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Abstract
Interspecies RNA-Seq datasets are increasingly common, and have the potential to answer new questions about the 
evolution of gene expression. Single-species differential expression analysis is now a well-studied problem that ben-
efits from sound statistical methods. Extensive reviews on biological or synthetic datasets have provided the com-
munity with a clear picture on the relative performances of the available methods in various settings. However, 
synthetic dataset simulation tools are still missing in the interspecies gene expression context. In this work, we 
develop and implement a new simulation framework. This tool builds on both the RNA-Seq and the phylogenetic 
comparative methods literatures to generate realistic count datasets, while taking into account the phylogenetic re-
lationships between the samples. We illustrate the usefulness of this new framework through a targeted simulation 
study, that reproduces the features of a recently published dataset, containing gene expression data in adult eye tis-
sue across blind and sighted freshwater crayfish species. Using our simulated datasets, we perform a fair comparison 
of several approaches used for differential expression analysis. This benchmark reveals some of the strengths and 
weaknesses of both the classical and phylogenetic approaches for interspecies differential expression analysis, and 
allows for a reanalysis of the crayfish dataset. The tool has been integrated in the R package compcodeR, freely avail-
able on Bioconductor.

Key words: RNA-Seq, differential gene expression, phylogenetic comparative methods, orthologous genes, comparative 
transcriptomics, crayfish.
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Introduction
The study and analysis of gene expression differences 
across species is a long-standing problem (King and 
Wilson 1975). The development of microarray technolo-
gies led to the gathering of the first large scale across spe-
cies gene expression datasets, that allowed for the 
formulation and study of various hypotheses regarding 
the link between gene expression and evolution (Enard 
2002; Khaitovich et al. 2004; Gilad et al. 2006; Whitehead 
and Crawford 2006). RNA-Sequencing technologies have 
changed the way to measure gene expression (Wang 
et al. 2009), making comparisons across several species eas-
ier, even for species with no reference genome available 
(Perry et al. 2012; Romero et al. 2012). Interspecies gene ex-
pression data are increasingly common, with well-curated 
resources, such as the Bgee database (Bastian et al. 2021), 
that make it available to the community.

Since changes in expression may underlie complex phe-
notypes, across species gene expression datasets can be 

used to test a wide range of evolutionary scenarios 
(Romero et al. 2012; Dunn et al. 2013). Tested hypotheses 
include, for instance, expression divergence (Gu 2004); the 
strength of expression conservation (Gu et al. 2019); the 
coevolution of gene expression (Cope et al. 2020); test of 
the orthology conjecture (Rogozin et al. 2014; Dunn 
et al. 2018); the detection of “phylogenetic signal” 
(Musser and Wagner 2015); equality of within-species vari-
ance (Catalán et al. 2019); constant stabilizing selection, 
loss through drift, parallel, or divergent selection (Stern 
and Crandall 2018a, 2018b); or the detection of 
duplication-specific effects in expression evolution 
(Fukushima and Pollock 2020).

In this work, we focus only on the detection of change in 
gene expression levels across species, in a specific lineage or 
between different groups of species. This problem can be 
formalized as an interspecies differential expression ana-
lysis, and has been studied in various groups of organisms 
(Cáceres et al. 2003; Zheng-Bradley et al. 2010; Blake et al. 
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2018; Stern and Crandall 2018b; Chen et al. 2019; Alam 
et al. 2020; Blake et al. 2020). For instance, difference in 
gene expression levels was found between mammalian 
lineages and birds (Brawand et al. 2011), across nonmodel 
primates species (Perry et al. 2012), between Drosophila 
species (Torres-Oliva et al. 2016) or Heliconius butterflies 
(Catalán et al. 2019). Note that the biological interpret-
ation of changes in the level of expression of a gene across 
species is not easy (Romero et al. 2012). Shifts in gene ex-
pression across species could be molecular signatures of 
ecological adaptation, associated with a directional selec-
tion scenario, or a relaxation of evolutionary constraints.

From a bioinformatic point of view, the comparison of 
RNA-Seq samples between multiple species requires, first, 
the detection of orthologous relationships between genes 
(Tatusov 1997; Tekaia 2016), second, the consideration of 
differences in genome mappability (Zhu et al. 2014) and, 
third, the adaptation of alignment and quantification pi-
pelines (LoVerso and Cui 2015; Chung et al. 2021). 
Multi-species alignments techniques have also been devel-
oped (Bradley et al. 2009; Brawand et al. 2011). In this work, 
we name orthologous genes (OG), or simply genes, the set 
of genes having orthologous relationship across species. 
Once the orthologous gene expression matrix has been 
created, the level of expression can be transformed into 
a discrete variable to detect the presence vs. absence of 

gene expression (Bastian et al. 2021). Other approaches 
perform separate differential expression for each species 
(Dunn et al. 2013; Kristiansson et al. 2013) or focus on pair-
wise comparisons only (Zhou et al. 2019; Chung et al. 
2021). However, direct comparisons of expression between 
species can be complicated by batch effects (Gilad and 
Mizrahi-Man 2015), or potential confounding factors 
(Roux et al. 2015; Cope et al. 2020), and comparative 
gene expression studies should be carefully designed 
(Romero et al. 2012; Dunn et al. 2013; Chung et al. 2021).

In the present study, we assume that the alignment has 
already been performed, and we focus our attention on 
genes having a one-to-one relationship across several spe-
cies (more than two species). We consider the level of ex-
pression of genes as a quantitative trait evolving across 
several species, and we detect genes with a shift in the level 
of expression across species as performed in for example, 
Brawand et al. (2011), Perry et al. (2012), Torres-Oliva 
et al. (2016), and Stern and Crandall (2018a). The specifici-
ties of interspecies RNA-Seq data are multifold. RNA-Seq 
data are counts, usually measured on a low number of 
samples. In addition, several technical biases affect the 
measured level of expression of a given gene in a given 
sample, either gene-specific (such as heterogeneity of 
gene length and GC content across genes and samples), 
or sample-specific (such as heterogeneity in library size 
across samples). Finally, since the level of expression of a 
gene is measured across several species, the phylogenetic 
relationships between species induce some correlations 
in the data. While, ideally, all these specificities should be 
taken into account in the statistical analysis, to our knowl-
edge, there exist no model that includes all these con-
straints in its hypotheses. The user has the choice 
between methods specifically designed for analyzing 
gene expression data such as limma, DESeq2, or edgeR 
(Smyth 2004; Smyth et al. 2005; Anders and Huber 2010; 
Robinson and Oshlack 2010; Love et al. 2014); or phylogen-
etic comparative methods (PCMs) such as phylolm (Ho 

FIG. 1. Time-calibrated phylogenetic tree of eight blind (dark purple) 
and six sighted (light green) crayfish species (Stern et al. 2017). The 
root was dated to 65 million years before the present (Stern et al. 
2017), but the tree was rescaled to unit height for the analyses. 
The “sight” design (dark purple and light green squares) matches 
with the biological vision status of the species studied (Stern and 
Crandall 2018a). The “block” and “alt” designs (light pink and gray 
squares) are artificial extreme scenarios representing, respectively, 
a situation where the design is almost un-distinguishable from the 
phylogeny-induced grouping (block), and a situation where groups 
are distributed evenly on the tree to maximize the contrast between 
sister species (alt).

