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Shinde,6 Edgar Josué Landinez Borda,6 Claudia Filippi,6 Kosuke Nakano,7, 8 Otto Kohulák,8, 1 Sandro Sorella,8

Pablo de Oliveira Castro,9 William Jalby,9 Pablo López Ŕıos,10 Ali Alavi,10 and Anthony Scemama1, a)
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9)Université Paris-Saclay, UVSQ, LI-PaRAD
10)Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany

TREXIO is an open-source file format and library developed for the storage and ma-
nipulation of data produced by quantum chemistry calculations. It is designed with the
goal of providing a reliable and efficient method of storing and exchanging wave function
parameters and matrix elements, making it an important tool for researchers in the field
of quantum chemistry. In this work, we present an overview of the TREXIO file format
and library. The library consists of a front-end implemented in the C programming lan-
guage and two different back-ends: a text back-end and a binary back-end utilizing the
HDF5 library which enables fast read and write operations. It is compatible with a va-
riety of platforms and has interfaces for the Fortran, Python, and OCaml programming
languages. In addition, a suite of tools has been developed to facilitate the use of the
TREXIO format and library, including converters for popular quantum chemistry codes
and utilities for validating and manipulating data stored in TREXIO files. The simplic-
ity, versatility, and ease of use of TREXIO make it a valuable resource for researchers
working with quantum chemistry data.

Keywords: quantum chemistry, data, interoperability

I. INTRODUCTION

Quantum chemistry relies on quantum mechanics to
explain and predict the properties and behaviors of
atoms, molecules, and materials. Although density func-
tional theory (DFT) is one of the most widely used ap-
proaches thanks to its excellent ratio between computa-
tional cost and accuracy, another important tool is wave
function theory (WFT), which describes the behavior of
a quantum system in terms of its wave function. In order
to perform WFT calculations, it is necessary to manipu-
late a large number of parameters, such as the expansion
coefficients of the wave function and the matrix elements
of the Hamiltonian operator. These parameters are typi-
cally numerous and difficult to handle, making it impor-
tant to have a robust and efficient method for storing and
accessing them.

Reproducible research remains a challenging topic, de-
spite recent advances such as the introduction of the
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FAIR (findable, accessible, interoperable, reusable) data
principles.1 A key aspect of reproducibility is software
interoperability, which refers to the ability of different
programs to work together and exchange information,
allowing different systems to communicate and exchange
data in order to function as a cohesive whole. Interop-
erable software is prevalent nowadays and is a key com-
ponent of the Unix philosophy.2 In Unix shells, the most
straightforward application of software interoperability
is made through the use of the pipe operator, where the
output of a program is the input of another program.
Similarly, shell scripts are created through the composi-
tion of smaller programs, exchanging data through files
or pipes.

A major challenge of reproducible research is the
uniformity of input/output (I/O) data within a par-
ticular research domain. The Unix philosophy recom-
mends the use of text files because they are architecture-
independent, readable in any language, and can be read
as a stream, which is useful for making programs com-
municate over a network. However, storing data in a text
format can result in large file sizes and conversion from
ASCII to binary format can be computationally expen-
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sive for large data sets. To address this concern, domain-
specific binary formats have been developed, such as the
Joint Photographic Experts Group (JPEG) format3 for
digital images and the Moving Picture Experts Group
(MPEG) format4 for videos. These binary formats are
utilized through standardized application programming
interfaces (API).

In the field of wave function theory such a standard
format and API is still lacking, and the purpose of the
TREXIO library presented in this article is to fill this
gap. This paper is organized as follows: firstly, a brief
overview of the related work is presented. Secondly, the
TREXIO format for the electronic wave functions is in-
troduced together with some details concerning the inter-
nal representation and the associated API. Finally, some
applications are demonstrated with a major focus on the
interoperability achieved within the TREX Center of Ex-
cellence in Exascale Computing5 due to the use of the
TREXIO format.

II. RELATED WORK

It is worth mentioning that there have been several
efforts to unify the data formats within different subdo-
mains of quantum chemistry. Probably one of the earliest
works in this direction was the definition of the Crystallo-
graphic Information File (CIF) for establishing databases
of crystal structures.6 A few years later, the Chemical
Markup Language (CML)7,8 was introduced. It is a for-
mat based on the Extensible Markup Language (XML)
which is used to describe chemical data: molecules, chem-
ical properties, reactions, spectra, materials, etc. With
formats like CIF or CML, the burden of following a stan-
dard is placed on the code writing the data. As a con-
sequence, any tool that can read the format will be able
to interpret the data without needing to understand the
specific code that was used to produce it. This means
that data can be easily shared and reused across differ-
ent programs, and new tools can be developed to work
with the format without needing to know anything about
the code used to produce the data.

Recently, the cclib Python package9, originally de-
veloped for performing computational chemistry calcula-
tions, has accumulated several internal converters capa-
ble of parsing and transforming the output of different
programs into the internal representation called ccData.
A similar approach has been taken by the developers of
IOData10, who have implemented converters and parsers
for commonly used programs and their output files. How-
ever, there is currently no unified data representation or
API that can be integrated into quantum chemistry codes
to improve interoperability. Consequently, each time
a given program modifies its input/output formatting,
the IOData package must be adapted accordingly and
promptly, which poses an additional challenge for main-
tainers. More recently, consolidated efforts have given
rise to QCSchema11, which provides an API-like access

to data generated by existing quantum chemistry codes,
thereby addressing the issue of dependence on the out-
put file’s formatting style. In this case, the responsibility
for adhering to conventions falls on the code reading the
data, as it must be aware of the conventions chosen by
the code that generated the data. With the Electronic
Structure Common Data Format (ESCDF)12 and its as-
sociated library, codes that write data can supply meta-
data to assist codes that read data in comprehending
the organization of the data in the files. Hence, ESCDF
aims to provide low-level tools and flexibility to facilitate
the exchange of large datasets between codes with high-
performance I/O. While this greatly reduces the difficulty
of understanding conventions for developers reading the
data, they may still need to apply different conversions
depending on the code that generated the data. Conse-
quently, implementing support for ESCDF may require
more effort on the part of code developers compared to
using a standardized format such as CML.

Another popular format for storing quantum chemistry
data is the Gaussian13 fchk format. While it is a propri-
etary format specific to the Gaussian software package,
its compatibility with several other software programs
has contributed to its extensive utilization. However, the
format’s proprietary and closed-source nature prevents
external developers from improving the format, leaving
enhancements and compatibility updates solely in the
hands of Gaussian developers.

Recently, the mwfn14 format was introduced with the
primary goal of enhancing the existing solutions such as
wfn,13 wfx,15 and Molden16 formats, which were designed
to store parameters of molecular orbitals and atomic ba-
sis sets in view of reconstructing the one-particle density
matrix. Although mwfn is an improvement on these other
formats, it does not allow the user to store enough infor-
mation for a wave function coming from a configuration
interaction (CI) or coupled cluster (CC) calculation.

