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AROUND FURSTENBERG'S TIMES p, TIMES q CONJECTURE:

TIMES p-INVARIANT MEASURES WITH SOME LARGE

FOURIER COEFFICIENTS

by

Catalin Badea & Sophie Grivaux

Abstract. � For each integer n ě 1, denote by Tn the map x ÞÑ nx mod 1 from the circle
group T “ R{Z into itself. Let p, q ě 2 be two multiplicatively independent integers. Using
Baire Category arguments, we show that generically a Tp-invariant probability measure µ
on T with no atom has some large Fourier coe�cients along the sequence pqnqně0. In
particular, pTqnµqně0 does not converges weak-star to the normalised Lebesgue measure on
T. This disproves a conjecture of Furstenberg and complements previous results of Johnson
and Rudolph. In the spirit of previous work by Meiri and Lindenstrauss-Meiri-Peres, we
study generalisations of our main result to certain classes of sequences pcnqně0 other than
the sequences pqnqně0, and also investigate the multidimensional setting.

1. Introduction and main results

1.a. Synopsis. � In the late 1960s, Furstenberg proved signi�cant results and proposed
fascinating conjectures that aimed to express in various ways the heuristic principle that
expansions in multiplicatively independent bases have no shared structure. For further
details about this idea, readers can refer to the recent survey [40] which also outlines
some progress in Furstenberg's programme. Here, we shall list one result and three con-
jectures due to Furstenberg; some known partial results related to these conjectures will
be mentioned in the following subsection. In all these statements, p, q ě 2 are two �xed
multiplicatively independent integers. Recall that p, q ě 2 are called multiplicatively inde-
pendent if log p{ log q R Q. For each integer n ě 1, denote by Tn the map x ÞÑ nx mod 1
from the circle group T “ R{Z, identi�ed with r0, 1q, into itself. A subset F of T is said to
be Tn-invariant if TnpF q Ă F . Notice that Tn shifts the n-ary expansion of a real number
and that each map Tn has many closed, in�nite invariant subsets.

The following topological rigidity result has been proved in [16].

Theorem 1.1 (Furstenberg). � The only in�nite closed subset F of T which is simul-
taneously Tp- and Tq-invariant is F “ T.
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Furstenberg formulated a conjecture, called Conjecture (C1) in [35], which is stronger
than Theorem 1.1 and deals with the asymptotic behaviour of a Tp�invariant subset under
the action of Tq.

Conjecture 1.2. � Let F be an in�nite closed Tp-invariant subset. Then the iterates
Tnq pF q converge in the Hausdor� distance to T as n tends to in�nity.

The measure-theoretical analogue statements of Theorem 1.1 and Conjecture 1.2 are
both conjectural statements. Recall that a Borel probability measure µ on T is said to
be Tn-invariant if µ “ Tnµ, where Tnµ is the measure de�ned by TnµpCq “ µpT´1

n Cq
for every measurable set C. There are uncountable many Tn-invariant, or even ergodic,
measures; see for instance [4, p. 141]. The next measure-theoretical rigidity conjecture,
called Conjecture (C2) in [35], is the renowned ˆp, ˆq conjecture of Furstenberg, one of
the most fundamental open questions in ergodic theory. We say that a probability measure
is continuous if it has no atom.

Conjecture 1.3 (ˆp, ˆq conjecture). � The only continuous Borel probability mea-
sure on T which is simultaneously Tp- and Tq-invariant is the (normalised) Lebesgue mea-
sure Leb.

The natural analogue of Conjecture 1.2 for measures was also conjectured by Fursten-
berg: this is Conjecture (C3) in [35] and concerns now the convergence in the weak-star
topology of a Tp-invariant measure under the action of Tq.

Conjecture 1.4. � Let µ be a continuous Borel probability measure on T which is Tp-
invariant. Then Tnq µ converge w˚ to Leb.

It is easy to see that Conjecture 1.4 implies the ˆp, ˆq conjecture (Conjecture 1.3):
suppose indeed that Conjecture 1.4 is true, and let µ be a continuous and simultaneously

Tp- and Tq-invariant measure as in Conjecture 1.3. Since Tnq pµq “ Tqnµ
w˚
ÝÝÑ Leb, the

Fourier coe�cients of µ verify pµpaqnq Ñ 0 for every a P Zzt0u. Since µ is Tq-invariant, this
implies that pµpaq “ 0 for every a P Zzt0u, so that µ “ Leb.

The main aim of this manuscript is to show that generically (in the Baire Category
sense), a continuous Tp-invariant probability measure µ on T has some large Fourier coe�-
cients along the sequence pqnqně0. This implies that the sequence pTnq pµqqně0 “ pTqnµqně0

does not converge w˚ to Leb, disproving thus Conjecture 1.4. The precise statement is given
in Theorem 1.5 below.

It follows from our results and some results of Johnson and Rudolph in [25] that gener-
ically, in the Baire Category sense, pTqnµqně0 does not converge w˚ to the Lebesgue mea-
sure, but the convergence of Tqnµ to Leb holds along a �large� sequence of integers (a
sequence of upper density 1); see Corollary 1.6. This sheds some light on the complexity
of the asymptotic behaviour of the action of Tq on a generic Tp-invariant measure. In the
spirit of previous work by Meiri [36] and Lindenstrauss-Meiri-Peres [33], we study general-
isations of our main result to certain classes of sequences pcnqně0 other than the sequences
pqnqně0, and also investigate the multidimensional setting.

Our methods are mainly functional-analytic, based for instance on Baire category meth-
ods and the Hahn-Banach theorem. We also use tools from classical harmonic analysis
(Fourier coe�cients of measures, p-Bernoulli measures), ergodic theory (the periodic spec-
i�cation property, the ergodic decomposition theorem) and elementary number theory.
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1.b. Background. � Without claiming completeness, we mention some previous con-
tributions related to Theorem 1.1 and Conjectures 1.2, 1.3 and 1.4.

Many aspects of the dynamics of subsemigroups of pTnqně1 were discussed in the seminal
paper [16] by Furstenberg. The proof of Theorem 1.1 in [16] used the disjointness of speci�c
dynamical systems, a notion introduced in [16]. An elementary proof of Theorem 1.1 has
been given by Boshernitzan [8] and an �e�ective� version has been proved in [9] by Bourgain,
Lindenstrauss, Michel and Venkatesh. Starting with Berend [5], several authors studied
multidimensional generalisations of Theorem 1.1.