Table 1. Differentially expressed genes across blind and sighted crayfish 
species found by the limma cor method on log2 transformed TPM values 
(adjusted P values below 0.05). OG0001281 (OPSD PROCL) is associated 
with the rhodopsin protein, involved in vision mechanisms.

Orthogroup Adj. P value Uniprot 
Top Hit

Protein Name

OG0002505 2.3 × 10−9 XYLA 
ARATH

Xylose isomerase

OG0001105 4.4 × 10−3 PIPA 
DROME

1-phosphatidylinositol 
4,5-bisphosphate 

phosphodiesterase
OG0000233 6.2 × 10−3 RTBS 

DROME
Probable RNA-directed DNA 
polymerase from transposon 

BS
OG0002370 1.8 × 10−2 ARRH 

LOCMI
Arrestin homolog

OG0006977 2.3 × 10−2 CSK2B 
RAT

Casein kinase II subunit beta

OG0001281 2.9 × 10−2 OPSD 
PROCL

Rhodopsin
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and Ané 2014a), that implement a phylogenetic regression 
or ANOVA (Martins and Hansen 1997; Rohlfs and Nielsen 
2015), designed for analyzing quantitative traits across spe-
cies. Although PCMs have already been described for gene 
expression analysis (Gu 2004; Gu and Su 2007; Bedford and 
Hartl 2009; Rohlfs et al. 2014; Gu et al. 2019), and applied in 
particular for differential expression detection (Brawand 
et al. 2011; Stern and Crandall 2018a; Catalán et al. 2019; 
Chen et al. 2019), these methods do not explicitly account 
for count data, which can lead to biased results.

To benchmark these methods, a common strategy is to 
simulate RNA-Seq count data. There are several well- 
established tools to simulate RNA-Seq count data in the 
classical, intraspecies case (Dillies et al. 2013; Soneson 
and Delorenzi 2013; Soneson 2014; Frazee et al. 2015), 
which allowed for the benchmark of many differential ex-
pression analysis models (Anders and Huber 2010; 
Robinson and Oshlack 2010; Law et al. 2014). Although 
some methodological questions remain open (Van den 
Berge et al. 2019), these extensive simulation studies 
helped setting good practices in terms of model choice 
or normalization methods in various intraspecies 
RNA-Seq settings. To our knowledge, there exists no exten-
sion of these frameworks to the interspecies setting. 
Simulation of gene expression across species has been per-
formed using linear models and Gaussian variables (Rohlfs 
et al. 2014; Rohlfs and Nielsen 2015; Gu et al. 2019), but 
without taking into account the specificity of RNA-Seq 
count data and without focusing on the detection of shifts 
across species. In this work, we propose a framework to 
simulate RNA-Seq data across species. We use this frame-
work to compare different strategies to detect genes with a 
expression level shift across multiple species, and draw 
recommendations for interspecies gene expression 
comparison.

New Approach
Simulation Framework
We designed and implemented a new simulation frame-
work, that we used to benchmark and calibrate differential 
analysis methods on synthetic datasets that exhibit fea-
tures specific to interspecies RNA-Seq dataset. Our ap-
proach is based on a phylogenetic Poisson log-normal 
(pPLN) model, that relies on two layers. First, latent vari-
ables are simulated using a Brownian motion (BM) or an 
Ornstein-Uhlenbeck (OU) stochastic process on the 
phylogenetic tree, using well-studied tools from the 
PCM literature. This layer can account for correlations 
induced by the phylogenetic relationships, including 
intraspecies-independent variations. Second, the log va-
lues of these latent variables are used to define the par-
ameter of a Poisson distribution, from which the final 
simulated count values are drawn. Built on top of tools 
tailored for RNA-Seq, the framework can simulate realis-
tic count data that reproduce some of the important 
characteristics of a given empirical dataset, with genes 

FIG. 2. The base scenario [pPLN (real tree), right] had empirical mo-
ments drawn from (Stern and Crandall 2018a), with an effect size of 
3, a BM model of evolution with added intraspecies variation ac-
counting for 20% of the total variance, on the maximum likelihood 
tree, with the observed “sight” groups (see fig. 1). It is compared with 
a pPLN model with the same parameters, but in a case where all sam-
ples were independent [pPLN (star tree), middle], and to a NB model 
with the same moments and effect size (NB, left). The DESeq2 
(black) and limma (light orange) inference methods were applied 
to each scenario. The black dashed line represents the nominal 
rate of 5% used to call positives. For limma, the counts were normal-
ized using log2 (TPM) values. Boxplots are based on 50 replicates.

FIG. 3. Results in terms of MCC (top), FDR (middle), and TPR (bot-
tom) scores of the five selected statistical methods (x axis) on the 
pPLN base scenario, that has an effect size of 3, a BM model of evo-
lution with added intraspecies variation accounting for 20% of the 
total variance, on the maximum likelihood tree (Stern and 
Crandall 2018a), with the observed “sight” groups (dark purple 
line, see fig. 1). The “alt” (light orange line) and “block” (black line) 
groups were also tested, with the same parameters. For the FDR, 
the black dashed line represents the nominal rate of 5% used to 
call positives. When required, the counts were normalized using 
log2 (TPM) values. Boxplots are based on 50 replicates.

3

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/1/m
sac269/6889356 by C

EA user on 01 N
ovem

ber 2023

https://doi.org/10.1093/molbev/msac269


Bastide et al. · https://doi.org/10.1093/molbev/msac269 MBE

of possibly varying lengths between samples. The simula-
tion can include genes that are differentially expressed in 
different a priori specified groups of species. (See Section 
“A framework to simulate interspecies RNA-seq data-
sets” in the Materials and Methods for more details on 
the simulation framework.)

Impact of Tree Group Design
Contrary to classical differential analysis, where all the 
samples are independent, we showed that the specific 
group design on the tree had a strong influence on the sig-
nal present in the data. The phylogeny indeed acts as a 
confounding factor, as species within a clade tend to 
look alike while differing from species in other clades, 
just because of the tree structure. The differential effect 
of a group that spans over a single clade was hence 
more difficult to distinguish from a simple evolutionary 
random drift than the differential effect of a group with 
species present in various clades (see, e.g., the “block” vs. 
“alt” designs in fig. 1). To help practitioners having to de-
sign new interspecies RNA-Seq studies, we propose a 
new “differential analysis phylogenetic asymptotic effect-
ive sample size” (dapaESS) score. This score takes into ac-
count the tree and the group design at the tips of the tree 
only, so that it can be computed prior to any data collec-
tion. Using simulations, we showed that this score was a 
good predictor of the performance of differential analysis 
methods in a specific dataset. (See Section “Differential 
Analysis Phylogenetic Asymptotic Effective Sample Size” 
in the Materials and Methods for a complete derivation 
of this effective sample size.)

