Catalin Badea 
  
Sophie Grivaux 
  
AROUND FURSTENBERG'S TIMES p, TIMES q CONJECTURE: TIMES p-INVARIANT MEASURES WITH SOME LARGE FOURIER COEFFICIENTS by

Keywords: 2000 Mathematics Subject Classication. 43A25, 37A05, 54E52, 37A25 ˆp-invariant measures, Furstenberg Conjecture, Fourier coecients of continuous measures, Baire Category methods

For each integer n ě 1, denote by Tn the map x Þ Ñ nx mod 1 from the circle group T " R{Z into itself. Let p, q ě 2 be two multiplicatively independent integers. Using Baire Category arguments, we show that generically a Tp-invariant probability measure µ on T with no atom has some large Fourier coecients along the sequence pq n qně0. In particular, pTqn µqně0 does not converges weak-star to the normalised Lebesgue measure on T. This disproves a conjecture of Furstenberg and complements previous results of Johnson and Rudolph. In the spirit of previous work by Meiri and Lindenstrauss-Meiri-Peres, we study generalisations of our main result to certain classes of sequences pcnqně0 other than the sequences pq n qně0, and also investigate the multidimensional setting.

1. Introduction and main results 1.a. Synopsis. In the late 1960s, Furstenberg proved signicant results and proposed fascinating conjectures that aimed to express in various ways the heuristic principle that expansions in multiplicatively independent bases have no shared structure. For further details about this idea, readers can refer to the recent survey [START_REF] Shmerkin | Slices and distances: on two problems of Furstenberg and Falconer[END_REF] which also outlines some progress in Furstenberg's programme. Here, we shall list one result and three conjectures due to Furstenberg; some known partial results related to these conjectures will be mentioned in the following subsection. In all these statements, p, q ě 2 are two xed multiplicatively independent integers. Recall that p, q ě 2 are called multiplicatively independent if log p{ log q R Q. For each integer n ě 1, denote by T n the map x Þ Ñ nx mod 1 from the circle group T " R{Z, identied with r0, 1q, into itself. A subset F of T is said to be T n -invariant if T n pF q Ă F . Notice that T n shifts the n-ary expansion of a real number and that each map T n has many closed, innite invariant subsets.

The following topological rigidity result has been proved in [START_REF] Furstenberg | Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation[END_REF].

Theorem 1.1 (Furstenberg). The only innite closed subset F of T which is simultaneously T p -and T q -invariant is F " T.

1.b. Background. Without claiming completeness, we mention some previous contributions related to Theorem 1.1 and Conjectures 1.2, 1.3 and 1.4.

Many aspects of the dynamics of subsemigroups of pT n q ně1 were discussed in the seminal paper [START_REF] Furstenberg | Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation[END_REF] by Furstenberg. The proof of Theorem 1.1 in [START_REF] Furstenberg | Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation[END_REF] used the disjointness of specic dynamical systems, a notion introduced in [START_REF] Furstenberg | Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation[END_REF]. An elementary proof of Theorem 1.1 has been given by Boshernitzan [START_REF] Boshernitzan | Elementary proof of Furstenberg's Diophantine result[END_REF] and an eective version has been proved in [START_REF] Bourgain | Some eective results for ˆa ˆb, Ergodic Theory Dynam[END_REF] by Bourgain, Lindenstrauss, Michel and Venkatesh. Starting with Berend [START_REF] Berend | Multi-invariant sets on tori[END_REF], several authors studied multidimensional generalisations of Theorem 1.1.

Conjecture 1.2 is largely open. It is known that if F is a T p -invariant subset of T, then there exists a subsequence pq n k q such that T n k q pF q converges to T in the Hausdor metric; see for instance [START_REF] Kra | A generalization of Furstenberg's Diophantine theorem[END_REF]Lemma 2.1]. Another result related to Conjecture 1.2 can be found in [START_REF] Meiri | Bi-invariant sets and measures have integer Hausdor dimension[END_REF]Th. 1.1]. Starting with the papers [START_REF] Alon | Uniform dilations[END_REF][START_REF] Berend | Asymptotically dense dilations of sets on the circle[END_REF] by Berend-Peres and Alon-Peres, several authors studied the so-called Glasner sets. A set S of integers is said to be a Glasner set if for every innite closed subset F of T, there exists a sequence pc n q of elements in S such that T cn pF q converges to T in the Hausdor metric. With this terminology, a result from [START_REF] Glasner | Almost periodic sets and measures on the torus[END_REF] can be formulated as the fact that the set of integers is a Glasner set.

Other quite small sets of integers are Glasner, like sets of positive (Banach) density or the sets of values assumed by any non-constant polynomial mapping the natural numbers to themselves. Note however that a nite union of lacunary sequences is not a Glasner set ([6, Th. 1.4]). Glasner sets have been also studied in the multidimensional setting.

The rst result about the ˆp, ˆq conjecture has been proved by Lyons in [START_REF] Lyons | On measures simultaneously 2-and 3-invariant[END_REF], the rst place where Conjecture 1.3 appeared in print: if p and q are relatively prime, any probability measure on T which is T p -and T q -invariant and T p -exact (i.e. has completely positive entropy with respect to T p ), must be the Lebesgue measure. Rudolph substantially strengthened this theorem in [START_REF] Rudolph | ˆ2 and ˆ3 invariant measures and entropy[END_REF], showing that the conclusion is true with only the weaker assumption that the measure is ergodic under the joint action of T p and T q , and of positive entropy under the action of T p . Johnson [START_REF] Johnson | Measures on the circle invariant under multiplication by a nonlacunary subsemigroup of the integers[END_REF] then generalised this to the case where p and q are multiplicatively independent. A dierent argument, along the lines of Lyons [START_REF] Lyons | On measures simultaneously 2-and 3-invariant[END_REF], was given by Feldman [START_REF] Feldman | A generalization of a result of R. Lyons about measures on r0, 1q[END_REF]. Other dierent proofs were given by Host [START_REF] Host | Nombres normaux, entropie, translations[END_REF] and Parry [START_REF] Parry | Squaring and cubing the circleRudolph's theorem[END_REF]. In all these proofs the positive entropy remains a crucial assumption. The Rudolph-Johnson theorem has been used by Einsiedler and Fish [START_REF] Einsiedler | Rigidity of measures invariant under the action of a multiplicative semigroup of polynomial growth on T, Ergodic Theory Dynam[END_REF] to prove that a continuous Borel probability measure on T invariant under the action of a multiplicative semigroup with positive lower logarithmic density is the normalised Lebesgue measure. An important advance was made by Katok and Spatzier [START_REF] Katok | Invariant measures for higher-rank hyperbolic abelian actions[END_REF], who discovered that Rudolph's proof can be extended to give partial information on invariant measures in much greater generality.

We also mention the works [1921,[START_REF] Lindenstrauss | p-adic foliation and equidistribution[END_REF], as well as the surveys [START_REF] Einsiedler | Diagonal actions on locally homogeneous spaces[END_REF][START_REF] Lindenstrauss | Rigidity of multiparameter actions[END_REF][START_REF] Lindenstrauss | Recent progress on rigidity properties of higher rank diagonalizable actions and applications[END_REF], for an account of recent progress on measure rigidity for higher rank diagonal actions on homogeneous spaces.

Some partial results about Conjecture 1.4 (conjecture (C3) in [START_REF] Lyons | On measures simultaneously 2-and 3-invariant[END_REF]), which will be disproved in this manuscript, are also known. The study of convergence of the sequence pT q n µq ně0 to the Lebesgue measure for certain classes of T p -invariant measures µ lies at the core of the works of Lyons [START_REF] Lyons | Mixing and asymptotic distribution modulo 1, Ergodic Theory Dynam[END_REF][START_REF] Lyons | On measures simultaneously 2-and 3-invariant[END_REF], Feldman and Smorodinsky [START_REF] Feldman | Normal numbers from independent processes, Ergodic Theory Dynam[END_REF], Johnson and Rudolph [START_REF] Johnson | Convergence under ˆq of ˆp invariant measures on the circle[END_REF], and Host [START_REF] Host | Nombres normaux, entropie, translations[END_REF]. Given p, q ě 2 two multiplicatively independent integers, it is shown in [START_REF] Lyons | Mixing and asymptotic distribution modulo 1, Ergodic Theory Dynam[END_REF] (see also [START_REF] Lyons | On measures simultaneously 2-and 3-invariant[END_REF]) that if µ is a non-degenerate p-Bernoulli measure, then T q n µ w Ý Ý Ñ Leb. The main result of [START_REF] Feldman | Normal numbers from independent processes, Ergodic Theory Dynam[END_REF] states that under the same assumption, µ-almost every x P r0, 1s is normal to the base q. It is proved by Host in [START_REF] Host | Nombres normaux, entropie, translations[END_REF] that whenever p and q are relatively prime, any measure µ P P p pTq which is ergodic and has positive entropy with respect to
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T p is such that µ-almost every x P r0, 1s is normal to the base q. The generalisation to the case where p and q are multiplicatively independent was obtained by Hochman and Shmerkin [START_REF] Hochman | Equidistribution from fractal measures[END_REF]. The Host-Hochman-Shmerkin result implies easily a result by Johnson and Rudolph [START_REF] Johnson | Convergence under ˆq of ˆp invariant measures on the circle[END_REF] that for every such ergodic with positive entropy measure µ P P p pTq,

1 N N ´1 ÿ n"0 T q n µ w Ý Ý Ñ Leb.
Johnson and Rudolph observe the following consequence: if µ P P p pTq is ergodic and of positive entropy with respect to T p , then T q n µ w Ý Ý Ñ Leb on a sequence of Banach density one (called a sequence of uniform full density in [START_REF] Johnson | Convergence under ˆq of ˆp invariant measures on the circle[END_REF]). As a consequence, they obtain that the set G 1 p,q :" tµ P P p,c pTq ; T q n µ w Ý Ý Ñ Leb along a sequence of upper density 1u is residual in pP p pTq, w ˚q. So, generically in the Baire Category sense, convergence of T q n µ to the Lebesgue measure holds along a large sequence of integers. But the Baire Category arguments leave room for possible bad sequences where convergence to the Lebesgue measure, as predicted by Conjecture 1.4, cannot be guaranteed. Quoting from [START_REF] Johnson | Convergence under ˆq of ˆp invariant measures on the circle[END_REF]: As we have no examples showing such bad sequences can actually exist, perhaps it is possible by some more explicit investigation to eliminate these bad sequences along which convergence to the Lebesgue measure fails. Our rst main result, which is Theorem 1.5

below, shows that generically such bad sequences do exist, and cannot be eliminated.

