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This paper addresses the difficulties of designing highly efficient robust controllers for a class of systems exhibiting high hysteresis with parameters dispersion that limits control accuracy and performance homogeneity over the parametric uncertainties range. Two control strategies to solve the problem are assessed. First, a Reference Model Sliding Mode Control (RMSMC) feedback controller known to be robust to parametric uncertainty is designed to compensate hysteresis, regardless of the hysteresis quantity. Secondly, a strategy based on a feedforward controller with a Neural Network inverse model and a PID feedback controller is proposed. In this case, hysteresis dispersion is addressed through the integration of a backlash estimator for computing the Neural Network inverse model. The control strategies are implemented for position control of a Limited-Angle Torque Motor (LATM) exhibiting uncertain hysteresis. Experimental tests demonstrated the very good accuracy and robustness of the Neural Network inverse model and the PID controller for position tracking when the LATM is subject to dispersion and the benefits of the Reference Model Sliding Mode Control (RMSMC) feedback controller for the rejection of external disturbances.

Introduction

Hysteresis is a strong nonlinear phenomenon exhibiting multivalued mapping depending on the history of its state. It is frequently encountered in fields such as structural mechanics, electromagnetics, aerodynamics, thus inevitably appearing in industrial applications. The difficulty of meeting accuracy requirements for systems exhibiting hysteresis makes the design of controllers challenging.

The structure of the system under study, a Limited-Angle Torque Motor (LATM), is similar to direct current brushless motors [START_REF] Nasiri-Zarandi | Analysis, optimization, and prototyping of a brushless DC limited-angle torque-motor with segmented rotor pole tip structure[END_REF] but with a shaft that has a small and limited angular displacement range. With no external excitation, the flux produced by the pairs of permanent magnets creates a magnetic bridge that stabilizes the rotor in a certain angular position. By applying current to the LATM, its armature windings produce a flux that disturbs the magnetic bridge, thus, the system rotates to a new equilibrium position [START_REF] Yu | Analysis and simulation of a limited-angle torque motor[END_REF]. Although these systems provide accurate positioning capabilities [START_REF] Tsai | Design and control of a brushless DC limited-angle torque motor with its application to fuel control of small-scale gas turbine engines[END_REF], they exhibit hysteresis due to the saturation of the ferromagnetic material in the armature windings [START_REF] Tebble | Magnetic materials[END_REF].

Extensive research has been carried out to find efficient control strategies to mitigate hysteresis.

A common approach is to provide knowledge concerning the phenomenon in question by means of a hysteresis model. Then, the inverse model is then synthesized and implemented as a feedforward

• Models describing hysteresis by the mean of differential equations. Their modeling capabilities are limited by the fixed structure and the finite number of parameters. The Bouc-Wen model [START_REF] Ismail | The hysteresis Bouc-Wen model, a survey[END_REF][START_REF] Xiao | Dynamic compensation and H∞ control for piezoelectric actuators based on the inverse Bouc-Wen model[END_REF][START_REF] Zhang | Asymmetric Bouc-Wen hysteresis modeling and inverse compensation for piezoelectric actuator via a genetic algorithm-based particle swarm optimization identification algorithm[END_REF], the Dahl model [START_REF] Xu | Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation[END_REF], the Backlash model [START_REF] Ahmad | Adaptive control of systems with backlash hysteresis at the input[END_REF][START_REF] Da Fonseca Schneider | Backlash robotic systems compensation by inverse modelbased pid control[END_REF][START_REF] Lai | Adaptive fuzzy tracking control of nonlinear systems with asymmetric actuator backlash based on a new smooth inverse[END_REF][START_REF] Tao | Adaptive control of systems with backlash[END_REF], the Duhem model [START_REF] Feng | Inverse duhem model based robust adaptive control for flap positioning system with SMA actuators[END_REF][START_REF] Oh | Semilinear duhem model for rate-independent and rate-dependent hysteresis[END_REF][START_REF] Zhou | Adaptive sliding mode control based on Duhem model for piezoelectric actuators[END_REF], and the Jiles-Atherton (JA) model [START_REF] Amigues | Hysteresis dispersion compensation with neural network based controller[END_REF][START_REF] Rosenbaum | Use of Jiles-Atherton and Preisach hysteresis models for inverse feed-forward control[END_REF] belong to this category of hysteresis models. • Models using a superposition of elementary hysteresis operators.

These provide the desired modeling accuracy by increasing the number of superimposed elementary operators but at a cost of an increased number of parameters with additional computational load during identification. The Preisach model (Nguyen, [START_REF] Li | Inverse compensation of hysteresis using Krasnoselskii-Pokrovskii model[END_REF] are of this type. • A last category of models includes the Hammerstein-Wiener model [START_REF] Savaia | Hammerstein-Wiener modelling of a magneto-rheological dampers considering the magnetization dynamics[END_REF], the Least Squares Support Vector Machine (LSSVM) model [START_REF] Xu | Identification and compensation of piezoelectric hysteresis without modeling hysteresis inverse[END_REF], Neural Network (NN) models [START_REF] Amigues | Hysteresis dispersion compensation with neural network based controller[END_REF][START_REF] Kuczmann | A new neural-network-based scalar hysteresis model[END_REF][START_REF] Meng | Neural network based hysteresis compensation of piezoelectric stack actuator driven active control of helicopter vibration[END_REF][START_REF] Song | A neural network inverse model for a shape memory alloy wire actuator[END_REF][START_REF] Xu | A self-adaption compensation control for hysteresis nonlinearity in piezo-actuated stages based on Pi-sigma fuzzy neural network[END_REF][START_REF] Zhao | Modeling hysteresis and its inverse model using neural networks based on expanded input space method[END_REF] and polynomial models [START_REF] Jung | Pressure control of an electrohydraulic actuated clutch via novel hysteresis model[END_REF].

