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The satdad R package: Version 1.1.0 Vignette

Cécile Mercadier

2023-03-29

1. Introduction & Installation

The name satdad is an acronym formed by the initials of Sensitivity Analysis Tools for Dependence and
Asymptotic Dependence. The satdad R package provides tools for analyzing tail dependence in any sample
or in particular theoretical models, namely Mevlog and ArchimaxMevlog. The package uses only theoretical
and non parametric methods, without inference. Other tools and implementations will be added later to
complete this first version. The primary goals of the package are to:

• Provide (a)symmetric multivariate extreme value models in any dimension Mevlog as some Archimax
versions ArchimaxMevlog. Let us emphasize gen.ds, which generates easily tail dependence structure.

• Provide theoretical and empirical indices to order tail dependence. Let us emphasize tsic and tsicEmp
which compute and estimate Tail Superset Importance Coefficients.

• Provide theoretical and empirical graphical methods to visualize tail dependence. Let us emphasize the
theoretical and empirical tail dependograph plotted by graphs and graphsEmp.

The latest official release version can be obtained via
install.packages("satdad")

and loaded by
library(satdad)

The mentioned R packages are used as dependencies as following:

• igraph functions graph, layout.fruchterman.reingold, and plot.igraph are called.

• The map function is imported from maps.

• The setparts function is imported from partitions.

• The danube dataset is extracted from graphicalExtremes for the illustrative session.

2. Theoretical modelling

Consider X = (X(1), ..., X(d)) a d-variate random vector. Under standard Frechet margins, a multivariate
extreme value (mev) random vector X has the cumulative distribution function

P
(
X(1) ≤ x1, ..., X

(d) ≤ xd
)

= exp
(
−`
(

1
x1
, ...,

1
xd

))
,

for ` a stable tail dependence function. When restricting to (a)symmetric logistic dependence structure, such
mev is called Mevlog in this package. It will also include mev with more general GEV margins.
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Now, consider U = (U (1), ..., U (d)) a d-variate random vector. Assume that the margins U (t), for t = 1, ..., d,
follow the standard uniform distribution. The cumulative distribution function of U is then its copula
function, P(U (1) ≤ x1, . . . , U

(d) ≤ xd) = C(x1, . . . , xd). Assume that the copula function has the following
form

C(x1, . . . , xd) = ψ
(
`
(
ψ−1(x1), . . . , ψ−1(xd)

))
where ` is a stable tail dependence function and ψ is the generator of a d-variate Archimedean copula. One
can refer to Charpentier et al. (2014) for the description of ψ and algorithms of simulation. Again, when ` is
associated with a (a)symmetric logistic dependence structure, such model is called ArchimaxMevlog in this
package.

2.1 Tail dependence structure

The tail structure of dependence is described by the stable tail dependence function ` defined above. In this
package, it is saved in a ds object. The function gen.ds is used to generate these objects.

The multivariate asymmetric logistic model obtained through the option type = "alog". It generates a
multivariate asymmetric logistic model, which has been first introduced by Tawn (1990). We have

`(x1, . . . , xd) =
∑
b∈B

(
∑
i∈b

(βi,b xi)1/αb)αb

where B is the power set of {1, ..., d} (or a strict subset of the power set), the dependence parameters
αb lie in (0, 1] and the collection of asymmetric weights βi,b are coefficients from [0, 1] satisfying ∀i ∈
{1, . . . , d},

∑
b∈B:i∈b βi,b = 1. Missing asymmetric weights βi,b are assumed to be zero.

The class ds is a list that consists of:

• the dimension d.

• the type (log or alog).

• the list sub that corresponds to B. When sub is provided, the same list of subsets is returned, eventually
sorted. When sub = NULL then sub is a subset of the power set of {1, ..., d}. When the option mnns is
used, the latter integer indicates the cardinality of non singleton subsets in B.

• the dependence parameter dep = α or the vector of dependence parameters dep = {αb, b ∈ B}. When
missing, these coefficients are obtained from independent standard uniform sampling.