1.c. Notation. Denote by PpTq the space of Borel probability measures on T, and, for any p ě 2, by P p pTq the space of T p -invariant measures µ P PpTq. We endow PpTq with the topology of w ˚-convergence of measures, which turns it into a compact metrizable space.

Recall that given measures µ k , k ě 1, and µ belonging to PpTq, we say that µ k w

Ý Ý Ñ µ if ż T f dµ k ÝÑ ż T f dµ
as k ÝÑ `8 for every f P CpTq, where CpTq is the space of continuous functions on T, endowed with the sup norm || . || 8,T on T. This is equivalent to requiring that μk paq ÝÑ μpaq for every a P Z, where the a-th Fourier coecient of a measure ν P PpTq is dened in this manuscript as νpaq " ż T z a dνpzq.

We denote by P c pTq the set of continuous (i.e. non-atomic) measures on T, and by P p,c pTq the set of continuous T p -invariant measures on T. Since P p pTq is w ˚-closed in PpTq, pP p pTq, w ˚q is also a compact metrizable space. In particular, pP p pTq, w ˚q is a Polish space, in which the Baire Category Theorem applies. Recall that a subset of a Polish space is called residual if it contains a dense G δ set (i.e. a countable intersection of dense open sets).

For our study of the multidimensional setting the following notation is required. For each d ě 2, we denote by PpT d q the set of Borel probability measures on T d , and by P c pT d q the set of continuous measures µ P PpT d q. Given a matrix A P M d pZq with detpAq ‰ 0, we denote by T A the associated transformation x x x Þ Ñ Ax x x mod 1 of T d into itself. This transformation preserves the normalised Lebesgue measure on T d , which we write as Leb d . Notice that T A is an ergodic transformation of pT d , Leb d q if and only if no eigenvalue of A is a root of unity. The set of T A -invariant measures on T d is denoted by P A pTq, and P A,c pTq is the set of continuous T A -invariant measures on T d .

1.d. Main results.

Here is our rst main result, showing that generically a continuous T p -invariant probability measure µ on T has some large Fourier coecients along the sequence pq n q ně0 . Theorem 1.5 (large Fourier coecients). Let p, q ě 2 be two distinct integers.

Then the set S p,q :" µ P P p,c pTq ; lim sup nÑ`8 |p µpq n q| ą 0 ( is residual in pP p pTq, w ˚q. In particular, the set G p,q :" tµ P P p,c pTq ; T q n µ w ˚/ / { Leb as n Ñ `8u is residual in pP p pTq, w ˚q, thus disproving Conjecture 1.4.

We should note that the proof of Theorem 1.5 does not require that p and q be multiplicatively independent; if p and q are powers of the same integer, then a simple and direct proof of Theorem 1.5 can be given.

By combining Theorem 1.5 with the results presented in [START_REF] Johnson | Convergence under ˆq of ˆp invariant measures on the circle[END_REF], we can derive the following corollary.

Corollary 1.6. Let p, q ě 2 be two multiplicatively independent integers. Then the set of all measures µ P P p,c pTq such that

T q n µ w ˚/ / { Leb as n Ñ `8
and T q n µ w Ý Ý Ñ Leb along a sequence of upper density 1 is residual in pP p pTq, w ˚q.

Meiri [START_REF] Meiri | Entropy and uniform distribution of orbits in T d[END_REF] and Lindenstrauss, Meiri and Peres [START_REF] Lindenstrauss | Entropy of convolutions on the circle[END_REF] generalised the results from [START_REF] Host | Nombres normaux, entropie, translations[END_REF] and [START_REF] Johnson | Convergence under ˆq of ˆp invariant measures on the circle[END_REF] to certain classes of sequences pc n q ně0 other than the sequences pq n q ně0 . More precisely ( [START_REF] Meiri | Entropy and uniform distribution of orbits in T d[END_REF]), if the sequence of remainders pc n mod p N q 0ďnăp N , N ě 1, satises certain combinatorial properties, then every T p -invariant ergodic measure µ of positive entropy is such that pc n xq ně0 is uniformly distributed mod 1 for µ-almost every x P r0, 1s. A weaker combinatorial condition on the sequence pc n q ně0 is introduced in [START_REF] Lindenstrauss | Entropy of convolutions on the circle[END_REF]: if the so-called padic collision exponent Γ p ppc n qq is less that 2, then every measure µ P P p pTq which is ergodic and of positive entropy is pc n q-generic in the sense that

1 N N ´1 ÿ n"0 T cn µ w Ý Ý Ñ Leb.
It follows that the set of measures µ P P p,c pTq such that T cn µ w Ý Ý Ñ Leb along a sequence of upper density 1 is residual in pP p pTq, w ˚q. Conjecture 1.4 thus ts in a much broader framework: given a strictly increasing sequence of integers pc n q ně0 of integers, is it true that the set G p,pcnq :" µ P P p,c pTq ; T cn µ
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is residual in pP p pTq, w ˚q? We prove in Theorem 2.1 below a very general criterion on the sequence pc n q ně0 implying an armative answer to this question. It allows to deal with most of the classes of sequences considered in [START_REF] Meiri | Entropy and uniform distribution of orbits in T d[END_REF] and [START_REF] Lindenstrauss | Entropy of convolutions on the circle[END_REF], and we obtain for instance the following theorem, which complements [START_REF] Lindenstrauss | Entropy of convolutions on the circle[END_REF]Th. 1.4] and [36, Th. B]:

Theorem 1.7 (linear recurrent sequences as pc n q). Let pc n q ně0 be a sequence of integers satisfying a linear recursion of the form Notice that when L " 1 and a 1 " q, Theorem 1.7 reduces to the case studied in Theorem 1.5, but with the additional requirement that p and q are relatively prime.

c n " a 1 c n´1 `a2 c n´2 `¨¨¨`a L c
We also mention the following related result. In [START_REF] Badea | Kazhdan constants, continuous probability measures with large Fourier coecients and rigidity sequences[END_REF], a continuous probability measure µ on T was constructed with the property that for any increasing sequence pc n q in the multiplicative semigroup tp m q n : m, n ě 0u, one has T cn µ w ˚/ / { Leb. This disproved Conjectures (C4) and (C5) from [START_REF] Lyons | On measures simultaneously 2-and 3-invariant[END_REF]. However, it appears that the construction from [START_REF] Badea | Kazhdan constants, continuous probability measures with large Fourier coecients and rigidity sequences[END_REF] cannot be modied to produce a measure that is T p -invariant.

We now move over to the multidimensional setting. The equidistribution result [START_REF] Host | Nombres normaux, entropie, translations[END_REF] of Host was generalised to the multidimensional setting by Meiri-Peres [START_REF] Meiri | Bi-invariant sets and measures have integer Hausdor dimension[END_REF], Host [START_REF] Host | Some results of uniform distribution in the multidimensional torus[END_REF] himself and Algom [START_REF] Algom | A simultaneous version of Host's equidistribution theorem[END_REF]. The general framework of these works is the following: given two endomorphisms A and B of T d and a measure µ P P A pT d q, study the equidistribution properties of the sequence pB n x x xq ně0 for µ-almost every x x x P T d . This problem is studied in [START_REF] Host | Some results of uniform distribution in the multidimensional torus[END_REF] when µ is A-ergodic and has positive entropy, under the condition that detpAq and detpBq are relatively prime (which is exactly condition (b) of Theorem 1.8 below), plus some other assumptions on matrices A and B. It is proved in [START_REF] Host | Some results of uniform distribution in the multidimensional torus[END_REF] that for every ergodic measure µ P P A pT d q of positive entropy, the sequence pB n x x xq ně0 is uniformly distributed in T d for µ-almost every x x x P T d . The paper [START_REF] Meiri | Bi-invariant sets and measures have integer Hausdor dimension[END_REF] considers the case where A and B are both diagonal matrices, A " diagpa 1 , . . . , a d q, B " diagpb 1 , . . . , b d q, with |a i | ą 1, |b i | ą 1, and gcdpa i , b i q " 1 for every i P t1 . . . du. 1.e. Overview. The paper is organised as follows. We present in Section 2 a general criterion on a sequence pc n q ně0 of integers implying that the set G p,pcnq is residual in pP p pTq, w ˚q. This criterion is the object of Theorem 2.1. Its proof relies on a density result for certain classes of discrete measures in pP p pTq, w ˚q (Theorem 2.3), which is of interest in itself and involves the so-called periodic specication property of the transformation T p .

We present in Section 3 various examples of sequences considered in [START_REF] Meiri | Entropy and uniform distribution of orbits in T d[END_REF] and [START_REF] Lindenstrauss | Entropy of convolutions on the circle[END_REF] which satisfy the assumptions of Theorem 2.1, and derive Theorems 1.5 and 1.7 from Theorem 2.1. The multidimensional case is treated in Section 4. Since assumption (a) of Theorem 1.8 does not necessarily imply that T A : T d ÝÑ T d has the periodic specication property, we need a dierent argument (Theorem 4.1) in order to show the density in pP A pT d q, w ˚q of the relevant classes of T A -invariant measures. We discuss in Section 5 a dierent approach to the Johnson-Rudolph result of [START_REF] Johnson | Convergence under ˆq of ˆp invariant measures on the circle[END_REF] that the set G 1 p,q :" tµ P P p,c pTq ;

T q n µ w Ý Ý Ñ Leb along a sequence of upper density 1u
is residual in pP p pTq, w ˚q for multiplicatively independent integers p and q, and present some related results and open questions.

Classes of ˆp-invariant measures with some large Fourier coecients

In the whole section, p ě 2 will be a xed integer. Let pc n q ně0 be a strictly increasing sequence of integers. We say that pc n q ně0 satises assumption (H) if the following is true:

(H)
There exist nitely many nonnegative integers t 1 , . . . , t r , h 1 , . . . , h d with h l ‰ 0 for every l P t1, . . . , du, and an innite subset I of N such that for every N P I, there exist i P t1, . . . , ru and l P t1, . . . , du with the property that h l c n " t i mod pp N ´1q for innitely many integers n.

Our aim in this section is to prove the following theorem:

Theorem 2.1. Let pc n q ně0 be a strictly increasing sequence of integers satisfying assumption (H). Then the set G p,pcnq " µ P P p,c pTq ;

T cn µ w ˚/ / { Leb as n ÝÑ `8(
is residual in pP p pTq, w ˚q.