Reanalysis of the Crayfish Dataset
We applied our simulation framework with parameters 
empirically drawn from a recent study on the evolution 
of gene expression underlying vision loss in cave animals 
(Stern and Crandall 2018a). The synthetic datasets had 
characteristics similar to the original data, while allowing 
us to control the actual simulation parameters, and hence 
assess the performance of various differential expression 
analysis tools. We tested some of the most popular meth-
ods, along with several normalization and transformation 
strategies, both issued from the RNA-Seq or the PCM lit-
erature. (See supplementary section A, Supplementary 
Material online for a survey of all the methods used.) 
Enlightened by this focused benchmark, we proposed a re-
analysis of the original dataset, resulting in a list of possibly 
differentially expressed genes that is much shorter than 
previously published one, and that we believe is more 
robust.

Results
Simulation Studies
Stern and Crandall (2018a) collected an interspecies 
RNA-Seq dataset to study the molecular mechanisms in-
volved in vision loss in the North American family 

Cambaridae of crayfish species. We exploited our new 
simulation framework to generate realistic synthetic data-
sets following a base scenario, that was set to mimic the 
features of the crayfish dataset, using the estimated cray-
fish tree with the observed vision status design (“sight” de-
sign, see fig. 1), and matching the empirical counts and 
gene lengths moments. From this base scenario, we varied 
several parameters in order to study the impact of evolu-
tionary dependence on the simulated data. In all simulated 
datasets, we could control exactly which genes were gen-
erated as differentially expressed, and which genes had a 
constant expression across clades (see section “A frame-
work to simulate interspecies RNA-seq datasets” in the 
Materials and Methods). This allowed us to compare the 
list of truly differentially expressed genes with the list of 
candidate genes found by the various statistical methods 
tested. We tested the performance of the following differ-
ential expression analysis methods: DESeq2 (Love et al. 
2014); limma (Ritchie et al. 2015), or limma cor (Smyth 
et al. 2005); and phylolm (Ho and Ané 2014a) with BM 
or OU processes. See Materials and Methods Section 

FIG. 4. M-A plots (log2 fold change as a function of the mean of nor-
malized counts for each gene) of the datasets produced with base 
pPLN parameters (effect size of 3, BM model with added intraspecies 
variation accounting for 20% of the total variance), on the maximum 
likelihood tree (Stern and Crandall 2018a), with the “block” (left) and 
“alt” (right) designs. The M-A values distribution for the 3,410 non-
differentially expressed genes is shown as a tile plot, with deeper 
blues representing high probability values. The M-A values of the 
150 differentially expressed genes are shown as red dots.

FIG. 5. Results in terms of MCC scores of the three correlation-aware 
statistical methods (x axis) on the pPLN base scenario (effect size of 
3, intraspecies variation accounting for 20% of the total variance), 
with a BM (dark purple line) or an OU (light orange line) model 
of evolution on the maximum likelihood tree (Stern and Crandall 
2018a), with the observed “sight” groups (see fig. 1). The counts 
were normalized using log2 (TPM) values. Boxplots are based on 
50 replicates.

4

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/1/m
sac269/6889356 by C

EA user on 01 N
ovem

ber 2023

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac269#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac269#supplementary-data
https://doi.org/10.1093/molbev/msac269


A Phylogenetic Framework to Simulate Synthetic Interspecies RNA-Seq Data · https://doi.org/10.1093/molbev/msac269MBE

“Simulations and Empirical Studies” and supplementary 
section A, Supplementary Material online for a detailed 
presentation of the parameters and methods used. We 
did not aim at a comprehensive comparison of all the 
methods available, and chose these tools as representing 
the three main approaches used in an interspecies context, 
and available in R. Using the framework implemented in 
compcodeR, other methods could however easily be 
added to the comparison.

PLN and NB Simulation Frameworks Produce Similar 
Datasets
To check that our new pPLN framework produced data-
sets with properties similar to the well known NB frame-
work as implemented in compcodeR (Soneson 2014), we 
replaced the crayfish tree with a star-tree, that mimics 
the NB situation where all species and replicates are inde-
pendent. When parametrized to produce the same mo-
ments, the pPLN framework on a star tree produced 
datasets that were similar in difficulty to the classical NB 

framework (fig. 2, first two columns). While limma con-
trolled the FDR to the nominal rate, DESeq2 failed to con-
trol the FDR. However, both methods had a better TPR 
under the pPLN model (see supplementary fig. S1, 
Supplementary Material online), and DESeq2 had the 
best MCC score under the pPLN on a star tree. As showed 
by the countsimQC (Soneson and Robinson 2018) analysis, 
the datasets simulated with the pPLN and the NB frame-
works had similar features, and were comparable to the 
original empirical dataset (see supplementary section D, 
Supplementary Material online).

Phylogenetic Data Requires Correlation Modeling
For data simulated according to the base scenario, that is, 
when the real tree was used to generate the data instead of 
the star-tree, both DESeq2 and limma methods, that do 
not take any correlation into account, exhibited very 
high rates of false discoveries (more than three quarters, 
fig. 2, last column). In this setting, methods that explicitly 
model correlations between samples (limma cor and phy-
lolm) performed best (fig. 3, dark purple line). limma cor 
exhibited the best behavior with the highest MCC, and a 
TPR reaching about 80%. Its FDR was still above the nom-
inal rate (median around 10%).

Tree Group Design Matters
The group design on the tree is known to strongly impact 
the properties of the data, in particular through its “phylo-
genetic effective sample size” (Ané 2008; Bartoszek 2016). 
To study its effect in a gene expression context, we re-
placed the “sight” design with a “block” and “alt” design 
(see fig. 1), that were chosen to model two extreme situa-
tions. In the “block” design, all the species with a given 
group are nested within a single clade, so that the differen-
tial expression signal is redundant with the phylogenetic 
signal. At the other end of the spectrum, the “alt” design 
was chosen so that sister species are in different groups, 
in order to maximize the contrast between organisms 
that share a long common history. We expect the “alt” de-
sign to produce datasets with a stronger signal.