While such hysteresis compensation has been the topic of a great deal of research, some address the problem of model inversion, leading to the investigation of free inverse model-based compensation techniques. An Inverse Multiplicative Structure in which the direct model is implemented has proven to be a reliable solution to avoid model inversion [START_REF] Janaideh | Internal model-based feedback control design for inversion-free feedforward rate-dependent hysteresis compensation of piezoelectric cantilever actuator[END_REF][START_REF] Habineza | Bouc-Wen modeling and feedforward control of multivariable hysteresis in piezoelectric systems: Application to a 3-DoF piezotube scanner[END_REF][START_REF] Li | Compensation of hysteresis nonlinearity in magnetostrictive actuators with inverse multiplicative structure for Preisach model[END_REF][START_REF] Li | Modeling and inverse adaptive control of asymmetric hysteresis systems with applications to magnetostrictive actuator[END_REF][START_REF] Rakotondrabe | Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators[END_REF][START_REF] Rakotondrabe | Classical Prandtl-Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators[END_REF]. Some authors have also suggested the use of the direct hysteresis model with the synthesis of a robust feedback controller [START_REF] Ahmad | Robust 𝜇-synthesis with Dahl model based feedforward compensator design for Piezo-actuated micropositioning stage[END_REF]. Some models however, such as LSSVM, NN models and polynomial models, are insensitive to the inversion problem as the inverse model can be naturally obtained during identification of the model's parameters by switching the input and output data of the hysteresis system to fit. Another downside of model-based compensation methods is their sensitivity to the accuracy of the implemented inverse model [START_REF] Lewis | Neural network control of robot manipulators and non-linear systems[END_REF][START_REF] Rigatos | Model-based and model-free control of flexible-link robots: A comparison between representative methods[END_REF]. Indeed, systems can have small differences in their behavior due to manufacturing tolerances, and throughout their lifecycles they are subject to wear and aging, which can lead to parametric drift. This can lead to potential gradual deterioration of control [START_REF] Lu | Statistical reliability analysis under process variation and aging effects[END_REF][START_REF] Wu | Nonlinear controller design and testing for chatter suppression in an electric-pneumatic braking system with parametric variation[END_REF] and notable loss in the representativeness of the inverse model. Solutions considered to deal with the loss of inverse modeling accuracy are online adaptation of the inverse model [START_REF] Hao | Modeling and adaptive inverse control of hysteresis and creep in ionic polymer-metal composite actuators[END_REF][START_REF] Kuhnen | Adaptive inverse control of piezoelectric actuators with hysteresis operators[END_REF][START_REF] Liu | Adaptive inverse control of piezoelectric actuators based on segment similarity[END_REF][START_REF] Tan | Adaptive identification and control of hysteresis in smart materials[END_REF][START_REF] Zhang | Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems[END_REF], coupling with adaptive feedback controllers [START_REF] Li | Modeling and inverse adaptive control of asymmetric hysteresis systems with applications to magnetostrictive actuator[END_REF][START_REF] Li | Nonlinear control of systems preceded by preisach hysteresis description: A prescribed adaptive control approach[END_REF][START_REF] Zhang | Disturbance observer-based prescribed adaptive control for rate-dependent hysteretic systems[END_REF], or robust feedback controllers [START_REF] Liu | Robust adaptive inverse control of a class of nonlinear systems with Prandtl-Ishlinskii hysteresis model[END_REF], or Iterative Learning Control for repetitive processes [START_REF] Jian | High-precision tracking of piezoelectric actuator using iterative learning control and direct inverse compensation of hysteresis[END_REF].

A different approach when controlling a system exhibiting hysteresis consists in considering hysteresis as a disturbance for which the designed model-free feedback controller is robust. Various different controllers have been developed along the lines of this strategy: 𝐻 ∞ controllers [START_REF] Jiaqiang | Design of the h∞ robust control for the piezoelectric actuator based on chaos optimization algorithm[END_REF], adaptive controllers [START_REF] Lv | Finite-time adaptive fuzzy tracking control for a class of nonlinear systems with unknown hysteresis[END_REF][START_REF] Yadmellat | Adaptive control of a hysteretic magnetorheological robot actuator[END_REF][START_REF] Yousef | L 1 adaptive fuzzy controller for a class of nonlinear systems with unknown backlash-like hysteresis[END_REF], adaptive robust controllers [START_REF] Escareno | Backstepping-based robustadaptive control of a nonlinear 2-DOF piezoactuator[END_REF], Sliding Mode Control (SMC) controllers [START_REF] Ahmed | Adaptive high-order terminal sliding mode control based on time delay estimation for the robotic manipulators with backlash hysteresis[END_REF][START_REF] Chouza | Sliding mode-based robust control for piezoelectric actuators with inverse dynamics estimation[END_REF], etc.

The main advantages of the SMC theory [START_REF] Slotine | Applied nonlinear control[END_REF], its main advantages are robustness to parameter uncertainty and external disturbances [START_REF] Zhu | Multi-model based predictive sliding mode control for bed temperature regulation in circulating fluidized bed boiler[END_REF]. It relies on the definition of a sliding surface in the system state space where the theory ensures properties of robustness and stability. The system's states are maintained on the sliding surface by a switching discontinuous term. However, neglected fast dynamics and limited switching frequency can produce undesired oscillations [START_REF] Utkin | Chattering problem in sliding mode control systems[END_REF], called chattering, around this sliding surface, which can cause accelerated wear in mechanical systems or major heat losses in power circuits and noise in estimation [START_REF] Young | A control engineer's guide to sliding mode control[END_REF]. This problem can at least be reduced, at best suppressed, by linear approximation of the discontinuous term or even Harmonic Balance [START_REF] Castillo | Describing-function-based analysis to tune parameters of chattering reducing approximations of sliding mode controllers[END_REF].

This paper presents the design of a high-performance controller to improve the control of systems exhibiting hysteresis and parameter uncertainty. The uncertainty taken into account in this paper is restricted to hysteresis quantity, which is the most limiting parameter with respect to accuracy for the system under study. For the experiments, as only one motor is available, the dispersion on the hysteresis is emulated by adding in series with the LATM a backlash in the hardware in the loop benchmark. This emulated hysteresis is added to the motor's intrinsic hysteresis. The designed controller should ensure homogeneous performance and accuracy over the hysteresis uncertainty range. Additional specifications such as robustness to external disturbances and better compensation of hysteresis are added to the controller requirements.