Condition (H) may look somewhat technical, but it is actually a rather weak one. We shall exhibit in Section 3 many examples of sequences pc n q ně0 satisfying (H). In particular, the sequence pc n q " pq n q satises it for any q ě 2. This disproves Conjecture 1.4. Assumption (H) is of the same nature as the congruence assumptions mod p N which appear in the works of Host [START_REF] Host | Nombres normaux, entropie, translations[END_REF] and Meiri [START_REF] Meiri | Entropy and uniform distribution of orbits in T d[END_REF], and which are formalised in terms of p-adic collision exponent in [START_REF] Lindenstrauss | Entropy of convolutions on the circle[END_REF]. These two assumptions are nonetheless dierent, be it only because (H) involves congruences mod pp N ´1q, while the p-adic collision exponent is dened in terms of congruence mod p N .

Our main tool for the proof of Theorem 2.1 is a density result for certain families of discrete T p -invariant measures on T.

C. BADEA & S. GRIVAUX 2.a. Density of discrete ˆp-invariant measures. The periodic points of the transformation T p are exactly the points λ P T such that λ p N " λ for some N ě 1. In this case, the probability measure µ λ on T, dened as

µ λ " 1 N N ´1 ÿ j"0 δ tλ p j u ,
is a discrete T p -invariant measure on T whose support is the orbit of the point λ under the action of T p . It is ergodic for T p , and the set of all such measures (where λ varies over the set of all pp N ´1q-th roots of 1, N ě 1) is dense in pP p pTq, w ˚q [START_REF] Sigmund | Generic properties of invariant measures for Axiom A dieomorphisms[END_REF][START_REF] Sigmund | On dynamical systems with the specication property[END_REF]. This density property is deeply linked to the fact that the dynamical system pT, T p q has the so-called specication property introduced by Bowen in [START_REF] Bowen | Periodic points and measures for Axiom A dieomorphisms[END_REF] (see also [START_REF] Sigmund | Generic properties of invariant measures for Axiom A dieomorphisms[END_REF][START_REF] Sigmund | On dynamical systems with the specication property[END_REF]). Since it will be needed in the sequel, we recall here the denition from [START_REF] Sigmund | Generic properties of invariant measures for Axiom A dieomorphisms[END_REF]. The setting is that of compact dynamical systems pX, T q, where pX, dq is a compact metric space and T is a continuous self-map of X. This property is often referred to as the periodic specication property, and it is the terminology we shall use here. The article [START_REF] Kwietniak | A panorama of specication-like properties and their consequences, Dynamics and numbers[END_REF] contains an overview of the specication property and its many variants.

Denition 2.2. The system pX, T q is said to have the periodic specication property if for every ε ą 0 there exists N ε P N such that for every integers 0 ď a 1 ď b 1 and 0 ď a 2 ď b 2 with a 2 ´b1 ą N ε , for every vectors x 1 , x 2 P X, and for every integer d ą b 2 ´a1 `Nε , there exists a periodic point x for T with period d such that (i) dpT j x, T j x 1 q ă ε for every j " a 1 , . . . , b 1 ;

(ii) dpT j x, T j x 2 q ă ε for every j " a 2 , . . . , b 2 .

If x is periodic for T with period d, the measure

µ x " 1 d d´1 ÿ j"0 δ tT j xu
is called a CO-measure. Here CO stands for Closed-Orbit; see for instance Sigmund [START_REF] Sigmund | On dynamical systems with the specication property[END_REF].

If pX, T q has the specication property, the set of CO-measures is dense in the set of T -invariant Borel probability measures on X (see [START_REF] Sigmund | On dynamical systems with the specication property[END_REF]Th. 1]).

Let pN k q kě1 be a strictly increasing sequence of integers. We denote by C p,pN k q the set of all pp N k ´1q-th roots of 1:

C p,pN k q " λ P T ; λ p N k ´1 " 1 for some k ě 1 ( .
Let D p,pN k q be the family of CO-measures associated to elements λ of C p,pN k q : D p,pN k q " µ λ ; λ P C p,pN k q ( .

We are now going to prove the following density result, which will be crucial for the proof of Theorem 1.5:

Theorem 2.3. The set D p,pN k q is dense in pP p pTq, w ˚q.

Proof. Our aim is to show that given µ P P p pTq, f 1 , . . . , f l belonging to CpTq, and ε ą 0, there exists λ P C p,pN k q such that ˇˇż T f i dµ λ ´żT f i dµ ˇˇă ε for every i P t1, . . . , lu.

Since CO-measures are w ˚-dense in P p pTq, we can suppose without loss of generality that µ is a CO-measure, which we write as

µ z " 1 N N ´1 ÿ j"0
δ tz p j u for some z P T and N ě 1 such that z p N ´1 " 1.

Because Lipschitz functions, with respect to the distance induced by C on T, are dense in CpTq by the Stone-Weierstrass theorem, we can also suppose without loss of generality that the functions f 1 , . . . , f l are Lipschitz. Let C ą 0 be such that for every i P t1, . . . , lu and every z 1 , z 2 P T, |f i pz 1 q ´fi pz 2 q| ď C |z 1 ´z2 |. We are looking for λ P T and k ě 1

with λ p N k ´1 " 1 such that ˇˇ1 N N ´1 ÿ j"0 f i pz p j q ´1 N k N k ´1 ÿ j"0
f i pλ p j q ˇˇă ε for every i P t1, . . . , lu.

Fix ε 1 ą 0. Let N ε 1 be given by the specication property. Let k ě 1 be such that andd " N k , we obtain the existence of λ P T with λ p N k " λ such that, for every j " 0, . . . , N k ´2N ε 1 ´2, ˇˇz p j ´λp j ˇˇă ε 1 , and hence ˇˇf i pz p j q ´fi pλ p j q ˇˇď Cε 1 .

N k ą 2N 1 ε `2. Applying Denition 2.2 to x 1 " x 2 " z, a 1 " 0, b 1 " N k ´2N ε 1 ´2, a 2 " b 2 " b 1 `Nε 1 `1,
Then, for every i P t1, . . . , lu,

ˇˇ1 N k ´2N ε 1 ´1 N k ´2N ε 1 ´2 ÿ j"0 f i pz p j q ´1 N k ´2N ε 1 ´1 N k ´2N ε 1 ´2 ÿ j"0 f i pλ p j q ˇˇď Cε 1 . Now ˇˇ1 N k ´2N ε 1 ´1 N k ´2N ε 1 ´2 ÿ j"0 f i pz p j q ´1 N k N k ´1 ÿ j"0 f i pz p j q ˇˇď 1 N k N k ´1 ÿ j"N k ´2N ε 1 ´1 |f i pz p j q| `ˇˇ1 N k ´2N ε 1 ´1 ´1 N k ˇˇN k ´2N ε 1 ´2 ÿ j"0 |f i pz p j q| ď 2N ε 1 `1 N k ˇˇˇˇf i ˇˇˇˇ8 ,T `´1 ´Nk ´2N ε 1 ´1 N k ¯ˇˇf i ˇˇˇˇ8 ,T ď 4N ε 1 `2 N k ˇˇˇˇf i ˇˇˇˇ8 ,T ď 6 N ε 1 N k ˇˇˇˇf i ˇˇˇˇ8 ,T and 
ˇˇ1 N k ´2N ε 1 ´1 N k ´2N ε 1 ´2 ÿ j"0 f i pλ p j q ´1 N k N k ´1 ÿ j"0 f i pλ p j q ˇˇď 6 N ε 1 N k ˇˇˇˇf i ˇˇˇˇ8 ,T . Therefore ˇˇ1 N k N k ´1 ÿ j"0 f i pz p j q ´1 N k N k ´1 ÿ j"0 f i pλ p j q ˇˇď Cε 1 `12 N ε 1 N k ˇˇˇˇf i ˇˇˇˇ8 ,T .
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Let now r k be the unique integer with r k N ď N k ă pr k `1qN . Then, proceeding in the same way as above, we obtain that

ˇˇ1 N k N k ´1 ÿ j"0 f i pz p j q ´1 r k .N r k .N ´1 ÿ j"0 f i pz p j q ˇˇď 1 N k N k ´1 ÿ j"r k N |f i pz p j q| `ˇˇ1 N k ´1 r k .N ˇˇr k N ´1 ÿ j"0 |f i pz p j q| ď 2 N N k ˇˇˇˇf i ˇˇˇˇ8 ,T . Since N is xed and N k / / `8 , we can choose N k ą 2N ε 1 `2 suciently large so that maxp12 N ε 1 N k , 2 N N k q ˇˇˇˇf i ˇˇˇˇ8 ,T ă ε 1 for every i P t1 . . . lu. As 1 r k .N r k N ´1 ÿ j"0 f i pz p j q " 1 N N ´1 ÿ j"0 f i pz p j q,
we get that

ˇˇ1 N N ´1 ÿ j"0 f i pz p j q ´1 N k N k ´1 ÿ j"0 f i pλ p j q ˇˇď pC `2qε 1 .
Taking ε 1 so small that pC `2qε 1 ă ε yields the result we are looking for.

Remark 2.4. The argument presented above actually holds in a much more general setting, and shows the following result. Let pX, T q be a dynamical system with the periodic specication property. Given a strictly increasing sequence pN k q kě1 of integers, let C T,pN k q " x P X ; T N k x " x for some k ě 1 ( denote the set of periodic points for T having a period within the set tN k ; k ě 1u. Let D T,pN k q " µ x ; x P C T,pN k q ( . Then D T,pN k q is dense in the set P T pXq of T -invariant Borel probability measures on X, endowed with the w ˚-topology.

2.b. Proof of Theorem 2.1. Let pc n q ně0 be a sequence of integers satisfying assumption (H), and let t 1 , . . . , t r , h 1 , . . . , h d and I Ď N be given by (H). For any 0 ă γ ă 1, consider the set G γ p,pcnq " µ PP p pTq ; @ j P t1, . . . , ru p µpt j q ‰ 0 and @ n 0 , D n ě n 0 , D l P t1, . . . , du ; |p µph l c n q| ą γ min 1ďjďr |p µpt j q| ( .