Conjecture 1.2 is largely open. It is known that if F is a Tp-invariant subset of T, then
there exists a subsequence pqnkq such that Tnk

q pF q converges to T in the Hausdor� metric;
see for instance [28, Lemma 2.1]. Another result related to Conjecture 1.2 can be found
in [37, Th. 1.1]. Starting with the papers [2, 6] by Berend-Peres and Alon-Peres, several
authors studied the so-called Glasner sets. A set S of integers is said to be a Glasner
set if for every in�nite closed subset F of T, there exists a sequence pcnq of elements in
S such that TcnpF q converges to T in the Hausdor� metric. With this terminology, a
result from [17] can be formulated as the fact that the set of integers is a Glasner set.
Other quite small sets of integers are Glasner, like sets of positive (Banach) density or the
sets of values assumed by any non-constant polynomial mapping the natural numbers to
themselves. Note however that a �nite union of lacunary sequences is not a Glasner set
([6, Th. 1.4]). Glasner sets have been also studied in the multidimensional setting.

The �rst result about the ˆp, ˆq conjecture has been proved by Lyons in [35], the
�rst place where Conjecture 1.3 appeared in print: if p and q are relatively prime, any
probability measure on T which is Tp- and Tq-invariant and Tp-exact (i.e. has completely
positive entropy with respect to Tp), must be the Lebesgue measure. Rudolph substantially
strengthened this theorem in [39], showing that the conclusion is true with only the weaker
assumption that the measure is ergodic under the joint action of Tp and Tq, and of positive
entropy under the action of Tp. Johnson [24] then generalised this to the case where p and
q are multiplicatively independent. A di�erent argument, along the lines of Lyons [35],
was given by Feldman [14]. Other di�erent proofs were given by Host [22] and Parry
[38]. In all these proofs the positive entropy remains a crucial assumption. The Rudolph-
Johnson theorem has been used by Einsiedler and Fish [12] to prove that a continuous
Borel probability measure on T invariant under the action of a multiplicative semigroup
with positive lower logarithmic density is the normalised Lebesgue measure. An important
advance was made by Katok and Spatzier [27], who discovered that Rudolph's proof can
be extended to give partial information on invariant measures in much greater generality.
We also mention the works [19�21, 30], as well as the surveys [13, 31, 32], for an account
of recent progress on measure rigidity for higher rank diagonal actions on homogeneous
spaces.

Some partial results about Conjecture 1.4 (conjecture (C3) in [35]), which will be dis-
proved in this manuscript, are also known. The study of convergence of the sequence
pTqnµqně0 to the Lebesgue measure for certain classes of Tp-invariant measures µ lies at the
core of the works of Lyons [34,35], Feldman and Smorodinsky [15], Johnson and Rudolph
[25], and Host [22]. Given p, q ě 2 two multiplicatively independent integers, it is shown in

[34] (see also [35]) that if µ is a non-degenerate p-Bernoulli measure, then Tqnµ
w˚
ÝÝÑ Leb.

The main result of [15] states that under the same assumption, µ-almost every x P r0, 1s
is normal to the base q. It is proved by Host in [22] that whenever p and q are relatively
prime, any measure µ P PppTq which is ergodic and has positive entropy with respect to
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Tp is such that µ-almost every x P r0, 1s is normal to the base q. The generalisation to
the case where p and q are multiplicatively independent was obtained by Hochman and
Shmerkin [20]. The Host-Hochman-Shmerkin result implies easily a result by Johnson and
Rudolph [25] that for every such ergodic with positive entropy measure µ P PppTq,

1

N

N´1
ÿ

n“0

Tqnµ
w˚
ÝÝÑ Leb.

Johnson and Rudolph observe the following consequence: if µ P PppTq is ergodic and of

positive entropy with respect to Tp, then Tqnµ
w˚
ÝÝÑ Leb on a sequence of Banach density

one (called a sequence of uniform full density in [25]). As a consequence, they obtain that
the set

G1p,q :“ tµ P Pp,cpTq ; Tqnµ
w˚
ÝÝÑ Leb along a sequence of upper density 1u

is residual in pPppTq, w˚q. So, generically in the Baire Category sense, convergence of
Tqnµ to the Lebesgue measure holds along a �large� sequence of integers. But the Baire
Category arguments leave room for possible �bad� sequences where convergence to the
Lebesgue measure, as predicted by Conjecture 1.4, cannot be guaranteed. Quoting from
[25]: �As we have no examples showing such bad sequences can actually exist, perhaps it is
possible by some more explicit investigation to eliminate these bad sequences along which
convergence to the Lebesgue measure fails�. Our �rst main result, which is Theorem 1.5
below, shows that generically such bad sequences do exist, and cannot be eliminated.

1.c. Notation. � Denote by PpTq the space of Borel probability measures on T, and, for
any p ě 2, by PppTq the space of Tp-invariant measures µ P PpTq. We endow PpTq with the
topology of w˚-convergence of measures, which turns it into a compact metrizable space.

Recall that given measures µk, k ě 1, and µ belonging to PpTq, we say that µk
w˚
ÝÝÑ µ if

ż

T
fdµk ÝÑ

ż

T
fdµ

as k ÝÑ `8 for every f P CpTq, where CpTq is the space of continuous functions on T,
endowed with the sup norm || . ||8,T on T. This is equivalent to requiring that µ̂kpaq ÝÑ
µ̂paq for every a P Z, where the a-th Fourier coe�cient of a measure ν P PpTq is de�ned in
this manuscript as

ν̂paq “

ż

T
zadνpzq.

We denote by PcpTq the set of continuous (i.e. non-atomic) measures on T, and by Pp,cpTq
the set of continuous Tp-invariant measures on T. Since PppTq is w˚-closed in PpTq,
pPppTq, w˚q is also a compact metrizable space. In particular, pPppTq, w˚q is a Polish
space, in which the Baire Category Theorem applies. Recall that a subset of a Polish
space is called residual if it contains a dense Gδ set (i.e. a countable intersection of dense
open sets).

For our study of the multidimensional setting the following notation is required. For
each d ě 2, we denote by PpTdq the set of Borel probability measures on Td, and by PcpTdq
the set of continuous measures µ P PpTdq. Given a matrix A P MdpZq with detpAq ‰ 0,
we denote by TA the associated transformation xxx ÞÑ Axxx mod 1 of Td into itself. This
transformation preserves the normalised Lebesgue measure on Td, which we write as Lebd.
Notice that TA is an ergodic transformation of pTd,Lebdq if and only if no eigenvalue of
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A is a root of unity. The set of TA-invariant measures on Td is denoted by PApTq, and
PA,cpTq is the set of continuous TA-invariant measures on Td.

1.d. Main results. � Here is our �rst main result, showing that generically a continuous
Tp-invariant probability measure µ on T has some large Fourier coe�cients along the
sequence pqnqně0.

Theorem 1.5 (large Fourier coe�cients). � Let p, q ě 2 be two distinct integers.
Then the set

Sp,q :“
 

µ P Pp,cpTq ; lim sup
nÑ`8

|pµpqnq| ą 0
(

is residual in pPppTq, w˚q. In particular, the set

Gp,q :“ tµ P Pp,cpTq ; Tqnµ
w˚ //{ Leb as nÑ `8u

is residual in pPppTq, w˚q, thus disproving Conjecture 1.4.

