Multifunctional Optical Materials Based on Transparent Inorganic Glasses Embedded with PbS QDs

Zheng Wang^{a,b}, Jiabo Li^a, Feifei Huang^{a*}, Youjie Hua^a, Ying Tian^a, Xianghua Zhang^b, Shiqing Xu^{a*}

^a Key laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, China

^b Laboratory of Glasses and Ceramics, Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, University of Rennes 1, Rennes 35042, France Email: huangfeifei@cjlu.edu.cn & shiqingxu@cjlu.edu.cn

1. Experimental Procedures

Chemicals: Silicon dioxide(SiO₂, 99.9%, Aladdin), Germanium dioxide(GeO₂, 99.99%, Aladdin), Boracic acid(H₃BO₃, 99.99%, Aladdin), Aluminium oxide(Al₂O₃, 99.99%, Aladdin), Zinc fluoride(ZnF₂, 99.9%, Aladdin), Sodium fluoride(NaF, 99.99%, Aladdin), Sodium carbonate(Na₂CO₃, 99.99%, Aladdin), Lead oxide(PbO, 99.99%, Aladdin), Zinc selenide(ZnS, 99.99%, Aladdin), Thulium oxide(Tm₂O₃, 99.99%, Shenyang Feichuang Photoelectric Technology), all the chemicals were purchased and used without further purification.

Synthesis: The nominal composition of the glasses involved in the article were shown in Table S1. All the raw materials are mixed uniformly in an agate mortar and then placed in a corundum crucible, and melted in a resistance furnace at 1400 °C for 40 minutes. The obtained melt is quenched and pressed on a preheating plate at 400 °C and then annealed or heat-treated in an annealing furnace to obtain the initial samples. The glass samples for the optical property measurement were cut and optically polished to a size of $10 \times 10 \times 1$ mm³. Glass samples for structural testing were ground to a fine powder using an agate mortar.

2. Figures

Figure S1. Actual photos of different doped samples before(above) and after(below) heat treatment

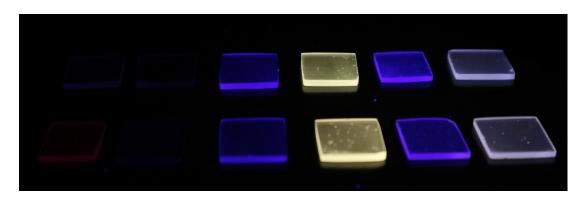


Figure S2. Actual photos of different doped samples(Corresponding to the doping conditions in Figure S1) under UV lamp irradiation before(above) and after(below) heat treatment

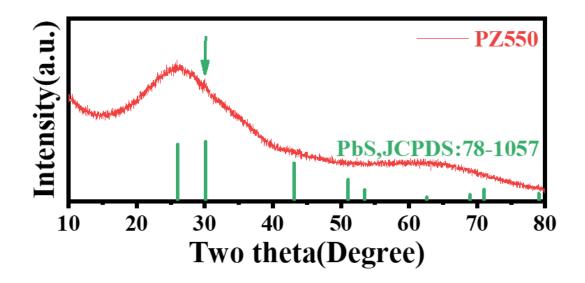


Figure S3. XRD pattern of PZ550 sample (after heat treatment at 550 °C for 12h)

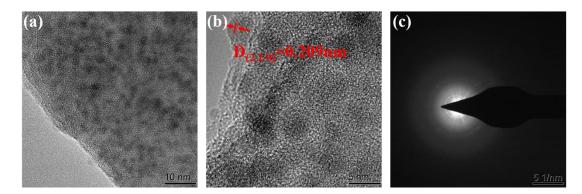


Figure S4. HRTEM images (a, b) and the corresponding SAED pattern (c) of the

PZ550 sample

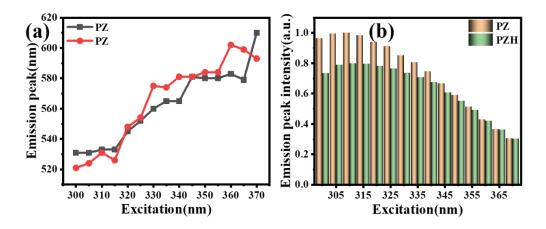


Figure S5. Comparison of emission peaks (a) and intensities (b) depending on excitation wavelength



Figure S6. Excitation spectra of the different samples with fluorescence at 458 nm(a) and 560 nm(b).

