If the external field is constant along the z-direction then we
have

〈Sz〉 =

∫
dSzSze

βµsBzSz∫
dSze

βµsBzSz

(A4)

as the integrals over Sx and Sy in the numerator and denom-
inator cancel each other out. Comparing this to 〈Ŝz〉 for the

https://doi.org/10.5281/zenodo.7688972
https://doi.org/10.5281/zenodo.7688972
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spin coherent state (31) and using nz = (1− |z|2)/(1 + |z|2)
and µsSz = gsµBnz we see that (A4) and (31) are identical
up to a factor of ~, as the classical spin vector has no units,
whereas the quantum expectation value of 〈Ŝz〉 is in units of
~.

Appendix B: Coarse approximation method

We expand the operator exponential series (21) up to second
order in β

exp(−βĤ) ≈ 1 + βgµBBzs
1− |z|2

1 + |z|2

+ β2 (gµBBz)
2 s|z|2

(1 + |z|2)
2

+
1

2

(
βgµBBzs

1− |z|2

1 + |z|2

)2

,

(B1)

we can show that by taking

Heff = −gµBBzs
1− |z|2

1 + |z|2
+ gµBBz

√
2s|z|

1 + |z|2
, (B2)

and expanding the effective classical exponential up to the
same order in β, we get

exp(−βHeff)

≈ 1 + βgµBBzs
1− |z|2

1 + |z|2
+ β2 (gµBBz)

2 s|z|2

(1 + |z|2)
2

+
1

2

(
βgµBBzs

1− |z|2

1 + |z|2

)2

− βgµBBz

√
2s|z|

1 + |z|2
− (βgµBBz)

2 s
√

2s|z|
(
1− |z|2

)
(1 + |z|2)

2 .

(B3)
This is where our approximation becomes more qualitative
than quantitative. Indeed, the fifth and sixth terms on the right-
hand side of (B3) are not present in (B1) even though they are
not of higher order in β, however, we have taken advantage
of the freedom of choice for the sign of the extra term in the
effective Hamiltonian (second term on the right-hand side of
(B2)) as the correction (third term on the right-hand side of
(B1)) comes from the square term in the exponential series.
Taking the correction (second term on the right-hand side of
(B2)) to be negative implies that

exp

(
−βgµBBz

√
2s|z|

1 + |z|2

)
∈ [0; 1], (B4)

or in terms of the spin coherent state vector

exp
(
−β 1

2gµBBz
√

2s
√

1− n2
z

)
∈ [0; 1], (B5)

which means that our expectation value remains close to the
classical expectation value, especially for lower temperatures
where the spin preferentially aligns with the z-axis. Although
this constitutes quite a coarse approximation, it is definitely a
relevant primer to understand the subtleties of the path integral
spin dynamics method.

Appendix C: High temperature model exponential form

Starting from (46), we rewrite(
eβgµBBz + |z|2

1 + |z|2

)2s

=

(
eβgµBBz + e2 ln(|z|)

eln(1+|z|2)

)2s

=

e βgµBBz2 +ln(|z|)
(
e
βgµBBz

2 −ln(|z|) + e−
βgµBBz

2 +ln(|z|)
)

eln(1+|z|2)

2s

=

e βgµBBz2 +ln(|z|)2 cosh
(
βgµBBz

2 − ln(|z|)
)

eln(1+|z|2)

2s

=

(
e
βgµBBz

2 +ln(
|z|

1+|z|2
)+ln

(
2 cosh

(
βgµBBz

2 −ln(|z|)
)))2s

,

(C1)
hence (46) can be rewritten as

F [β, z] = e
2s

(
ln(2)+ln(

|z|
1+|z|2

)+ln
(

cosh
(
βgµBBz

2 −ln(|z|)
)))

.
(C2)

Appendix D: High-temperature model normalization

We approximate

〈z| Ŝz exp

(
βµs
~
BzŜz

)
|z〉

≈ 〈z| Ŝz |z〉 〈z| exp

(
βµs
~
BzŜz

)
|z〉

= ~s
1− |z|2

1 + |z|2
e−βµsBzs

(
eβµsBz + |z|2

1 + |z|2

)2s

,

(D1)

as our approximation scheme for the partition function aims
to move from a quantum description in terms of states and
operators to a classical description

〈z| exp

(
βµs
~
BzŜz

)
|z〉 ≈ exp (−βH) . (D2)

Within this approximation, we can rewrite∫
dµ(z) 〈z| Ŝz exp

(
βµs
~ BzŜz

)
|z〉∫

dµ(z)e−βµsBzs
(
eβµsBz+|z|2

1+|z|2

)2s

≡

∫
dµ(z)~s 1−|z|2

1+|z|2 e
−βµsBzs

(
eβµsBz+|z|2

1+|z|2

)2s

∫
dµ(z)e−βµsBzs

(
eβµsBz+|z|2

1+|z|2

)2s ,

(D3)

which is the expression we use for our averages, as it cor-
responds to the same approximation as the atomistic model,
as proven by the exact overlap of both the averages computed
from the partition function (52) and the atomistic average over
time and the number of realizations (41).
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FIG. 4. Expectation value for Ŝz for s = 2 as a function of temper-
ature from (52) (orange dashed curve) and normalised according to
(53) (cyan dashed curve) compared to the quantum limit (red solid
curve)

What is of peculiar interest is that the ratio

〈Ŝz〉app

〈Ŝz〉quantum

−−−−→
β→∞

s

s+ 1
(D4)

which reminds us of the fact that the eigenvalues of Ŝ
2

are
s(s+ 1) as in

Ŝ
2
|s,m〉 = s(s+ 1) |s,m〉 (D5)

rather than simply s2. Indeed, in the classical limit s → ∞
we recover

s(s+ 1) −−−→
s→∞

s2. (D6)

We would like to emphasize that this required normaliza-
tion factor is identical for both the results of the atomistic
simulations (41) and the results from the approximate parti-
tion function (52).

The expectation values for 〈Ŝz〉app with and without nor-
malization are given in Figure 4, along with the appropriate
quantum solution.

This is very important for more general applications of this
model as this means that the normalization of the curves does
not require an additional fitting parameter of any kind but is
rather analytically computable and has a general, closed ex-
pression.

Appendix E: Higher order correction for the high-temperature
model

As mentioned in section III B our method can technically
carry out this approximation scheme to any order in the non-
commutative terms, numerically, without requiring to com-
pute these corrections using pen and paper. But as this re-
lies on a Taylor expansion around the high-temperature limit
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 Ŝ z® =s (
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11-th correction terms

FIG. 5. Expectation value for Ŝz for s = 1/2 as a function of tem-
perature for classical limit (blue solid curve) and quantum solution
(red solid curve) and effective model with the 10th correction (light
blue solid curve) from partition function. Equivalent results from en-
hanced atomistic spin dynamics simulation effective model with 11th

correction (purple dashed curve).

β → 0 there is a limit as to how low in temperature we can
provide accurate results. Indeed there is no reason for this
high-temperature expansion to converge to the quantum solu-
tion for temperatures around 0 K. This is shown in Figure 5.
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