We should note that the proof of Theorem 1.5 does not require that p and q be multi-
plicatively independent; if p and q are powers of the same integer, then a simple and direct
proof of Theorem 1.5 can be given.

By combining Theorem 1.5 with the results presented in [25], we can derive the following
corollary.

Corollary 1.6. � Let p, q ě 2 be two multiplicatively independent integers. Then the set
of all measures µ P Pp,cpTq such that

Tqnµ
w˚ //{ Leb as nÑ `8

and

Tqnµ
w˚
ÝÝÑ Leb along a sequence of upper density 1

is residual in pPppTq, w˚q.

Meiri [36] and Lindenstrauss, Meiri and Peres [33] generalised the results from [22]
and [25] to certain classes of sequences pcnqně0 other than the sequences pqnqně0. More
precisely ([36]), if the sequence of remainders pcn mod pN q0ďnăpN , N ě 1, satis�es certain
combinatorial properties, then every Tp-invariant ergodic measure µ of positive entropy is
such that pcnxqně0 is uniformly distributed mod 1 for µ-almost every x P r0, 1s. A weaker
combinatorial condition on the sequence pcnqně0 is introduced in [33]: if the so-called p-
adic collision exponent Γpppcnqq is less that 2, then every measure µ P PppTq which is
ergodic and of positive entropy is pcnq-generic in the sense that

1

N

N´1
ÿ

n“0

Tcnµ
w˚
ÝÝÑ Leb.

It follows that the set of measures µ P Pp,cpTq such that Tcnµ
w˚
ÝÝÑ Leb along a sequence of

upper density 1 is residual in pPppTq, w˚q.
Conjecture 1.4 thus �ts in a much broader framework: given a strictly increasing se-

quence of integers pcnqně0 of integers, is it true that the set

Gp,pcnq :“
 

µ P Pp,cpTq ; Tcnµ
w˚ //{ Leb as n ÝÑ `8

(
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is residual in pPppTq, w˚q? We prove in Theorem 2.1 below a very general criterion on the
sequence pcnqně0 implying an a�rmative answer to this question. It allows to deal with
most of the classes of sequences considered in [36] and [33], and we obtain for instance the
following theorem, which complements [33, Th. 1.4] and [36, Th. B]:

Theorem 1.7 (linear recurrent sequences as pcnq). � Let pcnqně0 be a sequence of
integers satisfying a linear recursion of the form

cn “ a1cn´1 ` a2cn´2 ` ¨ ¨ ¨ ` aLcn´L, n ą L

for some L ě 1 and integer coe�cients a1, . . . , aL with aL ‰ 0. If the integers aL and p
are relatively prime, then the set

Gp,pcnq “
 

µ P Pp,cpTq ; Tcnµ
w˚ //{ Leb as n ÝÑ `8

(

is residual in pPppTq, w˚q.

Notice that when L “ 1 and a1 “ q, Theorem 1.7 reduces to the case studied in
Theorem 1.5, but with the additional requirement that p and q are relatively prime.

We also mention the following related result. In [3], a continuous probability measure
µ on T was constructed with the property that for any increasing sequence pcnq in the

multiplicative semigroup tpmqn : m,n ě 0u, one has Tcnµ
w˚ //{ Leb. This disproved

Conjectures (C4) and (C5) from [35]. However, it appears that the construction from [3]
cannot be modi�ed to produce a measure that is Tp-invariant.

We now move over to the multidimensional setting. The equidistribution result [22]
of Host was generalised to the multidimensional setting by Meiri-Peres [37], Host [23]
himself and Algom [1]. The general framework of these works is the following: given two
endomorphisms A and B of Td and a measure µ P PApTdq, study the equidistribution
properties of the sequence pBnxxxqně0 for µ-almost every xxx P Td. This problem is studied
in [23] when µ is A-ergodic and has positive entropy, under the condition that detpAq and
detpBq are relatively prime (which is exactly condition (b) of Theorem 1.8 below), plus
some other assumptions on matrices A and B. It is proved in [23] that for every ergodic
measure µ P PApTdq of positive entropy, the sequence pBnxxxqně0 is uniformly distributed
in Td for µ-almost every xxx P Td. The paper [37] considers the case where A and B are
both diagonal matrices, A “ diagpa1, . . . , adq, B “ diagpb1, . . . , bdq, with |ai| ą 1, |bi| ą 1,
and gcdpai, biq “ 1 for every i P t1 . . . du.

Accordingly, we complement these results by showing a multidimensional version of
Theorem 1.5.

Theorem 1.8 (multidimensional setting). � Let d ě 2 and let A,B P MdpZq with
detpAq ‰ 0 and detpBq ‰ 0. Suppose that

(a) A is similar to a diagonal matrix D “ diagpλ1, . . . , λdq, where |λj | ‰ 1, 1 ď j ď d;

and either

(b) detpAq and detpBq are relatively prime;

or

(b') A is upper or lower triangular.

Then the set

GA,B :“
 

µ P PA,cpTdq ; TBnµ
w˚ //{ Lebd

(

is residual in pPApTdq, w˚q.
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1.e. Overview. � The paper is organised as follows. We present in Section 2 a general
criterion on a sequence pcnqně0 of integers implying that the set Gp,pcnq is residual in
pPppTq, w˚q. This criterion is the object of Theorem 2.1. Its proof relies on a density result
for certain classes of discrete measures in pPppTq, w˚q (Theorem 2.3), which is of interest
in itself and involves the so-called periodic speci�cation property of the transformation Tp.
We present in Section 3 various examples of sequences considered in [36] and [33] which
satisfy the assumptions of Theorem 2.1, and derive Theorems 1.5 and 1.7 from Theorem
2.1. The multidimensional case is treated in Section 4. Since assumption (a) of Theorem
1.8 does not necessarily imply that TA : Td ÝÑ Td has the periodic speci�cation property,
we need a di�erent argument (Theorem 4.1) in order to show the density in pPApTdq, w˚q of
the relevant classes of TA-invariant measures. We discuss in Section 5 a di�erent approach
to the Johnson-Rudolph result of [25] that the set

G 1
p,q :“ tµ P Pp,cpTq ; Tqnµ

w˚
ÝÝÑ Leb along a sequence of upper density 1u

is residual in pPppTq, w˚q for multiplicatively independent integers p and q, and present
some related results and open questions.

2. Classes of ˆp-invariant measures with some large Fourier coe�cients

In the whole section, p ě 2 will be a �xed integer. Let pcnqně0 be a strictly increasing
sequence of integers. We say that pcnqně0 satis�es assumption (H) if the following is true:

(H)

There exist �nitely many nonnegative integers t1, . . . , tr, h1, . . . , hd with hl ‰ 0
for every l P t1, . . . , du, and an in�nite subset I of N such that for every N P I,
there exist i P t1, . . . , ru and l P t1, . . . , du with the property that hlcn ” ti
mod ppN ´ 1q for in�nitely many integers n.