For post-Hartree-Fock calculations, the FCIDUMP
format17 has become a de facto standard because of its
simplicity. It is a text-based format that only contains
minimal information for building the second-quantized
Hamiltonian, namely the one- and two-electron integrals
in the basis of molecular orbitals (MO), the number of
electrons and information about the spin state and or-
bital symmetries. The nuclear coordinates and basis set
are not saved in FCIDUMP files. The text format makes
its adoption extremely simple, but it has a very high im-
pact on the performance since FCIDUMP files are usually
large. Although very practical, the use of the FCIDUMP
format has other important limitations than efficiency.
Once a program has computed a post-Hartree-Fock wave
function using an FCIDUMP file as an input, the parame-
ters of the basis set and the molecular orbitals may have
been lost unless they were stored in a separate file in an-
other format. Although configuration interaction or cou-
pled cluster calculations can be performed using FCIDUMP
files, this format is too limited to be used for quantum
Monte Carlo (QMC) calculations, which require all the
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wave function parameters.
The Q5Cost18–20 initiative was one of the first at-

tempts aiming at standardizing the WFT data by in-
troducing both a format and the API to interact with it.
With Q5Cost, it was possible to store all the wave func-
tion parameters of CI expansions together with the basis
set, molecular orbitals, and even electron repulsion inte-
grals. The Q5Cost library was relying on the Hierarchical
Data Format version 5 (HDF5)21 to provide efficient I/O
and keep the data well organized in the file. Neverthe-
less, Q5Cost had some severe drawbacks. First, Q5Cost
was written in Fortran which made its use tedious in
other programming languages such as C++ or Python. In
addition, to be able to interpret a Q5Cost file, it was
often necessary to know which code had generated it.
Indeed, most WFT codes have different conventions in
terms of normalization of the basis functions, ordering of
the atomic orbitals, etc, and no conversion into a unique
internal representation was imposed by the library. So
the burden of understanding conventions was still on the
shoulders of the readers of the files. Finally, Q5Cost had
important technical limitations: the Q5Cost library was
intended to be used as a compiled Fortran module (a so-
called .mod file), that depended on the compiled Fortran
modules provided by the HDF5 library. As the format
of the compiled Fortran modules is specific to the com-
piler vendor and even to the version of the compiler, the
Q5Cost library could not be simply linked as an external
library to any code. Using the Q5Cost library in a For-
tran code imposed that the user’s code was compiled with
the same Fortran compiler as the one that was used to
compile both the HDF5 Fortran modules and the Q5Cost
library. This contamination of dependencies could lead to
some important impact on the performance of the user’s
code, and the only solution to solve that problem was to
compile many different versions of the HDF5 Fortran in-
terface and Q5Cost library with multiple compilers and
compiler versions.

The TREXIO initiative, heavily influenced by the
Q5Cost project, aims to propose a standard format and
library for wave function calculations. This initiative
seeks to leverage the strengths of the Q5Cost project and
learn from its design flaws that hindered its widespread
adoption. One of the key improvements we aim to achieve
is to shift the effort of adopting a format and conventions
to the side of the code writing the data. This way, the
files will be easily readable without any prior knowledge
by any code, similar to CML or JPEG.

III. THE TREXIO FORMAT

The TREXIO format (version 2.3.0) is designed to
store all the necessary information to represent a wave
function, including: the number of up- and down-spin
electrons, nuclear coordinates and charges, basis set and
effective core potential (ECP) parameters, atomic and
molecular orbital parameters, Slater determinants and

CI coefficients, configuration state function (CSF) def-
initions, and metadata related to the description of ex-
cited states. It is also capable of storing data required for
the computation of the wave function, such as one- and
two-electron integrals, numerical integration grids used
in DFT calculations, and one- and two-particle reduced
density matrices.

One notable feature of TREXIO is that it is self-
contained, meaning that all the parameters needed to
recreate the wave function are explicitly stored within
the file, eliminating the need for external databases. For
example, instead of storing the name of a basis set (such
as cc-pVDZ), the actual basis set parameters used in the
calculation are stored. All data are stored in atomic units
for simplicity.

The data in TREXIO are organized into groups, each
containing multiple attributes defined by their type and
dimensions. Each attribute within a group corresponds
to a single scalar or array variable in a code. In what
follows, the notation <group>.<attribute> will be used
to identify an attribute within a group. For example,
nucleus.charge refers to the charge attribute in the
nucleus group. It is an array of type float with dimen-
sion nucleus.num, the attribute describing the number
of nuclei. For simplicity, the singular form is always used
for the names of groups and attributes.

A. Data types

So that TREXIO can be used in any language, we use
a limited number of data types. It is important to keep
in mind that these types are abstract in the sense that
they are defined independently of their implementation,
and are not tied to any specific representation on a com-
puter. The main data types are int for integers, float
for floating-point values, and str for character strings.
The real and imaginary parts of complex numbers are
stored separately as floats. To minimize the risk of in-
teger overflow and accuracy loss, numerical data types
are stored using 64-bit representations by default. How-
ever, in specific cases where integers are bounded (such as
orbital indices in four-index integrals), the smallest pos-
sible representation is used to reduce the file size. The
API presented in the next section handles any necessary
type conversions.

There are also two types derived from int: dim and
index. dim is used for dimensioning variables, which
are positive integers used to specify the dimensions of
an array. In the previous example, nucleus.num is a
dimensioning variable that specifies the dimensions of
the nucleus.charge array. index is used for integers
that correspond to array indices, because some languages
(such as C or Python) use zero-based indexing, while oth-
ers (such as Fortran) use one-based indexing by default.
For convenience, values of the index type are shifted by
one when TREXIO is used in one-based languages to be
consistent with the semantics of the language.
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Arrays can be stored in either dense or sparse formats.
If the sparse format is selected, the data is stored in co-
ordinate format. For example, the element A(i,j,k,l)
is stored as a quadruplet of integers (i, j, k, l) along
with the corresponding value. Typically, one- and two-
dimensional arrays are stored as dense arrays, while ar-
rays with higher dimensions are stored in sparse format.

B. Stored data

In this section, we provide a comprehensive overview
of the data that can be stored in TREXIO files. A com-
plete list of the groups and attributes is available as sup-
plementary information or in the documentation of the
library. In both resources, multi-dimensional arrays are
expressed in column-major order, meaning that elements
of the same column are stored contiguously.

1. Metadata

In order to facilitate the archiving of TREXIO files
in open-data repositories, users have the option to store
metadata in the metadata group. This includes the
names of the codes that were used to create the file, a
list of authors, and a textual description. This allows for
more information about the file to be easily accessible
and transparent.