A nonlinear feedback controller based on Reference Model Sliding Mode Control (RMSMC) [START_REF] Biannic | Commande en régime glissant[END_REF][START_REF] Edwards | Sliding mode control: Theory and applications[END_REF][START_REF] Franco | A model reference adaptive continuous sliding-mode control[END_REF] is first designed to provide the desired performance without requiring any hysteresis direct or inverse model. This approach is inspired by the work of [START_REF] Xu | Model predictive discrete-time sliding mode control of a nanopositioning piezostage without modeling hysteresis[END_REF] to avoid the identification of a hysteresis model. The authors show the good performances of the control law to attenuate the hysteresis in a resonant mode piezoelectric system without the need to estimate a model. However, the issue of hysteresis dispersion was not explicitly addressed.

Then a second strategy based on NN is proposed. A feedforward controller with a NN inverse model and a PID feedback controller is computed. The paper proposes an original approach to use NN for computing the hysteresis inverse model. The use of NN for modeling hysteresis was first investigated by [START_REF] Adly | Using neural networks in the identification of Preisach-type hysteresis models[END_REF] for identifying the elementary hysteresis operators of the classical Preisachtype hysteresis. Then [START_REF] Chuntao | A neural networks model for hysteresis nonlinearity[END_REF] proposed a multilayer NN model to describe the Preisach model and to break down the multivalued mapping of hysteresis into a one-to-one mapping between the input and output coordinates. In [START_REF] Zhao | Modeling hysteresis and its inverse model using neural networks based on expanded input space method[END_REF], the NN are used to identify a new hysteretic operator. In [START_REF] Tabaza | Hysteresis modeling of impact dynamics using artificial neural network[END_REF], the NN are not used to create a mathematical model of hysteresis but to describe the impact of the hysteresis on the output of the system. In this paper, a multilayer neural network inverse model of the hysteresis is developed without using any mathematical model. The hysteresis behavior is reproduced thanks to the choice of relevant input data.

For both strategies, hysteresis dispersion is addressed by integrating a backlash estimator for computing the NN Inverse Model. The control architectures are tested on a LATM, which can be used to compare the performances of the two control strategies between them and also with a conventional PID controller.

This paper is organized as follows. After presenting the LATM and the experimental test bench, a section is dedicated to the design of the RMSMC, the NN inverse model and the backlash estimator. Then, a section will provide performance results for position tracking in presence of hysteresis dispersion and disturbance rejection of the different control architectures. 

System and experimental test bench

The torque motor under study is mounted on an experimental test bench, first to identify and characterize its hysteresis, and then to apply closed-loop control with Hardware In the Loop Realtime (HILR) testing. The experimental setup of this test bench, shown in Fig. 1, and the experimental data obtained from the system are described in this section.

Experimental test bench

The experimental test bench consists of the following elements:

• The LATM can be described as an electromechanical actuator.

The control variable is the input current 𝑖, which can vary in the range [-250,250] mA. The controlled variable is the shaft limited angular position 𝜃, which can vary in the range [-7,7] • . • A current amplifier Toellner TOE 7621, which transforms the voltage control from the RTM to the corresponding current control. • A sensor to measure the current applied to the LATM armature windings. • A sensor to measure the angular position of the LATM shaft.

The selected incremental encoder is 6,000 counts per revolution which corresponds to an angular resolution of 0.06 • . The sensor is mounted on the test bed with the LATM and assembled by bellow coupling to avoid axial misalignment. • A computer, on which the controller model is built as well as being the Human-Machine Interface (HMI).

• A Real-Time Machine (RTM) (D-Space) on which the controller and a backlash model to increase the intrinsic hysteresis of the plant (Fig. 2) are embedded. The Real-Time Machine (RTM) sends the voltage from the controller to the amplifier. It also receives data from the two sensors and exchanges data with the computer. Its sampling rate is set to 1 ms.

Limited-Angle Torque Motor

The system under study is a Limited-Angle Torque Motor. The relationship between the input current 𝑖 and the corresponding output angular position 𝜃 exhibits a hysteretic behavior, which is due to the magnetization process of the ferromagnetic materials.

The objective of this paper is to design a controller that is robust to the nonlinear hysteresis of the system as well as to the variability of its parameters. However, only one LATM is available for experimental tests, which limits parameter variability possibilities. Therefore, variability in the system hysteresis is emulated.

Hysteresis

In order to assess robustness experimentally, the system considered must allow for a quantifiable variation in the quantity of hysteresis. The solution implemented to emulate additional hysteresis which represents the hysteresis variability is a mathematical backlash model introduced in series with the LATM, see Fig. 2. The hysteresis quantity of the system considered, the LATM with the additional backlash model, can be increased, with no impact on the dynamic of the LATM, with the mean of the backlash width parameter 𝐵.

In this study case, an additional backlash range 𝐵 ∈ [0, 50] mA is taken into account and the input-output nonlinear mapping of the system considered can be characterized on the experimental test bench for different values of 𝐵. See Fig. 4 for 𝐵 = 0 mA, 𝐵 = 25 mA and 𝐵 = 50 mA respectively in blue, orange and green.

Backlash width parameter 𝐵 affects the system considered in two ways:

• The quantity of hysteresis is increased. The nominal hysteresis of the LATM is approximately 40 mA wide (see Fig. 3), a maximum additional backlash of 𝐵 = 50 mA corresponds to an increase in the considered system's hysteresis of 125% compared to the nominal system. Note that the quantity of hysteresis in the nominal system cannot be reduced. • The maximum angle of deflection is decreased, as the maximum current input is reduced by the backlash model. For the maximum additional backlash 𝐵 = 50 mA, the maximum angle of deflection is reduced by 6.67%. During experimental tests, the desired position 𝜃 𝑟 must be maintained within reachable angles of deflection.

Dynamics

The dynamics of a nonlinear system, which is the case of the LATM, depend on its operating point. To experimentally identify the dynamics of the LATM, Pseudo-Random Binary Sequence (PRBS) are used and their amplitudes are adjusted to supply the motor with currents ranging from -250 mA to 250 mA with a step of 50 mA in order to cover the LATM operating point range. Linear transfer functions are identified from the datasets obtained and they are plotted on the Bode diagram Fig. 5.