Our aim in this section is to prove the following theorem:

Theorem 2.1. � Let pcnqně0 be a strictly increasing sequence of integers satisfying as-
sumption (H). Then the set

Gp,pcnq “
 

µ P Pp,cpTq ; Tcnµ
w˚ //{ Leb as n ÝÑ `8

(

is residual in pPppTq, w˚q.

Condition (H) may look somewhat technical, but it is actually a rather weak one. We
shall exhibit in Section 3 many examples of sequences pcnqně0 satisfying (H). In particular,
the sequence pcnq “ pq

nq satis�es it for any q ě 2. This disproves Conjecture 1.4.
Assumption (H) is of the same nature as the congruence assumptions mod pN which

appear in the works of Host [22] and Meiri [36], and which are formalised in terms of
p-adic collision exponent in [33]. These two assumptions are nonetheless di�erent, be it
only because (H) involves congruences mod ppN ´ 1q, while the p-adic collision exponent
is de�ned in terms of congruence mod pN .

Our main tool for the proof of Theorem 2.1 is a density result for certain families of
discrete Tp-invariant measures on T.
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2.a. Density of discrete ˆp-invariant measures. � The periodic points of the trans-

formation Tp are exactly the points λ P T such that λp
N
“ λ for some N ě 1. In this case,

the probability measure µλ on T, de�ned as

µλ “
1

N

N´1
ÿ

j“0

δ
tλp

j
u
,

is a discrete Tp-invariant measure on T whose support is the orbit of the point λ under the
action of Tp. It is ergodic for Tp, and the set of all such measures (where λ varies over the
set of all ppN ´ 1q-th roots of 1, N ě 1) is dense in pPppTq, w˚q [41, 42].

This density property is deeply linked to the fact that the dynamical system pT, Tpq has
the so-called speci�cation property introduced by Bowen in [10] (see also [41, 42]). Since
it will be needed in the sequel, we recall here the de�nition from [41]. The setting is that
of compact dynamical systems pX,T q, where pX, dq is a compact metric space and T is a
continuous self-map of X. This property is often referred to as the periodic speci�cation
property, and it is the terminology we shall use here. The article [29] contains an overview
of the speci�cation property and its many variants.

De�nition 2.2. � The system pX,T q is said to have the periodic speci�cation property if
for every ε ą 0 there exists Nε P N such that for every integers 0 ď a1 ď b1 and 0 ď a2 ď b2
with a2 ´ b1 ą Nε, for every vectors x1, x2 P X, and for every integer d ą b2 ´ a1 ` Nε,
there exists a periodic point x for T with period d such that

(i) dpT jx, T jx1q ă ε for every j “ a1, . . . , b1;
(ii) dpT jx, T jx2q ă ε for every j “ a2, . . . , b2.

If x is periodic for T with period d, the measure

µx “
1

d

d´1
ÿ

j“0

δtT jxu

is called a CO-measure. Here CO stands for Closed-Orbit ; see for instance Sigmund [42].
If pX,T q has the speci�cation property, the set of CO-measures is dense in the set of
T -invariant Borel probability measures on X (see [42, Th. 1]).

Let pNkqkě1 be a strictly increasing sequence of integers. We denote by Cp,pNkq
the set

of all ppNk ´ 1q-th roots of 1:

Cp,pNkq
“

 

λ P T ; λp
Nk´1 “ 1 for some k ě 1

(

.

Let Dp,pNkq
be the family of CO-measures associated to elements λ of Cp,pNkq

:

Dp,pNkq
“

 

µλ ; λ P Cp,pNkq

(

.

We are now going to prove the following density result, which will be crucial for the
proof of Theorem 1.5:

Theorem 2.3. � The set Dp,pNkq
is dense in pPppTq, w˚q.

Proof. � Our aim is to show that given µ P PppTq, f1, . . . , fl belonging to CpTq, and
ε ą 0, there exists λ P Cp,pNkq

such that
ˇ

ˇ

ˇ

ż

T
fi dµλ ´

ż

T
fi dµ

ˇ

ˇ

ˇ
ă ε for every i P t1, . . . , lu.
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Since CO-measures are w˚-dense in PppTq, we can suppose without loss of generality that
µ is a CO-measure, which we write as

µz “
1

N

N´1
ÿ

j“0

δ
tzp

j
u

for some z P T and N ě 1 such that zp
N´1 “ 1.

Because Lipschitz functions, with respect to the distance induced by C on T, are dense
in CpTq by the Stone-Weierstrass theorem, we can also suppose without loss of generality
that the functions f1, . . . , fl are Lipschitz. Let C ą 0 be such that for every i P t1, . . . , lu
and every z1, z2 P T, |fipz1q ´ fipz2q| ď C |z1 ´ z2|. We are looking for λ P T and k ě 1

with λp
Nk´1 “ 1 such that

ˇ

ˇ

ˇ

1

N

N´1
ÿ

j“0

fipz
pj q ´

1

Nk

Nk´1
ÿ

j“0

fipλ
pj q

ˇ

ˇ ă ε for every i P t1, . . . , lu.

Fix ε1 ą 0. Let Nε1 be given by the speci�cation property. Let k ě 1 be such that
Nk ą 2N 1ε ` 2. Applying De�nition 2.2 to x1 “ x2 “ z, a1 “ 0, b1 “ Nk ´ 2Nε1 ´ 2,

a2 “ b2 “ b1 `Nε1 ` 1, and d “ Nk, we obtain the existence of λ P T with λp
Nk
“ λ such

that, for every j “ 0, . . . , Nk ´ 2Nε1 ´ 2,

ˇ

ˇzp
j
´ λp

j ˇ
ˇ ă ε1, and hence

ˇ

ˇfipz
pj q ´ fipλ

pj q
ˇ

ˇ ď Cε1.

Then, for every i P t1, . . . , lu,

ˇ

ˇ

ˇ

1

Nk ´ 2Nε1 ´ 1

Nk´2Nε1´2
ÿ

j“0

fipz
pj q ´

1

Nk ´ 2Nε1 ´ 1

Nk´2Nε1´2
ÿ

j“0

fipλ
pj q

ˇ

ˇ

ˇ
ď Cε1.

