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Abstract. The Madden–Julian Oscillation (MJO) is one of the main sources of sub-seasonal atmospheric pre-
dictability in the tropical region. The MJO affects precipitation over highly populated areas, especially around
southern India. Therefore, predicting its phase and intensity is important as it has a high societal impact. Indices
of the MJO can be derived from the first principal components of zonal wind and outgoing longwave radiation
(OLR) in the tropics (RMM1 and RMM2 indices). The amplitude and phase of the MJO are derived from those
indices. Our goal is to forecast these two indices on a sub-seasonal timescale. This study aims to provide an
ensemble forecast of MJO indices from analogs of the atmospheric circulation, computed from the geopotential
at 500 hPa (Z500) by using a stochastic weather generator (SWG). We generate an ensemble of 100 members
for the MJO amplitude for sub-seasonal lead times (from 2 to 4 weeks). Then we evaluate the skill of the en-
semble forecast and the ensemble mean using probabilistic scores and deterministic skill scores. According to
score-based criteria, we find that a reasonable forecast of the MJO index could be achieved within 40 d lead
times for the different seasons. We compare our SWG forecast with other forecasts of the MJO. The comparison
shows that the SWG forecast has skill compared to ECMWF forecasts for lead times above 20 d and better skill
compared to machine learning forecasts for small lead times.

1 Introduction

Forecasting the Madden–Julian Oscillation (MJO) is a cru-
cial scientific endeavor as the MJO represents one of the most
important sources of sub-seasonal predictability in the trop-
ics. The Madden–Julian Oscillation controls tropical convec-
tion, with a life cycle going from 30 to 60 d (Lin et al., 2008).
It is characterized by a dominant eastward propagation over
the tropical Indo-Pacific basin, in particular during the boreal
winter. The MJO affects the Indian and Australian monsoons
(Zhang, 2013) and West African monsoon (Barlow et al.,
2016). It was shown that it affects precipitation in East Asia
(Zhang et al., 2013) and North America (Becker et al., 2011).

The MJO affects the global weather as it impacts the tropics
as well as the extratropics due to the atmospheric teleconnec-
tions (Zhang, 2013; Cassou, 2008).

The improvement of the forecast skill of the MJO is the
subject of several studies. Numerical models have shown an
ability to forecast the MJO index (Kim et al., 2018). How-
ever, the forecast of the MJO is sensitive to the quality of
the initial conditions (Zhang, 2013; Straub, 2013). This mo-
tivates probabilistic forecasts to overcome the chaotic nature
of climate variability (Sivillo et al., 1997; Palmer, 2000). In-
deed, ensemble forecasts have shown improvements over de-
terministic forecasts for weather and climatic variables in the
short and long term (Yiou and Déandréis, 2019; Hersbach
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et al., 2020). One of the advantages of ensemble forecasts is
that they provide information about the forecast uncertain-
ties, which deterministic forecasts cannot provide. In addi-
tion, the use of ensemble means has shown better forecast
results than the individual ensemble members in previous
works (Toth and Kalnay, 1997; Grimit and Mass, 2002; Xi-
ang et al., 2015).

Statistical models, such as stochastic weather generators
(SWGs), have been used for this purpose. SWGs are de-
signed to mimic the behavior of climate variables (Ail-
liot et al., 2015). They have been used to forecast various
weather and climatic variables such as temperature (Yiou
and Déandréis, 2019), precipitation (Krouma et al., 2021),
and the North Atlantic Oscillation (NAO) (Yiou and Déan-
dréis, 2019). One of the benefits of using stochastic weather
generators is that they have a low computing cost compared
to numerical models. Combining stochastic weather gener-
ators with analogs of the atmospheric circulation is an effi-
cient approach to generate ensemble weather forecasts with
consistent atmospheric patterns (Yiou and Déandréis, 2019;
Krouma et al., 2021; Blanchet et al., 2018).

Analogs of circulation were designed to provide forecasts
assuming that similar situations in the atmospheric circula-
tion could lead to similar local weather conditions (Lorenz,
1969). Recent studies have evaluated the potential of analogs
to forecast the probability distribution of climate variables:
Yiou and Déandréis (2019) simulated ensemble members of
temperature using random sampling of atmospheric circula-
tion analogs; Atencia and Zawadzki (2014) used analogs of
precipitation to forecast precipitation.

The goal of this study is to forecast a daily MJO index
for a sub-seasonal lead time (≈ 2–4 weeks) with a SWG
based on analogs of the atmospheric circulation, described in
Sect. 3.2. The SWG approach was evaluated in previous stud-
ies by Yiou and Déandréis (2019) and Krouma et al. (2021)
for European temperature and precipitation. The SWG was
able to forecast the temperature within 40 d and the precipi-
tation within 20 d with reasonable skill scores in western Eu-
rope (Krouma et al., 2021; Yiou and Déandréis, 2019). In
this paper, we adjust the parameters of the SWG in order to
forecast the MJO indices. More precisely, our goals are (i) to
forecast the MJO amplitude (directly from the amplitude and
using the MJO indices) and (ii) to evaluate the ability of our
SWG model to forecast active events of the MJO for the fol-
lowing weeks. We evaluate the sensitivity of the SWG ap-
proach to the forecast with different seasons and compare
the forecast skill using SWG to other forecast approaches.

The paper is divided as follows: Sect. 2 shows the data
used for running our forecast. Section 3 explains the method-
ology: circulation analogs, stochastic weather generator, and
the verification metrics that we used to evaluate the SWG
forecast. Section 4 explains the experimental setup. Section 5
details the results of the simulations and the evaluation of the
ensemble forecast. Section 6 is devoted to the comparison of

the SWG forecast with the literature. Section 7 contains the
main conclusions of the analyses.