The mean transfer function of the LATM is given by: 𝑇 𝐹 𝐿𝐴𝑇 𝑀 (𝑠) = 3343.4𝑠 + 2767325.8 𝑠 3 + 7.7 × 10 2 𝑠 2 + 2.5 × 10 5 𝑠 + 8.8 × 10 7

(1) its poles are 𝑠 1 = -598, 𝑠 2 = -86 ± 374𝑗.

The dynamic of the plant is summarized in the following state equation:

ẋ = 𝐴 𝑃 𝑥 + 𝐵 𝑃 𝑢 𝜃 = 𝐶 𝑃 𝑥 (2)
where 𝐴 𝑃 = 𝐴 𝑃 0 + 𝛥𝐴 𝑃 , 𝐵 𝑃 = 𝐵 𝑃 0 + 𝛥𝐵 𝑃 , 𝐶 𝑃 = 𝐶 𝑃 0 + 𝛥𝐶 𝑃 , 𝐴 𝑃 0 , 𝐵 𝑃 0 and 𝐶 𝑃 0 being the average state, input and output matrices of the LATM and 𝛥𝐴 𝑃 , 𝛥𝐵 𝑃 and 𝛥𝐶 𝑃 the maximum variations of the corresponding matrices.

Controller design

Now that the nonlinear behavior of the system has been characterized and the range of its dynamics identified, a controller capable of handling nonlinearity and parametric variability is designed.

Two control architectures are proposed in this paper:

1. A feedback controller based on Reference Model Sliding Mode Control (RMSMC), Fig. 6(a), composed of:

• A linear reference model that allows the choice of the system's dynamic response through pole placement.

• A sliding mode controller to reject the error remaining between the reference position and the real position and to provide robustness to parameter variability and disturbances.

2. An architecture combining feedforward and feedback control, Fig. 6(b), composed of:

• A linear reference model that allows the choice of the system's dynamic response through pole placement.

• An NN inverse model-based feedforward controller to linearize the system. • An estimator to measure the quantity of backlash during the life cycle of the system and to handle hysteresis dispersion. • A PID feedback controller to reject the error remaining after linearization by the hysteresis inverse model in feedforward.

Reference model

The reference model takes the reference 𝑟 as input and calculates the reference position trajectory 𝜃 𝑟 . By the correct choice of the reference model, the desired linear dynamic behavior of the controlled process can be obtained.

The reference model must be of the same order as the identified transfer functions of the plant Section 2.2.2 and its equations are given by:

ẋ𝑚 = 𝐴 𝑚 𝑥 𝑚 + 𝐵 𝑚 𝑟 𝜃 𝑟 = 𝐶 𝑚 𝑥 𝑚 (3)
To obtain the desired dynamic behavior, the reference model is designed as follows:

𝐴 𝑚 = 𝐴 𝑃 0 + 𝐵 𝑃 0 𝐾 𝑚 , 𝐵 𝑚 = 𝐵 𝑃 0 𝐻 𝑚 (4)
with 𝐾 𝑚 calculated through pole placement or by an LQ approach to obtain the desired poles 𝑃 𝑚 (-85,-100,-150) for the reference model and 𝐻 𝑚 calculated to ensure a unitary gain between the reference 𝑟 and the desired position trajectory 𝜃 𝑟 [START_REF] Biannic | Commande en régime glissant[END_REF].

The dynamic of the controlled system is lower than the dynamics of the uncontrolled system because the LATM is used to achieve precise positioning and increasing its dynamic is not a priority in the intended application. As the maximum dynamic of the system is not reached, variations of this dynamics do not impact the performance of the controlled system. For this reason, dynamic uncertainties are not taken into account in this article.

Reference Model Sliding Mode Controller

The feedback controller chosen is a Reference Model Sliding Mode Control (RMSMC). Sliding Mode Control (SMC) is a class of nonlinear controllers known to provide high accuracy and excellent robustness to external disturbances and parameter variations, which is suitable for the control requirements.

Principle

The RMSMC is a type of feedback controller that forces the plant to follow the dynamic of a reference model, defined Section 3.1, by driving the plant states 𝑥 to the model states 𝑥 𝑚 . Meaning that, once the model states 𝑥 𝑚 are reached by the plant states 𝑥 at time 𝑡 0 , the process states verify:

∀𝑡 > 𝑡 0 , 𝑥(𝑡) = 𝑥 𝑚 (𝑡) (5) 
To verify Eq. ( 5), the internal states 𝑥 of the process must be compared to the reference model states 𝑥 𝑚 . However, the considered system's internal states 𝑥 are not measurable. An estimation 𝑥 ℎ of the internal states by a Kalman observer is made:

ẋℎ = (𝐴 𝑃 -𝐿 𝑘 𝐶 𝑃 )𝑥 ℎ + 𝐵 𝑃 𝑢 + 𝐿 𝑘 𝜃 𝑦 ℎ = 𝐼𝑥 ℎ (6)
with 𝐿 𝑘 chosen by pole placement or the LQ approach to ensure convergence of the estimated states 𝑥 ℎ faster than the dynamic of the plant. The observer has proven to ensure the convergence of 𝑥 ℎ to 𝑥 𝑚 in simulation and the theoretical justification of the convergence of the linear estimation of the nonlinear system can be found in the work of [START_REF] Krener | The convergence of the extended Kalman filter[END_REF]. Now, the estimated plant states 𝑥 ℎ can be driven to the reference model states 𝑥 𝑚 , which is an 𝑛th-order tracking problem, 𝑛 being the order of the plant. SMC is known for reducing an 𝑛th-order tracking problem to a 1 𝑠𝑡 -order tracking problem by introducing a sliding variable 𝑠(𝑥), defined in this study case as:

𝑠(𝑥) = 𝑠 = 𝜎(𝑥 ℎ (𝑡) -𝑥 𝑚 (𝑡)) (7) 
with 𝜎 being the state error's weight factor vector.