The interest of introducing this somewhat strange-looking set is the following fact. Hence z T cn µph l q / / { 0 as n ÝÑ `8, and as h l ‰ 0 this implies that T cn µ

w ˚/ / { Leb.
We rst prove:

Lemma 2.6. For every 0 ă γ ă 1, the set G γ p,pcnq is a dense G δ subset of pP p pTq, w ˚q. Proof. The set G γ p,pcnq is clearly G δ in pP p pTq, w ˚q, so we only need to show that it is dense. Order the innite set I Ď N as a strictly increasing sequence pN k q kě1 . We have the following: Fact 2.7. Let µ belong to D p,pN k q . There exist i P t1, . . . , ru and l P t1, . . . , du such that p µph l c n q " p µpt i q for innitely many integers n.

Proof of Fact 2.7. There exists λ P C p,pN k q , with λ p N k ´1 " 1 for some k ě 1, such that

µ " µ λ " 1 N k N k ´1 ÿ j"0 δ tλ p j u .
For every a P Z, we have

p µpaq " 1 N k N k ´1 ÿ j"0 λ a.p j .
Since N k P I, there exist i P t1, . . . , ru and l P t1, . . . , du such that h l c n " t i mod pp N k ´1q for innitely many n's. Hence h l c n p j " t i p j mod pp N k ´1q for every 0 ď j ă N k .

As λ p N k ´1 " 1, it follows that λ h l cnp j " λ t i p j . This yields that p µph l c n q " p µpt i q.

Let now V be a non-empty open subset of pP p pTq, w ˚q. By Theorem 2.3, there exists µ P D p,pN k q X V. Let i P t1, . . . , ru and l P t1, . . . , du be such that p µph l c n q " p µpt i q for every n belonging to a certain innite subset D of N. Then lim sup nÑ`8 |p µph l c n q| ě |p µpt i q| ě min 1ďjďr |p µpt j q|, and if p µpt j q ‰ 0 for every j P t1, . . . , ru, then µ belongs to G γ p,pcnq . Hence G γ p,pcnq X V ‰ H in this case.

Suppose now that min 1ďjďr |p µpt j q| " 0, and write t1, . . . , ru " I Y J, where I " j P t1, . . . , ru ; p µpt j q " 0 ( and J " j P t1, . . . , ru ; p µpt j q ‰ 0 ( .

For any 0 ă ρ ă 1, consider the measure µ ρ " ρδ 1 `p1 ´ρqµ: it is T p -invariant and belongs to V if ρ is suciently small. For every j P t1, . . . , ru, p µ ρ pt j q " ρ `p1 ´ρqp µpt j q, so that p µ ρ pt j q " ρ ą 0 for every j P I. If ρ is suciently small, |p µ ρ pt j q| ą 0 for every j P J and thus min 1ďjďr |p µ ρ pt j q| ą 0. Since p µ ρ ph l c n q " ρ `p1 ´ρqp µpt i q " p µ ρ pt i q for every n P D, it follows that p µ ρ belongs to G γ p,pcnq X V in this case as well. Lemma 2.6 is proved.

The last step in our proof of Theorem 2.1 is the following classical fact:

Fact 2.8. The set P p,c pTq is a dense G δ subset of pP p pTq, w ˚q.
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Proof. It is a known result that if X is a Polish space, the set P c pXq of continuous probability measures on X is a G δ subset of the set PpXq of all Borel probability measures on X, endowed with the w ˚-topology (see for instance [START_REF] Denker | Ergodic theory on compact spaces[END_REF]Proposition 2.16] or [START_REF] Grivaux | Invariant measures for frequently hypercyclic operators[END_REF]Fact 3.2]). So P p,c pTq is G δ in pP p pTq, w ˚q. The density of P p,c pTq in P p pTq is proved in [START_REF] Sigmund | Generic properties of invariant measures for Axiom A dieomorphisms[END_REF], using the density of CO-measures in P p pTq. It can also be retrieved by using the following elementary observation: there exists a sequence pµ k q kě1 of elements of P p,c pTq such that

µ k w Ý Ý Ñ δ 1 .
The measures µ k can be constructed as Cantor-type measures, also called p-Bernoulli in [START_REF] Lyons | Mixing and asymptotic distribution modulo 1, Ergodic Theory Dynam[END_REF], [START_REF] Lyons | On measures simultaneously 2-and 3-invariant[END_REF], or [START_REF] Feldman | Normal numbers from independent processes, Ergodic Theory Dynam[END_REF]: given a p-tuple Θ " pθ 0 , θ 1 , . . . , θ p´1 q of elements of p0, 1q with ř p´1 j"0 θ i " 1, let m Θ be the product measure

m Θ " â ně1 ´p´1 ÿ j"0 θ j δ tju ¯on t0, 1, . . . , p ´1u N ,
and let µ Θ P PpTq be the image measure of m Θ by the map Φ : t0, 1, . . . , p ´1u N / / T dened by

Φ `pω n q ně1 ˘" exp ´2iπ ÿ ně1 ω n p ´n¯.
Each measure µ Θ is easily seen to belong to P p,c pTq, and µ Θ w Ý Ý Ñ δ 1 as Θ / / p1, 0, . . . , 0q.

Once we have obtained a sequence pµ k q kě1 of elements of P p,c pTq such that µ k w Ý Ý Ñ δ 1 , the density of P p,c pTqin P p pTq immediately follows, since for each measure µ P P p pTq, pµ k ˚µq kě1 is a sequence of T p -invariant continuous measures which converges w ˚to µ. 

Proofs of Theorems 1.5 and 1.7, and further examples

In this section, we apply Theorem 2.1 to various classes of sequences pc n q ně0 , and show that generically in the Baire Category sense, a measure µ P P p pTq has innitely many large Fourier coecients along the sequence pc n q ně0 , or along some dilated sequence pa.c n q ně0 for some a P Zzt0u. We begin by proving Theorem 1.5.

3.a. Disproving Conjecture (C3): proof of Theorem 1.5. Let p ě 2. Given another integer q ě 2 (not necessarily multiplicatively independent from p), we consider the sequence c n " q n , n ě 0. In order to show that the sets S p,q :" µ P P p,c pTq ; lim sup nÑ`8 |p µpq n q| ą 0 ( and G p,q " tµ P P p,c pTq ; T q n µ w ˚/ / { Lebu are dense in pP p,c pTq, w ˚q it suces to show that this sequence pc n q ně0 satises assumption (H), and then to apply Theorem 2.1. That assumption (H) is satised is a consequence of the following lemma, which relies on considerations from elementary number theory: Lemma 3.1. Let p, q ě 2. There exists an integer N 0 ě 1 such that for every a ě 1 suciently large, the following assertion holds: for every N P I :" N 0 .N `1, there exists an integer r N ě 1 such that q a`k.r N " q a mod pp N ´1q for every k ě 0. Proof. Write q as q " q b 1 1 . . . q bs s , where q 1 , . . . , q s are primes and b 1 , . . . , b s are positive integers. Let a 0 ě 1 be such that 1 ă p ă q a 0 b i i for every i P t1, . . . , su. A rst step in the proof of Lemma 3.1 is to show the following Fact 3.2. Let u ě 1 be a positive integer. Let γ ě 1 be such that for every i P t1, . . . , su and every v P t1, . . . , uu, q γ i does not divide p v ´1. There exist integers N 1 ą u, . . . , N s ą u such that for every i P t1, . . . , su and every N P Nz Ť s j"1 N j .N, p N ı 1 mod q γ i .

Proof. Let i P t1, . . . , su. If p N ı 1 mod q γ i for every N ě 1, then clearly p N ı 1 mod q γ i for every N P Nz Ť s j"1 N j .N, whatever the choice of the integers N 1 , . . . , N s . So we can suppose without loss of generality that there exists an integer N ě 1 such that p N " 1 mod q γ i . Let N i be the smallest such integer. Necessarily, N i ą u, since else q γ i would divide p v ´1 for some v P t1, . . . , uu. Moreover any integer N such that p N " 1 mod q γ i is a multiple of N i . It follows that p N ı 1 mod q γ i for every N P NzN i .N.

We apply Fact 3.2 to u " 1 and γ " a 0 . max 1ďiďs b i . Let N 1 , . . . , N s be given by Fact 3.2. Since N j ě 2 for every j P t1, . . . , su, the set J :" Nz Ť s j"1 N j .N is innite. Set N 0 " N 1 . . . N l . Then I :" N 0 .N `1 is contained in J.

Fix N P I. For each i P t1, . . . , su, let 0 ď a i,N ă γ be the largest integer such that q a i,N i divides p N ´1, and write p N ´1 " q a i,N i s i,N for some integer s i,N ě 1 with gcdps i,N , q i q " 1. By the Fermat-Euler Theorem, there exists r i,N ě 1 such that q r i,N i " 1 mod s i,N . Set r N " r 1,N .r 2,N . . . r s,N . Then for every l ě 1 and every i P t1, . . . , su, q l.r N i " 1 mod s i,N , so that q a i,N `l.r N i " q a i,N i mod pp N ´1q for every i P t1, . . . , su. If a is suciently large, we have a i,N ă γ ă a.b i for every i P t1, . . . , su, so that q a.b i `l.r N i " q a.b i i mod pp N ´1q.

Applying this to l " k.b i , k ě 1, yields that pq b i i q a`k.r N " pq b i i q a mod pp N ´1q for every i P t1, . . . , su, i.e. that q a`k.r N " q a mod pp N ´1q.

Proof of Theorem 1.5. By Lemma 3.1 above, the sequence pq n q ně1 satises assumption (H). The proof of Theorem 2.1 combined with Lemma 3.1 shows the density of S p,q :" µ P P p,c pTq ; lim sup nÑ`8 |p µpq n q| ą 0 ( in pP p,c pTq, w ˚q.

Remark 3.3. The proof of Theorem 1.5 does not make use of all the information provided by Lemma 3.1: we apply it with u " 1, the particular form of the set I is not used, and we only need the fact that for every N P I, there exist innitely many n's such that q n " q a mod pp N ´1q. This additional information will be important, however, in the forthcoming proofs of Theorems 3.4 and 1.7.

C. BADEA & S. GRIVAUX 3.b. A generalisation of Theorem 1.5. In this section, we consider sequences pc n q ně0 of the following form: c n " f 1 pnqq n 1 `f2 pnqq n 2 `¨¨¨`f d pnqq n d , n ě 0, where for each l P t1, . . . , du, q l ě 2 is an integer and f l is a polynomial with coecients in Z. This class of sequences is considered in [START_REF] Meiri | Entropy and uniform distribution of orbits in T d[END_REF] and [START_REF] Lindenstrauss | Entropy of convolutions on the circle[END_REF], where the following result is proved: if p ě 2 admits a prime factor p ˚which does not divide one of the integers q i , 1 ď i ď d, then any measure µ P P p pTq which is ergodic and of positive entropy is pc n q-generic. Proof. Let us show that pc n q ně0 satises assumption (H). By Lemma 3.1, there exist integers a ě 1 and N l , 1 ď l ď d, such that for every l P t1, . . . , du and every N P I l :" N l .N `1, there exists an integer r l,N ě 1 such that for every k ě 0, q a`k.r l,N l " q a l mod pp N ´1q.