• the list asy of asymmetric weights βi,b for b ∈ B and i ∈ b. When missing, these coefficients are
obtained from independent standard uniform sampling followed by a renormalization in order to satisfy
the sum-to-one constraints.

Let us consider some examples.
## Construction of a ds object without using gen.ds
ds5 <- vector("list")
ds5$d <- 5
ds5$type <- "alog"
ds5$sub <- list(c(1,3),2:4,c(2,5))
ds5$asy <- list(c(1,.3),c(.5,1-.3,1), c(1-.5,1))
ds5$dep <- c(.2,.5,.3)

For larger dimensions, defining a ds object can become tricky, and the use of gen.ds is very helpful. For
example, a 10-dimensional asymmetric tail dependence structure can be randomly created as follows.
## Three constructions of ds object by using gen.ds
# only d is given, sub, asy and dep are randomly sampled
ds10 <- gen.ds(d = 10)
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# d and sub are given, asy and dep are randomly sampled
ds10 <- gen.ds(d = 10, sub = list(1:2,1:7,3:5,7:10))
# d is given, mnns indicates the cardinality of non singleton subsets in B
# sub, asy and dep are randomly sampled
ds10 <- gen.ds(d = 10, mnns = 4)

The symmetric case can be obtained through the type = "log" option in the gen.ds function, which yields
a multivariate symmetric logistic model. This model is a well-known generalization of the bivariate extreme
value logistic model introduced by Gumbel (1960). The parameter dep (with 0 < dep ≤ 1) is the only
parameter needed to write the following equation

`(x1, . . . , xd) = (
d∑
i=1

x
1/dep
i )dep.

If the parameter dep is missing, the function gen.ds will randomly generate its value from a standard uniform
distribution.

For example, to obtain a 3-dimensional symmetric tail dependence structure with a randomly generated
dependence parameter, you can use the following code
ds3 <- gen.ds(d = 3, type = "log")
ds3$dep

## [1] 0.7879912

If you know the value of the dependence parameter, you can specify it by setting ds3$dep <- .3, or by using
the dep argument directly
ds3 <- gen.ds(d = 3, type = "log", dep = .3)

2.2 Sampling models

As mentioned at the beginning of the previous section, the satdad package studies both the Mevlog and
ArchimaxMevlog theoretical models.

Samples of the MEV random vector with logistic dependence structures can be obtained via the rMevlog
function using Algorithms 2.1 and 2.2 in Stephenson(2003).
n <- 1000
sample.frechet <- rMevlog(n, ds5) # standard Frechet margins
loc <- runif(5)
scale <- runif(5, 1, 2)
shape <- runif(5, -1, 1)
mar.gev <- cbind(loc, scale, shape)
sample.gev <- rMevlog(n, ds5, mar = mar.gev) # GEV margins all distinct
sample.samegev <- rMevlog(n, ds5, mar = c(-1,0.1,1)) # Gumbel margins

In addition, the package provides functions for computing the stable tail dependence function (ellMevlog),
cumulative distribution function (pMevlog), and probability density function (dMevlog) of the Mevlog
distribution. The following are examples of commands for these functions, but without evaluation.
x5 <- runif(5)
ellMevlog(x5, ds5)
pMevlog(x5, ds5) # cdf under standard Frechet margins
pMevlog(x5, ds5, mar = c(1,1,0)) # cdf under standard Gumbel margins
dMevlog(x5, ds5) # pdf under standard Frechet margins
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In addition to multivariate extreme value logistic models, referred to as Mevlog, the satdad package provides
some particular cases of ArchimaxMevlog. We follow here Algorithm 4.1 of p. 124 in Charpentier et al. (2014).
Let ψ defined by ψ(x) =

∫∞
0 exp(−xt)dFV (t), where FV is the cumulative distribution function of a positive

random variable.

We define the random vector (U1, ..., Ud) as Ui = ψ(− log(Yi)/V ) where

• Z has a multivariate extreme value distribution with stable tail dependence function ` ; here Z has
standard Frechet margins,

• (Y1, ..., Yd) = (exp(−1/Z1), ..., exp(−1/Zd)) is the margin transform of Z so that Y is sampled from the
extreme value copula associated with `,

• V has the distribution function FV ,

• Y and V are independent.