2 Data

The MJO has been described by various indices that are ob-
tained from different atmospheric variables (Stachnik and
Chrisler, 2020). Wheeler and Hendon (2004) defined an MJO
index from two so-called real-time multivariate MJO series
(RMMs). RMM1 and RMM2 represent the first and second
principal components of the empirical orthogonal functions
(EOFs), respectively, resulting from the combination of daily
fields of the satellite-observed outgoing longwave radiation
(OLR) and the zonal wind at 250 and 850 hPa latitudinally
averaged between 15◦ N and 15◦ S (Rashid et al., 2011). The
EOFs are computed from daily normalized fields after apply-
ing a filter to remove the long timescale variability (annual
mean and the first three harmonics of the seasonal cycle),
the previous 120 d of anomaly fields, and the El Niño sig-
nal as described by Wheeler and Hendon (2004). Lim et al.
(2018) and Ventrice et al. (2013) proposed other indices of
the MJO. The main difference between the indices consists
of the input fields and the computation of the index. For in-
stance, Ventrice et al. (2013) replace OLR with 200 hPa ve-
locity potential, and Lim et al. (2018) do not remove an El
Niño signal.

The RMM1 and RMM2 allow the computation of the am-
plitude and the phase of the MJO (Wheeler and Hendon,
2004). For this paper, we selected the RMM-based MJO in-
dex. One of the reasons is that it is often used for MJO fore-
cast (e.g., Kim et al., 2018; Rashid et al., 2011; Silini et al.,
2021).

To simplify notations in the equations, we note that R1 =

RMM1 and R2 = RMM2. The amplitude (A) and phase (φ)
are defined as follows:

A(t)=
√
R1(t)2+R2(t)2, (1)

and

φ(t)= tan−1R2(t)
R1(t)

. (2)

The amplitude and the phase describe the evolution of
the MJO and its position along the Equator, respectively.
The amplitude is related to the intensity of the MJO activ-
ity. There are different classifications related to the intensity
of the active-MJO events (Lafleur et al., 2015). In this pa-
per, we consider that there is an MJO event when A(t)≥ 1
(Lafleur et al., 2015). The phase φ is decomposed into eight
areas known as centers of convection of the MJO over the
Equator, starting from the Indian Ocean through the Mar-
itime Continent to the western Pacific Ocean. This leads to
a discretization φ̂ of phase φ into those eight identified areas
(Lafleur et al., 2015). For each day t , we consider the am-
plitude A(t), which can be above 1 (active MJO) or below 1,
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Figure 1. Wheeler–Hendon phase diagram of the MJO event for
the period between 3 March and 9 April 1986, for observations.
The diagram shows the eight areas of activity of MJO starting from
the Indian Ocean.

and the phase φ̂ ∈ {1, . . .,8}. The amplitude and the phase are
usually represented in a phase-space diagram (Lafleur et al.,
2015), called the Wheeler–Hendon phase diagram. An exam-
ple of a Wheeler–Hendon phase diagram is shown in Fig. 1.

We obtained daily time series of RMMs, amplitude (A),
and phase (φ̂) from January 1979 to December 2020 over the
region covering 15◦ N–15◦ S from IRI (2022). In this paper,
we aim at forecasting RMM variations.

We used the geopotential at 500 hPa (Z500) and 300 hPa
(Z300) and outgoing longwave radiation (OLR) daily data
to compute the analogs. The data are available from 1948 to
2020 with a horizontal resolution of 2.5◦× 2.5◦. The data
were downloaded from the National Centers for Environ-
mental Prediction (NCEP; Kistler et al., 2001).

In this paper, we predict the daily amplitudeA and phase φ
of the MJO from the daily analogs of Z500, Z300, and OLR.

3 Methodology

3.1 Analog computation

We start by building a database of analogs. For a day t , we
define analogs as dates t ′ within 30 calendar days of t that
have a similar Z500 (or Z300 or OLR) configuration to t .
We look for analogs in different years from t . We quantify
the similarity between daily Z500 maps using the Euclidean
distance. The analogs are computed from daily data using a
moving time window of 1= 30 d. This duration 1 corre-
sponds to the life cycle of the MJO. Then, we keep the 20
best analogs. We define “best analog” as dates which have
the minimum Euclidean distance between t and t ′. The use of

Figure 2. The optimal domain of computation of analogs. We com-
puted analogs over the Indian Ocean, in the geographic areas indi-
cated by the dashed black rectangle with coordinates 15◦ S–15◦ N,
50–85◦ E. The figure shows the temporal correlation between Z500,
RMM1 (a), and RMM2 (b) for the whole studied period from 1979
to 2020. The correlation is weak, but it is still significant, with p
values≤ 0.05 that we indicate with black dots over each grid of the
considered domain (including the optimal region used to compute
analogs).

the Euclidean distance and the number of the analogs was ex-
plored and justified in previous studies (Krouma et al., 2021;
Platzer et al., 2021).

Hence the distance that is optimized to find analogs of the
Z500(x, t) field is

D(t, t ′)=[∑
x

(
τ∑
i=0

∣∣Z500(x, t + i)−Z500(x, t ′+ i)
∣∣2)] 1

2

, (3)

where x is a spatial index, and τ is a time window size
(e.g., τ = 3 d).

We compute separate analogs of Z500, Z300, and OLR
following the same procedure over the Indian Ocean as repre-
sented in Fig. 2. We adjusted the parameters of computation
of the analogs, mainly the search window of the analogs and
the geographical domain. We considered different geograph-
ical regions to search for analogs. We computed analogs over
the Indian Ocean, the Indian and Pacific oceans, and the In-
dian Ocean–Maritime Continent region for verification pur-
poses (Appendix B1). This led to consideration of an optimal
region for the analog search outlined in Fig. 2.

https://doi.org/10.5194/esd-14-273-2023 Earth Syst. Dynam., 14, 273–290, 2023



276 M. Krouma et al.: Ensemble forecast of an index

3.2 Configuration of the stochastic weather generator

The stochastic weather generator (SWG) aims to generate
ensembles of random trajectories that yield physically con-
sistent features. Our SWG is based on circulation analogs
that are computed in advance with the procedure described in
Sect. 3.1 (Yiou, 2014; Krouma et al., 2021). We produce an
ensemble hindcast forecast with the circulation analog SWG
with the following procedure (see Fig. 3 for a summary).

For a given day t0 in year y0, we generate a set of S = 100
simulations until a time t0+ T , where T is the lead time,
which goes from 3 to 90 d. We start at day t0 and randomly
select an analog (out of K = 20) of day t0+ 1. The random
selection of analogs of day t0+ 1 among K analogs is per-
formed with a weight wk that is computed as the products of
two weights, wck and wφk , defined by the following rules:

1. Weights wck are inversely proportional to the calendar
difference between t0 and analog dates to ensure that
time goes “forward”. If δk is the difference in calendar
days between t0+1 and tk , where tk is the date of the kth
analog of t0+ 1, then the calendar day sampling weight
wck is proportional to exp(−|δk|).