The set I " Ş d l"1 I l is innite. If we set, for each N P I, r N " r 1,N . . . r d,N , we get that for every N P I and every k ě 0,

(1) q a`k.r N l " q a l mod pp N ´1q for every l P t1, . . . , du.

For each l P t1, . . . , du, write the polynomial f l as f l pxq " ∆ l ÿ j"0 b plq j x j , where b plq j P Z for every j P t0, . . . , ∆ l u.

For every N P I and every integer k 1 ě 0, we have

f l `a `k1 pp N ´1qr N ˘" ∆ l ÿ j"0 b plq j `a `k1 pp N ´1qr N ˘j and
`a `k1 pp N ´1qr N ˘j " a j mod pp N ´1q for every j ě 0.

Hence f l `a `k1 pp N ´1qr N ˘" f l paq mod pp N ´1q for every l P t1, . . . , du.

(

) 2 
Putting together (1) and ( 2) yields that for every N P I, c a`k 1 pp N ´1qr ,N " c a mod pp N ´1q for every k 1 ě 0, which implies that assumption (H) is true. Theorem 3.4 thus follows from Theorem 2.1.
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Setting C n " T `cn c n´1 . . . c n´L`1 ˘for every n ě L ´1, we have C n`1 " AC n for every n ě L ´1. Since det A " p´1q L`1 a L and a L ‰ 0, A is invertible as a matrix of M L pQq, and

A ´1 " p´1q L`1 a L adj pAq
where adj pAq, the adjoint (or adjugate) of A, is the transpose of the matrix of the cofactors of A. Observe that adj pAq P M L pZq.

Let us decompose the integer a L as a L " q b 1 1 . . . q bs s , where q i is prime and b i ě 1 for every i P t1, . . . , su. By Fact 3.2, there exist γ ě 1 and an innite subset I of N such that for every N P I, p N ı 1 mod q γ i for every i P t1, . . . , su. Hence, for every N P I, p N ´1 can be written as p N ´1 " q

β 1,N 1 . . . q β s,N s
r N , where 0 ď β i,N ă γ and gcdpq i , r N q " 1 for each i P t1, . . . , su. Since the prime factors of a L are exactly the q i 's, it follows that a L and r N are relatively prime, and hence that a L is invertible modulo r N : there exists an integer d N with 0 ď d N ă r N such that a L .d N " 1 mod r N . Setting B N " p´1q L`1 d N adjpAq, we observe that B N P M L pZq and that AB N " B N A " I mod r N . So A is invertible modulo r N , and its inverse is B N .

Consider now the set of matrices in M L pZq consisting of all powers A n , n ě 0, of A, taken modulo r N . This set being nite, there exist two integers 0 ď n 1,N ă n 2,N such that A n 1,N " A n 2,N mod r N . Setting n N " n 2,N ´n1,N , A n N " I mod r N , and thus the sequence pC n q taken modulo r N is periodic, with period n N . It follows that the sequence pc n q itself taken modulo r N is periodic of period n N , so that, in particular, c jn N " c 0 mod r N for every j ě 0. Setting h N " q β 1,N 1 . . . q β s,N s and remembering that p N ´1 " h N .r N , we obtain that h N .c jn N " h N c 0 mod pp N ´1q for every j ě 0. Since 0 ď β i,N ă γ for every i P t1, . . . , su, the set th N ; N P Iu is nite and consists of nonzero integers. Assumption (H) is satised, and the proof is concluded as usual thanks to Theorem 2.1.

The multidimensional case: proof of Theorem 1.8

In this section, d ě 2 is an integer, and A, B P M d pZq are two dˆd matrices with integer coecients such that det A ‰ 0 and det B ‰ 0. The matrix A is supposed to be similar in M d pCq to a diagonal matrix D whose diagonal coecients λ 1 , . . . , λ d are not of modulus 1. Let P P GL d pCq be such that A " P DP ´1. The matrix B is supposed to be invertible in M d pCq, i.e. det B ‰ 0. Theorem 1.8 states that the set

G A,B " µ P P A,c pT d q ; T B n µ w ˚/ / { Leb (
is residual in pP A pT d q, w ˚q. The proof of Theorem 1.8 follows the same structure as those of Theorems 2.1 and 1.5, but certain technical diculties that come with the multidimensional setting must be overcome.

We begin by proving an analogue of Theorem 2.3. 4.a. Some dense classes of discrete measures in P A pT d q. Let pN k q kě1 be a strictly increasing sequence of integers. Consider the set C C C A,pN k q " x x x P T d ; A N k x x x " x x x for some k ě 1 ( which consists of periodic points for T A having a period within the set tN k ; k ě 1u. For each x x x P C C C A,pN k q , let µ x x x be the measure dened by

µ x x x " 1 N k N k ´1 ÿ j"0 δ tA j x x xu .
It is a discrete T A -invariant probability measure on T d . Set

D D D A,pN k q " µ x x x ; x x x P C C C A,pN k q ( .
Taking inspiration from Theorem 2.3, we would like to show that the set D D D A,pN k q is dense in pP A pT d q, w ˚q. If pT d , T A q has the periodic specication property, this is an immediate consequence of Remark 2.4. However, T A is known to have the periodic specication property only in the case where A is an hyperbolic automorphism of T d , i.e. det A " ˘1 and A has no eigenvalue of modulus 1. Since A is not assumed here to be an automorphism of T d , we need to take a dierent route. It will lead to the following weaker result, which is fortunately sucient for our purposes: Theorem 4.1. The convex hull of the set D D D A,pN k q is dense in pP A pT d q, w ˚q.

Proof. Denote by F F A,pN k q the w ˚-closure in P A pT d q of the convex hull of D D D A,pN k q . This is a w ˚-closed convex subset of P A pT d q, and also of the Banach space MpT d q of complex measures on T d , endowed with the norm ||µ|| :" |µ|pT d q. This space MpT d q is the dual space of pCpT d q, || . || 8,T d q, the space of continuous functions on T d . Our aim is to show that F F F A,pN k q " P A pT d q. Suppose that it is not the case, and that there exists a measure µ 0 belonging to P A pT d qzF F F A,pN k q .

Applying the Hahn-Banach Theorem in the locally convex space pMpT d q, w ˚q, we obtain that there exists a w ˚-continuous linear functional L : MpT d q ÝÑ C, as well as real numbers γ 1 ă γ 2 such that epLpµqq ď γ 1 ă γ 2 ď epLpµ 0 qq for every µ P F F F A,pN k q . Since any w ˚-continuous functional on MpT d q " CpT d q ˚acts as integration against an element of CpT d q, there exists a function f

P CpT d q such that e ż T f dµ ď γ 1 ă γ 2 ď e ż T d
f dµ 0 for every µ P F F F A,pN k q . The measures µ and µ 0 being nonnegative, replacing f by its real part we can assume that f is real-valued, and thus that (4)

ż T f dµ ď γ 1 ă γ 2 ď ż T d f dµ 0 for every µ P F F F A,pN k q .
Moreover, it is possible to assume that f is a Lipschitz map on T d " R d {Z d , endowed with the distance induced by the sup norm || . || 8,R d on R d . We thus suppose that there exists a constant C ą 0 such that [START_REF] Berend | Multi-invariant sets on tori[END_REF] |f px x x 1 q ´f px x x 2 q| ď C inf

! ||x x x 1 ´x x x 2 ´l l l|| 8,R d ; l l l P Z d ) for every x x x 1 , x x x 2 P T d .
For any integer k ě 1 and any element x x x k of T d such that pA N k ´Iqx x x k " 0, the measure µ

x x x k " 1 N k ř N k ´1 j"0 δ tA j x x x k u belongs to F F F A,pN k q . Applying (4) to this measure yields that (6) 1 N k N k ´1 ÿ j"0 f pA j x x x k q ď γ 1 ă γ 2 ď ż T d f dµ 0 .
Let now x x x be an arbitrary element of T d , and let k ě 1. Consider the vector y y y k " pA N k ´Iq x x x, seen as an element of R d (and not as an element of T d ). There exists l l l k P Z d such that ||y y y k ´l l l k || 8,R d ď 1. Recalling that A " P DP ´1, with D " diagpλ 1 , . . . , λ d q, we thus have

ˇˇˇˇP pD N k ´IqP ´1x x x ´l l l k ˇˇˇˇ8 ,R d ď 1, so that ˇˇˇˇp D N k ´IqP ´1x x x ´P ´1l l l k ˇˇˇˇ8 ,C d ď ||P ´1|| 8 (7) 
where ||P ´1|| 8 is the norm of the matrix P ´1 seen as an endomorphism of pC d , || . || 8,C d q.