Now

ˇ

ˇ

ˇ

1

Nk ´ 2Nε1 ´ 1

Nk´2Nε1´2
ÿ

j“0

fipz
pj q ´

1

Nk

Nk´1
ÿ

j“0

fipz
pj q

ˇ

ˇ

ˇ
ď

1

Nk

Nk´1
ÿ

j“Nk´2Nε1´1

|fipz
pj q|

`

ˇ

ˇ

ˇ

1

Nk ´ 2Nε1 ´ 1
´

1

Nk

ˇ

ˇ

ˇ

Nk´2Nε1´2
ÿ

j“0

|fipz
pj q|

ď
2Nε1 ` 1

Nk

ˇ

ˇ

ˇ

ˇfi
ˇ

ˇ

ˇ

ˇ

8,T `
´

1´
Nk ´ 2Nε1 ´ 1

Nk

¯

ˇ

ˇ

ˇ

ˇfi
ˇ

ˇ

ˇ

ˇ

8,T

ď
4Nε1 ` 2

Nk

ˇ

ˇ

ˇ

ˇfi
ˇ

ˇ

ˇ

ˇ

8,T ď 6
Nε1

Nk

ˇ

ˇ

ˇ

ˇfi
ˇ

ˇ

ˇ

ˇ

8,T

and

ˇ

ˇ

ˇ

1

Nk ´ 2Nε1 ´ 1

Nk´2Nε1´2
ÿ

j“0

fipλ
pj q ´

1

Nk

Nk´1
ÿ

j“0

fipλ
pj q

ˇ

ˇ

ˇ
ď 6

Nε1

Nk

ˇ

ˇ

ˇ

ˇfi
ˇ

ˇ

ˇ

ˇ

8,T.

Therefore
ˇ

ˇ

ˇ

1

Nk

Nk´1
ÿ

j“0

fipz
pj q ´

1

Nk

Nk´1
ÿ

j“0

fipλ
pj q

ˇ

ˇ

ˇ
ď Cε1 ` 12

Nε1

Nk

ˇ

ˇ

ˇ

ˇfi
ˇ

ˇ

ˇ

ˇ

8,T.
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Let now rk be the unique integer with rkN ď Nk ă prk ` 1qN . Then, proceeding in the
same way as above, we obtain that

ˇ

ˇ

ˇ

1

Nk

Nk´1
ÿ

j“0

fipz
pj q ´

1

rk.N

rk.N´1
ÿ

j“0

fipz
pj q

ˇ

ˇ

ˇ
ď

1

Nk

Nk´1
ÿ

j“rkN

|fipz
pj q| `

ˇ

ˇ

ˇ

1

Nk
´

1

rk.N

ˇ

ˇ

ˇ

rkN´1
ÿ

j“0

|fipz
pj q|

ď 2
N

Nk

ˇ

ˇ

ˇ

ˇfi
ˇ

ˇ

ˇ

ˇ

8,T.

Since N is �xed and Nk
// `8 , we can choose Nk ą 2Nε1 ` 2 su�ciently large so that

maxp12
Nε1

Nk
, 2 N

Nk
q
ˇ

ˇ

ˇ

ˇfi
ˇ

ˇ

ˇ

ˇ

8,T ă ε1 for every i P t1 . . . lu. As

1

rk.N

rkN´1
ÿ

j“0

fipz
pj q “

1

N

N´1
ÿ

j“0

fipz
pj q,

we get that
ˇ

ˇ

ˇ

1

N

N´1
ÿ

j“0

fipz
pj q ´

1

Nk

Nk´1
ÿ

j“0

fipλ
pj q

ˇ

ˇ

ˇ
ď pC ` 2qε1.

Taking ε1 so small that pC ` 2qε1 ă ε yields the result we are looking for.

Remark 2.4. � The argument presented above actually holds in a much more general
setting, and shows the following result. Let pX,T q be a dynamical system with the periodic
speci�cation property. Given a strictly increasing sequence pNkqkě1 of integers, let

CT,pNkq
“

 

x P X ; TNkx “ x for some k ě 1
(

denote the set of periodic points for T having a period within the set tNk ; k ě 1u. Let
DT,pNkq

“
 

µx ; x P CT,pNkq

(

. Then DT,pNkq
is dense in the set PT pXq of T -invariant Borel

probability measures on X, endowed with the w˚-topology.

2.b. Proof of Theorem 2.1. � Let pcnqně0 be a sequence of integers satisfying as-
sumption (H), and let t1, . . . , tr, h1, . . . , hd and I Ď N be given by (H). For any 0 ă γ ă 1,
consider the set

G γ
p,pcnq

“
 

µ PPppTq ; @ j P t1, . . . , ru pµptjq ‰ 0 and

@n0, Dn ě n0, D l P t1, . . . , du ; |pµphlcnq| ą γ min
1ďjďr

|pµptjq|
(

.

The interest of introducing this somewhat strange-looking set is the following fact.

Fact 2.5. � If µ belongs to G γ
p,pcnq

, then there exists l P t1 . . . du such that

lim sup
nÑ`8

|pµphlcnq| ą 0.

In particular, Tcnµ
w˚ //{ Leb as n ÝÑ `8.

Proof. � Let µ P G γ
p,pcnq

. There exists l P t1 . . . du such that |pµphlcnq| ą γmin1ďjďr |pµptjq|

for in�nitely many n's, and so

lim sup
nÑ`8

|pµphlcnq| ě γ min
1ďjďr

|pµptjq| ą 0.

Hence zTcnµphlq //{ 0 as n ÝÑ `8, and as hl ‰ 0 this implies that Tcnµ
w˚ //{ Leb.
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We �rst prove:

Lemma 2.6. � For every 0 ă γ ă 1, the set G γ
p,pcnq

is a dense Gδ subset of pPppTq, w˚q.

Proof. � The set G γ
p,pcnq

is clearly Gδ in pPppTq, w˚q, so we only need to show that it is

dense. Order the in�nite set I Ď N as a strictly increasing sequence pNkqkě1.
We have the following:

Fact 2.7. � Let µ belong to Dp,pNkq
. There exist i P t1, . . . , ru and l P t1, . . . , du such

that pµphlcnq “ pµptiq for in�nitely many integers n.

Proof of Fact 2.7. � There exists λ P Cp,pNkq
, with λp

Nk´1 “ 1 for some k ě 1, such that

µ “ µλ “
1

Nk

Nk´1
ÿ

j“0

δ
tλp

j
u
.

For every a P Z, we have

pµpaq “
1

Nk

Nk´1
ÿ

j“0

λa.p
j
.

Since Nk P I, there exist i P t1, . . . , ru and l P t1, . . . , du such that hlcn ” ti mod ppNk´1q
for in�nitely many n's. Hence

hlcnp
j ” tip

j mod ppNk ´ 1q for every 0 ď j ă Nk.

As λp
Nk´1 “ 1, it follows that λhlcnp

j
“ λtip

j
. This yields that pµphlcnq “ pµptiq.

Let now V be a non-empty open subset of pPppTq, w˚q. By Theorem 2.3, there exists
µ P Dp,pNkq

XV. Let i P t1, . . . , ru and l P t1, . . . , du be such that pµphlcnq “ pµptiq for every
n belonging to a certain in�nite subset D of N. Then

lim sup
nÑ`8

|pµphlcnq| ě |pµptiq| ě min
1ďjďr

|pµptjq|,

and if pµptjq ‰ 0 for every j P t1, . . . , ru, then µ belongs to Gγp,pcnq. Hence G
γ
p,pcnq

X V ‰ H
in this case.