As perfect state matching, 𝑥 ℎ = 𝑥 𝑚 , could lead to static error 𝜃 ≠ 𝜃 𝑟 due to error in the estimation of the internal states, 𝑥 ≠ 𝑥 ℎ , or to variability in the plant output matrix, 𝐶 𝑚 ≠ 𝐶 = 𝐶 𝑃 0 + 𝛥𝐶 𝑃 , the sliding variable is modified to reject static error:

𝑠(𝑥) = 𝑠 = 𝜎(𝑥 ℎ (𝑡) -𝑥 𝑚 (𝑡)) + 𝐾 𝑆𝑆 𝐼 ∫ 𝑡 0 (𝜃 𝑟 (𝜏) -𝜃(𝜏))𝑑𝜏 (8)
where 𝐾 𝑆𝑆 𝐼 > 0 is the sliding surface's integral gain. The 𝑛th-order tracking problem, 𝑥 ℎ -𝑥 𝑚 = 0, is thus reduced to maintain the scalar 𝑠(𝑥) = 0, which can be achieved by choosing a control law 𝑢 that meets the sliding surface attractivity condition [START_REF] Slotine | Applied nonlinear control[END_REF]:

1 2 𝑑 𝑑𝑡 𝑠 2 = 𝑠 ṡ ≤ -𝜂|𝑠| (9)
where 𝜂 is a positive constant.

Control law

The control signal consists of two terms, a linear term called equivalent control 𝑢 𝑒𝑞 and a nonlinear term 𝑢 𝐹 𝑂 .

The term 𝑢 𝑒𝑞 is computed to restrict system motion to the sliding surface, meaning that once on the sliding surface, 𝑠(𝑥) = 0, ṡ(𝑥) = 0 is verified, this leads to:

ṡ(𝑥) = 𝜎( ẋℎ -ẋ𝑚 ) + 𝐾 𝑆𝑆 𝐼 (𝜃 𝑟 -𝜃) = 0 (10) 
By introducing Eq. (3) and Eq. ( 6) into Eq. ( 10), the following expression is obtained:

𝜎((𝐴 𝑃 -𝐿 𝑘 𝐶 𝑃 )𝑥 ℎ + 𝐵 𝑃 𝑢 𝑒𝑞 + 𝐿 𝑘 𝜃 -ẋ𝑚 ) + 𝐾 𝑆𝑆 𝐼 (𝜃 𝑟 -𝜃) = 0 (11) 
From which the equivalent control 𝑢 𝑒𝑞 can be deduced:

𝑢 𝑒𝑞 = -(𝜎𝐵 𝑃 ) -1 [𝜎((𝐴 𝑃 -𝐿 𝑘 𝐶 𝑃 )𝑥 ℎ + 𝐿 𝑘 𝜃 -ẋ𝑚 ) + 𝐾 𝑆𝑆 𝐼 (𝜃 𝑟 -𝜃)] (12)
Then, a nonlinear term 𝑢 𝐹 𝑂 is computed to drive the system states to the sliding surface. The 1st order SMC algorithm is used to steer the sliding output 𝑠 to zero:

𝑢 𝐹 𝑂 = -𝐾𝑠𝑖𝑔𝑛(𝑠) (13) 
with 𝐾 a positive constant.

The 𝑠𝑖𝑔𝑛 function is locally approximated around 0 to minimize chattering:

𝑢 𝐹 𝑂 = -𝐾𝑡𝑎𝑛ℎ(𝜙𝑠) (14) 
with 𝜙 a positive constant.

The final expression of the control law is:

𝑢 = 𝑢 𝑒𝑞 + 𝑢 𝐹 𝑂 (15)
By reinjecting Eq. ( 15) into Eq. ( 11), the attractivity condition given by Eq. ( 9) can be verified:

ṡ = 𝜎((𝐴 𝑃 -𝐿 𝑘 𝐶 𝑃 )𝑥 ℎ + 𝐵 𝑃 𝑢 𝑒𝑞 + 𝐿 𝑘 𝜃 -ẋ𝑚 ) + 𝐾 𝑆𝑆 𝐼 (𝜃 𝑟 -𝜃) ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ =0 +𝜎𝐵 𝑃 𝑢 𝐹 𝑂 ṡ = -𝜎𝐵 𝑃 𝐾𝑡𝑎𝑛ℎ(𝜙𝑠) (16) leading to: 1 2 𝑑 𝑑𝑡 𝑠 2 = -𝜎𝐵 𝑃 𝐾 ⋅ 𝑠 ⋅ tanh(𝜙𝑠) ≤ -𝜂 ⋅ 𝑠 ⋅ tanh(𝜙𝑠) (17)
which verifies the attractivity condition, Eq. ( 9), for 𝜂 ≤ 𝜎𝐵 𝑃 𝐾 as the squared distance to the sliding surface always decreases, except for 𝑠 = 0.

RMSMC control architecture

The complete diagram which summarizes the architecture of the control strategy with the RMSMC is given in Fig. 7. This is a nonlinear approach which does not require the linearization of the plant.

Neural Network inverse model

The choice of using an NN inverse model in feedforward to compensate the system hysteresis and the additional backlash is driven by:

• its excellent nonlinear modeling capabilities,

• the ease of learning an inverse model of the system by switching input and output data during NN training.

Architecture

The choice of the NN architecture is defined by a trade-off between modeling performances and the NN size. The final NN architecture consists of three fully connected feedforward hidden layers of 12 cells each and sigmoid activation functions, see Fig. 8.

Once trained, the NN fits a regression function between the input and output training data. Therefore, the choice of relevant input data is crucial for accurate modeling performance. For this study case, the NN is used for the inverse mapping of LATM hysteresis and the following data are provided to the input layer:

• 𝜃 𝑘 𝑟 , 𝜃 𝑘-1 𝑟
and 𝜃 𝑘-2 𝑟 , three samples of the position reference signal 𝜃 𝑟 as hysteresis is a past dependent phenomenon and multiple samples provide information on the reference signal rate.

• 𝜃 𝑖𝑛𝑣 𝑟 , the last value for which the reference signal 𝜃 𝑟 has changed sign as the trajectory of a hysteretic system depends on the previous inversion.