2. System information

The chemical system consists of nuclei and electrons,
where the nuclei are considered as fixed point charges
with Cartesian coordinates. The wave function is stored
in the spin-free formalism,22 and therefore, it is neces-
sary to explicitly store the number of spin-up (N↑) and
spin-down (N↓) electrons. These numbers correspond to
the normalization of the spin-up and spin-down single-
particle reduced density matrices.

Certain calculations, such as DFT calculations, require
the use of a numerical integration grid. The grid group
provides information for storing grids, inspired by the
data required by the numgrid software.23,24

To keep things simple, TREXIO can only store a single
wave function per file. When working with excited states,
it is often the case that multiple states only differ in their
CI coefficients, while other parameters (such as geome-
try, basis set, molecular orbitals, etc.) are the same. To
facilitate the storage of multiple states, TREXIO pro-
vides the option to store all the data needed to describe
one state in a main file, along with the names of addi-
tional TREXIO files that contain only the state-specific
parameters.

3. Basis set

In the basis group, the atomic basis set is defined
as a list of shells. Each shell i is centered at a center
Ai, has a specified angular momentum li, and a radial
function Ri. The radial function is a linear combination
of Nprim i primitive functions, which can be Slater type
orbitals (STO, p = 1) or Gaussian type orbitals (GTO,
p = 2). These primitive functions are parameterized by
exponents γki and coefficients aki:

Ri(r) = Ni|r−RAi |ni
Nprim i∑
k=1

aki fki(γki, p) e
−γki|r−RAi

|p .

(1)
Different codes have different normalization practices,
so it is necessary to store normalization factors in the
TREXIO file to ensure that it is self-contained and does
not rely on the client program having the ability to com-
pute overlap integrals. Some codes assume that the con-
traction coefficients are applied to normalized linear com-
binations of primitives, so a normalization constant fki
for each primitive must also be stored. Some codes as-
sume that the functions Ri are normalized, requiring the
computation of an additional normalization factor, Ni.

4. Atomic orbitals

The ao group in TREXIO contains information related
to the expansion of the shells in the basis set into atomic
orbitals (AOs). For example, a p-shell is expanded into
three AOs: px, py, and pz. AOs are defined as follows:

χi(r) = N ′i Pη(i)(r)Rs(i)(r) (2)

where i is the atomic orbital index, P refers to either
polynomials or spherical harmonics, and s(i) specifies the
shell on which the AO is expanded.
η(i) denotes the chosen angular function. The AOs

can be expressed using real spherical harmonics or
polynomials in Cartesian coordinates. In the case
of real spherical harmonics, the AOs are ordered as
0,+1,−1,+2,−2, . . . ,+m,−m. In the case of polyno-
mials, the canonical (or alphabetical) ordering is used,

p : px, py, pz

d : dxx, dxy, dxz, dyy, dyz, dzz

f : fxxx, fxxy, fxxz, fxyy, fxyz, fxzz, fyyy, fyyz, fyzz, fzzz
...

Note that for p orbitals in real spherical harmonics, the
ordering is 0,+1,−1 which corresponds to pz, px, py.
N ′i is a normalization factor that allows for different

normalization coefficients within a single shell, as in the
GAMESS25 convention where each individual function is
unit-normalized. Using GAMESS convention, the nor-
malization factor of the shell Nd (Eq. 1) in the basis
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group is appropriate for instance for the d2
z function (i.e.

Nd ≡ Nz2) but not for the dxy AO, so the correction

factor N ′i for dxy in the ao groups is the ratio
Nxy
Nz2

.

5. Effective core potentials

An effective core potential (ECP) V ECP
A can be used to

replace the core electrons of atom A. It can be expressed
as:26

V ECP
A = VA`max+1 +

`max∑
`=0

δVA`
∑̀
m=−`

|Y`m〉〈Y`m| (3)

The first term in this equation is attributed to the local
channel, while the remaining terms correspond to non-
local channel projections. `max refers to the maximum
angular momentum in the non-local component of the
ECP. The functions δVA` and VA`max+1 are parameterized
as:

δVA`(r) =

Nq`∑
q=1

βAq` |r−RA|nAq` e−αAq`|r−RA|2

VA`max+1(r) = − Zeff

|r−RA|
+ δVA`max+1(r) (4)

where Zeff is the effective nuclear charge of the center.
All the parameters can be stored in the ecp group.

6. Molecular orbitals

The mo group is devoted to the storage of the molecu-
lar orbitals (MOs). MO coefficients are stored in a two-
dimensional array, with additional information such as
symmetries or occupation numbers stored in separate ar-
rays. It is also possible to store the spin to enable the
description of unrestricted Hartree-Fock or unrestricted
Kohn-Sham determinants.

7. Hamiltonian matrix elements

One-electron integrals can be stored in the AO and
MO bases in the groups ao 1e int and mo 1e int, re-
spectively. Similarly, two-electron integrals can be stored
in the AO and MO bases in the groups ao 2e int
and mo 2e int, respectively. One-electron integrals are
stored as two-dimensional arrays, while two-electron in-
tegrals are stored in a sparse format, with a quadruplet of
indices and the corresponding value stored for each non-
zero integral. The order of the indices follows Dirac’s
bra-ket notation.

It is also possible to store a low-rank representation of
the two-electron integrals, obtained via a Cholesky de-
composition.

8. CI expansion

The wave function Ψ can be represented as a combi-
nation of Slater determinants DI :

|Ψ〉 =
∑
I

CI |DI〉 (5)

In the determinant group of a TREXIO file, the defi-
nition of these Slater determinants, as well as the con-
figuration interaction (CI) expansion coefficients, can be
stored. Each Slater determinants is represented as a
Waller-Hartree double determinant,27 i.e. the product of
a determinant with ↑-spin electrons and a determinant
with ↓-spin electrons. To enable the storage of arbitrary
CI expansions and to reduce the storage size, the deter-
minants are stored as pairs of binary strings: one for the
↑ spin sector and one for the ↓ spin. Each binary string
has a length equal to the number of MOs, with the i-th
bit set to one if and only if the i-th MO is included in the
determinant. As the creation of these binary strings may
be tedious, we provide some helper functions to trans-
form lists of orbital indices into binary strings. If the
orbital indices are not in increasing order, a reordering
is made and the user is informed if a change of sign is
needed in the corresponding CI coefficient.

Alternatively, the wave function may be expanded in
a basis of configuration state functions (CSFs),

|Ψ〉 =
∑
I

C̃I |ψI〉 . (6)

where each CSF ψI is a linear combination of Slater de-
terminants. The csf group allows for the storage of the
CSF expansion coefficients, as well as the matrix 〈DI |ψJ〉
in a sparse format. This enables the projection of the
CSFs onto the basis of Slater determinants.