The “alt” designs produced datasets with the clearest 
signal (fig. 3, light orange line). In this case, limma cor was 
able to correctly control for the FDR. Although phylolm 
methods had slightly higher FDR, they achieved a better 
TPR, reaching almost 100%, leading to a better overall 
MCC score. At the opposite of the spectrum, the “block” 
design produced datasets with a very weak signal, with 
differentially expressed genes counts M-A values strong-
ly overlapping the nondifferentially expressed genes dis-
tribution, which was very diffuse (fig. 4). All methods 
applied to the “block” design had FDR higher or equal 
to about 50% (fig. 3, black line). The BM phylolm tool 
had the least bad MCC score (about 0.5), although 
with the worst TPR (around 50%). The relative difficul-
ties of each design was correctly captured by the normal-
ized dapaESS (dapaESSn = dapaESS/dapaESS(Ind), so that 
dapaESSn = 1 in the independent case). While the “block” 
design had a lower dapaESS than the independent case 

FIG. 6. Results in terms of MCC scores of the three correlation-aware 
statistical methods (x axis) on the pPLN base scenario with an effect 
size of 3, a BM model of evolution on the maximum likelihood tree 
(Stern and Crandall 2018a), with the observed “sight” groups, and in-
traspecies variation accounting for 40% (light orange line), 20% (dark 
purple line), or 0% (black line) of the total variance). The counts 
were normalized using log2 (TPM) values. Boxplots are based on 
50 replicates.

FIG. 7. Results in terms of TPR score of the phylolm (BM) method on 
the pPLN base scenario (effect size of 3, BM model of evolution on 
the maximum likelihood tree (Stern and Crandall 2018a), with the 
observed “sight” groups, and added intraspecies variation account-
ing for 20% of the total variance). The counts were length- 
normalized (x axis) using CPM (length not taken into account, 
none), RPKM or TPM, and transformed using the square root (light 
orange) or the log2 (dark purple) functions. Boxplots are based on 50 
replicates.
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(dapaESSn = 0.69), the “alt” design had a higher one 
(dapaESSn = 5.1), and the “sight” design lay in the middle 
(dapaESSn = 1.4).

OU Makes the Signal Weaker and is Hard to Correct For
The simulation process impacts the tree-induced correl-
ation between species (Blomberg et al. 2003; Harmon 
2019). To study the impacts of this modeling choice, we re-
placed the BM process with an OU, with a phylogenetic 
half-life (Hansen 1997) t1/2 = log (2)/α fixed equal to 
50% of the tree height.

When simulating the counts using an OU model of trait 
evolution for the latent trait instead of a BM, the signal be-
came weaker, and all methods achieved lower MCC scores 
(fig. 5). The limma cor methods performed the best in this 
case, even when compared with a phylolm method that 
explicitly takes the OU model into account. Further results 
of data simulated under the OU for different group designs 
are presented in supplementary figure S3, Supplementary 
Material online.

Phylogenetic Methods are Robust to Intraspecies Variations
We mitigated the effect of the BM model on the tree by 
varying the level of the independent individual variation 
representing s2

g , from 40% to 0%. When reducing the 
intra-species variance to 0 (inducing a correlation of 1 be-
tween sample values of the same species), the limma cor 
method lost its advantage compared with the phylolm 
methods, whose performances were less affected by the le-
vel of intraspecies noise (fig. 6).

log2 (TPM) Normalization is Slightly Better on Phylogenetic 
Data
Normalization and transformation of RNA-Seq count data 
is known to strongly impact the analysis (Musser and 
Wagner 2015). We studied the effect of these choices by 
testing combinations of length normalization methods 
[TPM (Wagner et al. 2012), RPKM (Mortazavi et al. 
2008), or a simple CPM, i.e., no length normalization], 
and transformation function [log2 (Law et al. 2014) or 
square root (Musser and Wagner 2015)]. (See Materials 
and Methods Section “Simulations and Empirical 
Studies” and supplementary section A, Supplementary 
Material online for a detailed presentation of these nor-
malization techniques.)

Taking gene lengths into account, using either TPM or 
RPKM, significantly improved the power of the methods, 
in particular in terms of TPR (fig. 7). Although TPM nor-
malization led to a slightly better MCC median, its perfor-
mances were largely similar to the RPKM normalization. 
On this base scenario, the log2 transformation led to a con-
sistent gain of about 10% in TPR compared with the square 
root (increasing from around 70% to 80%, fig. 7).

No Small Counts in De Novo Assembled Data
Including a mean-variance trend correction in the limma 
cor method did not change its performance on the base 
scenario, producing very similar MCC values (the median 

MCC on all 50 runs differ by less than 0.002). This is con-
sistent with the fact that the original dataset uses de novo 
assembled data, that naturally exclude any small counts, 
and hence the need for a mean-variance trend correction 
(see Discussion).

Reanalysis of the Crayfish Dataset
While Stern and Crandall (2018a) found a list of 93 differ-
entially expressed genes (see supplementary table S2, 
Supplementary Material online in Stern and Crandall 
2018a), the limma cor method found evidence for only 
6, with only one gene that was not in the previous list. 
Among those, one gene was clearly associated with vision 
(coding for the Rhodopsin protein). The phylolm OU 
method found evidence for 17 differentially expressed 
genes, including the same 5 genes common to OUwie 
and limma cor. Raising the threshold from 0.05 to 0.1 

FIG. 8. Realization of a Brownian motion (BM) process (bottom), on a 
time-calibrated ultrametric tree with total height t = 100 (top), with re-
plicates and within-species variation. The BM process on the tree con-
trols the distribution of the internal nodes, including ancestral nodes 
Z
′

6, . . . , Z
′

9, and latent tip traits Z
′

1, . . . , Z
′

5. The ancestral root value 
of the BM is μ = 0, and its variance is σ2

BM = 0.1, so that the latent (un-
observed) tip trait variance is Var[Z

′

1] = . . . = Var[Z
′

5] = σ2
BMt = 10. 

The covariance of the latent tips trait is proportional to their time of 
shared evolution, for instance Cov[Z

′

1; Z
′

2] = σ2
BMt12 = 7.5. Replicated 

measurements are added on the tree as tips with zero branch lengths 
(top), with an extra variance of s2 = 0.5. For instance, Z2 and Z3 are re-
plicates of the latent tip Z

′

2, and their conditional distribution is Gaussian 
with expectation Z

′

2 and variance s2. The total sample traits variance is 
hence given by Var[Z1] = . . . = Var[Z8] = σ2

BMt + s2 = 10.5, and 
the sample traits covariance is given by the tree structure, for in-
stance Cov[Z1; Z2] = Cov[Z

′

1; Z
′

2] = σ2
BMt12 = 7.5, and Cov[Z2; Z3]= 

Cov[Z
′

2; Z
′

2] = σ2
BMt = 10. Note that on this figure, latent internal 

nodes (internal and external) are numbered from 1 to 9, and obser-
vations are numbered from 1 to 8, but these set of indices are distinct. 
For instance, Z1 is indeed an observation of Z

′

1, but Z4 is an observa-
tion of Z

′

3 and is unrelated to Z
′

4.
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(respectively, 0.2), the limma cor method selected another 
4 (resp., 25) genes, including 1 (resp., 6), matching with the 
list from Stern and Crandall (2018a). Using the log2 RPKM 
instead of TPM gave a list of 4 proteins, including two 
genes that were not in the previous lists.