Then, U is sampled from the Archimax copula

C(x1, . . . , xd) = ψ(`(ψ−1(x1), . . . , ψ−1(xd))) .

The package provides ArchimaxMevlog realizations of random vectors U. The cases covered by the satdad
package are as follows:

– ψ is one among three types:

• ψ(t) = exp(−t) ; set dist = "ext".

• ψ(t) = lambda
t+ lambda ; set dist = "exp" and dist.param = lambda.

• ψ(t) = 1
(t+ scale)shape ; set dist = "gamma" and dist.param = c(shape, scale).

– ` is the stable tail dependence function (stdf) associated with (a)symmetric logistic extreme value models.

ArchimaxMevlog samples are obtained via
n <- 1000
sample.ext <- rArchimaxMevlog(n, ds5, dist = "ext")
lambda <- runif(1, 1, 2)
sample.exp <- rArchimaxMevlog(n, ds5, dist = "exp", dist.param = lambda)
shape <- runif(1, 1, 2)
scale <- runif(1, 1, 2)
sample.gamma <- rArchimaxMevlog(n, ds5, dist = "gamma", dist.param = c(shape, scale))

The satdadpackage provides functions for computing ` C, ψ, and ψ−1 for ArchimaxMevlog models. Specif-
ically, ellArchimaxMevlog, copArchimaxMevlog, psiArchimaxMevlog and psiinvArchimaxMevlog can be
used.
x <- runif(5)
ellMevlog(x, ds5)

## [1] 1.501714
ellArchimaxMevlog(x, ds5)

## [1] 1.501714
copArchimaxMevlog(x, ds5, dist = "ext")

## [1] 0.03070637
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copArchimaxMevlog(x, ds5, dist = "exp", dist.param = lambda)

## [1] 0.1058089
copArchimaxMevlog(x, ds5, dist = "gamma", dist.param = c(shape, scale))

## [1] 0.109316

2.3 Measures and plots of the tail dependence

The tail dependence is completely characterized by the stdf `, or equivalently by the ds object in this package.
Summaries and graphical tools are obviously appreciated.

Well known extremal coefficients (ec), introduced by Tiago de Oliveira, J. (1962/63) and Smith (1990), are
available in satdad. However, the focus is on the tail superset importance coefficients, which were introduced
in Mercadier and Roustant (2019) and upper bounded in Mercadier and Ressel (2021). We believe that they
also offer an interesting perspective on the description of the structure of the stable tail dependence function.

The theoretical functional decomposition of the variance of the stdf ` consists in writing

D(`) =
∑

I⊆{1,...,d}

DI(`)

where DI(`) measures the variance of `I(UI) the term associated with subset I in the Hoeffding-Sobol
decomposition of ` ; note that UI represents a random vector with independent standard uniform entries.
Fixing a subset of components I, the theoretical tail superset importance coefficient (tsic) is defined as

ΥI(`) =
∑
J⊇I

DJ(`) .

An integral representation of the superset importance coefficient is provided by Formula (9) of Liu and Owen
(2006). See also Mercadier and Roustant (2019) for its use in the extreme value context. Thus, the tsic
here is the value of ΥI(`) obtained by Monte Carlo methods from the integral formula (3) in Mercadier and
Roustant (2019).
res.tsic5 <- tsic(ds5)
as.character(res.tsic5$subsets)

## [1] "1:2" "c(1, 3)" "c(1, 4)" "c(1, 5)" "2:3" "c(2, 4)" "c(2, 5)" "3:4" "c(3, 5)" "4:5"
res.tsic5$tsic

## [1] 1.251700e-32 6.891844e-04 1.403926e-32 8.344669e-33 1.806057e-04 3.358261e-04 1.994653e-03 9.559174e-04 7.981824e-33 8.215247e-33