9. Amplitudes

The wave function may also be expressed in terms of
the action of the cluster operator T̂ :

T̂ = T̂1 + T̂2 + T̂3 + . . . (7)

on a reference wave function Ψ, where T̂1 is the single
excitation operator,

T̂1 =
∑
ia

tai â
†
aâi, (8)

T̂2 is the double excitation operator,

T̂2 =
1

4

∑
ijab

tabij â
†
aâ
†
bâj âi, (9)

etc. Indices i, j, a and b denote molecular orbital indices.
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Wave functions obtained with perturbation theory or
configuration interaction are of the form:

|Φ〉 = T̂ |Ψ〉 (10)

and coupled-cluster wave functions are of the form:

|Φ〉 = eT̂ |Ψ〉 (11)

The reference wave function Ψ is stored using the
determinant and/or csf groups, and the amplitudes are
stored using the amplitude group. The attributes with
the exp suffix correspond to exponentialized operators.

10. Reduced density matrices

The reduced density matrices, stored in the rdm group,
are defined in the basis of molecular orbitals.

The ↑-spin and ↓-spin components of the one-body
density matrix are given by

γ↑ij = 〈Ψ|â†jα âiα|Ψ〉 (12)

γ↓ij = 〈Ψ|â†jβ âiβ |Ψ〉 (13)

and the spin-summed two-body density matrix is

γij = γ↑ij + γ↓ij (14)

The ↑↑, ↓↓, and ↑↓ components of the two-body density
matrix are given by

Γ↑↑ijkl = 〈Ψ|â†kα â
†
lαâjα âiα|Ψ〉 (15)

Γ↓↓ijkl = 〈Ψ|â†kβ â
†
lβ âjβ âiβ |Ψ〉 (16)

Γ↑↓ijkl = 〈Ψ|â†kα â
†
lβ âjβ âiα|Ψ〉+

〈Ψ|â†lα â
†
kβ âiβ âjα|Ψ〉, (17)

and the spin-summed one-body density matrix is

Γijkl = Γ↑↑ijkl + Γ↓↓ijkl + Γ↑↓ijkl. (18)

11. Correlation factors

Explicit correlation factors can be introduced in the
wave function, such as in QMC, F12, or transcorrelated
methods.

In the current version of the library, it is possible to
store two different types of Jastrow factors. The Jastrow
factor is an N -electron function which multiplies the ref-
erence wave function expansion: Ψ = Φ× exp(J), where

J(r,R) = JeN(r,R) + Jee(r) + JeeN(r,R). (19)

In the following, we use the notations rij = |ri − rj | and
Riα = |ri − Rα|, where indices i and j correspond to
electrons and α to nuclei.

The first form of Jastrow factor is the one used in
the CHAMP28 program.29 JeN contains electron-nucleus
terms:

JeN(r,R) =

Nelec∑
i=1

Nnucl∑
α=1

[
a1,α fα(Riα)

1 + a2,α fα(Riα)

+

Naord∑
p=2

ap+1,α [fα(Riα)]p − J∞eN

]
(20)

Jee contains electron-electron terms:

Jee(r) =

Nelec∑
i=1

i−1∑
j=1

[
1
2

(
1 + δ↑↓ij

)
b1 fee(rij)

1 + b2 fee(rij)

+

Nbord∑
p=2

bp+1 [fee(rij)]
p − J∞ee,ij

]
(21)

where δ↑↓ij is zero when the electrons i and j have the
same spin, and one otherwise. JeeN contains electron-
electron-nucleus terms:

JeeN(r,R) =

Nnucl∑
α=1

Nelec∑
i=1

i−1∑
j=1

Nord∑
p=2

p−1∑
k=0

p−k−2δk,0∑
l=0

clkpα [gee(rij)]
k

[
[gα(Riα)]

l
+ [gα(Rjα)]

l
]

[gα(Ri α) gα(Rjα)]
(p−k−l)/2

,

(22)

clkpα being non-zero only when p − k − l is even. The
terms J∞ee and J∞eN are shifts to ensure that Jee and JeN

have an asymptotic value of zero. f and g are scaling
functions defined as

fα(r) =
1− e−κα r

κα
and gα(r) = e−κα r, (23)

and the possible presence of an index α indicates that
the scaling coefficient κ depends on the atom α.

The second form of Jastrow factor is the µ Jastrow
factor30

Jee(r) =

Nelec∑
i=1

i−1∑
j=1

rij (1− erf(µ rij))−
1

µ
√
π
e−(µ rij)

2

.

(24)
It is a single parameter correlation factor that has been
recently introduced in the context of transcorrelated
methods. It imposes the electron-electron cusp and is
built such that the leading order in 1/r12 of the effective
two-electron potential reproduces the long-range interac-
tion of the range-separated density functional theory. An
envelope function has then been introduced to cancel out
the Jastrow effects between two electrons when at least
one electron is close to a nucleus, and standard one-body
terms were also introduced to avoid the expansion of the
one-body density.

As there exist multiple forms of Jastrow factors in the
literature, contributions to extend this section are wel-
come.
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12. QMC data

We also provide in the qmc group some informa-
tion specific to QMC calculations. In QMC methods,
the wave function is evaluated at points in the 3N -
dimensional space, where N is the number of electrons.
It might be convenient to store the coordinates of points
together with the wave function, and to store the value of
the wave function and the local energy ĤΨ(r)/Ψ(r) eval-
uated at these points, for example, to check that different
codes give the same values.

IV. THE TREXIO LIBRARY

The TREXIO library is written in the C language, and
is licensed under the open-source 3-clause BSD license to
allow for use in all types of quantum chemistry software,
whether commercial or not.

The design of the library is divided into two main sec-
tions: the front-end and the back-end. The front-end
serves as the interface between users and the library,
while the back-end acts as the interface between the li-
brary and the physical storage.

A. The front-end

By using the TREXIO library, users can store and
extract data in a consistent and organized manner.
The library provides a user-friendly API, including
functions for reading, writing, and checking for the
existence of data. The functions follow the pat-
tern trexio [has|read|write] <group> <attribute>,
where the group and attribute specify the particular data
being accessed. It also includes an error handling mech-
anism, in which each function call returns an exit code
of type trexio exit code, explaining the type of error.
This can be used to catch exceptions and improve debug-
ging in the upstream user application. Figures 1 and 2
show examples of usage of the TREXIO library in C and
Python, respectively.