The inequality [START_REF] Blum | On the Fourier-Stieltjes coecients of Cantor-type distributions[END_REF] means exactly that ( 8)

sup 1ďiďd ˇˇpλ N k i ´1q pP ´1x x xq i ´pP ´1l l l k q i ˇˇď ||P ´1|| 8 .
Since no eigenvalue of A belongs to the unit circle, A N k ´I is invertible in M d pRq and it is legitimate to set z z z k " pA N k ´Iq ´1l l l k P R d . Let x x x k be the corresponding element of T d , obtained by taking mod 1 all the coordinates of z z z k . Then x x x k belongs to C C C A,pN k q , with pA N k ´Iqx x x k " 0 in T d . Also, z z z k " P pD N k ´Iq ´1P ´1 l l l k , so that

P ´1z z z k " ´1 λ N k i ´1 ¨`P ´1l l l k ˘i¯1 ďiďd .
It follows from (8) that for every i P t1 . . . , du,

ˇˇpP ´1x x xq i ´pP ´1z z z k q i ˇˇď ||P ´1|| 8 |λ N k i ´1| By (5), ˇˇf pA j x x xq ´f pA j x x x k q ˇˇď C inf ! ||A j x x x ´Aj x x x k ´l l l|| 8,R d ; l l l P Z d ) ď C ˇˇˇˇA j x x x ´Aj z z z k ˇˇˇˇ8 ,R d ď C ||P || 8 ˇˇˇˇD j pP ´1x x x ´P ´1z z z k q ˇˇˇˇ8 ,C d " C ||P || 8 sup 1ďiďd |λ j i | . ˇˇpP ´1x x x ´P ´1z z z k q i ˇď C ||P || 8 d ÿ i"1 |λ j i | . ˇˇpP ´1x x x ´P ´1z z z k q i ˇˇ. (9) 
Plugging into (9) yields that ˇˇf pA j x x xq ´f pA j x x x k q ˇˇď C ||P || 8 . ||P ´1|| 8

d ÿ i"1 |λ i | j |λ N k i ´1| ¨ Hence ˇˇ1 N k N k ´1 ÿ j"0 f pA j x x xq ´1 N k N k ´1 ÿ j"0 f pA j x x x k q ˇˇď C ||P || 8 ||P ´1|| 8 1 N k d ÿ i"1 1 |λ N k i ´1| N k ´1 ÿ j"0 |λ i | j ď C ||P || 8 ||P ´1|| 8 1 N k d ÿ i"1 |λ i | N k ´1 |λ N k i ´1| p|λ i | ´1q
Notice

that |λ i | ‰ 1 for all i " 1 . . . d. Observe that p|λ i | N k ´1q{|λ N k i ´1| ÝÑ 1 as k ÝÑ `8 if |λ i | ą 1, while p|λ i | N k ´1q{|λ N k i ´1| ÝÑ ´1 as k ÝÑ `8 if |λ i | ă 1. We obtain the existence of a positive constant C 1 such that sup kě1 d ÿ i"1 |λ i | N k ´1 |λ N k i ´1| p|λ i | ´1q ď C 1 .
Thus there exists C 2 ą 0 such that (10)

ˇˇ1 N k N k ´1 ÿ j"0 f pA j x x xq ´1 N k N k ´1 ÿ j"0 f pA j x x x k q ˇˇď C 2 N k for every k ě 1.
The right hand bound in [START_REF] Bowen | Periodic points and measures for Axiom A dieomorphisms[END_REF] tends to 0 as k tends to innity. Combining this with the fact that inequalities ( 6) and ( 10) hold true for every k ě 1, we obtain that [START_REF] Denker | Ergodic theory on compact spaces[END_REF] lim sup kÑ`8

1 N k N k ´1 ÿ j"0 f pA j x x xq ď γ 1 ă γ 2 ď ż T d
f dµ 0 for every x x x P T d .

Let ε ą 0 be such that γ 1 ă γ 2 ´ε. Applying the Ergodic Decomposition Theorem to the measure µ 0 yields the existence of an ergodic T A -invariant measure ν 0 on T d such that ż

T d f dν 0 ě ż T d
f dµ 0 ´ε.

It then follows from ( 11) that [START_REF] Einsiedler | Rigidity of measures invariant under the action of a multiplicative semigroup of polynomial growth on T, Ergodic Theory Dynam[END_REF] lim sup kÑ`8

1 N k N k ´1 ÿ j"0 f pA j x x xq ď γ 1 ă γ 2 ´ε ď ż T d f dν 0 for every x x x P T d .
But since the measure ν 0 is ergodic, the Birkho Pointwise Ergodic Theorem implies that lim sup kÑ`8

1 N k N k ´1 ÿ j"0 f pA j x x xq " ż T d
f dν 0 for ν 0 -almost every x x x P T d , which contradicts [START_REF] Einsiedler | Rigidity of measures invariant under the action of a multiplicative semigroup of polynomial growth on T, Ergodic Theory Dynam[END_REF]. So the initial assumption that the set P A pT d qzF F F A,pN k q is non-empty cannot hold, and Theorem 4.1 is proved be prime numbers such that gcd pp i , det Aq " 1 for every i P t1, . . . , su. There exist an innite subset I of N and an integer γ ě 1 such that for every i P t1, . . . , su and every

N P I, det `AN ´I˘ı 0 mod p γ i .
Proof of Lemma 4.2. Since detpA ´Iq ‰ 0, there exists γ ě 1 such that for every i P t1, . . . , su, p γ i does not divide detpA ´Iq. Since gcd pp i , det Aq " 1 and p i is prime, gcd pp γ i , det Aq " 1 as well, and A is invertible modulo p γ i . Proceeding as in the proof of Theorem 1.7, we obtain an integer n i ě 2 such that A n i " I mod p γ i , and hence A ln i " I mod p γ i for every l ě 1. Setting n 0 " n 1 . . . n s , we have A ln 0 " I mod p γ i for every l ě 1 and every i P t1, . . . , su. Thus A ln 0 `1 ´I " A´I mod p γ i and detpA ln 0 `1 ´Iq " detpA´Iq mod p γ i . Since detpA ´Iq ı 0 mod p γ i , we have detpA ln 0 `1 ´Iq ı 0 mod p γ i for every l ě 1 and every i P t1, . . . , su, and the lemma follows by setting I " n 0 .N `1.

Our aim is now to show that under the assumptions of Theorem 1.8, the following fact holds:

Fact 4.3. Suppose that A, B P M d pZq satisfy assumption (a), and either assumption (b) or (b') of Theorem 1.8. There exist a strictly increasing sequence pN k q kě1 of integers and a nite subset F of Zzt0u such that, for every k ě 1, the integers q k :" detpA N k ´Iq can be decomposed as q k " h k .r k , where h k P F , r k ě 1, and gcd pr k , det Bq " 1.

Proof of Fact 4.3. Recall that since A has no eigenvalue of modulus 1, A N k ´I is invertible in M d pCq, and hence q k :" detpA N k ´Iq ‰ 0. If det B " ˘1, it suces to choose N k " k, k ě 1, and F " t˘1u. So we suppose without loss of generality that | det B| ě 2.

We decompose det B as det B " ε p b 1 1 . . . p bs s , where ε " ˘1, b i ě 1 and p i is a prime number for every i P t1, . . . , su. We now treat separately two cases: Case 1: assumption (b) is satised, i.e. gcd pdet A, det Bq " 1. In this case gcd pp i , det Aq " 1 for every i P t1, . . . , su, and Lemma 4.2 applies: there exist γ ě 1 and an innite set I Ď N such that for every i P t1, . . . , su and every N P I, p γ i does not divide detpA N ´Iq. We enumerate the set I as a strictly increasing sequence pN k q kě1 , and for each k ě 1 we decompose q k " detpA N k ´Iq as q k " ε k p a 1,k 1 . . . p a s,k s r k , where ε k " ˘1, 0 ď a i,k ă γ and gcd pr k , p i q " 1 for each i P t1, . . . , su. Setting F " ˘pa 1 1 . . . p as s ; 0 ď a i ă γ, i " 1 . . . s ( yields the conclusion of Fact 4.3 in this case.

Case 2: assumption (b') is satised. Let a 1 , . . . , a d be the diagonal coecients of A, which belong to Zzt0u. For every N ě 1, detpA N ´Iq " ś d l"1 pa N l ´1q. By Fact 3.2 applied with u " 2, there exist for each l P t1, . . . , du integers N 1,l ě 3, . . . , N s,l ě 3 as well as γ l ě 1 such that for every i P t1, . . . , su and every N P Nz Ť s i"1 N i,l . N,

|a l | N ı 1 mod p γ l i .
Since the integers N i,l are all greater or equal to 3, the set J " Nz Ť d l"1 Ť s i"1 N i,l . N contains an innite subset J 1 consisting of even integers. Let I " tM ě 1 ; 2M P J 1 u. For every i P t1, . . . , su, every l P t1, . . . , du and every M P I, a M l ı 1 mod p γ l i .

is dense in pP A pT d q, w ˚q. Hence, given a non-empty open subset V of pP A pT d q, w ˚q, there exist vectors x x x 1 , . . . , x x x r in T d , integers k 1 , . . . , k r ě 1 and coecients a 1 , . . . , a r ě 0 with ř r i"1 a i " 1 and A N k i x x x i " x x x i for each 1 ď i ď r such that µ " r ÿ i"1 a i µ x x x i belongs to V.

Since N k i is prime, the minimal period of x x x i is N k i , and thus

µ x x x i ptx x xuq ď 1 N k i ă τ for every x x x P T d .
It follows that µptx x xuq ă τ for every x x x P T d , and µ does not belong to F τ . So F τ is nowhere dense in pP A pT d q, w ˚q, and

P A,c pT d q " P A pT d qz ď lě1 F 2 
´l is a dense G δ subset of pP A pT d q, w ˚q by the Baire Category Theorem.

The proof of Theorem 1.8 is completed by combining Fact 4.5 with the assertion that G 0 A,B is residual in pP A pT d q, w ˚q.

Remark 4.6. The proof of Fact 4.5 would apply equally well to Fact 2.8, but since the result is more standard in the one-dimensional case, we preferred to mention the classical arguments.

5. Further results and remarks 5.a. A complement to a result of Johnson and Rudolph. Let p ě 2 be an integer, and let pc n q ně0 be a sequence of positive integers. We have recalled in the introduction and in Section 3 conditions on pc n q implying that each measure µ P P p pTq which is ergodic and of positive entropy is pc n q-generic thus showing that the set G 1 p,pcnq :" µ P P p pTq ; T cn µ w Ý Ý Ñ Leb along a sequence of upper density 1 ( is residual in pP p pTq, w ˚q. We present here an alternative harmonic analysis approach to this kind of result. It has the benet of circumventing the arguments that depend on positive entropy, when applicable.

Theorem 5.1. Let p ě 2, and let pc n q ně0 be a sequence of integers satisfying the following condition: p‹q there exists a sequence pµ k q kě1 of elements of P p pTq such that µ k w Ý Ý Ñ δ 1 , and moreover, the set n ě 1 ; |p µ k pa.c n q| ă ε ( has density 1 for every a P Zzt0u, every ε ą 0 and every k ě 1.

Then the set G 1 p,pcnq is residual in pP p pTq, w ˚q.