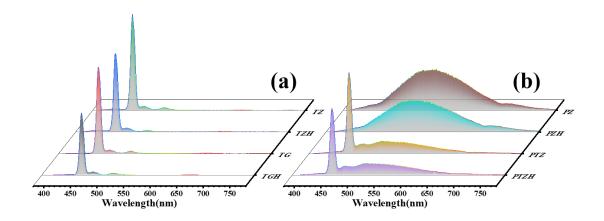


Figure S7. Photoluminescence spectra of the different samples under 365 nm pumping.

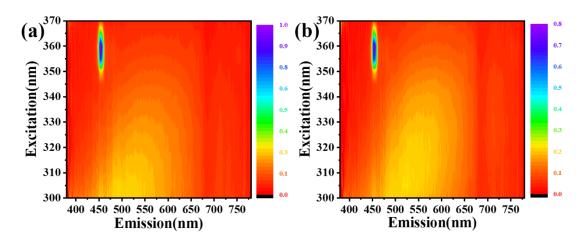


Figure S8. Excitation wavelength-dependent photoluminescence spectra of PTZ (a)

and PTZH (b) samples under 300-370 nm pumping.

	Host glass	ZnS(mol%)	PbO(mol%)	$Tm_2O_3(mol\%)$ Heat-treatment					
PG					400°C for 12h				
PGH					500°C for 12h				
ZG		2	1		400°C for 12h				
ZGH	30SiO ₂	2	1		500°C for 12h				
PbG	-20GeO ₂		1		400°C for 12h				
PbGH	-10B ₂ O ₃		1		500°C for 12h				
TG	-15Al ₂ O ₃			0.5	400°C for 12h				
TGH	-10ZnF ₂			0.5	500°C for 12h				
PZ	-10NaF	2	1		400°C for 12h				
PZH	-5Na ₂ O	2	1		500°C for 12h				
ΤZ		2		0.5	400°C for 12h				
TZH		2		0.5	500°C for 12h				
PTZ			1	0.5	400°C for 12h				
PTZH			1	0.5	500°C for 12h				

3. Tables

Table S1 The doping of different samples and their nomenclature

Table S2 The detailed fitting results of different samples at 560 nm emission

PARAMETER	PZ	PZH	PTZ	PTZH
$\mathbf{A_1}$	0.33311	0.28914	0.59966	0.54083
t ₁	1.13098	0.62832	0.94443	0.65407
$\mathbf{A_2}$	0.57032	0.56218	0.41246	0.42462
t_2	4.90147	4.06573	4.21831	3.83952
A_3	0.13959	0.17352	0.0687	0.10695
t ₃	17.41063	15.34561	14.2201	13.91215
\mathbf{R}^2	0.99936	0.99951	0.9977	0.99788
τ (μs)	10.07	9.80	6.63	7.83

PARAMETER	TG	TGH	ΤZ	TZH	PTZ	PTZH
$\mathbf{A_1}$	0.37813	0.40891	0.33001	0.43993	0.31358	0.632
t ₁	0.34174	1.16903	0.22895	0.23451	0.29681	0.99315
$\mathbf{A_2}$	0.33168	0.67647	0.34748	0.25345	0.35493	0.33272
t_2	5.52973	18.26388	5.73615	5.53135	4.74803	8.72692
A_3	0.33808	0.00988	0.35489	0.34562	0.35802	0.15954
t ₃	16.82506	65.44539	16.59093	18.41751	15.60226	21.65503
\mathbf{R}^2	0.99936	0.99601	0.99955	0.9993	0.99962	0.99366
τ (μs)	13.84	19.92	13.72	15.88	12.92	14.43

Table S3 The detailed fitting results o of different samples at 458 nm emission