Discussion
Simulation Study
Our targeted simulation study illustrates some of the speci-
ficities of interspecies RNA-Seq differential expression ana-
lysis. First, it is essential to take the correlation between 
replicates within a given species into account. Failure to do 
so leads to very high rates of false discoveries (fig. 3), that 
make the analysis unreliable and hard to exploit. Indeed, 
the limma method with added correlation seems to outper-
form other tools, including PCMs, in many settings. These re-
sults tend to indicate that, even if the full tree is not included 
in the analysis, incorporating these simple correlations be-
tween replicates might be sufficient to efficiently analyze in-
terspecies datasets, at least for some simulation designs.

The group design on the tree was indeed found to be 
extremely important (fig. 3). A balanced design, where 
the groups are evenly spread over all clades, has a stronger 
signal (fig. 4), and allows the analysis to be abstracted from 
the phylogeny to some extent, as classical tools for differ-
ential expression analysis work best in this configuration. 
On the other hand, when the groups are clustered in the 
phylogeny, the signal is weaker as it becomes more difficult 
to distinguish the real group effect from the simple drift 
that tends to isolate clades from one another. This is in 
particular the case of designs where one clade or species 
is tested against out-groups, that is sometimes encoun-
tered in the literature (Brawand et al. 2011; Rohlfs and 
Nielsen 2015). In this configuration, PCMs, although im-
perfect, are essential.

Finally, this study confirms the importance of length 
normalization for interspecies differential gene expression 
analysis to achieve acceptable power detection levels 
(fig. 7). Although we did not find any significant difference 
in performance between RPKM and TPM normalizations, 
the log2 transformation seemed to have a slight advantage 
over the square root in this simulation setting. This advan-
tage could however be simply an effect of the simulation 
framework, which is based on a pPLN distribution.

Simulation Design
In this work, we proposed a method to simulate RNA-Seq 
gene expression across multiple species. Similar to intras-
pecies simulation tools (Dillies et al. 2013; Soneson and 
Delorenzi 2013; Soneson 2014), our simulation method 
can use empirical datasets to set the value of parameters 
such that the simulated datasets are as close as possible 
to the real ones, with matching empirical marginal expect-
ation and variance. When applied to independent species, 
our pPLN model produces datasets with features compar-
able to the classical NB model (fig. 2 and supplementary 

section D, Supplementary Material online). In our specific 
simulation studies, we use the dataset from Stern and 
Crandall (2018a). This dataset was obtained using de 
novo assembled data. In addition, we focused on genes 
with one-to-one orthologuous relationships across species. 
As a consequence, this dataset had a low number of zeros 
and small counts, and a large variance across samples (em-
pirical dispersion ranged from 0.1 to 5, see fig. 4). The si-
mulated datasets had similar characteristics, which could 
explain the low performance of DESeq2 in terms of FDR, 
even when the data were simulated without correlation 
(fig. 2), and the fact that the trend procedure did not 
add any power to the limma method. In addition, as 
DESeq2 explicitly assumes a NB distribution of the counts, 
it suffers from the deviation from this model, as opposed 
to limma, which controlled the FDR to the nominal rate 
in both the NB and pPLN models (fig. 2). Interspecies 
RNA-Seq gene expression datasets are very diverse, with 
specificities depending on the underlying biological ques-
tion being studied. This work provides a first step toward 
realistic simulation of such datasets.

Simulation Tool
Compared with classical intraspecies simulation tools 
(Dillies et al. 2013; Soneson and Delorenzi 2013; Soneson 
2014), our simulation framework incorporates the species 
tree and the gene length, which may vary across species. It 
makes it possible to model the evolution of gene expression 
on the tree using two different processes (BM or OU), and it 
allows for additional independent variation, that can model, 
for example, interspecies variation or measurement error. 
This complex model leads to new effects, that can be difficult 
to predict. In particular, we showed that the distribution of 
the groups on the tree had strong effects on the ability of all 
methods to detect a group expression shift. We proposed a 
normalized criterion (dapaESS) to assess the difficulty of the 
group design for the differential gene expression analysis 
problem. Although it does not take into account the num-
ber of replicates or the specific evolution model, we showed 
that it could well represent the difficulty of an experimental 
design. The strength of this criterion is that it only depends 
on the timed species tree and the tips group allocation, and 
can be computed before any statistical inference or even 
data collection. It can hence be used as a practical guide 
on the expected power of the experimental design. In par-
ticular, if the normalized dapaESSn is lower than one, results 
from methods that do not take the phylogeny into account 
should be interpreted with particular caution.

In this work, we focused our attention on the detection 
of shifts of expression between groups spanning across 
species. However, interspecies datasets are also used to ad-
dress many other questions, such as equality of within- 
species variance, expression divergence, or detection of 
neutral vs. directed evolution regimes. Several tools from 
the PCM literature have been used to this end, that rely 
on various models of trait evolution with appropriate par-
ameter constraints. Since our simulation tool is modular, 
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those various processes could be implemented, in order 
to produce realistic RNA-Seq datasets with the desired 
structure. More generally, our tool could be extended 
to take into account any correlation structure between 
samples, not necessarily deriving from a phylogenetic 
model. Such an extended framework could help re-
searchers to test the statistical properties of these com-
plex inference models.

Inference Tools
In this study, we focused on a few inference tools, that 
come either from the RNA-Seq or the PCM literature, lim-
iting ourselves to methods implemented in R and that can 
do differential analysis. Although a more comprehensive 
simulation design would be needed to draw stronger con-
clusions, our results show that simulations under the OU 
model could lead to more difficult datasets for some group 
designs, and that even methods that include the OU mod-
el in their framework fail to completely correct for this ef-
fect. This could be linked with the fact that the estimation 
of the selection strength in an OU model is a notoriously 
difficult question, especially on an ultrametric tree (Ho and 
Ané 2014b; Cooper et al. 2016). Having to estimate this 
parameter for thousands of genes is bound to generate 
some instability, and to deteriorate the performance of 
those tools. Gu et al. (2019) recently proposed an empirical 
Bayes approach to deal with this parameter in an RNA-Seq 
setting. One possible direction could be to adapt this 
method to a differential analysis problem. More generally, 
our simulation study seems to show that none of the 
methods presented here had really satisfactory results, 
but that taking gene lengths and sample correlation into 
account was essential. This study illustrates the need for 
new statistical tools for interspecies differential analysis, 
that would combine the strengths of both the classical 
RNA-Seq literature, that can deal with the specificities of 
this noisy data, and the PCM literature, that takes into ac-
count the phylogeny, an information that can be crucial to 
correctly interpret interspecies data.