Suppose now that min
1ďjďr

|pµptjq| “ 0, and write t1, . . . , ru “ I Y J , where

I “
 

j P t1, . . . , ru ; pµptjq “ 0
(

and J “
 

j P t1, . . . , ru ; pµptjq ‰ 0
(

.

For any 0 ă ρ ă 1, consider the measure µρ “ ρδ1`p1´ρqµ: it is Tp-invariant and belongs
to V if ρ is su�ciently small. For every j P t1, . . . , ru, pµρptjq “ ρ ` p1 ´ ρqpµptjq, so that
pµρptjq “ ρ ą 0 for every j P I. If ρ is su�ciently small, |pµρptjq| ą 0 for every j P J and
thus min

1ďjďr
|pµρptjq| ą 0. Since pµρphlcnq “ ρ ` p1 ´ ρqpµptiq “ pµρptiq for every n P D, it

follows that pµρ belongs to G
γ
p,pcnq

X V in this case as well. Lemma 2.6 is proved.

The last step in our proof of Theorem 2.1 is the following classical fact:

Fact 2.8. � The set Pp,cpTq is a dense Gδ subset of pPppTq, w˚q.
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Proof. � It is a known result that if X is a Polish space, the set PcpXq of continuous
probability measures on X is a Gδ subset of the set PpXq of all Borel probability measures
on X, endowed with the w˚-topology (see for instance [11, Proposition 2.16] or [18, Fact
3.2]). So Pp,cpTq is Gδ in pPppTq, w˚q. The density of Pp,cpTq in PppTq is proved in [41],
using the density of CO-measures in PppTq. It can also be retrieved by using the following
elementary observation: there exists a sequence pµkqkě1 of elements of Pp,cpTq such that

µk
w˚
ÝÝÑ δ1.

The measures µk can be constructed as Cantor-type measures, also called p-Bernoulli
in [34], [35], or [15]: given a p-tuple Θ “ pθ0, θ1, . . . , θp´1q of elements of p0, 1q with
řp´1
j“0 θi “ 1, let mΘ be the product measure

mΘ “
â

ně1

´

p´1
ÿ

j“0

θjδtju

¯

on t0, 1, . . . , p´ 1uN,

and let µΘ P PpTq be the image measure of mΘ by the map Φ : t0, 1, . . . , p´ 1uN // T
de�ned by

Φ
`

pωnqně1

˘

“ exp
´

2iπ
ÿ

ně1

ωnp
´n

¯

.

Each measure µΘ is easily seen to belong to Pp,cpTq, and µΘ
w˚
ÝÝÑ δ1 as Θ // p1, 0, . . . , 0q.

Once we have obtained a sequence pµkqkě1 of elements of Pp,cpTq such that µk
w˚
ÝÝÑ δ1,

the density of Pp,cpTqin PppTq immediately follows, since for each measure µ P PppTq,
pµk ˚µqkě1 is a sequence of Tp-invariant continuous measures which converges w˚ to µ.

Proof of Theorem 2.1. � It follows from Lemma 2.6 and Fact 2.8 and from the Baire
Category Theorem that for any γ P p0, 1q, the setGγp,pcnqXPp,cpTq is residual in pPppTq, w

˚q.

By Fact 2.5, the set
 

µ P Pp,cpTq ; Dl P t1, . . . , du lim sup
nÑ`8

|pµphlcnq| ą 0
(

is residual in pPppTq, w˚q, and hence Gp,pcnq is residual as well. Theorem 2.1 is proved.

3. Proofs of Theorems 1.5 and 1.7, and further examples

In this section, we apply Theorem 2.1 to various classes of sequences pcnqně0, and show
that generically in the Baire Category sense, a measure µ P PppTq has in�nitely many
�large� Fourier coe�cients along the sequence pcnqně0, or along some dilated sequence
pa.cnqně0 for some a P Zzt0u. We begin by proving Theorem 1.5.

3.a. Disproving Conjecture (C3): proof of Theorem 1.5. � Let p ě 2. Given
another integer q ě 2 (not necessarily multiplicatively independent from p), we consider
the sequence cn “ qn, n ě 0. In order to show that the sets

Sp,q :“
 

µ P Pp,cpTq ; lim sup
nÑ`8

|pµpqnq| ą 0
(

and

Gp,q “ tµ P Pp,cpTq ; Tqnµ
w˚ //{ Lebu
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are dense in pPp,cpTq, w˚q it su�ces to show that this sequence pcnqně0 satis�es assumption
(H), and then to apply Theorem 2.1. That assumption (H) is satis�ed is a consequence of
the following lemma, which relies on considerations from elementary number theory:

Lemma 3.1. � Let p, q ě 2. There exists an integer N0 ě 1 such that for every a ě 1
su�ciently large, the following assertion holds:

for every N P I :“ N0.N` 1, there exists an integer rN ě 1 such that

qa`k.rN ” qa mod ppN ´ 1q for every k ě 0.

Proof. � Write q as q “ qb11 . . . q
bs
s , where q1, . . . , qs are primes and b1, . . . , bs are positive

integers. Let a0 ě 1 be such that 1 ă p ă qa0bii for every i P t1, . . . , su. A �rst step in the
proof of Lemma 3.1 is to show the following

Fact 3.2. � Let u ě 1 be a positive integer. Let γ ě 1 be such that for every i P t1, . . . , su
and every v P t1, . . . , uu, qγi does not divide p

v´1. There exist integers N1 ą u, . . . , Ns ą u
such that for every i P t1, . . . , su and every N P Nz

Ťs
j“1Nj .N,

pN ı 1 mod qγi .

Proof. � Let i P t1, . . . , su. If pN ı 1 mod qγi for every N ě 1, then clearly pN ı 1
mod qγi for every N P Nz

Ťs
j“1Nj .N, whatever the choice of the integers N1, . . . , Ns. So

we can suppose without loss of generality that there exists an integer N ě 1 such that
pN ” 1 mod qγi . Let Ni be the smallest such integer. Necessarily, Ni ą u, since else qγi
would divide pv ´ 1 for some v P t1, . . . , uu. Moreover any integer N such that pN ” 1
mod qγi is a multiple of Ni. It follows that p

N ı 1 mod qγi for every N P NzNi.N.

We apply Fact 3.2 to u “ 1 and γ “ a0.max1ďiďs bi. Let N1, . . . , Ns be given by Fact
3.2. Since Nj ě 2 for every j P t1, . . . , su, the set J :“ Nz

Ťs
j“1Nj .N is in�nite. Set

N0 “ N1 . . . Nl. Then I :“ N0.N` 1 is contained in J .
Fix N P I. For each i P t1, . . . , su, let 0 ď ai,N ă γ be the largest integer such that q

ai,N
i

divides pN´1, and write pN´1 “ q
ai,N
i si,N for some integer si,N ě 1 with gcdpsi,N , qiq “ 1.