2. Weights wφk are the difference between the phase at
t0 and analog dates. Indeed, we give more weight to
analogs that are in the same phase. If δ′k is the differ-
ence between φ̂(t0+ 1) and the discrete phase φ̂k of tk ,
then the phase weightwφk is proportional to exp(−|δ′k|).

Then we set wk = 0 when the analog year is y0. Indeed,
excluding analog selection in year y0 ensures that we do
not use information from the T days that follow t0. Then
wk = w

c
k ×w

φ
k and the values of wk are normalized so that

their sum is 1. Rule 1 is similar to the SWG used by Krouma
et al. (2021). Rule 2 adds a constraint to ensure phase consis-
tency across analogs.

We then replace t0 with tk , the selected analog of t0+ 1,
and repeat the operation T times. Hence we obtain a hind-
cast trajectory between t0 and t0+T . This operation of trajec-
tory simulation from t0 to t0+ T is repeated S = 100 times.
The daily MJO (A(t) or RMMs) of each trajectory is time-
averaged between t0 and t0+T . Hence, we obtain an ensem-
ble of S = 100 forecasts of the average MJO (A(t) or RMMs)
for day t0 and lead time T . Then t0 is shifted by1t ≥ 1 d, and
the ensemble simulation procedure is repeated. This provides
a set of ensemble forecasts with analogs.

To evaluate our forecasts, the predictions made with the
SWG are compared to the persistence and climatological
forecasts. The persistence forecast consists of using the aver-
age value between t0− T and t0 for a given year. The clima-
tological forecast takes the climatological mean between t0
and t0+ T . The persistence and climatological forecasts are
randomized by adding a small Gaussian noise, whose stan-
dard deviation is estimated by bootstrapping over T long in-
tervals. We thus generate sets of persistence forecasts and

climatological forecasts that are consistent with the observa-
tions (Yiou and Déandréis, 2019).

3.3 Forecast verification metrics

We assess the skill of the SWG to forecast the A(t) and the
RMMs using two approaches. We start by evaluating the per-
formance of the SWG to forecastA(t). For that, we use prob-
abilistic scores (Zamo and Naveau, 2018; Hersbach, 2000;
Marshall et al., 2016) like the continuous ranked probability
score (CRPS) for each lead time T . The CRPS is a quadratic
measure of the difference between the forecast cumulative
distribution function and the empirical cumulative distribu-
tion function of the observation (Zamo and Naveau, 2018).
The CRPS is defined by

CRPS(P,xa)=

+∞∫
−∞

(P (x)−H(x− xa))2dx, (4)

where xa is the observed RMMobs or A(t)obs, P is the cumu-
lative distribution function of x of the ensemble forecast, and
H represents the Heaviside function (H(y)= 1 if y ≥ 0 and
H(y)= 0 otherwise). A perfect forecast yields a CRPS value
equal to 0.

As the CRPS value depends on the unit of the variable to
be predicted, it is useful to normalize it with the CRPS value
of a reference forecast, which can be obtained by a persis-
tence or a climatology hypothesis. The continuous ranked
probability skill score (CRPSS) is defined as a percentage
of improvement over such a reference forecast (Hersbach,
2000). We compute the CRPSS using as a reference the cli-
matology and the persistence.

CRPSS= 1−
CRPS

CRPSref
, (5)

where CRPS is the average of the CRPS of the SWG fore-
cast, and CRPSref is the average of the CRPS of the reference
(either climatology or persistence).

The CRPSS values vary between −∞ and 1. The forecast
has improvement over the reference when the CRPSS value
is above 0.

We also computed the rank (temporal) correlation be-
tween the observations and the median of the 100 simulations
(Scaife et al., 2014).

A robust forecast requires a good discrimination skill.
A discrimination skill represents the ability to distinguish
events from non-events. We measure the skill of the SWG in
discriminating between situations leading to the occurrence
of an MJO event (active MJO) and those leading to the non-
occurrence of the event (inactive MJO). To do so, we use
the relative operating characteristic (ROC) score. The ROC
is used for binary events (Fawcett, 2006). Since we have a
probabilistic forecast, we can use a threshold value of 1 to
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Figure 3. Illustration of the SWG process. The first step goes from a given day to the next day. The second step explains how we randomly
select a kth analog with respect to weight wk .

construct a classifier for the binary event of MJO from the
feature A(t):

– If A(t)≥ 1 we predict a positive outcome (active MJO).

– If A(t)< 1 we predict a negative outcome (inactive
MJO).

The ROC curve is a plot of the success rate versus the false
alarm rate (Verde, 2006). The ROC curve could also be a plot
of the sensitivity versus the specificity (Fawcett, 2006). The
sensitivity (true positive rate) is the probability of an active-
MJO event, assuming that A(t)≥ 1 is really observed. The
specificity (true negative rate) refers to the probability of an
inactive-MJO event, as long as we have A(t)≤ 1. Moreover,
the sensitivity is a measure of the ability of the prediction to
identify true positives, and the specificity is a measure of the
ability to identify true negatives. Both quantities describe the
accuracy of a prediction that signals the presence or absence
of an MJO event (Fawcett, 2006). Therefore, we define the
relationship between sensitivity and specificity as follows:

– Specificity= 1− sensitivity means that we have a poor
prediction because the rate of true negative and the false
alarm rate are the same.

– Specificity> 1− sensitivity means that we have a good
prediction.

Another performance measurement that we can infer from
the ROC curve is the area under the curve (AUC). The AUC
explains how much the forecast model is able to distinguish
between binary classes. The AUC is the area in the ROC

curve between sensitivity and the false positive rate com-
puted as follows:

AUC=

1∫
0

S(x)dx , (6)

where S is the sensitivity, and x is the false positive rate.
An increase in AUC indicates an improvement in discrimi-

natory abilities of the model at predicting a negative outcome
as a negative outcome and a positive outcome as a positive
outcome. An AUC of 0.5 is non-informative.