Reanalysis of the Crayfish Dataset
In the setting that was most similar to the empirical 
Crayfish dataset, we found that the limma cor method 
worked best, with a similar TPR but smaller FDR compared 
with phylogenetic methods. When we applied this method 
to the Crayfish dataset, we found a list of only 6 differential-
ly expressed genes between sighted vs. blind species across 
all clades. This list was robust to the choice of the detection 
threshold, as raising it from 0.05 to 0.1 only added 4 can-
didates. Allowing more false discoveries with a threshold 
of 0.2 output a total of 31 genes including only approxi-
mately a third matching the original list of 93 genes found 
by Stern and Crandall (2018a), comforting our suspicion 
that the data only support a limited number of differential-
ly expressed genes. However, such a small list, containing 
only one gene directly associated to vision, might not be 
enough to explain the complex mechanisms of vision loss 

in cave animals. There are at least two factors that could 
explain this result. First, our model was designed to find 
genes that are differentially expressed in all clades, that is, 
it assumed that the mechanisms underlying vision loss 
were the same for all groups of organisms, which is a very 
strong assumption. A different design could be to assume 
that each clade that went through vision loss have their 
own differentially expressed genes. In the linear model of 
limma, this simply amounts to adding one group factor 
per clade of interest, and to test for the coefficient asso-
ciated with each group. Such an analysis gave us a different 
list for blind species of each genus Procambarus, Cambarus, 
and Orconectes, with only one gene that was common to all 
three lists (see supplementary section B, Supplementary 
Material online). The fact that only a few genes overlap be-
tween each group could indicate that different sets of 
genes are associated with vision loss in each clade, that is, 
that evolution has taken different genomic routes to vision 
loss in cave crayfish. This finding could be consistent with 
Stern and Crandall (2018a), which concluded that conver-
gent vision loss among blind species was driven by in-
creased gene expression variance (i.e., loss of selective 
constraint) rather than directional selection on a common 
set of genes. A second limitation to this study is that we 
only tested for differentially expressed genes, that is, differ-
ence in mean gene expression between groups. This is only 
one of the many possible ways evolution can impact gene 
expression (see, e.g., table 1 in Stern and Crandall 2018a). 
Other tools, designed to test for other patterns of evolution 
as mentioned above, might be able to detect other genes. 
Finally, when using RPKM instead of TPM normalization, 
we found a list of genes that only partially matched with 
the previous ones. Although TPM and RPKM seemed to 
performed similarly well on the simulated data (see 
fig. 7), this result shows that normalization can have a 
strong impact when analyzing biological datasets, and the 
robustness of these methods should be carefully assessed, 
when possible. Unfortunately, still little is known regarding 
the evolutionary genetics of vision loss in crayfishes, which 
makes the biological validation of the results difficult.

Materials and Methods
A Framework to Simulate Interspecies RNA-Seq 
Datasets
Building on existing RNA-Seq methods (Robles et al. 2012; 
Soneson and Delorenzi 2013; Soneson 2014), we developed a 
new interspecies simulation framework that can generate real-
istic count datasets, and takes into account, first, the gene ex-
pression correlations induced by the phylogeny and, second, 
the different lengths a given gene can have in different species.

Realistic Simulations using the Negative Binomial 
Distribution
We briefly recall here the simulation framework detailed in 
(Soneson and Delorenzi 2013), and implemented in 
compcodeR (Soneson 2014).
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Negative Binomial Distribution. Let Ygi be the random vari-
able representing the count for gene g (1 ≤ g ≤ p) in sam-
ple i (1 ≤ i ≤ n), with true expression level λgi and 
sampling depth Mi. Following Robinson and Oshlack 
(2010), we model each count independently by a negative 
binomial (NB) distribution with expectation μgi and dis-
persion αg , such that Ygi ∼ NB(μgi, αg) with

μgi =
λgi

p
h=1 λhi

Mi. (1) 

Differential Expression. To model differential expression, 
we assume that the samples are partitioned into two 
groups S1 and S2. For each gene g, the dispersion parameter 
αg is the same for all samples, while the expression level λgi 

can only take two values: λgS1 if i is in S1 and λgS2 if i is in S2. 
Given λgS1 , we take λgS2 as

λgS2 =
λgS1 if g is not differentially expressed;

λgS1 × (e + Xe
g) if g is up-regulated in S2;

λgS1 × (e + Xe
g)−1 if g is down-regulated in S2;

⎧
⎪⎨

⎪⎩

with e the minimal differential effect size, and Xe
g random 

variables independent identically distributed according 
to an exponential distribution with parameter 1. The va-
lues of the parameters are set to match the empirical 
counts expectation and dispersion of a real datasets.

Realistic Simulations using the Poisson Log-Normal 
Distribution
The Poisson log-normal (PLN) distribution has been advo-
cated as an alternative to the NB distribution for the ana-
lysis of RNA-Seq data. Being more flexible, it is particularly 
well suited in the presence of correlations (Gallopin et al. 
2013; Zhang et al. 2015), which proves essential for inter-
species datasets, as demonstrated in the next section. 
We show here how the parameters of a PLN model can 
be chosen to match first- and second-order moments of 
the NB model described above, making it possible to simu-
late realistic datasets under this more flexible framework.

The PLN Distribution. Under the PLN model, for each gene 
g and sample i, we assume that the observed count ran-
dom variable Ygi follows a Poisson distribution, with log 
parameter a Gaussian latent variable Zgi, such that

Zgi ∼ N mgi, σ2
g

 

Ygi | Zgi ∼ P exp (Zgi)
( 

.
(2) 

This model is similar in spirit to the NB distribution, that 
can be seen as Gamma-Poisson mixture (see, e.g., Holmes 
and Huber 2019, Chap. 4). Note that in both models, the 
coefficient of variation of the mixing distribution is con-
stant across samples for a given gene (Chen et al. 2014).

Matching Moments. Using standard moments expressions 
for the NB (Holmes and Huber 2019) and PLN (Aitchison 
and Ho 1989) distributions, it is straightforward to show 
that a PLN distribution with parameters mgi and σ2

g yields 
the same first- and second-order moments as a NB distri-
bution with expectation μgi and dispersion αg if and only if

σ2
g = log (1 + αg)

mgi = log (μgi) − 1
2 log (1 + αg).



(3) 

These equations allow us to readily use the framework de-
veloped in the previous section also in the case of a PLN 
simulation.

Phylogenetic Comparative Methods
Phylogenetic relationships are known to induce correla-
tions between observed quantitative traits on several spe-
cies (Felsenstein 1985). The field of PCMs specializes in the 
comparative study of such phylogenetically related traits, 
and has been flowering over the last decades [see, e.g., 
Harmon (2019) for a recent review]. Conditionally on a 
phylogenetic tree that links a set of species, PCMs model 
the evolution of a quantitative trait as a stochastic process 
along the branches of the tree (see fig. 8). This generative 
model induces a multivariate Gaussian structure of the ob-
served vector of traits across species, with a correlation 
structure that depends on the tree and on the chosen pro-
cess. The values of the trait are only observed at the tips of 
the tree. The values at the root or at the internal nodes are 
unobserved and are modeled using latent variables.