To ensure the consistency of the data, the attributes
can only be written if all the other attributes on which
they explicitly depend have been written. For example,
as the nucleus.coord array is dimensioned by the num-
ber of nuclei nucleus.num, the nucleus.coord attribute
can only be written after nucleus.num. However, the
library is not aware of non-explicit dependencies, such
as the relation between the electron repulsion integrals
(ERIs) and MO coefficients. A complete control of the
consistency of the data is therefore impossible, so the
attributes were chosen to be by default immutable. By
only allowing data to be written only once, the risk of
modifying data in a way that creates inconsistencies is
reduced. For example, if the ERIs have already been
written, it would be inconsistent to later modify the MO

1 #include <stdio.h>
2 #include <trexio.h>
3
4 int main() {
5 int num = 3; // Number of atoms
6 double coord[][3] = {
7 // xyz coordinates in atomic units
8 0. , 0. , -0.24962655,
9 0. , 2.70519714, 1.85136466,

10 0. , -2.70519714, 1.85136466 };
11
12 trexio_exit_code rc;
13
14 // Open the TREXIO file
15 trexio_t* f = trexio_open("water.trexio",
16 'w', TREXIO_HDF5, &rc);
17 if (rc != TREXIO_SUCCESS) {
18 fprintf(stderr, "Error: %s\n",
19 trexio_string_of_error(rc));
20 return -1;
21 }
22
23 // Write the number of nuclei
24 rc = trexio_write_nucleus_num (f, num);
25 if (rc != TREXIO_SUCCESS) {
26 fprintf(stderr, "Error: %s\n",
27 trexio_string_of_error(rc));
28 return -1;
29 }
30
31 // Write the nuclear coordinates
32 rc = trexio_write_nucleus_coord (f, &coord[0][0]);
33 if (rc != TREXIO_SUCCESS) {
34 fprintf(stderr, "Error: %s\n",
35 trexio_string_of_error(rc));
36 return -1;
37 }
38
39 // Close the TREXIO file
40 rc = trexio_close(f);
41 if (rc != TREXIO_SUCCESS) {
42 fprintf(stderr, "Error: %s\n",
43 trexio_string_of_error(rc));
44 return -1;
45 }
46 return 0;
47 }

FIG. 1. C code writing the nuclear coordinates of a water
molecule in a TREXIO file, with error handling.

1 import trexio
2 coord = [ # xyz coordinates in atomic units
3 [0. , 0., -0.24962655],
4 [0. , 2.70519714, 1.85136466],
5 [0. , -2.70519714, 1.85136466]
6 ]
7 # The Python API calls can raise `trexio.Error`
8 # exceptions to be handled via try/except clauses
9 # in the user application

10 with trexio.File("water.trexio", 'w',
11 back_end=trexio.TREXIO_HDF5) as f:
12 trexio.write_nucleus_num(f, len(coord))
13 trexio.write_nucleus_coord(f, coord)

FIG. 2. Python code writing the nuclear coordinates of a
water molecule in a TREXIO file.

coefficients. To allow for flexibility, the library also al-
lows for the use of an unsafe mode, in which data can
be overwritten. However, this mode carries the risk of
producing inconsistent files, and the metadata group’s
unsafe attribute is set to 1 to indicate that the file has
potentially been modified in a dangerous way. This at-
tribute can be manually reset to 0 if the user is confident
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that the modifications made are safe.

B. The back-end

At present, TREXIO supports two back-ends: one re-
lying only on the C standard library to produce plain
text files (the so-called text back-end), and one relying
on the HDF5 library.

With the text back-end, the TREXIO “file” is a di-
rectory containing multiple text files, one for each group.
This back end is intended to be used in development envi-
ronments, as it gives access to the user to standard tools
such as diff and grep. In addition, text files are bet-
ter adapted than binary files for version control systems
such as Git, so this format can be also used for storing
reference data for unit tests.

HDF5 is a binary file format and library for storing and
managing large amounts of data in a hierarchical struc-
ture. It allows users to manipulate data in a way sim-
ilar to how files and directories are manipulated within
the file system. The HDF5 library provides optimal per-
formance through its memory mapping mechanism and
supports advanced features such as serial and parallel
I/O, chunking, and compression filters. However, HDF5
files are in binary format, which requires additional tools
such as h5dump to view them in a human-readable for-
mat. HDF5 is widely used in scientific and engineering
applications, and is known for its high performance and
ability to handle large data sets efficiently.

The TREXIO HDF5 back-end is the recommended
choice for production environments, as it provides high
I/O performance. Furthermore, all data is stored in a
single file, making it especially suitable for parallel file
systems like Lustre. These file systems are optimized for
large, sequential I/O operations and are not well-suited
for small, random I/O operations. When multiple small
files are used, the file system may become overwhelmed
with metadata operations like creating, deleting, or mod-
ifying files, which can adversely affect performance.

In a benchmarking program designed to compare the
two back-ends of the library, the HDF5 back-end was
found to be significantly faster than the text back-end.
The program wrote a wave function made up of 100 mil-
lion Slater determinants and measured the time taken to
write the Slater determinants and CI coefficients. The
HDF5 back-end achieved a speed of 10.4× 106 Slater de-
terminants per second and a data transfer rate of 406
MB/s, while the text back-end had a speed of 1.1 × 106

determinants per second and a transfer rate of 69 MB/s.
These results were obtained on a DELL 960 GB mix-use
solid-state drive (SSD). The HDF5 back-end was able to
achieve a performance level close to the peak performance
of the SSD, while the text back-end’s performance was
limited by the speed of the CPU for performing binary
to ASCII conversions.

In addition to the HDF5 and text back-ends, it is also
possible to introduce new back-ends to the library. For

example, a back-end could be created to support ob-
ject storage systems, such as those used in cloud-based
applications31 or for archiving in open data repositories.
To use a new back-end, only a minor modification is re-
quired in the code using TREXIO: the correct back-end
argument needs to be passed to the trexio open func-
tion (see Figures 1 and 2).

C. Supported languages

One of the main benefits of using C as the interface
for a library is that it is easy to use from other program-
ming languages. Many programming languages, such as
Python or Julia, provide built-in support for calling C
functions, which means that it is relatively straightfor-
ward to write a wrapper that allows a library written in C
to be called from another language. In general, libraries
with a C interface are the easiest to use from other pro-
gramming languages, because C is widely supported and
has a simple, stable application binary interface (ABI).
Other languages, such as Fortran and C++, may have
more complex ABIs and may require more work to inter-
face with them.

TREXIO has been employed in codes developed in var-
ious programming languages, including C, C++, Fortran,
Python, OCaml, and Julia. While Julia is designed to
enable the use of C functions without the need for ad-
ditional manual interfacing, the TREXIO C header file
was automatically integrated into Julia programs using
the CBindings.jl package.32 In contrast, specific bind-
ings have been provided for Fortran, Python, and OCaml
to simplify the user experience.

In particular, the binding for Fortran is not distributed
as multiple compiled Fortran module files (.mod), but in-
stead as a single Fortran source file (.F90). The distribu-
tion of the source file instead of the compiled module has
multiple benefits. It ensures that the TREXIO module
is always compiled with the same compiler as the client
code, avoiding the compatibility problem of .mod files
between different compiler versions and vendors. The
single-file model requires very few changes in the build
system of the user’s codes, and it facilitates the search
for the interface of a particular function. In addition,
advanced text editors can parse the TREXIO interface
to propose interactive auto-completion of the TREXIO
function names to the developers.