Finally, we evaluate the ensemble-mean forecast of
RMM1 and RMM2 using the usual scalar metrics for MJO
forecasts (Rashid et al., 2011; Silini et al., 2021; Kim et al.,
2018). We computed the bivariate anomaly correlation co-
efficient (COR) and the bivariate root mean square error
(RMSE) between the forecasted RMMs (Rpred

i ) and the ob-
served RMMs (Robs

i ) as follows:

COR(T )=∑t=N
t=1 [R

obs
1 (t)Rpred

1 (t,T )+Robs
2 (t)Rpred

2 (t,T )]√∑t=N
t=1 [R

obs
1 (t)2+Robs

2 (t)2]

√∑N
t=1[R

pred
1 (t,T )2+R

pred
2 (t,T )2]

, (7)

RMSE(T )=√∑t=N
t=1 [|R

obs
1 (t)−Rpred

1 (t,T )|2+ |Robs
2 (t)−Rpred

2 (t,T )|2]
N

, (8)

where t is the time, T is the lead time of the forecast, and N
is the length of the time series (N ∼ 104). We interpret the
values of COR and RMSE using thresholds fixed by previ-
ous studies to define the forecast skill of the SWG. The fore-
cast has skill when the COR value is larger than 0.5, and the
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RMSE value is lower than
√

2. Rashid et al. (2011) explain
that for a climatological forecast, RMSE=

√
2 because the

standard deviation of the observed RMM indices is 1. Hence,
forecasts are considered to be skillful for RMSE<

√
2 (i.e.,

they have lower RMSE than a climatological forecast). We
use those thresholds in our analyses.

We compare the RMSE to the ensemble spread in order
to evaluate the forecast accuracy. The ensemble spread mea-
sures the difference between the members of the ensemble
forecast. The ensemble spread ES is obtained by the root
mean square difference between the ensemble members and
the ensemble mean defined as follows:

ES =

√∑S
n=1(An−A)2

S
, (9)

where S is the size of the ensemble members, An is the am-
plitude of the nth ensemble member of the forecast, and Â is
the ensemble average of An over the S members.

We compute the average amplitude error (EA) and the av-
erage phase error (Eφ) for the different lead times T . They
allow the evaluation of the quality of the forecast. The aver-
age amplitude error (EA) is defined as follows:

EA(T ) =
1
N

t=N∑
t=1
[Apred(t,T )−Aobs(t)]. (10)

The value of EA(T ) indicates how fast the forecast sys-
tem loses the amplitude of the MJO signal. A positive value
indicates an overestimation of the amplitude in predictions
compared to the observation. A negative value indicates an
underestimated amplitude. Rashid et al. (2011) define the av-
erage phase error (Eφ) as

Eφ(T ) =

1
N

t=N∑
t=1

tan−1R
obs
1 (t)Rpred

2 (t,T )−Robs
2 (t)Rpred

1 (t,T )

Robs
1 (t)Rpred

1 (t,T )+Robs
2 (t)Rpred

2 (t,T )
. (11)

This formulation stems from the ratio of the cross prod-
uct (numerator) and dot product (denominator) of the vec-
tors of forecasts (Rpred

1 ,R
pred
2 ) and observations (Robs

1 ,Robs
2 ).

Equation (11) is equivalent to the average phase angle differ-
ence between the prediction and observations, with a positive
angle indicating the forecast leads the observations (Rashid
et al., 2011). The negative (positive) value of Eφ(T ) indicates
a slower (faster) propagation of the phase in predictions com-
pared to the observations.

4 Forecast protocol

We explore the skill of a SWG in forecasting theA(t) and the
RMMs (R1 and R2) using analogs of the atmospheric circu-
lation. We generate separately an ensemble of 100 members
of the A(t) of the MJO and RMMs using the same approach.

The goal is to have a probabilistic forecast of the A(t) for a
sub-seasonal lead time T (≈ 2 to 4 weeks). As input to the
SWG, we use analogs of the atmospheric circulations. We
computed analogs separately from Z500, Z300, the wind at
250 and 850 hPa, and the OLR. We choose to keep analogs
from the geopotential at height 500 hPa instead of the other
atmospheric fields. We explain our choice in Sect. 5.

Then, we adjusted the geographical region and the win-
dow search of analogs (Fig. B1). Indeed, the forecast skill of
the MJO depends on the geographical region. We choose to
compute the analogs over the Indian Ocean with coordinates
of 15◦ S–15◦ N, 50–85◦ E. We argue our choice (i) by the
fact that the Indian Ocean corresponds to the first phase of
the MJO in the phase-space diagram, where the MJO starts;
(ii) because different models found good results by initiating
their forecast in this region (Kim et al., 2018); and (iii) based
on the experiment analyses that we made over different geo-
graphical regions (Fig. B2). We explain that in Appendix B.

We search for analogs within 30 calendar days. This du-
ration corresponds to the life cycle of the MJO. In addition,
we adjust the SWG in order to select analogs from the same
phase, as described in Sect. 3.2.

To evaluate the skill score of our forecasts, we used two
approaches. We used the probabilistic scores such as CRPS,
correlation, and ROC score (Sect. 3.3) to evaluate the ensem-
ble forecast of the amplitude. Then, we evaluate the ensem-
bles mean of RMM1 and RMM2. For that, we used scalar
metrics such as the COR and the RMSE (Sect. 3.3), as they
are commonly used to evaluate MJO forecast (Rashid et al.,
2011; Lim et al., 2018).

5 Results

We show results of the forecast of A(t) and RMMs (R1 and
R2) from the analogs of Z500 over the Indian Ocean with a
time of search of 30 d. As explained in Sect. 4, we explored
the potential of other atmospheric circulations (wind at 250
and 850 hPa, OLR, and Z300) to forecast the MJO amplitude.
The forecast skill with analogs of OLR and the zonal wind in
the upper and lower troposphere (250 and 850 hPa) was not
that satisfying compared to the forecast skill using analogs of
Z500 or Z300 (Fig. 4). Indeed, the wind at 250 and 850 hPa
and the OLR do not improve the bivariate correlation and
RMSE forecast skill of the MJO index for a longer lead time
(above 20 d) over Z500 or Z300 (Fig. 4), despite the fact that
they are the driver of the MJO. This could be explained by
different reasons.