Brownian Motion on a Tree. The most commonly used 
process is the BM (Felsenstein 1985). Under this model, 
for a given continuous trait Z

′

measured at the tips of 
the tree, the covariance between traits Z

′

i and Z
′

j is simply 
proportional to the time of shared evolution between spe-
cies i and j, that is, the time ti j between the root of the tree 
and the most recent common ancestor of i and j: 
Cov[Z

′

i ; Z
′

j] = σ2
BMti j, where σ2

BM is the variance of the 
BM process. The expectation of each trait is equal to μ, 
the ancestral value of the process at the root.

Ornstein-Uhlenbeck on a Tree. To model stabilizing selec-
tion, the OU process is often used (Hansen and Martins 
1996; Hansen 1997). Compared with the BM, it has an 
equilibrium value β, that represents the “optimal value” 
of the trait in a given environment. The trait is attracted 
to this optimum with a speed that is controlled by the se-
lection strength α, or better the phylogenetic half-life 
t1/2 = log (2)/α (Hansen 1997). This process induces a dif-
ferent correlation structure than the BM, with stronger se-
lection strength inducing weaker interspecies correlations 
(Hansen 1997; Ho and Ané 2013). Specifically, conditional-
ly on a fixed root, Cov[Z

′

i ; Z
′

j] = γ2(1 − e−2αti j )e−α(ti+t j−2ti j), 
with γ2 = σ2

OU/(2α) the stationary variance of the process, 
and ti = tii the time between the root and node i (Ho and 
Ané 2013).
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Within-Species Variation. The traditional PCM framework 
assumes that only one measurement is available for each spe-
cies, and that there is no measurement error, that is, that all 
the observed variation can be explained by the evolution pro-
cess on the tree. However, ignoring measurement error can 
lead to severe biases (Silvestro et al. 2015; Cooper et al. 
2016). In addition, in an interspecies RNA-Seq differential 
analysis, it is usual to have access to replicated measure-
ments, that is, to measurements for several individuals of 
the same species. There is a vast literature on the subject 
of within-species variation (Grafen 1989, 1992; Lynch 1991; 
Housworth et al. 2004; Ives et al. 2007; Hadfield and 
Nakagawa 2010; Goolsby et al. 2017). One simple way to 
look at the problem in a univariate setting is to assume 
that all the individuals from a same species are placed 
on the tree as tips linked to a same species node with 
a branch of length zero (Felsenstein 2008) and to add a 
uniform Gaussian individual variance s2 to all the tip 
samples traits (see figs. 8 and 1). In such a framework, 
the total variance of a sample trait Zi attached to a latent 
tip with trait Z

′

sp(i) is given by Var[Zi] = Var[Z
′

sp(i)] + s2, 

where Var[Z
′

sp(i)] is determined by the chosen stochastic 
process to model the latent trait (BM or OU). Similarly, 
the covariance between two-sample traits Zi and Z j at-
tached, respectively, to latent tip traits Z

′

sp(i) and Z
′

sp(j) is 

given by Cov[Zi; Z j] = Cov[Z
′

sp(i); Z
′

sp(j)].

The Phylogenetic Poisson Log-Normal Distribution
In an interspecies framework, various samples come from 
various species, which implies a specific correlation be-
tween measures, that can be taken into account in a multi-
variate PLN model.

Continuous Trait Evolution Model. The models of trait evo-
lution used in PCMs are generative, and can be used to 
simulate continuous traits at the tips of a tree (with pos-
sible replicates) such that their correlation structure is 
consistent with their phylogeny (see fig. 8). Using a simple 
uniform Gaussian individual variance s2

g to model within- 
species variation, the trait variance Σg for the vector Zg 
of continuous traits at the tips of the tree generated by 
such a process can be expressed as

[Σg]ij = Cov Zi; Z j
 

= σ2
g(sp(i); sp(j)) if sp(i) ≠ sp(j),

[Σg]ii = Var Zi[ ] = σ2
g(sp(i); sp(i)) + s2

g otherwise,



where σ2
g(sp(i); sp(j)) is the phylogenetic variance between 

species sp(i) and sp(j) of samples i and j (see fig. 8), with a 
structure given by the evolution process (BM or OU, see 
expressions above), and s2

g the added intraspecies vari-
ation. Note that the variance parameters do depend on 
the gene g (for instance, σ2

g(sp(i); sp(j)) = σ2
g ti j in the BM 

case), which allows us to tune the marginal moments to 
realistic values for count data, as detailed below.

The Phylogenetic Poisson Log-Normal Distribution. The 
models described above are well suited for quantitative 
traits, but need to be adapted for count measures, such 
as the one produced by a RNA-Seq analysis. To handle 
such counts, we propose to add a Poisson layer to the trait 
evolution models described above, defining a “phylogenet-
ic” Poisson log-normal (pPLN) distribution. More specific-
ally, for a given gene g, we simulate a vector of n latent 
traits Zg as the result of such a process running on the 
tree, and then, conditionally on this vector, draw the ob-
served counts Ygi from a Poisson distribution with param-
eter exp (Zgi)

Zg ∼ N mg , Σg
( 

Ygi | Zgi ∼ P exp (Zgi)
( 

.
(4) 

In other words, the vector of counts Yg for each gene is 
drawn from a multivariate PLN distribution, with para-
meters mg and Σg obtained from the evolutionary models 
described above, Σg being the structured variance matrix 
of both phylogenetic and independent effects, and mg a 
vector or expectations values at the tips, that can be set 
independently from the process.

Matching Moments for Realistic Simulations. Assuming 
that the diagonal coefficients of Σg are all equal to a single 
value σ2

g , equation (3) can be used to ensure that the pPLN 
model above yields the same marginal expectation and 
variance as a NB model with expectation μgi and dispersion 
αg . At a macro-evolutionary scale, most of the dated phylo-
genetic trees encountered are ultrametric, that is, are such 
that all the tips are at the same distance t from the root. In 
that case, all the phylogenetic models described above ver-
ify this variance homogeneity assumption. For instance, for 
the simple BM model with an extra layer of independent 
variation, we have σ2

g = σ2
BMt + s2. Note that although 

the NB and pPLN models are set to have the same expec-
tations and variance, they differ significantly in their covar-
iances: while in the standard NB model, all the samples are 
independent from one another, in the proposed pPLN 
framework, the measurements are correlated, with a struc-
ture reflecting both the tree and the selected evolutionary 
process.

Taking Differential Gene Lengths into Account
Length Normalization of Counts. Let ℓgi denote the length 
of the gene g for sample i. Following Robinson and Oshlack 
(2010), we take this length into account by changing equa-
tion (1) to

μgi =
λgiℓgi

p
h=1 λhiℓhi

Mi. (5) 

Note that the same overall sequencing depth Mi is attrib-
uted to each sample, but that, because of the weighted 
average, it is preferentially allocated to longer genes.
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Lengths Simulation. The lengths are simulated according 
to the pPLN model described above, with expectations 
and dispersions empirically estimated from the dataset 
at hand.