Finally, the Python module, partly generated with
SWIG33 and fully compatible with NumPy,34 allows
Python users to interact with the library in a more intu-
itive and user-friendly way. Using the Python interface is
likely the easiest way to begin using TREXIO and under-
standing its features. In order to help users get started
with TREXIO and understand its functionality, tutorials
in Jupyter notebooks are available on GitHub (https:
//github.com/TREX-CoE/trexio-tutorials), and can
be executed via the Binder platform.

https://github.com/TREX-CoE/trexio-tutorials
https://github.com/TREX-CoE/trexio-tutorials
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D. Source code generation and documentation

Source code generation is a valuable technique that
can significantly improve the efficiency and consis-
tency of software development. By using templates
to generate code automatically, developers can avoid
manual coding and reduce the risk of errors or in-
consistencies. This approach is particularly use-
ful when a large number of functions follow simi-
lar patterns, as in the case of the TREXIO library,
where functions are named according to the pattern
trexio [has|read|write] <group> <attribute>. By
generating these functions from the format specification
using templates, the developers can ensure that the re-
sulting code follows a consistent structure and is free from
errors or inconsistencies.

The description of the format is written in a text file in
the Org format.35 Org is a structured plain text format,
containing information expressed in a lightweight markup
language similar to the popular Markdown language.36

While Org was introduced as a mode of the GNU Emacs
text editor, its basic functionalities have been imple-
mented in most text editors such as Vim, Atom or VS
Code.

There are multiple benefits in using the Org format.
The first benefit is that the Org syntax is easy to learn
and allows for the insertion of equations in LATEX syntax.
Additionally, Org files can be easily converted to Hyper-
Text Markup Language (HTML) or Portable Document
Format (PDF) for generating documentation. The sec-
ond benefit is that GNU Emacs is a programmable text
editor and code blocks in Org files can be executed inter-
actively, similar to Jupyter notebooks. These code blocks
can also manipulate data defined in tables and this fea-
ture is used to automatically transform tables describ-
ing groups and attributes in the documentation into a
JavaScript Object Notation (JSON) file.37,38 This JSON
file is then used by a Python script to generate the needed
functions in C language, as well as header files and some
files required for the Fortran, Python, and OCaml inter-
faces.

With this approach, contributions to the development
of the TREXIO library can be made simply by adding
new tables to the Org file, which can be submitted as
pull requests on the project’s GitHub repository (https:
//github.com/trex-coe/trexio). Overall, this process
allows for a more efficient and consistent development
process and enables contributions from a wider range of
individuals, regardless of their programming skills.

E. Availability and reliability

The TREXIO library is designed to be portable and
easy to install on a wide range of systems. It follows the
C99 standard to ensure compatibility with older systems,
and can be configured with either the GNU Autotools or
the CMake build systems. The only external dependency

is the HDF5 library, which is widely available on HPC
platforms and as packages on major Linux distributions.
Note that it is possible to disable the HDF5 back-end
at configuration time, allowing TREXIO to operate only
with the text back-end and have zero external dependen-
cies. This can be useful for users who may not be able
to install HDF5 on certain systems.

TREXIO is distributed as a tarball containing the
source code, generated code, documentation, and Fortran
interface. It is also available as a binary .deb package
for Debian-based Linux distributions and as packages for
Guix39, Spack40 and Conda.41 The Python module can
be found in the PyPI repository, the OCaml binding is
available in the official OPAM repository, and the .deb
packages are already available in Ubuntu 23.04.

To ensure the reliability and quality of the TREXIO
library, we have adopted standard continuous integra-
tion and deployment practices. For example, we use unit
tests that are executed automatically using GitHub ac-
tions whenever modifications are made to the codebase.
These tests cover a wide range of functionalities and help
to identify any potential issues or bugs in the code. Ad-
ditionally, the TREXIO library is regularly used by the
authors of the present paper, and as such, it is contin-
uously tested and validated in the context of ongoing
research activities.

TREXIO was built, tested and installed successfully
on 20 different architectures supported by the Debian
build farm. Furthermore, we ensure that the quality of
our code meets the requirements of the CERT coding
standards,42 and we use the cppcheck43 tool to validate
the quality of our code. These measures demonstrate our
commitment to ensuring that the TREXIO library is a
reliable and trustworthy tool.

F. Open-Source Governance and Sustainability Strategies

Our approach to the development and governance of
the TREXIO library follows the standard design of open-
source projects, which typically involve a collaborative
effort from a community of contributors. The TREX Eu-
ropean Center of Excellence initiated the project and pro-
posed the first functional version of the software. How-
ever, we consider this to be just the starting point for a
larger community effort.

As an open-source project, we encourage contributions
from anyone interested in the development of the library.
This includes not only contributions to the codebase but
also contributions to the documentation, testing, and
other aspects of the project. We believe that this collab-
orative approach is the key to the success of any open-
source project.

Regarding governance, we have a small group of main-
tainers who oversee the development of the project, re-
view and merge contributions, and ensure the quality
of the code. However, we strive to make the develop-
ment process as transparent and open as possible, and

https://github.com/trex-coe/trexio
https://github.com/trex-coe/trexio
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we encourage contributions from anyone interested in the
project.

Overall, our strategy for the governance and develop-
ment of the TREXIO library follows the standard de-
sign of open-source projects, which emphasizes collabo-
ration and transparency. We believe that this approach,
combined with our commitment to seeking and securing
funding for the continued development and maintenance
of TREXIO, will ensure the long-term success and useful-
ness of the library to the quantum chemistry community.

V. EXAMPLES OF APPLICATIONS

The open-source Python package trexio tools44 has
been created to enhance the use of the TREXIO library
and corresponding data format. It includes converters
for transforming output files from codes such as Gaus-
sian, GAMESS,25 or PySCF45 into TREXIO files. How-
ever, in the future, it would be preferable if the devel-
opers of these codes were to offer the option to export
data in TREXIO format in order to maintain numeri-
cal precision and ensure consistency in the stored data.
In addition, the package includes utilities to convert cer-
tain data blocks from TREXIO files into FCIDUMP or
Molden formats. It also has a feature that validates the
consistency of a wave function by numerically calculat-
ing overlap integrals on a grid and comparing them to
the overlap matrix stored in the file. This helps to con-
firm that all basis set parameters are consistent with the
conventions of the original program.

TREXIO is currently used to exchange wave func-
tion parameters between the selected CI code Quantum
Package46 and the QMC code CHAMP.28 The QMC
codes QMC=Chem47 and TurboRVB48 are also able to
read TREXIO files, allowing for comparison of the three
QMC codes using the same wave function. TREXIO is
also used to transfer integrals between Quantum Package
and the FCIQMC code NECI,49 and to read density ma-
trices produced by Quantum Package in GammCor50 for
symmetry-adapted perturbation theory (SAPT)51 molec-
ular interaction calculations with near-full CI density
matrices.52 In addition, the recent development of a code
for calculating electron repulsion integrals using Slater-
type orbitals53 now produces TREXIO files, enabling
FCIQMC calculations using Slater-type orbitals with
NECI and similar selected CI calculations with Quantum
Package, which can then be used as trial wave functions
for QMC calculations.