A word about terminology: saying that a sequence pν n q ně1 of measures converges to ν along a subset of upper density 1 means that for any neighborhood V of ν in PpTq, the set tn ě 1 ; ν n P Vu has upper density 1, i. e. lim sup

N Ñ`8 1 N # 1 ď n ď N ; ν n P V ( " 1. 
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This is equivalent to the following property: for any a 0 ě 1 and any ε ą 0, the set n ě 1 ; |p ν n paq ´p νpaq| ă ε for every a P Z with |a| ď a 0 ( has upper density 1. In this case, one can construct a strictly increasing sequence pN k q kě1 of integers such that

1 N k # 1 ď n ď N k ; @ |a| ď k, |p ν n paq ´p νpaq| ă 2 ´k( ě 1 
´2´k
for every k ě 1, and N k`1 ě 2 k N k . If we consider the strictly increasing sequence pn j q jě1 obtained by enumerating the set

D " ď kě1 N k´1 ă n ď N k ; @ |a| ď k, |p ν n paq ´p νpaq| ă 2 ´k(
(with the convention that N 0 " 0), we obtain that D " tn j ; j ě 1u has upper density 1 and that p ν n j paq ÝÑ p νpaq as j ÝÑ `8 for every a P Z.

Proof of Theorem 5.1. We rst observe that the set G 1 p,pcnq can be written as G 1 p,pcnq " r G p,pcnq X P p,c pTq, where r G p,pcnq " µ P P p pTq ; @ N 0 , a 0 ě 1, @ ε, δ P p0, 1q X Q D N ą N 0 , D F Ď t1, . . . , N u with # F ě p1 ´δqN such that @ a P Z with 0 ă |a| ď a 0 , @ n P F, |p µpa.c n q| ă ε ( .

The set r G p,pcnq is clearly G δ in pP p pTq, w ˚q. Since P p,c pTq is residual in P p pTq, it suces to show that r G p,pcnq is dense in P p pTq. In order to do this, we are going to exhibit a dense set of measures µ P P p pTq with the following property: [START_REF] Einsiedler | Diagonal actions on locally homogeneous spaces[END_REF] @ a P Zzt0u, @ ε ą 0, the set tn ě 1 ; |p µpac n q| ă εu has density 1.

Since the intersection of nitely many sets of density 1 is again of density 1, the measures in this set will be such that [START_REF] Feldman | A generalization of a result of R. Lyons about measures on r0, 1q[END_REF] @ a 0 ě 1, @ ε ą 0, the set tn ě 1 ; @ 0 ă |a| ď a 0 , |p µpac n q| ă εu has density 1 and hence upper density 1. Such measures will hence belong to the set G 1 p,pcnq .

Our assumption p‹q states that the measures µ k , k ě 1, satisfy [START_REF] Einsiedler | Diagonal actions on locally homogeneous spaces[END_REF]. Fix ν P P p pTq, and set ν k " µ k ˚ν for every n ě 1. For any ε ą 0, the set tn ě 1 ; |p ν k pa.c n q| ă εu has density 1, and it follows that the measures ν k satisfy [START_REF] Einsiedler | Diagonal actions on locally homogeneous spaces[END_REF]. Since ν k w Ý Ý Ñ ν as k / / `8, this concludes the proof of Theorem 5.1.

Theorem 5.1 applies for instance to the case where c n " q n , n ě 0, provided that p, q ě 2 are two multiplicatively independent integers, and allows to retrieve [START_REF] Johnson | Convergence under ˆq of ˆp invariant measures on the circle[END_REF]Th. 8.2], which states that G 1 p,pq n q is residual in pP p pTq, w ˚q. To this aim, it suces to exhibit a sequence pµ k q kě1 of measures from P p pTq satisfying [START_REF] Einsiedler | Diagonal actions on locally homogeneous spaces[END_REF] and such that µ k w Ý Ý Ñ δ 1 . The measures that we shall consider are the Bernoulli convolutions µ Θ introduced at the end of the proof of Theorem 1.5, where Θ " pθ 0 , . . . , θ p´1 q is a p-tuple of elements of p0, 1q with ř p´1 j"0 θ j " 1. They are T p -invariant, and p µ Θ pmq "

ź ně1 ´θ0 `p´1 ÿ j"1
θ j e 2iπmjp ´n ¯for every m P Z.

It is shown by Lyons in [START_REF] Lyons | Mixing and asymptotic distribution modulo 1, Ergodic Theory Dynam[END_REF] and by Feldman and Smorodinsky in [START_REF] Feldman | Normal numbers from independent processes, Ergodic Theory Dynam[END_REF] that T q n µ Θ w Ý Ý Ñ Leb as n / / `8. Since µ Θ w Ý Ý Ñ δ 1 as Θ / / p1, 0, . . . , 0q, assumption p‹q from Theorem 5.1 is satised, and G 1 p,pq n q is residual in pP p pTq, w ˚q.

The behaviour of the Fourier coecients of Bernoulli convolutions has been studied extensively, particularly when p is equal to 2 or 3; see for instance the classical book [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF] by Kahane and Salem. An important work on the subject is that of Blum and Epstein [START_REF] Blum | On the Fourier-Stieltjes coecients of Cantor-type distributions[END_REF], where the authors provide upper and lower bounds on |p µ Θ pmq| 2 which allow them to give a characterisation of sequences of positive integers along which p µ Θ pmq tends to 0. In the case p " 2, this characterisation is given in terms of the order of magnitude of Rpmq, which is the number of runs, i. e. of maximal blocks of the same digit 0 or 1, appearing in the binary expansion of m. Equivalently, Rpmq is the number of digits changes in the binary expansion of m. Then as soon as Θ ‰ p1{2, 1{2q (in which case µ Θ is the Lebesgue measure on T), there exist two constants C 1 , C 2 ą 0 such that, for every m P Z, expp´C 2 Rpmqq ď |p µ Θ pmq| ď expp´C 1 Rpmqq.

It follows that if pm k q is any strictly increasing sequence of integers, we have p µ Θ pm k q ÝÑ 0 as k ÝÑ `8 if and only if Rpm k q ÝÑ `8 as k ÝÑ `8.

For general p, here is the result proved by Blum and Epstein in [START_REF] Blum | On the Fourier-Stieltjes coecients of Cantor-type distributions[END_REF]: Theorem 5.2 ([7]). Let p ě 2. Let Θ " pθ 0 , . . . , θ p´1 q be a p-tuple of elements from p0, 1q with the property that the polynomial Q Θ pzq " ř p´1 j"0 θ j z j does not vanish on T. Let, for m ě 0, ψpmq " R 0 pmq `Rp´1 pmq `N pmq, where R 0 pmq is the number of maximal blocks of 0s, R p´1 pmq is the number of maximal blocks of pp ´1qs, and N pmq is the number of digits other than 0 and p ´1 in the expansion of m in base p. Then there exist two constants C 1 , C 2 ą 0 such that expp´C 2 ψpmqq ď |p µ Θ pmq| ď expp´C 1 ψpmqq for every m P Z. Hence p µ Θ pm k q ÝÑ 0 as k ÝÑ `8 if and only if ψpm k q ÝÑ `8 as k ÝÑ `8.

As a consequence, we obtain the following result, which we state using the notation from Theorem 5.2:

Proposition 5.3. Let pc n q ně0 be a sequence of integers such that, for every a P Zzt0u, the sequence pψpa.c n qq ně0 tends to innity along a sequence of density 1. Then the set

G 1
p,pcnq is residual in pP p pTq, w ˚q. Proof. It suces to show that pc n q ně0 satises assumption p‹q of Theorem 5.1. Let Θ " pθ 0 , . . . , θ p´1 q be a sequence of elements of p0, 1q summing up to 1, and suppose that θ 0 ą 1{2. Then ř p´1 j"1 θ j ă 1{2, and hence we have |Q Θ pzq| ě θ 0 ´p´1 ÿ j"1 θ j |z| j ą 0 for every z P C with |z| ď 1. Thus the polynomial Q Θ does not vanish on T. Let pΘ k q kě1 be such that Θ k / / p1, 0, . . . , 0q as k / / `8, and Q Θ k does not vanish on T. Then 

Fact 2 . 5 . 8 |p µph l c n q| ą 0 .

 2580 If µ belongs to G γ p,pcnq , then there exists l P t1 . . . du such that lim sup nÑ`In particular, T cn µ w ˚/ / { Leb as n ÝÑ `8. Proof. Let µ P G γ p,pcnq . There exists l P t1 . . . du such that |p µph l c n q| ą γ min 1ďjďr |p µpt j q| for innitely many n's, and so lim sup nÑ`8 |p µph l c n q| ě γ min 1ďjďr |p µpt j q| ą 0.

µ Θ k w ÝÝ Ñ δ 1

 w1 as k / / `8 . Moreover, the assumption of Proposition 5.3 combined with

  n´L , n ą L for some L ě 1 and integer coecients a 1 , . . . , a L with a L ‰ 0. If the integers a L and p are relatively prime, then the set G p,pcnq " µ P P p,c pTq ; T cn µ

	w ˚/ / { Leb	as n ÝÑ	`8(
	is residual in pP p pTq, w ˚q.		

  Let d ě 2 and let A, B P M d pZq with detpAq ‰ 0 and detpBq ‰ 0. Suppose that (a) A is similar to a diagonal matrix D " diagpλ 1 , . . . , λ d q, where |λ j | ‰ 1, 1 ď j ď d; A,B :" µ P P A,c pT d q ; T B n µ

	Accordingly, we complement these results by showing a multidimensional version of
	Theorem 1.5. Theorem 1.8 (multidimensional setting). and either
	(b) detpAq and detpBq are relatively prime;
	or
	(b') A is upper or lower triangular.
	Then the set
	w ˚/ / { Leb d

G

( is residual in pP A pT d q, w ˚q.

ON THE ACTION OF ˆq ON ˆp-INVARIANT MEASURES

  Proof of Theorem 2.1. It follows from Lemma 2.6 and Fact 2.8 and from the Baire Category Theorem that for any γ P p0, 1q, the set G γ p,pcnq XP p,c pTq is residual in pP p pTq, w ˚q.

	By Fact 2.5, the set

µ P P p,c pTq ; Dl P t1, . . . , du lim sup nÑ`8 |p µph l c n q| ą 0 ( is residual in pP p pTq, w ˚q, and hence G p,pcnq is residual as well. Theorem 2.1 is proved.

  Leb on a set of upper density 1 ( is residual in pP p pTq, w ˚q see Section 5.a for details on this argument.We complement this result by showing the following Theorem 3.4. If pc n q ně0 is a sequence of the form c n " f 1 pnqq n , n ě 0, where for each l P t1, . . . , du, q l ě 2 is an integer and f l is a polynomial with coecients in Z, then the set G p,pcnq " µ P P p,c pTq ; T cn µ is residual in pP p pTq, w ˚q.