The first reason is related to the composition of the RMM
index. Indeed, the OLR is used as a proxy for organized moist
convection (Kim et al., 2018). However, the fractional contri-
bution of the convection to the variance of RMMs is consid-
erably lower than the fraction of the zonal wind fields (Kim
et al., 2018; Straub, 2013). The second reason is that the MJO
predictability can be improved by including atmospheric and
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oceanic processes (Pegion and Kirtman, 2008). According
to some theories that explain the MJO, the geopotential and
the moisture are considered to be drivers of precipitation and
convection (Zhang et al., 2020). For instance, in the gravity-
wave theory for MJO (Yang and Ingersoll, 2013), the convec-
tion and precipitation are triggered by a specific geopotential
threshold.

Another reason is related to our forecast approach. The
composites of OLR and wind speed highly depend on the
phase of the MJO (Kim et al., 2018). As our analog ap-
proach is constrained by choice of a geographical region,
it misses the spatio-temporal variability in OLR and wind
speed during the MJO. We computed analogs from other re-
gions (Fig. B1). However, we obtain better forecast scores by
focusing on the “small” area represented by a dashed rect-
angle (Fig. B1). This is explained by the higher quality of
analogs.

Indeed, choosing a “large” region to compute analogs
yields rather large distances or low correlations for analogs.
This implies that the analog SWG gets lower skill scores
because the analogs are not very informative. The OLR or
zonal wind analogs were computed on the optimal window
obtained for Z500 or Z300 as mentioned in Fig. 2, which
is not appropriate for OLR or wind speed, as reflected by
Kim et al. (2018). Therefore, we find lower COR and RMSE
scores compared to the forecast using Z300 and Z500. This
is a potential feature of analogs. The analog geometry needs
to be imposed a priori in a rather simplistic way, which does
not follow the spatio-temporal features of the MJO, which
are known independently.

We tested the forecast of A(t) and RMMs using analogs of
Z300. We get a satisfactory forecast skill (i.e., with COR>
0.5 and RMSE<

√
2) up to T = 60 d. However, we note

that the forecast skill scores based on analogs of Z500 are
higher for small lead times (up to 30 d). This is explained
by the fact that Z300 analogs are close to where the MJO
takes place, even if this does not lead to significant improve-
ment over Z500 analog skill scores. Therefore the geopoten-
tial heights, although less physically and dynamically rele-
vant for the MJO, are more appropriate predictors from the
statistical and mathematical constraints of the analog-based
method. The results of the forecast with analogs of Z300 can
be found in Appendix A, where we compare the performance
of the SWG forecast based on the analogs of Z500 and Z300
for different seasons (Figs. A1 and A2). For those reasons,
we decided to keep the results of the forecast for A(t) and
RMMs with analogs of Z500. This analysis highlights the
capacity of Z500 to catch the variability in the MJO.

As an illustration, we show the time series of the sim-
ulations and observations of the MJO amplitude for 1986.
This year yields an unusually large period of RMM ampli-
tude above 1, suggesting an important MJO activity. Figure 5
shows the mean of the 100 simulations and the observations
for lead times of 3, 5, and 10 d for the whole year. We find
that there is a strong correlation between observed and sim-

Figure 4. COR (a) and RMSE (b) values for different lead times of
forecasts from 3 to 60 d over the period from 1979 to 2020 for the
SWG forecast using analogs of OLR and zonal wind speed at 250
and 850 hPa as well as Z300 and Z500.

ulated A(t) for the different lead times represented. More-
over, the SWG was able to distinguish between the active-
MJO days (A(t)≥ 1) and inactive-MJO events (A(t)≤ 1).
The same figures for the forecast with the SWG based on
analogs of OLR and Z300 are provided in Appendix A.

5.1 Evaluation of the ensemble forecast of the MJO
amplitude

We evaluate the forecast of amplitude A(t) using the proba-
bilistic skill scores (CRPSS, ROC, and correlation) defined
in Sect. 3.3. We consider the average of the skill scores up
to each lead time T . In Fig. 6, we show the CRPSS and the
correlation for DJF (December, January, and February) and
JJA (June, July, and August) for different lead times T going
from 3 to 40 d.

The CRPSS was computed using as a reference the fore-
cast made from climatology and persistence. We note that
the CRPSS vs. persistence reference decreases with time. It
has higher values for T = 3,5,10 d. We note that when the
lead time is larger than T = 15 d, CRPSS values become sta-
ble for both seasons. However, the CRPSS vs. climatology
increases with lead time. We note that for small lead times
(T ≤ 15 d), the SWG forecast does better than the persis-
tence, while for big lead times T ≥ 15 d, the SWG forecast
does better than the climatology. We can say that the fore-
cast has a positive improvement compared to climatology
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Figure 5. Time series of observations and simulations of the MJO
amplitude for lead times of 3 (a), 5 (b), and 10 d (c) for the year
1986. The red line represents the mean of the 100 simulations, the
black line represents the observations, and the blue line indicates the
threshold of the MJO activity (below 1: inactive; above 1: active).

and persistence for DJF and JJA for all the studied lead times.
We see that correlation mostly decreases with lead times. The
highest correlation is related to small lead times (T ≤ 15 d).

We used the ROC diagram to determine the discrimination
between active and inactive events of the MJO. We associ-
ated 1 with an active-MJO event and zero with the inactive-
MJO events. In Fig. 7, we show the ROC diagram for the
different lead times T from 3 to 40 d. Analyzing the AUC,
shown in Table 1, we find that until 40 d, the SWG is able to
separate non-events (inactive MJO) from events as the AUC
values are between 0.88 and 0.61. It is still significant as it is
over the diagonal (random forecast). We note that the sensi-
tivity value is 0.9 for 3 d, and it decreases with lead time to
reach 0.7 by 40 d. We also find that the specificity and sensi-
tivity are equal for small lead times. However, the specificity
remains above ≈ 0.5 for T = 40 d. This value of specificity
is still higher than 1− sensitivity= 0.2. This indicates that
the forecast has skill to distinguish between MJO events un-
til 40 d ahead.

Using three probabilistic metrics (CRPSS, correlation, and
ROC), we show that the SWG is able to skillfully forecast the

Table 1. Area under ROC curve (AUC) for the different lead times
T from 3 to 40 d.