VI. CONCLUSION

The TREXIO format and library offer a convenient
and flexible way to store and exchange quantum chem-
istry data. Its open-source nature allows for easy inte-
gration into various software applications and its com-
patibility with multiple programming languages makes it

accessible to a wide range of users. The use of the HDF5
library as the default back-end ensures efficient storage
and retrieval of data, while the option to disable HDF5
and use the text back-end allows for zero external depen-
dencies. The development of TREXIO has been driven
by the need to facilitate collaboration and reproducibil-
ity in quantum chemistry research, and its adoption in
various codes and projects is a testament to its useful-
ness in achieving these goals. We would like to emphasize
that the TREXIO library is a work in progress, and we
are committed to expanding its scope and functionality
in future releases. Our immediate priorities include sup-
porting periodic boundary conditions and other basis sets
such as grids, and plane waves. Overall, the TREXIO for-
mat and library is a valuable resource for the quantum
chemistry community and its continued development and
adoption will surely benefit the field.
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A. Garćıa, V. M. Garćıa-Suárez, L. Genovese, W. P. Huhn,
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J. Paquier, B. Pradines, R. Assaraf, P. Reinhardt, J. Toulouse,
P. Barbaresco, N. Renon, G. David, J.-P. Malrieu, M. Véril,
M. Caffarel, P.-F. Loos, E. Giner, and A. Scemama, J. Chem.
Theory Comput. 15, 3591 (2019).

47A. Scemama, M. Caffarel, E. Oseret, and W. Jalby, J. Comput.
Chem. 34, 938 (2013).

48K. Nakano, C. Attaccalite, M. Barborini, L. Capriotti, M. Ca-
sula, E. Coccia, M. Dagrada, C. Genovese, Y. Luo, G. Mazzola,
A. Zen, and S. Sorella, J. Chem. Phys. 152, 204121 (2020).

49K. Guther, R. J. Anderson, N. S. Blunt, N. A. Bogdanov, D. Cle-
land, N. Dattani, W. Dobrautz, K. Ghanem, P. Jeszenszki,

N. Liebermann, G. L. Manni, A. Y. Lozovoi, H. Luo, D. Ma,
F. Merz, C. Overy, M. Rampp, P. K. Samanta, L. R. Schwarz,
J. J. Shepherd, S. D. Smart, E. Vitale, O. Weser, G. H. Booth,
and A. Alavi, J. Chem. Phys. 153, 034107 (2020).

50K. Pernal, M. Hapka, M. Przybytek, M. Modrzejewski, and
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Appendix A: Table of stored data

TABLE I: List of all the data that can be stored in TREXIO files. The name of
the group is written in the first line of each block. Multi-dimensional arrays are
expressed in column-major order, meaning that elements of the same column are
stored contiguously.

Attribute Type Dimensions Description
metadata
code num dim Number of codes used to produce the file
code str (metadata.code num) Names of the codes used
author num dim Number of authors of the file
author str (metadata.author num) Names of the authors of the file
package version str TREXIO version used to produce the file
description str Text describing the content of file
unsafe int 1: true, 0: false
nucleus
num dim Number of nuclei
charge float (nucleus.num) Charges of the nuclei
coord float (3,nucleus.num) Coordinates of the atoms
label str (nucleus.num) Atom labels
point group str Symmetry point group
repulsion float Nuclear repulsion energy
grid
description str Details about the used quadratures can go here
rad precision float Radial precision parameter
num dim Number of grid points
max ang num int Maximum number of angular grid points
min ang num int Minimum number of angular grid points
coord float (grid.num) Discretized coordinate space
weight float (grid.num) Grid weights according to a given partitioning (e.g. Becke)
ang num dim Number of angular integration points
ang coord float (grid.ang num) Discretized angular space
ang weight float (grid.ang num) Angular grid weights
rad num dim Number of radial integration points
rad coord float (grid.rad num) Discretized radial space
rad weight float (grid.rad num) Radial grid weights
electron
num dim Number of electrons
up num int Number of ↑-spin electrons
dn num int Number of ↓-spin electrons
state
num dim Number of states (including the ground state)
id int Index of the current state (0 is ground state)
current label str Label of the current state
label str (state.num) Labels of all states
file name str (state.num) Names of the TREXIO files linked to the current one
basis
type str Type of basis set: “Gaussian” or “Slater”
prim num dim Total number of primitives
shell num dim Total number of shells
nucleus index index (basis.shell num) One-to-one correspondence between shells and atomic indices
shell ang mom int (basis.shell num) One-to-one correspondence between shells and angular momenta
shell factor float (basis.shell num) Normalization factor of each shell (Ns)
r power int (basis.shell num) Power to which r is raised (ns)
shell index index (basis.prim num) One-to-one correspondence between primitives and shell index
exponent float (basis.prim num) Exponents of the primitives (γks)
coefficient float (basis.prim num) Coefficients of the primitives (aks)
prim factor float (basis.prim num) Normalization coefficients for the primitives (fks)
e cut float Energy cut-off for plane-wave calculations
ecp
max ang mom plus 1 int (nucleus.num) `max + 1, in the removed core orbitals
z core int (nucleus.num) Number of core electrons to remove per atom
num dim Total number of ECP functions for all atoms and all values of `
ang mom int (ecp.num) One-to-one correspondence between ECP items and `
nucleus index index (ecp.num) One-to-one correspondence between ECP items and the atom index
exponent float (ecp.num) αAq` all ECP exponents
coefficient float (ecp.num) βAq` all ECP coefficients
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http://dx.doi.org/ 10.1021/acs.jctc.9b00176
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power int (ecp.num) nAq` all ECP powers
ao
cartesian int 1: true, 0: false
num dim Total number of atomic orbitals
shell index (ao.num) Basis set shell for each AO
normalization float (ao.num) Normalization factors N ′

ao 1e int
overlap float (ao.num,ao.num) 〈p|q〉
kinetic float (ao.num,ao.num) 〈p|T̂e|q〉
potential n e float (ao.num,ao.num) 〈p|V̂ne|q〉
ecp float (ao.num,ao.num) 〈p|V̂ecp|q〉
core hamiltonian float (ao.num,ao.num) 〈p|ĥ|q〉
overlap im float (ao.num,ao.num) 〈p|q〉 (imaginary part)

kinetic im float (ao.num,ao.num) 〈p|T̂e|q〉 (imaginary part)