The graphs function in satdad implements the methodology introduced in Mercadier and Roustant (2019).
The default option which = taildependograph draws the PAIRWISE tsic in a graphical representation
called the tail dependograph. The command is as follows.
oldpar <- par(mfrow=c(1,2))
graphs(ds10) # (left) the nodes are plotted on an invisible circle
graphs(ds10, random = TRUE) # (right) the position of the nodes are random
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Tail Dependograph
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par(oldpar)

oldpar <- par(mfrow=c(1,2))
graphs(ds3) # (left) the symmetric structure
graphs(ds5) # (right) the asymmetric structure contructed "manualy"

Tail Dependograph
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Tail Dependograph
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n.MC = 1000      thick.td =  5

par(oldpar)

A theoretical upper bound for tsic ΥI(`) is given by Theorem 2 in Mercadier and Ressel (2021) which states
that

ΥI(`) ≤
2(|I|!)2

(2|I|+ 2)!
for any stdf `. This allows for meaningful comparison of these indices, regardless of the cardinality of I, using
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the expression
ΥI(`)
D(`) ×

(2|I|+ 2)!
2(|I|!)2 .

The option sobol = TRUE provides the renormalization by D(`), while norm = TRUE multiplies by the inverse
of the upper bound. The Cleveland dot plot is a useful tool to globally compare these coefficients.
plotClev(ds5)

1:5
1:4c(1, 2, 3, 5)c(1, 2, 4, 5)c(1, 3, 4, 5)2:5
1:3c(1, 2, 4)c(1, 2, 5)c(1, 3, 4)c(1, 3, 5)c(1, 4, 5)2:4c(2, 3, 5)c(2, 4, 5)3:5
1:2c(1, 3)c(1, 4)c(1, 5)2:3c(2, 4)c(2, 5)3:4c(3, 5)4:5

0.0 0.5 1.0 1.5

Cleveland's Dot Plot of tsic

The variance contribution DI(`) are referred to as the tail importance coefficient (tic) in this package, and
should not be confused with the previously mentioned tsic, where “s” denotes supersets. The sobol version of
tic, defined as

SI(`) = DI(`)
D(`)

can also be computed using this package.
res.tic5 <- tic(ds5, ind = "with.singletons", sobol = TRUE)
sobol5 <- res.tic5$tic # which sum should be 1

Well known extremal coefficients (ec) can be computed and visualized as follows.
res.ec10 <- ec(ds10)
as.character(res.ec10$subsets)

## [1] "1:2" "c(1, 3)" "c(1, 4)" "c(1, 5)" "c(1, 6)" "c(1, 7)" "c(1, 8)" "c(1, 9)" "c(1, 10)" "2:3" "c(2, 4)" "c(2, 5)"
## [13] "c(2, 6)" "c(2, 7)" "c(2, 8)" "c(2, 9)" "c(2, 10)" "3:4" "c(3, 5)" "c(3, 6)" "c(3, 7)" "c(3, 8)" "c(3, 9)" "c(3, 10)"
## [25] "4:5" "c(4, 6)" "c(4, 7)" "c(4, 8)" "c(4, 9)" "c(4, 10)" "5:6" "c(5, 7)" "c(5, 8)" "c(5, 9)" "c(5, 10)" "6:7"
## [37] "c(6, 8)" "c(6, 9)" "c(6, 10)" "7:8" "c(7, 9)" "c(7, 10)" "8:9" "c(8, 10)" "9:10"
res.ec10$ec

## [1] 1.839343 1.839343 1.492328 1.592642 1.170450 1.592930 1.431792 1.566809 1.357635 1.159015 1.542637 2.000000 2.000000 2.000000 1.574752
## [16] 1.998754 1.557315 1.542637 2.000000 2.000000 2.000000 1.574752 1.998754 1.557315 2.000000 1.624597 1.877496 1.202975 1.649097 1.538586
## [31] 1.539475 1.422518 2.000000 2.000000 1.526339 1.512494 1.547953 1.492949 1.478121 1.901416 2.000000 1.528722 1.567018 1.552924 1.919933

The option which = "iecgraph" in the graphs function of the package draws TWO minus the pairwise ec
in a graphical representation.
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oldpar <- par(mfrow=c(1,2))
graphs(ds5, which = "iecgraph")
graphs(ds10, which = "iecgraph")

Inverse Extremal Coeff. Graph
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thick.ec =  5

Inverse Extremal Coeff. Graph
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34
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7

8 9

10

thick.ec =  5

par(oldpar)

3. Empirical methods

The previous tail superset importance coefficients are computed by Monte Carlo approximation using the
theoretical stable tail dependence function. When the latter is unknown, these indices are obtained from its
non parametric estimation introduced by Huang (1992) in a bivariate setting and extended in de Haan and
Resnick (1993).