Differential Analysis Phylogenetic Asymptotic 
Effective Sample Size
To quantify the intrinsic difficulty of a design compared 
with another, we propose a new “differential analysis phylo-
genetic asymptotic effective sample size” (dapaESS). Given a 
phylogenetic tree T , we first remove all replicates, so that 
there are no zero-length branches. Then, given a design vec-
tor x, we postulate a simple BM model for an hypothetical 
continuous trait y at the tips: y = θ01 + θ1x + σeBM, with 
Var eBM

 
= Vtree = [ti j]i,j. From standard linear model the-

ory, the variance of the maximum likelihood estimator of 
the coefficient θ1 is given by Ané (2008): Var θ̂1

 
= 

σ2(XTVtree−1X)−1
2,2 , with X = (1 x) the matrix of predictors. 

We hence define: dapaESS(T , x) = 1/(XTVtree−1X)−1
2,2 . In the 

case where all the species are independent (star-tree T ∗), 
we fall back on a standard differential expression ana-
lysis, and we get, assuming that there are n species 
and that the groups are balanced: dapaESS(T ∗, x) = 
n/4, which is the standard effective sample size for a 
balanced two-sample t-test with uniform variance. 
This gives us a base-line for a “standard” difficulty, 
and we use in the following the normalized dapaESS: 
dapaESSn(T , x) = dapaESS(T , x)/dapaESS(T ∗, x). A value 
lower than 1 indicates a design that is deemed more diffi-
cult than a standard independent design (larger asymptotic 
variance of the estimator), while a value greater that 1 in-
dicates a problem where the phylogeny actually helps in 
finding the significant differences. Note that this score 
can be computed a priori, and, as shown below, can be 
used to assess the quality of the experimental design.

Simulations and Empirical Studies
Gene Expression Underlying Vision Loss in Cave Animals
The real dataset used to set simulation parameters and for 
the real data analysis case study was extracted from (Stern 
and Crandall 2018a). In this study, the authors selected 
eight blind and six sighted crayfish species, for which a 
time-calibrated maximum likelihood phylogeny is known 
(Stern et al. 2017). 3,560 orthologous gene expressions 
were estimated using the method RNA-Seq by 
Expectation Maximization (RSEM) (Li and Dewey 2011), 
with one to three replicates per species (see fig. 1).

Base Simulation Parameters
We used the real dataset to set the parameters of our si-
mulations. We took the estimated crayfish tree rescaled 
to unit height (t = 1), with the observed vision status de-
sign (“sight” design, see fig. 1), and matching the empirical 
counts and gene lengths expectation and dispersion. The 
expression level λgS1 and the dispersion αg were estimated 
from the dataset for each gene g, while for each sample i 
the simulation sequencing depth Mi was independently 

drawn from a uniform distribution with bounds Mmin 
and Mmax the observed empirical minimal and maximal 
values of the library size across all samples. We used a 
BM model of trait evolution, with an independent layer 
of individual variation s2

g representing 20% of the total 
tip variance σ2

g for each gene g: s2
g = 0.2 × σ2

g , with 
σ2

g = (σ2
BM)gt + s2

g . We chose a base effect size of 3, with 
150 differentially expressed genes out of the 3,560 simu-
lated ones. From this base scenario, we varied several para-
meters in order to study their impacts on the simulated 
data. Each scenario was replicated 50 times.

Inference Methods Parameters
We used the following statistical inference methods: 
DESeq2 (Love et al. 2014) assumes a NB distribution on in-
dependent counts; limma (Ritchie et al. 2015) applies an 
Empirical Bayes moderation (without a mean-variance 
trend correction, unless otherwise specified) on independ-
ent normalized counts, possibly assuming that all the sam-
ples in a same species are correlated [limma cor (Smyth 
et al. 2005)]; and phylolm (Ho and Ané 2014a) uses a 
phylogenetic regression framework based on a BM or 
OU process, with measurement error. We refer to 
supplementary section A, Supplementary Material online 
for a detailed presentation of these methods. For phylolm, 
the differential analysis relied on a t statistic computed for 
each gene independently, conditionally on the estimated 
maximum likelihood parameters (s2

g and αg for the OU). 
The raw P values computed by all methods were adjusted 
using the BH method (Benjamini and Hochberg 1995), using 
the R function p.adjust. Inferred gene expression differences 
across groups were marked as significant if their associated 
adjusted P value was below the threshold of 0.05.

Length Normalization and Transformation
In DESeq2 (Love et al. 2014), we used the default RLE 
method (Anders and Huber 2010) to compute the sample- 
specific normalization factor mi. We followed the recom-
mendations of the section “Sample-/gene-dependent 
normalization factors” from the DESeq2 vignette to com-
pute the coefficients cgi from the coefficients mi and 
gene lengths ℓgi detailed in supplementary section A, 
Supplementary Material online. For methods requiring a 
preprocessing normalization of the count data (limma 
and phylolm), we used the TMM method (Robinson and 
Oshlack 2010) implemented in the calcNormFactor func-
tion in edgeR, and a TPM length normalization with a 
log2 transformation.

Scores Used to Assess the Performance of the Inference 
Methods
To assess the performance of the inference methods, based 
on the list of true (simulated) differentially expressed 
genes, we computed the number of true positives (TP), 
true negatives (TN), false positives (FP), and false negatives 
(FN). We used the Matthews correlation coefficient 
(MCC = [TP ·TN − FP · FN] · [(TP + FP)(TP + FN)(TN + FP) 
(TN + FN)]−1/2) as advised in Chicco and Jurman (2020). 
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We also computed the true positive rate (TPR = TP/
(TP + FN)) and the false discovery rate (FDR = FP/
(FP + TP)). In addition, we compared the features of the 
simulated datasets with the empirical one using the 
countsimQC R package (Soneson and Robinson 2018).

Reanalysis of the Crayfish Dataset
Stern and Crandall (2018a) used the OUwie package 
(Beaulieu et al. 2012) on each gene to compare an OU 
model with a single optimal value to a model with two op-
timal values, one for the sighted species and one for the 
blind. This method is similar to the phylogenetic 
ANOVA, but differs on two important aspects. First, it 
takes as entry the within-species empirical means and vari-
ance instead of the individual values. Second, it uses a like-
lihood ratio test assuming a chi-square distribution with 
one degree of freedom, instead of the conditional t-test 
used in phylolm. In a mixed model setting, such likelihood 
ratio test have been shown to be anticonservative (see, e.g., 
Section 2.4 in Pinheiro and Bates 2006), and can hence lead 
to many false discoveries. We applied the limma cor meth-
od on the log2 TPM values, that performed best on the 
realistic simulations above, to the same dataset, and com-
pared the list of differentially expressed genes to the one 
found in Stern and Crandall (2018a). We also applied the 
phylolm OU method, that is the most similar to the 
OUwie method, for comparison.
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