• 𝜃 𝑑𝑖𝑟 𝑟 , the sign of the variation in the reference signal 𝜃 𝑟 . • B, an estimation of the additional backlash 𝐵 as the input-output mapping of the considered system is dependent on this parameter.

The corresponding current 𝑖 𝑖𝑛𝑣 for hysteresis inversion is therefore defined as follows:

𝑖 𝑖𝑛𝑣 = 𝑓 𝑁𝑁 (𝜃 𝑘 𝑟 , 𝜃 𝑘-1 𝑟 , 𝜃 𝑘-2 𝑟 , 𝜃 𝑖𝑛𝑣 𝑟 , 𝜃 𝑑𝑖𝑟 𝑟 , B) (18) 
with 𝑓 𝑁𝑁 being the NN nonlinear regression. The number of parameters of the NN depends on the number of hidden layers (3), cells (12) and inputs (6) and, for the case under study, 409 parameters are required. The Levenberg-Marquardt algorithm is used to train the internal NN parameters. Although the number of parameters may seem large, the NN is easily implemented in a RTM or even in a microprocessor.

Note that an advantage of the NN inverse model over other hysteresis inverse models is that it can represent single hysteresis but also hysteresis combined with other nonlinearities if the NN is well-trained.

Training

To train the NN inverse model, data are obtained from the experimental test bench described in Section 2.1.

As the input-output mapping of the system considered depends on the additional backlash 𝐵, the NN is trained with datasets obtained for different values of 𝐵 ∈ [0, 50] mA. During training, the input of the NN which corresponds to the backlash estimation B is replaced by the real additional backlash 𝐵 of the dataset considered.

The complete dataset is split, 70% of the data are used for training, while the remaining 30% are used for testing. 

Backlash estimator

Principle. In this study case, the amount of additional hysteresis comes from a backlash model and its quantity 𝐵 is user-defined. In real life, this quantity, which represents the hysteresis variation during the life cycle of the system, is unknown.

Through training, the NN has learned inverse models for a range of additional backlashes 𝐵 ∈ [0, 50] mA. When the NN output is fed to the system under study, the best fitting inverse model results in the lowest error between the desired position 𝜃 𝑟 and the system output 𝜃. When considering perfect NN training, the best fitting inverse model corresponds to B = 𝐵. When considering realistic training, B ≈ 𝐵 is expected.

Therefore, by introducing a cost function minimizing the error 𝜖 = 𝜃 𝑟 -𝜃 and feeding it in to the B input of the NN inverse model, the global minimum of the cost function is an estimation B of the additional backlash 𝐵. The expression of backlash estimation B is given as:

B𝑇 = B𝑇 -1 + 𝛼 𝜖 𝑠𝑖𝑔𝑛( θ𝑟 ) (19)
with 𝑥 the mean of 𝑥 taken over the estimation window 𝑇 and 𝛼 being the learning rate, which depends on the duration and sampling of the estimation window.

The estimation window's duration is important for a correct estimation B of the additional backlash 𝐵. If too small, the estimation will not converge to a final estimated backlash value B𝑓 . A relevant estimation window duration 𝑇 𝑒𝑠𝑡 lets the system reach its steady state. But if too long, the estimation will take a lot of time. Eq. ( 19) requires an initial value of B called B0 that will be discussed in the next section.

The backlash estimation is bounded within B ∈ [0, 50] mA to avoid extrapolation from the training dataset which could lead to unknown modeling performances.

Validation. The backlash estimation mechanism is validated through experimental tests and simulations.

The system under study, the backlash model in series with the LATM, or its model in the simulation cases, is fed by the output 𝑖 𝑖𝑛𝑣 of the NN inverse model, which takes as inputs the arguments of the function defined in Eq. ( 18), among them the estimated backlash B from the estimator, see Fig. 9.

The validation procedure for the simulations and the experimental tests is as follows: for a given additional backlash 𝐵, the backlash estimator must converge to a final estimated backlash B𝑓 minimizing the mean squared error over the time window estimation 𝑇 𝑒𝑠𝑡 for any given initial backlash estimation B0 .

The backlash estimation results are presented for 𝐵 = 15 mA, for both experimental tests and simulations, with initial estimated backlash within the range of the study case values. model, with additional backlash 𝐵 = 15 mA and initial estimated backlash B0 = 50 mA. The relation 𝜃 versus 𝜃 𝑟 , evolving from blue at the beginning of the experiment to red at the end of the test, clearly shows that the backlash estimation improves the linearization.

Control strategy with a NN inverse model

The complete diagram which summarizes the architecture of the control strategy with an NN inverse model is given in Fig. 12. The principle is based on the use of the NN inverse model to linearize the LATM hysteresis and of a PID controller to control the dynamics of the plant.

Experimental results

The controllers are now embedded on the RTM. The reference model is defined, the sliding surface and the control law of the RMSMC are determined, and the NN inverse model is trained with its backlash estimator. In this section, the results from experimental tests are presented for the two control architectures studied and also, for some tests, for a conventional PID controller taken as the reference. For each test, the mean squared error between the model reference output and the measured position is measured once the response has reached steady-state.

Control performance in the presence of hysteresis dispersion

First, the performances of the closed loop system are assessed for position tracking in the case of hysteresis dispersion represented by different values of the additional backlash, in the range of the training domain up to 50 mA, but also for a value of 100 mA to observe the system's behavior in the case of higher-than-expected dispersion values.

The tests consist of successive steps, over the whole range of the LATM operating points, which are maintained long enough (0.5 s), to reach steady state, see Figs. 13 and 14. The mean squared error between the reference model output 𝜃 𝑟 and the measured output 𝜃 is taken as the performance index.

The performance indexes for the closed loop system with the following controllers are given Fig. 15: 1. The PID feedback controller plus the designed NN inverse model with the backlash estimation. This controller will be indicated as PID + NN + B later. 2. The PID feedback controller plus the designed NN inverse model without the backlash estimation ( B0 = 0 and null learning rate 𝛼 = 0) to evaluate the error improvement from the backlash estimation. This controller will be indicated as PID + NN + B=0 later. 3. A conventional PID feedback controller taken as the reference. 4. The RMSMC feedback controller designed.