potential n e im float (ao.num,ao.num) 〈p|V̂ne|q〉 (imaginary part)

ecp im float (ao.num,ao.num) 〈p|V̂ECP|q〉 (imaginary part)

core hamiltonian im float (ao.num,ao.num) 〈p|ĥ|q〉 (imaginary part)
ao 2e int
eri float sparse (ao.num,ao.num,ao.num,ao.num) Electron repulsion integrals
eri lr float sparse (ao.num,ao.num,ao.num,ao.num) Long-range electron repulsion integrals
eri cholesky num dim Number of Cholesky vectors for ERI
eri cholesky float sparse (ao.num,ao.num,ao 2e int.eri cholesky num) Cholesky decomposition of the ERI
eri lr cholesky num dim Number of Cholesky vectors for long range ERI
eri lr cholesky float sparse (ao.num,ao.num,ao 2e int.eri lr cholesky num) Cholesky decomposition of the long range ERI
mo
type str String to identify the set of MOs (HF, Natural, Local, CASSCF, etc)
num dim Number of MOs
coefficient float (ao.num,mo.num) MO coefficients
coefficient im float (ao.num,mo.num) MO coefficients (imaginary part)
class str (mo.num) Choose among: Core, Inactive, Active, Virtual, Deleted
symmetry str (mo.num) Symmetry in the point group
occupation float (mo.num) Occupation number
energy float (mo.num) For canonical MOs, corresponding eigenvalue
spin int (mo.num) For UHF wave functions, 0 is α and 1 is β
mo 1e int
overlap float (mo.num,mo.num) 〈i|j〉
kinetic float (mo.num,mo.num) 〈i|T̂e|j〉
potential n e float (mo.num,mo.num) 〈i|V̂ne|j〉
ecp float (mo.num,mo.num) 〈i|V̂ECP|j〉
core hamiltonian float (mo.num,mo.num) 〈i|ĥ|j〉
overlap im float (mo.num,mo.num) 〈i|j〉 (imaginary part)

kinetic im float (mo.num,mo.num) 〈i|T̂e|j〉 (imaginary part)

potential n e im float (mo.num,mo.num) 〈i|V̂ne|j〉 (imaginary part)

ecp im float (mo.num,mo.num) 〈i|V̂ECP|j〉 (imaginary part)

core hamiltonian im float (mo.num,mo.num) 〈i|ĥ|j〉 (imaginary part)
mo 2e ints
eri float sparse (mo.num,mo.num,mo.num,mo.num) Electron repulsion integrals
eri lr float sparse (mo.num,mo.num,mo.num,mo.num) Long-range electron repulsion integrals
eri cholesky num dim Number of Cholesky vectors for ERI
eri cholesky float sparse (mo.num,mo.num,mo 2e int.eri cholesky num) Cholesky decomposition of the ERI
eri lr cholesky num dim Number of Cholesky vectors for long range ERI
eri lr cholesky float sparse (mo.num,mo.num,mo 2e int.eri lr cholesky num) Cholesky decomposition of the long range ERI
determinant
num dim readonly Number of determinants
list int special (determinant.num) List of determinants as integer bit fields
coefficient float buffered (determinant.num) Coefficients of the determinants from the CI expansion
csf
num dim readonly Number of CSFs
coefficient float buffered (csf.num) Coefficients CI of the CSF expansion
det coefficient float sparse (determinant.num,csf.num) Projection on the determinant basis
amplitude
single float sparse (mo.num,mo.num) Single excitation amplitudes
single exp float sparse (mo.num,mo.num) Exponentialized single excitation amplitudes
double float sparse (mo.num,mo.num,mo.num,mo.num) Double excitation amplitudes
double exp float sparse (mo.num,mo.num,mo.num,mo.num) Exponentialized double excitation amplitudes
triple float sparse (mo.num,mo.num,mo.num,mo.num,mo.num,mo.num) Triple excitation amplitudes
triple exp float sparse (mo.num,mo.num,mo.num,mo.num,mo.num,mo.num) Exponentialized triple excitation amplitudes
quadruple float sparse (mo.num,mo.num,mo.num,mo.num Quadruple excitation amplitudes

,mo.num,mo.num,mo.num,mo.num)
quadruple exp float sparse (mo.num,mo.num,mo.num,mo.num Exponentialized quadruple excitation amplitudes

,mo.num,mo.num,mo.num,mo.num)

rdm
1e float (mo.num,mo.num) One body density matrix
1e up float (mo.num,mo.num) ↑-spin component of the one body density matrix
1e dn float (mo.num,mo.num) ↓-spin component of the one body density matrix
2e float sparse (mo.num,mo.num,mo.num,mo.num) Two-body reduced density matrix (spin trace)
2e upup float sparse (mo.num,mo.num,mo.num,mo.num) ↑↑ component of the two-body reduced density matrix
2e dndn float sparse (mo.num,mo.num,mo.num,mo.num) ↓↓ component of the two-body reduced density matrix
2e updn float sparse (mo.num,mo.num,mo.num,mo.num) ↑↓ component of the two-body reduced density matrix
2e cholesky num dim Number of Cholesky vectors
2e cholesky float sparse (mo.num,mo.num,rdm.2e cholesky num) Cholesky decomposition of the two-body RDM (spin trace)
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2e upup cholesky num dim Number of Cholesky vectors ↑↑
2e upup cholesky float sparse (mo.num,mo.num,rdm.2e upup cholesky num) Cholesky decomposition of the two-body RDM (↑↑)
2e dndn cholesky num dim Number of Cholesky vectors ↓↓
2e dndn cholesky float sparse (mo.num,mo.num,rdm.2e dndn cholesky num) Cholesky decomposition of the two-body RDM (↓↓)
2e updn cholesky num dim Number of Cholesky vectors ↑↓
2e updn cholesky float sparse (mo.num,mo.num,rdm.2e updn cholesky num) Cholesky decomposition of the two-body RDM (↑↓)
jastrow
type string Type of Jastrow factor: CHAMP or Mu
ee num dim Number of electron-electron parameters
en num dim Number of electron-nucleus parameters, per nucleus
een num dim Number of electron-electron-nucleus parameters, per nucleus
ee float (jastrow.ee num) Electron-electron parameters
en float (jastrow.en num) Electron-nucleus parameters
een float (jastrow.een num) Electron-electron-nucleus parameters
en nucleus index (jastrow.en num) Nucleus relative to the eN parameter
een nucleus index (jastrow.een num) Nucleus relative to the eeN parameter
ee scaling float κ value in CHAMP Jastrow for electron-electron distances
en scaling float (nucleus.num) κ value in CHAMP Jastrow for electron-nucleus distances
qmc
num dim Number of 3N-dimensional points
point float (3,electron.num,qmc.num) 3N-dimensional points
psi float (qmc.num) Wave function evaluated at the points
e loc float (qmc.num) Local energy evaluated at the points
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