Let X1, ...,Xn be the sample, where each Xs is a d-dimensional vector X(t)
s for t = 1, ..., d.

Denote by n the sample size, and fix k as the threshold parameter.

Let R(t)
s denote the rank of X(t)

s among X(t)
1 , ..., X

(t)
n , and set R(t)

s = min((n−R(t)
s + 1)/k, 1).

3.1 Basics

Proposition 1 and Theorem 2 of Mercadier and Roustant (2019) indeed provide several rank-based expressions.
Non parametric estimations of ΥI(`), D(`), DI(`), and SI(`) are as follows:

Υ̂I,k,n = 1
k2

n∑
s=1

n∑
s′=1

∏
t∈I

(min(R(t)
s , R

(t)
s′ )−R(t)

s R
(t)
s′ )
∏
t/∈I

min(R(t)
s , R

(t)
s′ )

D̂k,n = 1
k2

n∑
s=1

n∑
s′=1

∏
t∈I

min(R(t)
s , R

(t)
s′ )−

∏
t∈I

R
(t)
s R

(t)
s′

8



D̂I,k,n = 1
k2

n∑
s=1

n∑
s′=1

∏
t∈I

(min(R(t)
s , R

(t)
s′ )−R(t)

s R
(t)
s′ )
∏
t/∈I

R
(t)
s R

(t)
s′

and
ŜI,k,n = D̂I,k,n

D̂k,n

.

The functions tsic, graphs, plotClev, ec and tic have thus an empirical counterpart, namely, tsicEmp,
graphsEmp, plotClevEmp, ecEmp and ticEmp. The graphsEmp function has another version called
graphsMapEmp when coordinates of the nodes are provided.
res.ecEmp <- ecEmp(sample.ext, ind = "with.singletons", k = 100)
res.tsicEmp <- tsicEmp(sample.exp, ind = "all", k = 100)
res.ticEmp <- ticEmp(sample.gamma, ind = 4, k = 100)

The plots only are displayed.
graphsEmp(sample.ext, k = 100)

Emp. Tail Dependograph

1

2

3

4

5

k = 100      thick.td =  5

plotClevEmp(sample.exp, ind = "all", k = 100)
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1:5
1:4c(1, 2, 3, 5)c(1, 2, 4, 5)c(1, 3, 4, 5)2:5
1:3c(1, 2, 4)c(1, 2, 5)c(1, 3, 4)c(1, 3, 5)c(1, 4, 5)2:4c(2, 3, 5)c(2, 4, 5)3:5
1:2c(1, 3)c(1, 4)c(1, 5)2:3c(2, 4)c(2, 5)3:4c(3, 5)4:5

0.0 0.5 1.0 1.5

Cleveland's Dot Plot of Emp. tsic

3.2 The Danube dataset

The package graphicalExtremes implements the statistical methodology of Engelke and Hitz (2020), see
also Asadi, Davison and Engelke (2015). The danube dataset in their package describes the river discharges
for tributaries of the Danube.
library(graphicalExtremes)
g <- igraph::graph_from_edgelist(danube$flow_edges)
loc <- as.matrix(danube$info[,c('PlotCoordX', 'PlotCoordY')])
plot(g, layout = loc, vertex.color ="white", vertex.label.color = "darkgrey")