The controllers designed have greatly improved the position tracking of the LATM as the mean squared error of the closed loop system is largely reduced with the PID + NN + B and the RMSMC compared to a closed loop system with a simple PID.

The PID + NN + B architecture provides the most accurate position tracking overall. It reduces the mean squared error of the closed loop system by 79% to 94% compared to a closed loop system with a simple PID. However, it is sensitive to the inverse model accuracy and to the hysteresis dispersion as the mean squared error increases in a non-negligible way with increasing nonlinearity 𝐵 > 0.

The backlash estimation improving the hysteresis compensation by the NN's feedforward inverse model reduces the mean squared error of the PID + NN + B closed loop system. When considering a fixed estimation B0 = 0 and 𝛼 = 0, the mean squared error reduction is negligible for 𝐵 = 0 but it grows up to 54% for 𝐵 = 50 mA. For 𝐵 = 100 the mean squared error is only reduced by 39% as the backlash estimation is bounded B ∈ [0, 50] mA.

The RMSMC reduces the mean squared error by 45% to 60% compared to a closed loop system with a simple PID. The higher position tracking error of the RMSMC compared to the PID + NN + B can be explained by observing Fig. 14. The step response with the RMSMC presents some oscillations despite all the care taken to limit the chattering around the sliding surface, which degrades the performance of this controller. However, this architecture is more robust to hysteresis dispersion as the variation of the mean squared error is low for the dispersion range studied 𝐵 ∈ [0, 100] mA. The error dispersion due to hysteresis dispersion is maintained with the RMSMC within 7% for 𝐵 ∈ [10, 50] mA, up to 39% for unexpected dispersion values 𝐵 = 100 mA, compared to 222% for 𝐵 ∈ [10, 50] mA, up to 623% for 𝐵 = 100 mA, with the PID + NN + B.

Note: A controller architecture combining the RMSMC with the NN feedforward inverse model was also designed and tested but this architecture does not reduce the mean squared error of the closed loop system with the RMSMC alone. The RMSMC controller being designed to force the closed loop system to follow a linear reference model, the equivalent control Eq. ( 12) already acts as a linearizing signal, rendering the signal from the NN feedforward inverse model redundant. Even more, the nonlinear term, Eq. ( 14), of the RMSMC rejects one of the two signals, increasing controller activity. Solving this issue by taking into account the NN feedforward inverse model signal in the equivalent control did not provide better control performances.

Control performance in the presence of external disturbances

In addition to the system's robustness to dispersion, it is important to evaluate control performance when the system is subject to external disturbances. For this study, the external disturbances considered are the following:

• A Dirac signal of height 𝐻.

• A 1 Hz sinusoidal signal of variable amplitude 𝐻.

• A 10 mA sinusoidal signal of variable frequency 𝑓 .

• A uniform distributed noise of amplitude 𝐻.

Dirac disturbance

The rejection of a Dirac disturbance is evaluated by maintaining the LATM to a reference position 𝜃 𝑟 = 1 • , and once steady state is reached, disturbing it by introducing a Dirac signal of height 𝐻 during one sampling time. The position time response of the LATM to this disturbance is observed and the mean squared error is computed to evaluate the ability of the controller to reject this disturbance. Dirac amplitudes between 𝐻 ∈ [50, 250] mA are considered, the maximum Dirac amplitude corresponding to 35% of the maximum current input. From the results of the experimental tests given in Fig. 16, the following conclusions can be drawn:

• The RMSMC controller rejects the Dirac disturbance better than the PID controller and inverse NN model as the mean squared error is much lower whatever the Dirac amplitude. It is true that RMSMC belongs to a class of SMCs known for their robustness to external disturbances. • The mean squared error grows faster with the PID controller and inverse NN model as it is 22 times greater for 𝐻 = 250 mA than for 𝐻 = 50 mA, versus only 3.16 times greater for the RMSMC controller. 

Sinusoidal disturbance with variable amplitude

The rejection of variable-amplitude sinusoidal disturbances is now evaluated by the same procedure as for the Dirac disturbance, but using a sinusoidal signal as the disturbance. Fig. 17 gives the results of the experimental tests carried with 1 Hz sinusoidal disturbances of increasing amplitude up to 25 mA. The RMSMC completely rejects the disturbances as the output position and mean squared error remain unchanged in the presence of sinusoidal disturbances whatever their amplitude. In the meantime, the PID controller with the inverse NN model does not reject the sinusoidal disturbance as oscillations of the LATM position are observed in the time responses. The mean squared error grows as the amplitudes of the sinusoidal disturbances increase.

Sinusoidal disturbance with variable frequency

The rejection of a sinusoidal disturbance of variable frequency 𝑓 is now under study. A sinusoidal signal with a 10 mA amplitude and variable frequency 𝑓 is added to the command signal as a disturbance. The mean squared error is plotted in Fig. 18 for the study range 𝑤 ∈ [0.1, 2000] rad/s, since the signal is outside the system bandwidth at higher angular frequencies.

The results from the experimental tests show that the RMSMC controller rejects the disturbance very well over all the entire frequency range as the mean squared error is maintained negligible. Conversely, the disturbance is not rejected by the PID controller and inverse NN model as the mean squared error starts increasing at 𝑤 = 2 rad/s before reaching its maximum for frequency values close to the LATM resonance which varies between 300 rad/s and 430 rad/s, see Fig. 5.

Noise input

Finally, performances of the control strategies are assessed in the presence of a uniform distributed noise with an amplitude of up to 100 mA. This study case confirms the observations from the previous cases, i.e. the RMSMC rejects the input noise disturbance better than the PID controller and inverse NN model as the mean squared error is lower, at least until the disturbance reaches 100 mA (Fig. 19).