T 3 d 5 d 10 d 20 d 30 d 40 d

AUC 0.88 0.83 0.74 0.66 0.62 0.61

Figure 6. Skill scores for the MJO amplitude for lead times going
from 3 to 40 d for DJF (blue) and JJA (red) for analogs computed
from Z500. Squares indicate CRPSS where the persistence is the
reference, triangles indicate CRPSS where the climatology is the
reference, and boxplots indicate the probability distribution of cor-
relation between observation and the median of 100 simulations for
the period from 1979 to 2020.

MJO amplitude from analogs of Z500. The CRPSS shows a
positive improvement of the forecast until 40 d. However, the
correlation is significant until 20 d. By using the ROC curve
and the discrimination skill, we show that the forecast still
has skill until 40 d.

The difference between the lead times that we found using
the CRPSS, correlation, and the ROC result from the differ-
ence between the skill scores. In fact, the CRPS is used for
different categories of events, while the ROC is used for bi-
nary events, which is more suitable with our case of study.

5.2 Evaluation of the ensemble-mean forecast of RMMs

In this part, we evaluate the performance of the SWG in fore-
casting the RMMs (R1 and R2). We simulated R1 and R2 us-
ing the SWG and analogs of Z500. Then we used the ensem-
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Figure 7. ROC curve for all lead times. The plot represents the sen-
sitivity versus the specificity. The diagonal line represents the ran-
dom classifier obtained when the forecast has no skill. If the ROC
curve is below the diagonal line, then the forecast has a poor skill,
otherwise it has a good skill; i.e., the forecast has the potential to
distinguish between success and false alarms.

ble mean of R1 and R2 to compute the verification metrics,
mainly the COR and RMSE (Rashid et al., 2011; Kim et al.,
2018; Silini et al., 2021), as shown in Fig. 8. We looked at
COR and RMSE averaged up to each lead time T . Respect-
ing the threshold 0.5 for the COR and

√
2 for RMSE, we

found that the forecast has skill until T = 40 d. We have to
mention that T values of 60 and 90 d were used for verifica-
tion purposes.

In order to verify the forecast skill, we computed the en-
semble spread, and we compared it to the RMSE values for
the different lead times going from 3 to 40 d (Fig. 9). We
found that the difference between the ensemble spread and
the RMSE increases with lead time. The RMSE is becoming
larger with lead time, which indicates that the distance be-
tween the observations and simulations is increasing. In addi-
tion, the ensemble spread decreases, which indicates that the
uncertainties increase with time. This was verified by com-
puting the bias of the forecast, where we could find that it
increases with lead time. The bias represents the average bias
of RMM1 and RMM2. It was computed between the ensem-
ble mean of the RMMs and the observations of RMMs.

We explored the sensitivity of the forecast to seasons as
shown in Fig. 10. We found that the forecast for DJF and
MAM (March, April, May) has a good skill (i.e., with RMSE
lower than

√
2) within 30 d. However, for SON (September,

October, and November) and JJA, a similar forecast skill was
obtained for a lead time of 40 d. The DJF and MAM seasons
show the largest RMSE values. This implies that the ensem-

Figure 8. The COR (a) and RMSE (b) for the different lead times
of forecasts from 3 to 90 d over the period from 1979 to 2020. Con-
fidence intervals are obtained with a bootstrap with 1000 samples.

ble forecast in DJFM yields a larger range of values than in
SON and JJA, even if the observations and simulations are
well correlated. The highest correlation in DJF and MAM
could be explained by the fact that the MJO is more active
in the boreal winter (DJFM). However, the RMSE values in
JJA are more consistent as they represent low distance be-
tween simulations and observations. Indeed, even if the MJO
events tend to be more intense in DJFM, the amplitude is un-
derestimated. The assessment of the ensemble-mean forecast
of RMM1 and RMM2 showed that the forecast has skill until
40 d. However, it is sensitive to seasons, and this is consis-
tent with the previous studies of Wheeler and Hendon (2004),
Rashid et al. (2011), and Wu et al. (2016b). Indeed, we found
that the SWG forecast of RMM1 and RMM2 has skill, with
respect to the thresholds of COR and RMSE, within 40 d for
summer (JJA) and 30 d for winter (DJF).

We also computed the amplitude and phase errors
(Fig. 11). We found that the EA(t) is negative for all lead
times. That indicates a weak amplitude in predictions com-
pared to the observations. The Eφ(t) is positive until 30 d,
which indicates fast propagation of the phase in predic-
tions compared to the observations. Then it becomes neg-
ative, which means that the phase is slower. We note that
the phase is well predicted, while the amplitude is under-
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Figure 9. (a) Comparison between the ensemble spread and the RMSE. We note that the difference is small for short lead times (≤ 15 d).
“Metric” on the vertical axis refers to ensemble spread and RMSE. (b) The bias between the simulations and the observations for the lead
times going from 3 to 40 d.

estimated (Fig. 11). This is consistent with previous studies
(Silini et al., 2021; Rashid et al., 2011).

6 Comparison of the SWG forecast with other
forecasts

The assessment of the forecast of MJO amplitude with SWG
and analogs of Z500 shows good skill until 40 d using prob-
abilistic scores (CRPSS vs. climatology is 0.2, and CRPSS
vs. persistence is 0.4) and scalar scores (COR= 0.54 and
RMSE= 1.30) as explained in Sects. 5.1 and 5.2. The SWG
forecast shows a positive improvement compared to the cli-
matology and the persistence within 40 d (Fig. 6). In addition,
the ROC curve confirmed the ability of the SWG forecast
to distinguish between the active and inactive-MJO ampli-
tude as shown in Fig. 7. The same result was obtained using
the ensemble mean of RMM1 and RMM2 as represented in
Fig. 8. The SWG forecast of RMM1 and RMM2 has good
skill within 30–4 d, respecting the threshold of 0.5 for the
COR and

√
2 for RMSE. The difference in the lead time of

the forecast depends on the seasons as represented in Fig. 10.
This is consistent with Wu et al. (2016a), Wheeler and We-
ickmann (2001), and Rashid et al. (2011), who found sig-
nificant differences in skill scores between seasons. We find
that the forecast has skill until 30 d for DJF and MAM (with
RMSE=

√
2) and 40 d for JJA and SON (with COR= 0.5)

as shown in Fig. 10. This is different from Rashid et al.
(2011) and Silini et al. (2021), who obtain higher forecast
skill in the winter. However, it is consistent with the results
of Wu et al. (2016b) and Vitart (2017), who found higher
skill scores for JJA.