1
2

3

4 5

6

7

8

9

10
11

12

13
14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

31

The tail dependence understood through the global sensibility analysis is now provided.
dan <- danube$data_clustered
graphsEmp(dan, k=50, layout = loc)
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The representation is also given on a realistic map.
lon <- as.numeric(unlist(danube$info[,"Long"]))
lat <- as.numeric(unlist(danube$info[,"Lat"]))*2
coord.dan <- list(lat = lat, lon = lon)
graphsMapEmp(dan, region = NULL, coord = coord.dan, k = 50, eps = 0.1)

A global comparison of the pairwise empirical tail superset importance coefficients is given by the empirical
Cleveland’s dot plot of the sample.
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plotClevEmp(dan, k = 50, ind = 2, labels = FALSE)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Cleveland's Dot Plot of Emp. tsic

Observing the largest points, we focus on the largest below.
graphsEmp(dan, k=50, layout = loc, select = 50, simplify = TRUE)

graphsMapEmp(dan, region = NULL, coord = coord.dan, k = 50, select = 50, eps = 0.1)
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Graphs based on inverse extremal coefficients can also be obtained by adding the option which = "iecgraph".

3.3 Other datasets

We provide below some figures from Mercadier and Roustant (2019), first about temperatures (France
dataset) and then log returns then (Stock dataset).
## Figure 9 (a) of Mercadier and Roustant (2019).

graphsMapEmp(sample = France$ymt, k = 55,
coord = France$coord, region = 'France', thick.td = 3, select = 9)
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## Figure 9 (b) of Mercadier and Roustant (2019).
graphsMapEmp(sample = France$ymt, k = 55,

coord = France$coord, region = 'France', thick.td = 3, select = 30)

## Figure 9 (c) of Mercadier and Roustant (2019).
graphsMapEmp(sample = France$ymt, k = 55,

coord = France$coord, region = 'France', thick.td = 3)

## Figure 7(a) of Mercadier and Roustant (2019).
graphsEmp(Stock, k = 26, names = colnames(Stock), random = TRUE)
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## Figure 8(a) of Mercadier and Roustant (2019).
graphsEmp(Stock, k = 26, names = colnames(Stock), random = TRUE, select = 9)

## Figure 8(b) of Mercadier and Roustant (2019).
graphsEmp(Stock, k = 26, names = colnames(Stock), random = TRUE, select = 20)
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4. Contents of the package satdad

More details on the package are given in the help pages associated with the following list of functions.

Method Description
copArchimaxMevlog cop-ell-psi-psiinv- functions for Archimax Mevlog models.
dMevlog r-p-d-ell- functions for Mevlog models.
ec Extremal coefficients for Mevlog models.
ecEmp Empirical Extremal coefficients.
ellArchimaxMevlog cop-ell-psi-psiinv- functions for Archimax Mevlog models.
ellEmp Empirical stable tail dependence function.
ellMevlog r-p-d-ell- functions for Mevlog models.
France Dataset. Yearly Maxima of Temperature and coordinates of 21

French cities 1946-2000.
gen.ds Generate and check a Mevlog tail dependence structure.
graphs Graphs of the tail dependence structure for Mevlog models.
graphsEmp Empirical graphs of the tail dependence structure.
graphsMapEmp Empirical graphs drawn on geographical maps of the tail

dependence structure.
plotClev Cleveland’s Dot Plots of the tail dependence structure.
plotClevEmp Empirical Cleveland’s Dot Plots of the tail dependence

structure.
pMevlog r-p-d-ell- functions for Mevlog models.
psiArchimaxMevlog cop-ell-psi-psiinv- functions for Archimax Mevlog models.
psiinvArchimaxMevlog cop-ell-psi-psiinv- functions for Archimax Mevlog models.
rArchimaxMevlog r function for Archimax Mevlog models.
rMevlog r-p-d-ell- functions for Mevlog models.
Stock Dataset. Yearly maxima of Log Returns of ten stock indices

1990-2015.
tic Tail importance coefficients for Mevlog models.
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Method Description
ticEmp Empirical tail importance coefficients.
tsic Tail superset importance coefficients for Mevlog models.
tsicEmp Empirical tail superset importance coefficients.

If you have suggestions, or if you have encountered bugs, please contact me at mercadier@math.univ-lyon1.fr.
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