Discussion of results

The analysis initially focuses on the comparison between the two proposed control strategies and other linear control strategies such as the 𝐻 ∞ control. To deal with the non-linearity of the hysteresis with a 𝐻 ∞ controller, it is necessary to linearize the plant. In this case study, the linearization must be carried out for different operating points of the same hysteresis of nominal width but also for different operating points of several hysteresis of width varying in the range of dispersion of the hysteresis. Ultimately, the controller must be computed considering a large number of linearized plants. This leads to pessimistic and conservative results since the controller may be designed for more configurations than what may occur in practice, for example if the plant dispersion is lower than expected. Another limitation of the 𝐻 ∞ control strategy is the need to perform many tests to linearize the plant around all the operating points or the need to have an accurate model of hysteresis to perform the linearization. This can be an issue for plants where hysteresis is not modeled by a well-identified model, e.g. when it is be combined with other nonlinearities. Considering these linearization issues, the strategies proposed in this article bring real benefit.

Let us now analyze the two control strategies proposed in this article.

First, the question of the dynamics arises. To limit the discussion on this issue and compare the two strategies solely on their performance in attenuating hysteresis, the same approach based on the use of a reference model is retained to impose the same dynamics to the controlled plant.

Second, with respect to implementation issues, the RMSMC controller requires the implementation of an observer or the use of sensors to determine the internal states of the system under control. For its part, the control architecture based on the NN inverse model requires a feedback controller and an hysteresis estimator to increase the performance of the closed-loop system.

Third, with regard to performance in terms of precision, insofar as the operating domain and the range of parametric dispersion are known, the control based on NN inverse model, hysteresis estimator and PID controller shows better performance compared to the RMSMC controller. With the NN inverse model, hysteresis estimator and PID controller, the mean squared error is always less than 8% regardless of the hysteresis dispersion up to 125% more than the nominal value. With the RMSMC controller, the mean squared error is a little higher as it reaches 11% because of the chattering remaining despite the care taken to limit this phenomenon. These lower results are to be nuanced for systems subjected to external disturbances since the RMSMC controller is more effective in this case.

Finally, with respect to computational burden, the balance tips in favor of the strategy based on the RMSMC compared to the NN inverse model. It can be noticed that, even if the proposed NN inverse model is embedded in an industrial micro-controller, this operational constraints can be a limitation.

Conclusions

This paper presents the design of a high-performance controller to improve the control of systems exhibiting strong hysteresis, parameter uncertainties and external disturbances. Two control strategies are developed, a Reference Model Sliding Mode Control (RMSMC) feedback controller and a strategy based on a feedforward controller with a Neural Network (NN) hysteresis inverse model and a PID feedback controller. This last strategy was proposed after the development of a NN allowing the description of the hysteresis thanks to the relevant choice of input data. It is enhanced by the addition of a hysteresis estimator in the control architecture. Both strategies are assessed on a test bench with a LATM where hysteresis dispersion is emulated with a backlash added to the hysteresis inherent to the system. The two proposed methods make it possible to better control systems presenting hysteresis combined with other nonlinearities, in particular systems where the resulting nonlinearity cannot be described by conventional models on which model-based control methods rely on.

The architecture with the NN inverse model, the hysteresis estimator and the PID controller shows very good robustness when it comes to controlling the LATM in the presence of hysteresis uncertainty.

The tests performed in this study shows the benefit of the hysteresis estimator to precisely control the plants subject to variable hysteresis. Note that the estimation of the hysteresis dispersion can also be used for health monitoring.

The control strategy based on the RMSMC feedback controller is interesting for the rejection of external disturbances of any kind. The mean squared errors in the event of disturbances of the Dirac, sine or white noise type remain lower than with a strategy based on the NN inverse model, the hysteresis estimator and the PID controller.

The perspectives of this work are to improve the performances of the control architecture based on the NN hysteresis inverse model with the combination of a control law which can reject the external perturbations to reach high accuracy performance. 
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  Fig. 10 shows that: • Regardless of the initial estimated backlash B0 , experimental and simulated estimated backlashes B converge respectively to B𝑒𝑥𝑝 𝑓 = 15.45 mA and B𝑠𝑖𝑚 𝑓 = 13.56 mA, which are close to the expected value of 𝐵. • The respective final mean squared errors over the last estimation window, 𝜖 2 𝑒𝑥𝑝 𝑓 and 𝜖 2 𝑠𝑖𝑚 𝑓 , obtained with B𝑒𝑥𝑝 𝑓 and B𝑠𝑖𝑚 𝑓 , correspond to the minimum error as no other value of B ∈ [0, 50] mA provides less error. • The final values for estimated backlashes, B𝑒𝑥𝑝 𝑓 and B𝑠𝑖𝑚 𝑓 , and the final mean squared errors, 𝜖 2 𝑒𝑥𝑝 𝑓 and 𝜖 2 𝑠𝑖𝑚 𝑓 , are slightly different due to unmodeled nonlinearities and the dynamics of the model used for simulations compared to the system of the experimental test bench.
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 11 Fig. 11 shows the beneficial effect of the backlash estimation on the linearization of the LATM. It gives the position 𝜃 obtained for a desired position 𝜃 𝑟 throughout the experimental tests with the NN inverse
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 10 Fig. 10. Experimental and simulated estimations B of backlash 𝐵 = 15 mA for different values of initial estimated backlash B0 with 𝛼 = 10000 and 𝑇 𝑒𝑠𝑡 = 6.5 s.
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 11 Fig. 11. Experimental temporal evolution of the LATM position, 𝜃 = 𝑓 (𝜃 𝑟 ), with a NN inverse model and backlash estimation for 𝐵 = 15 and B0 = 50.
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 1213 Fig. 12. Control architecture with an inverse NN model and a PID controller.
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 14 Fig. 14. Time response of the closed loop systems for 𝐵 = 30 mA. Zoom between 0.5 s and 1 s.
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 15 Fig. 15. Mean squared error of the closed loop systems for different values of additional backlash.
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 16 Fig. 16. Time response and mean squared error of controllers submitted to different Dirac amplitudes input disturbance.
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 17 Fig. 17. Time response and mean squared error of the LATM submitted to 1 Hz sinusoidal disturbance with increasing amplitude.
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 18 Fig. 18. Mean squared error of the LATM versus the angular frequency for a 10 mA amplitude sinusoidal disturbance.
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 19 Fig. 19. Time response and mean squared error of controllers submitted to different amplitude noise input disturbance.
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