We assessed the forecast skill of the SWG with other
forecasts. We selected two models, POAMA (the Australian
Bureau of Meteorology coupled ocean–atmosphere seasonal
prediction system) and the ECMWF model, which provide
probabilistic and deterministic forecast of the MJO, respec-

Figure 10. The COR (a) and RMSE (b) for the different lead times
of forecasts from 3 to 90 d over the period from 1979 to 2020 for
the different seasons DJF, JJA, MAM, and SON.

tively. We compared mainly the maximum lead time of the
MJO amplitude forecast. The POAMA model provides a 10-
member ensemble. In hindcast mode, the POAMA model has
skill up to 21 d (Rashid et al., 2011). The ECMWF refore-
casts with Cycle 46r1 have skill to around 40 d. For the er-
ror in the amplitude and phase, we found that the ECMWF
reforecasts shows lower average amplitude and phase errors
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Figure 11. The average amplitude error (EA) and average phase
error (Eφ) of the MJO over all seasons for the period from 1979 to
2020. We note that the amplitude is underestimated, and the phase
is well predicted by comparing predictions to forecasts.

compared to those from the SWG forecasts. However, what
we found is consistent with other dynamical models (Kim
et al., 2018) where they overestimate or underestimate the
amplitude and the phase of the MJO.

In addition, we compared quantitatively the SWG fore-
cast with the ECMWF forecast (Fig. 12). The ECMWF re-
forecasts were taken from Silini et al. (2022). We found
that the ECMWF forecast has the highest correlation un-
til 20 d compared to the SWG forecast. The RMSE values
of the ECMWF forecast are always small compared to the
SWG forecast, which indicates a good reliability skill of the
ECMWF forecast for lead times of 5 and 10 d. However, for
lead times of 20 d the RMSE of the ECMWF forecast coin-
cides with the RMSE of the SWG, which shows the improve-
ment of the SWG forecast to lead times above 20 d. The skill
scores of the ECMWF (COR and RMSE) (Silini et al., 2022)
are computed for each lead time, which is different from our
way of computing the skill score (considering the average
lead time). Of course, this comparison was made to check
the performance of our forecast and not to say that the SWG
model can replace a numerical prediction.

We also compared the SWG forecast skill with a machine
learning forecast of MJO indices (RMM1 and RMM2) (Silini
et al., 2021). Silini et al. (2021) explored the skill forecast
of two artificial neural network types, FFNN (feed-forward
neural network) and AR-RNN (autoregressive recurrent neu-

Figure 12. Comparison of the values of COR (a) and RMSE (b) be-
tween the SWG forecast and forecasts of Silini et al. (2021) (blue
lines) and the ECMWF (black lines). Confidence intervals for SWG
(red lines) were obtained with a bootstrap procedure over the simu-
lations (1000 samples).

ral network), on MJO indices. Silini et al. (2021) found that
the machine learning method gives good skill scores until
26–27 d with respect to the standard thresholds of COR and
RMSE. We compared the skill scores (RMSE and COR) of
the SWG and Silini et al. (2021) forecasts for all lead times.
We found that the two models have the same correlation
until 10 d. After 10 d, the correlation of Silini et al. (2021)
forecasts decreases rapidly, while the correlation of SWG
is still significant. For the RMSE, we found that the SWG
has smaller values for a lead time of 10 d. This indicates that
the SWG forecast is more reliable. However, from 30 d, the
RMSE of the two models starts to be the same.

To sum up, the comparison of SWG forecasts to ECMWF
and Silini et al. (2021) forecasts shows that for small lead
times (up to 10 d) the ECMWF forecast has better skill. How-
ever, the SWG shows a positive improvement for long lead
times.

7 Conclusions

We performed an ensemble forecast of the MJO amplitude
using analogs of the atmospheric circulation and a stochas-
tic weather generator. We used the Z500 as a driver of the
circulation (Fig. 4) over the Indian Ocean (Fig. 2), and we
considered analogs from the same phase to provide the fore-
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cast for the sub-seasonal lead time. We explored two ways
to forecast the MJO, starting by directly forecasting the daily
amplitude, then the daily MJO indices, RMM1 and RMM2,
from 1979 to 2020.

We assessed the forecast skill of the MJO forecast by eval-
uating the ensemble member and the mean of the ensemble
member using probabilistic and scalar verification methods,
respectively. This allowed us to evaluate the forecast and also
to explore the difference between the two verification meth-
ods.

We used probabilistic skill scores as the CRPSS and the
AUC of the ROC curve (Table 1). We found that the forecast
showed positive improvement over the persistence and the
climatology within 40 d (CRPSS; Fig. 6). The SWG forecast
of the MJO amplitude also showed the capacity to distinguish
between active and inactive MJO (ROC curve; Fig. 7) for
the different lead times. Using the scalar scores (COR and
RMSE) and the ensemble mean of the forecast of RMM1
and RMM2, we found that the SWG is able to forecast the
MJO indices (RMM1 and RMM2) within 30–40 d.

We found that the forecast is sensitive to seasons (Fig. 10).
The forecast has skill up to 30 d for the boreal winter (DJF
and MAM), while it goes to 40 d for the boreal summer (JJA)
and SON. That was consistent with previous studies (Silini
et al., 2021; Rashid et al., 2011; Vitart et al., 2017). We
also note that the forecast of the phase is better than of the
amplitude according to the errors for amplitude and phase
(Fig. 11). Finally, we found that the SWG had improvement
over the ECMWF forecast for long lead times (T > 30 d) and
a machine learning forecast (Silini et al., 2021) forecast for
lead times T > 20 d.

This paper hence confirms the skill of the SWG in generat-
ing ensembles of MJO index forecasts from analogs of circu-
lation. Such information would be useful to forecast impact
variables such as precipitation and temperature.