By the Fermat-Euler Theorem, there exists ri,N ě 1 such that q
ri,N
i ” 1 mod si,N . Set

rN “ r1,N .r2,N . . . rs,N . Then for every l ě 1 and every i P t1, . . . , su, ql.rNi ” 1 mod si,N ,

so that q
ai,N`l.rN
i ” q

ai,N
i mod ppN ´ 1q for every i P t1, . . . , su. If a is su�ciently large,

we have ai,N ă γ ă a.bi for every i P t1, . . . , su, so that qa.bi`l.rNi ” qa.bii mod ppN ´ 1q.

Applying this to l “ k.bi, k ě 1, yields that pqbii q
a`k.rN ” pqbii q

a mod ppN ´ 1q for every

i P t1, . . . , su, i.e. that qa`k.rN ” qa mod ppN ´ 1q.

Proof of Theorem 1.5. � By Lemma 3.1 above, the sequence pqnqně1 satis�es assumption
(H). The proof of Theorem 2.1 combined with Lemma 3.1 shows the density of

Sp,q :“
 

µ P Pp,cpTq ; lim sup
nÑ`8

|pµpqnq| ą 0
(

in pPp,cpTq, w˚q.

Remark 3.3. � The proof of Theorem 1.5 does not make use of all the information
provided by Lemma 3.1: we apply it with u “ 1, the particular form of the set I is not
used, and we only need the fact that for every N P I, there exist in�nitely many n's such
that qn ” qa mod ppN ´ 1q. This additional information will be important, however, in
the forthcoming proofs of Theorems 3.4 and 1.7.
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3.b. A generalisation of Theorem 1.5. � In this section, we consider sequences
pcnqně0 of the following form: cn “ f1pnqq

n
1 ` f2pnqq

n
2 ` ¨ ¨ ¨ ` fdpnqq

n
d , n ě 0, where for

each l P t1, . . . , du, ql ě 2 is an integer and fl is a polynomial with coe�cients in Z. This
class of sequences is considered in [36] and [33], where the following result is proved: if
p ě 2 admits a prime factor p˚ which does not divide one of the integers qi, 1 ď i ď d,
then any measure µ P PppTq which is ergodic and of positive entropy is pcnq-generic. It
follows that the set

G1p,pcnq “
 

µ P Pp,cpTq ; Tcnµ
w˚
ÝÝÑ Leb on a set of upper density 1

(

is residual in pPppTq, w˚q � see Section 5.a for details on this argument.

We complement this result by showing the following

Theorem 3.4. � If pcnqně0 is a sequence of the form cn “ f1pnqq
n
1 ` f2pnqq

n
2 ` ¨ ¨ ¨ `

fdpnqq
n
d , n ě 0, where for each l P t1, . . . , du, ql ě 2 is an integer and fl is a polynomial

with coe�cients in Z, then the set

Gp,pcnq “
 

µ P Pp,cpTq ; Tcnµ
w˚ //{ Leb as n // `8

(

is residual in pPppTq, w˚q.

Proof. � Let us show that pcnqně0 satis�es assumption (H). By Lemma 3.1, there exist
integers a ě 1 and Nl, 1 ď l ď d, such that for every l P t1, . . . , du and every N P Il :“
Nl.N` 1, there exists an integer rl,N ě 1 such that for every k ě 0,

q
a`k.rl,N
l ” qal mod ppN ´ 1q.

The set I “
Şd
l“1 Il is in�nite. If we set, for each N P I, rN “ r1,N . . . rd,N , we get that

for every N P I and every k ě 0,

(1) qa`k.rNl ” qal mod ppN ´ 1q for every l P t1, . . . , du.

For each l P t1, . . . , du, write the polynomial fl as

flpxq “
∆l
ÿ

j“0

b
plq
j x

j , where b
plq
j P Z for every j P t0, . . . ,∆lu.

For every N P I and every integer k1 ě 0, we have

fl
`

a` k1ppN ´ 1qrN
˘

“

∆l
ÿ

j“0

b
plq
j

`

a` k1ppN ´ 1qrN
˘j

and
`

a` k1ppN ´ 1qrN
˘j
” aj mod ppN ´ 1q for every j ě 0.

Hence

fl
`

a` k1ppN ´ 1qrN
˘

” flpaq mod ppN ´ 1q for every l P t1, . . . , du.(2)

Putting together (1) and (2) yields that for every N P I,

ca`k1ppN´1qr,N ” ca mod ppN ´ 1q for every k1 ě 0,

which implies that assumption (H) is true. Theorem 3.4 thus follows from Theorem 2.1.
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Remark 3.5. � We notice that if cn “ fpnq for some polynomial f P ZrXs, then the set

 

µ P Pp,cpTq ; Tcnµ
w˚ //{ Leb

(

is also residual in pPppTq, w˚q. Remark that in this case, the sequence pcnxqně0 is uniformly
distributed mod 1 for every x P RzQ, and hence

(3)
1

N

N´1
ÿ

n“0

expp2iπhcnxq // 0 as N // `8 for every h P Zzt0u.

If µ belongs to Pp,cpTq, integrating (3) with respect to the measure µ yields that

1

N

N´1
ÿ

n“0

pµphcnq // 0 for every h P Zzt0u, i.e.
1

N

N´1
ÿ

n“0

Tcnµ
w˚
ÝÝÑ Leb.

3.c. Further examples: proof of Theorem 1.7. � Let pcnqně0 be de�ned by a linear
recursion: there exist L ě 1 and coe�cients a1, . . . , aL in Z with aL ‰ 0 such that

cn “ a1cn´1 ` a2cn´2 ` ¨ ¨ ¨ ` aLcn´L for every n ě L.

Let p ě 2. Meiri introduces in [36] the following two assumptions on the sequence pcnqně0:

(a) pcnqně0 has no non-constant arithmetic subsequence;
(b) aL and p are relatively prime.

It is observed in [36, Prop. 5.1] that assumption (a) is satis�ed as soon as the following
property holds:

(a') if λ1, . . . , λL1 , with 1 ď L1 ď L, are the distinct roots of the recursion polynomial

ppxq “ xL ´
řL
l“1 alx

L´l, then none of the quantities λi and λi{λj , 1 ď i ă j ď L1 is
a root of unity.

If assumptions (a) and (b) are satis�ed, any measure µ P PppTq which is ergodic and of

positive entropy is such that Tcnµ
w˚
ÝÝÑ Leb as n // `8 (this is a consequence of [36, Th.

5.2]). In particular, the set

G1p,pcnq “
 

µ P Pp,cpTq ; Tcnµ
w˚
ÝÝÑ Leb along a set of upper density 1

(

is residual in pPppTq, w˚q. See also [33, Th. 4.3].