			It
	follows that the set	
	G 1 p,pcnq " µ P P p,c pTq ; T cn µ	w
	d pnqq n		1 `f2 pnqq n 2 `¨¨¨f
		w ˚/ / { Leb as n	/ / `8(

Ý Ý Ñ d

  4.b. Proof of Theorem 1.8. The proof of Theorem 1.8 is similar in spirit to that of Theorem 1.5. Of course, assumption (H) and Theorem 2.1 are not available anymore, and they have to be replaced by the following analogue of Fact 3.2: C. BADEA & S. GRIVAUX Lemma 4.2. Let A P M d pZq with det A ‰ 0 and detpA ´Iq ‰ 0, and let p 1 , . . . , p s ě 2

C.B. and S.G. were supported in part by the project FRONT of the French National Research Agency (grant ANR-17-CE40-0021) and by the Labex CEMPI (grant ANR-11-LABX-0007-01). C.B. was supported in part by Max Planck Institute for Mathematics in Bonn. C. BADEA & S. GRIVAUX

Remark 3.5. We notice that if c n " f pnq for some polynomial f P ZrXs, then the set µ P P p,c pTq ; T cn µ w ˚/ / { Leb ( is also residual in pP p pTq, w ˚q. Remark that in this case, the sequence pc n xq ně0 is uniformly distributed mod 1 for every x P RzQ, and hence [START_REF] Badea | Kazhdan constants, continuous probability measures with large Fourier coecients and rigidity sequences[END_REF] 1 N N ´1 ÿ n"0 expp2iπhc n xq / / 0 as N / / `8 for every h P Zzt0u.

If µ belongs to P p,c pTq, integrating (3) with respect to the measure µ yields that

ÿ n"0 p µphc n q / / 0 for every h P Zzt0u, i.e.

1 N

3.c. Further examples: proof of Theorem 1.7. Let pc n q ně0 be dened by a linear recursion: there exist L ě 1 and coecients a 1 , . . . , a L in Z with a L ‰ 0 such that c n " a 1 c n´1 `a2 c n´2 `¨¨¨`a L c n´L for every n ě L.

Let p ě 2. Meiri introduces in [START_REF] Meiri | Entropy and uniform distribution of orbits in T d[END_REF] the following two assumptions on the sequence pc n q ně0 : (a) pc n q ně0 has no non-constant arithmetic subsequence; (b) a L and p are relatively prime.

It is observed in [START_REF] Meiri | Entropy and uniform distribution of orbits in T d[END_REF]Prop. 5.1] that assumption (a) is satised as soon as the following property holds:

(a') if λ 1 , . . . , λ L 1 , with 1 ď L 1 ď L, are the distinct roots of the recursion polynomial ppxq " x L ´řL l"1 a l x L´l , then none of the quantities λ i and λ i {λ j , 1 ď i ă j ď L Setting γ 0 " max 1ďlďd γ l , we have thus a M l ı 1 mod p γ 0 i for every l P t1, . . . , du, i P t1, . . . , su and M P I. We now set γ :" dγ 0 . Then p γ i cannot divide the product ś d l"1 pa M l ´1q, since else p γ 0 i would divide one of the terms a M l ´1, 1 ď l ď d. Hence detpA M ´Iq ı 0 mod p γ i for every i P t1, . . . , su, and we conclude the proof as in the rst case.

We now use the notation from Fact 4.3. Since, for each k ě 1, r k and det B are relatively prime, B is invertible modulo r k , and there exists an integer m k ě 1 such that B m k " I mod r k (see the proof of Theorem 1.7). Hence h k B m k " h k I mod q k for every k ě 1. If we dene h 0 to be the product of all the elements of the nite set F , it follows that h 0 .B m k " h 0 .I mod q k for every k ě 1.

Recall that given a measure µ P PpT d q and a d-tuple n n n " pn 1 , . . . , n d q P Z d , the n n n-th Fourier coecient of the measure µ is dened as p µpn n nq " ż T d e 2iπxn n n,y y yy dµpy y yq, where xn n n, y y yy "

Write h h h 0 " ph 0 , . . . , h 0 q. Here is now an analogue of Fact 2.7 in our multidimensional setting: Fact 4.4. Let x x x P T d be such that pA N k ´Iqx x x " 0 in T d for some k ě 1. Then { B lm k µ x x x ph h h 0 q " p µ x x x ph h h 0 q for every integer l ě 1.

Proof of Fact 4.4. Recall that

For every n P Z,

where 1 1 1 " p1, . . . , 1q. Since pA N k ´Iqx x x " 0 in T d , there exists l l l k P Z d such that pA N k ´Iqx x x " l l l k , the equality being this time in R d , so that x x x " 1 q k adj pA N k ´Iql l l k .

We know that h 0 B m k " h 0 I mod q k , so that h 0 B lm k " h 0 I mod q k for every l ě 1. This means that there exists a matrix C k,l P M d pZq such that h 0 .B lm k " h 0 I `qk .C l,k . Hence for every j P t0, . . . , N k u, we have

C. BADEA & S. GRIVAUX Since x x x " 1 q k adj pA N k ´Iql l l k with l l l k P Z d , the vector q k C k,l A j x x x belongs to Z d , and thus

x ph h h 0 q " p µ x x x ph h h 0 q for every l ě 1, and Fact 4.4 is proved.

A direct consequence of Fact 4.4 is that B n µ x x x w ˚/ / { Leb d when n / / `8 as soon as p µ x x x ph h h 0 q ‰ 0. Consider, for each 0 ă γ ă 1, the set

which is clearly a G δ subset of pP A pT d q, w ˚q. In order to prove that it is dense, we proceed as in the proof of Lemma 2.6, but using Theorem 4.1 instead of Theorem 2.1. Let V be a non-empty open set in pP A pT d q, w ˚q. By Theorem 4.1, there exists a convex combination µ "

for every l ě 1. Setting m 0 " m k 1 . . . m kr , we have that { B lm 0 µ x x x i ph h h 0 q " p µ x x x i ph h h 0 q for every l ě 1 and every i P t1, . . . , ru. Hence z B lm 0 ph h h 0 q " p µph h h 0 q for every l ě 1.

If p µph h h 0 q ‰ 0, it follows that µ belongs to G γ A,B . If p µph h h 0 q " 0, the measure µ ρ :" p1 ´ρqµ `ρδ 0 0 0 belongs to V if 0 ă ρ ă 1 is suciently small, and p µ ρ ph h h 0 q " ρ ‰ 0. Also { B lm 0 µ ρ ph h h 0 q " p1 ´ρq { B lm 0 µph h h 0 q `ρ " x µ ρ ph h h 0 q for every l ě 0, and hence µ ρ belongs to G γ A,B . We have thus shown that G γ A,B is a dense G δ subset of pP A pT d q, w ˚q.

Any measure µ P G γ A,B is such that lim sup nÑ`8 | z B n µph h h 0 q| ą 0, and hence (since

In order to complete the proof, it remains to show the following analogue of Fact 2.8:

Fact 4.5. The set P A,c pT d q is a dense G δ subset of pP A pT d q, w ˚q.

Proof of Fact 4.5. As mentioned already in the proof of Fact 2.8, the set P A,c pT d q is known to be a G δ subset of pP A pT d q, w ˚q, so that only its density remains to be proved.

The argument for this follows closely the proof of [START_REF] Sigmund | Generic properties of invariant measures for Axiom A dieomorphisms[END_REF]Th. 2], and reproves at the same time that P A,c pT d q is G δ .

For every τ ą 0, let F τ :" µ P P A pT d q ; D x x x P T d such that µptx x xuq ě τ ( .

Then the set F τ is easily seen to be closed in pP A pT d q, w ˚q. Let us now show that F τ is nowhere dense. Let pN k q kě1 be a strictly increasing sequence of prime numbers such that N 1 ą 1{τ . By Theorem 4.1, the convex hull of the set D D D A,pN k q " µ x x x ; A N k x x x " x x x for some k ě 1 ( Theorem 5.2 implies that for every a P Zzt0u, p µ Θ k pac n q / / 0 along a sequence of density

1.

The assumption p‹q is thus satised, and Proposition 5.3 follows.

Remark 5.4. If p, q ě 2 are multiplicatively independent integers, and c n " q n , n ě 0, it is shown in [15, Prop. 1] that any word w in the letters 0, 1, . . . , p ´1 appears in the expansion of q n in base p for every n belonging to a set of integers of density 1. The proof given there can be extended to show that for any a P Zzt0u, w appears in the expansion of a.q n in base p for every n belonging to a set of integers of density 1.

5.b. Some open questions. In Sections 2 and 3, numerous examples of sequences

pc n q were presented, for which the set G p,pcnq " µ P P p,c pTq ; T cn µ

was found to be a residual subset of pP p pTq, w ˚q. The condition (H) presented in Section 2 is the most general one that we can provide for the residuality of G p,pcnq to hold. However, it does not apply to all sequences pc n q ně0 , leaving the following intriguing question unanswered.

Question 5.5. Let p ě 2, and let pc n q ně0 be any strictly increasing sequence of integers. Is it true that the set G p,pcnq is residual in pP p pTq, w ˚q? Question 5.6. Let p ě 2, and let pc n q ně0 be a strictly increasing sequence of integers.

Is the set G 2 p,pcnq residual in pP p pTq, w ˚q?

For the sequences considered in [START_REF] Host | Nombres normaux, entropie, translations[END_REF][START_REF] Johnson | Convergence under ˆq of ˆp invariant measures on the circle[END_REF][START_REF] Lindenstrauss | Entropy of convolutions on the circle[END_REF][START_REF] Meiri | Entropy and uniform distribution of orbits in T d[END_REF], the density of the set G 2 p,pcnq in pP p pTq, w ˚q follows from the result that ergodic measures of positive entropy in P p pTq are pc n q-generic.

But the question of the residuality remains widely open, and it is actually not known if the set G 2 p,pq n q is residual in pP p pTq, w ˚q when q ě 2 is an integer which is multiplicatively independent from p. This question is also connected to another conjecture from [START_REF] Lyons | On measures simultaneously 2-and 3-invariant[END_REF], called (C7), which runs as follows: Conjecture (C7): Let p, q ě 2 be multiplicatively independent integers. For any measure µ P P p,c pTq, µ-almost every x P T is normal in base q, i.e. is residual in pP A pT d q, w ˚q. These conditions (that A be diagonalisable in M d pCq, that det A and det B be relatively prime...) arise due to technical diculties in the proofs in the higher dimensional case. However, it may be that these conditions are not necessary;

this is true in the one-dimensional setting. that the set G 2 A,B is residual in pP A pT d q, w ˚q?