Appendix A: Comparison of the forecast skill of the
MJO using analogs computed from Z500, Z300, and
OLR fields

We did the forecast of RMM1 and RMM2 using analogs of
Z300 (Fig. A4), OLR (Fig. A3), and the zonal wind at 250
and 850 hPa (Fig. 4). The aim of using different atmospheric
fields to compute analogs is to choose the analog circula-
tion for the MJO forecast with the SWG as explained previ-
ously in Sect. 4. We found that the SWG based on analogs
of Z300 yields good skills (COR> 0.5 and RMSE<

√
2)

within T = 60 d (Fig. 4). However, the skill of the forecast
is better for small lead times ≤ 30 d with analogs of Z500
(Fig. 4). We checked the sensitivity of the forecast to sea-
sons as illustrated in Figs. A1 and A2 using separate analogs
of Z500 and Z300. We compared the COR and the RMSE
for different lead times (Figs. A1 and A2). We found that
the RMSE values for the SWG forecast based on analogs of
Z300 are the same as the forecast from analogs of Z500 for
the different seasons and at different lead times (Fig. A2).
The RMSE for SON and JJA is lower than the threshold for
the T from 3 to 90 d for both forecasts (Fig. A2). However,
for DJF and MAM the SWG forecast reaches the threshold
of
√

2 at 37 d with analogs of Z300, which is slightly higher
than the maximum lead time with Z500 (Fig. A2). The COR
is slightly higher with analogs of Z500 at different lead times
(Fig. A1). However, the threshold of 0.5 is exceeded with
forecasts based on analogs of Z300 (Fig. A1).

In this part, we also show the time series for the forecast at
different lead times T = 3,5,10 d for the same year (1986)
for the SWG forecast with analog circulation computed from
OLR (Fig. A3) and from Z300 (Fig. A4). We note that the
correlation between the mean of the simulations (red line)
and the observations of the MJO amplitude are better corre-
lated with SWG forecasts based on analogs of Z300 (Fig. A4)
than the one based on analogs of OLR (Fig. A3).
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Figure A1. COR values for different lead times of forecasts from 3 to 90 d over the period from 1979 to 2020 for the SWG forecast based
on analogs of Z500 and Z300 for different seasons (DJF, JJA, MAM, and SON).

Figure A2. RMSE values for different lead times of forecasts from 3 to 90 d over the period from 1979 to 2020 for the SWG forecast based
on analogs of Z500 and Z300 for different seasons (DJF, JJA, MAM, and SON).
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Figure A3. Time series of observations and simulations of the MJO
amplitude computed from analogs of OLR for lead times of 3 (a),
5 (b), and 10 d (c) for the year 1986. The red line represents the
mean of the 100 simulations, the black line represents the observa-
tions, and the blue line indicates the threshold of the MJO activity
A(t)> 1.

Appendix B: Domains of computation of analogs

We show in Fig. B2 the bivariate correlation (COR) and the
RMSE from different geographical regions that we repre-
sent in Fig. B1. The different geographical regions shown in
Fig. B2 were used to adjust the geographical region to com-
pute analogs.

The COR reaches the threshold of 0.5 at T = 40 d for the
geographical region with coordinates of 15◦ S–15◦ N, 50–
85◦ E (Fig. B2). The same result is found for the region
with coordinates of 15◦ S–15◦ N, 60–120◦ E (light-blue line
in Fig. B2). However, the COR is lower for the other lead
times T = 3,10,20,30 d compared to the one for the region
(15◦ S–15◦ N, 50–85◦ E). For the region with the coordinates
(15◦ S–15◦ N, 85–120◦ E), the threshold of 0.5 for the COR
is obtained at a lead time of 34 d (green line in Fig. B2).
For the region with coordinates (15◦ S–15◦ N, 90–150◦ E),
the forecast skill is significant with COR 0.5, at T = 30 d (or-
ange line in Fig. B2), which remains the same results for this
region compared to (Silini et al., 2022). The RMSE for the
different regions is quite the same (Fig. B2), even if the val-

Figure A4. Time series of observations and simulations of the MJO
amplitude computed from analogs of Z300 for lead times of 3 (a),
5 (b), and 10 d (c) for the year 1986. The red line represents the
mean of the 100 simulations, the black line represents the observa-
tions, and the blue line indicates the threshold of the MJO activity
A(t)> 1.

ues for the region (15◦ S–15◦ N, 50–85◦ E) are slightly lower
within 30 d. Therefore the skill forecast (using the bivariate
correlation and the RMSE) remains higher for the considered
geographical region with the coordinates (15◦ S–15◦ N, 50–
85◦ E).
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Figure B1. Domains of computation of analogs. We computed analogs over the Indian Ocean with coordinates 15◦ S–15◦ N, 50–85◦ E (blue
rectangle); the Indian and Pacific oceans with coordinates 15◦ S–15◦ N, 85–120◦ E; and the Indian Ocean–Maritime Continent region with
coordinates 15◦ S–15◦ N, 90–150◦ E.

Figure B2. Comparison between the COR (a) and RMSE (b) of the SWG forecast based on analogs of Z500 computed over different
geographical regions, for lead times going from 3 to 60 d over the period from 1979 to 2020. The forecast was made with analogs computed
over the Indian Ocean with coordinates 15◦ S–15◦ N, 50–85◦ E, and 15◦ S–15◦ N, 60–120◦ E; the Indian and Pacific oceans with coordinates
15◦ S–15◦ N, 85–120◦ E; and the Indian Ocean–Maritime Continent region with coordinates 15◦ S–15◦ N, 90–150◦ E. As the latitude is the
same for the different considered geographical regions, we just mention the longitude of each domain in the legend.
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Appendix C: Dependence of the forecast skill on
MJO phases

We checked the dependence of the SWG forecast skill of
the amplitude of the MJO and the MJO phases. We verified
the relationship between the CRPS at T = 5 d and the MJO
phases (Fig. C1). We divided the CRPS values in two classes:

– CRPS values above the 75th quantile (Fig. C1a),

– CRPS values below the 25th quantile (Fig. C1b).

As shown in Fig. C1 the difference between the boxplots in
the two cases is smaller. Hence, we can say that the depen-
dence of the forecast skill of the MJO amplitude with SWG
and the MJO phases is small.

Figure C1. Relationship between CRPS and MJO phases. (a) CRPS values above the 75th quantile and (b) CRPS values above the 25th
quantile.
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