Theorem 1.7 complements these results by showing that under the sole assumption (b),
the set

Gp,pcnq “
 

µ P Pp,cpTq ; Tcnµ
w˚ //{ Leb

(

is residual in pPppTq, w˚q.

Proof of Theorem 1.7. � Consider the matrix A PMLpZq given by

A “

¨

˚

˚

˚

˚

˚

˝

a1 a2 . . . . . . aL
1 0 . . . . . . 0

0 1
. . . 0

...
. . .

. . .
. . .

...
0 . . . 0 1 0

˛

‹

‹

‹

‹

‹

‚

.
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Setting Cn “
T
`

cn cn´1 . . . cn´L`1

˘

for every n ě L ´ 1, we have Cn`1 “ ACn for

every n ě L ´ 1. Since detA “ p´1qL`1aL and aL ‰ 0, A is invertible as a matrix of
MLpQq, and

A´1 “
p´1qL`1

aL
adj pAq

where adj pAq, the adjoint (or adjugate) of A, is the transpose of the matrix of the cofactors
of A. Observe that adj pAq PMLpZq.

Let us decompose the integer aL as aL “ qb11 . . . qbss , where qi is prime and bi ě 1 for
every i P t1, . . . , su. By Fact 3.2, there exist γ ě 1 and an in�nite subset I of N such that
for every N P I, pN ı 1 mod qγi for every i P t1, . . . , su. Hence, for every N P I, pN ´ 1

can be written as pN ´ 1 “ q
β1,N
1 . . . q

βs,N
s rN , where 0 ď βi,N ă γ and gcdpqi, rN q “ 1 for

each i P t1, . . . , su. Since the prime factors of aL are exactly the qi's, it follows that aL and
rN are relatively prime, and hence that aL is invertible modulo rN : there exists an integer
dN with 0 ď dN ă rN such that aL.dN ” 1 mod rN . Setting BN “ p´1qL`1dN adjpAq,
we observe that BN P MLpZq and that ABN ” BNA ” I mod rN . So A is invertible
modulo rN , and its inverse is BN .

Consider now the set of matrices in MLpZq consisting of all powers An, n ě 0, of
A, taken modulo rN . This set being �nite, there exist two integers 0 ď n1,N ă n2,N

such that An1,N ” An2,N mod rN . Setting nN “ n2,N ´ n1,N , A
nN ” I mod rN , and

thus the sequence pCnq taken modulo rN is periodic, with period nN . It follows that
the sequence pcnq itself taken modulo rN is periodic of period nN , so that, in particular,

cjnN ” c0 mod rN for every j ě 0. Setting hN “ q
β1,N
1 . . . q

βs,N
s and remembering that

pN ´ 1 “ hN .rN , we obtain that hN .cjnN ” hNc0 mod ppN ´ 1q for every j ě 0. Since
0 ď βi,N ă γ for every i P t1, . . . , su, the set thN ; N P Iu is �nite and consists of non-
zero integers. Assumption (H) is satis�ed, and the proof is concluded as usual thanks to
Theorem 2.1.

4. The multidimensional case: proof of Theorem 1.8

In this section, d ě 2 is an integer, and A,B PMdpZq are two dˆd matrices with integer
coe�cients such that detA ‰ 0 and detB ‰ 0. The matrix A is supposed to be similar in
MdpCq to a diagonal matrix D whose diagonal coe�cients λ1, . . . , λd are not of modulus
1. Let P P GLdpCq be such that A “ PDP´1. The matrix B is supposed to be invertible
in MdpCq, i.e. detB ‰ 0. Theorem 1.8 states that the set

GA,B “
 

µ P PA,cpTdq ; TBnµ
w˚ //{ Leb

(

is residual in pPApTdq, w˚q. The proof of Theorem 1.8 follows the same structure as those of
Theorems 2.1 and 1.5, but certain technical di�culties that come with the multidimensional
setting must be overcome.

We begin by proving an analogue of Theorem 2.3.

4.a. Some dense classes of discrete measures in PApTdq. � Let pNkqkě1 be a
strictly increasing sequence of integers. Consider the set

CCCA,pNkq
“

 

xxx P Td ; ANkxxx “ xxx for some k ě 1
(
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which consists of periodic points for TA having a period within the set tNk ; k ě 1u. For
each xxx P CCCA,pNkq

, let µxxx be the measure de�ned by

µxxx “
1

Nk

Nk´1
ÿ

j“0

δtAjxxxu.

It is a discrete TA-invariant probability measure on Td. Set

DDDA,pNkq
“

 

µxxx ; xxx P CCCA,pNkq

(

.

Taking inspiration from Theorem 2.3, we would like to show that the set DDDA,pNkq
is dense

in pPApTdq, w˚q. If pTd, TAq has the periodic speci�cation property, this is an immediate
consequence of Remark 2.4. However, TA is known to have the periodic speci�cation
property only in the case where A is an hyperbolic automorphism of Td, i.e. detA “ ˘1
and A has no eigenvalue of modulus 1. Since A is not assumed here to be an automorphism
of Td, we need to take a di�erent route. It will lead to the following weaker result, which
is fortunately su�cient for our purposes:

Theorem 4.1. � The convex hull of the set DDDA,pNkq
is dense in pPApTdq, w˚q.

Proof. � Denote by FFFA,pNkq
the w˚-closure in PApTdq of the convex hull of DDDA,pNkq

. This

is a w˚-closed convex subset of PApTdq, and also of the Banach space MpTdq of complex
measures on Td, endowed with the norm ||µ|| :“ |µ|pTdq. This space MpTdq is the dual
space of pCpTdq, || . ||8,Tdq, the space of continuous functions on Td.

Our aim is to show that FFFA,pNkq
“ PApTdq. Suppose that it is not the case, and that

there exists a measure µ0 belonging to PApTdqzFFFA,pNkq
.

Applying the Hahn-Banach Theorem in the locally convex space pMpTdq, w˚q, we obtain
that there exists a w˚-continuous linear functional L : MpTdq ÝÑ C, as well as real
numbers γ1 ă γ2 such that

<epLpµqq ď γ1 ă γ2 ď <epLpµ0qq

for every µ P FFFA,pNkq
. Since any w˚-continuous functional on MpTdq “ CpTdq˚ acts as

integration against an element of CpTdq, there exists a function f P CpTdq such that

<e
ż

T
f dµ ď γ1 ă γ2 ď <e

ż

Td

f dµ0

for every µ P FFFA,pNkq
. The measures µ and µ0 being nonnegative, replacing f by its real

part we can assume that f is real-valued, and thus that

(4)

ż

T
f dµ ď γ1 ă γ2 ď

ż

Td

f dµ0 for every µ P FFFA,pNkq
.

Moreover, it is possible to assume that f is a Lipschitz map on Td “ Rd{Zd, endowed with
the distance induced by the sup norm || . ||8,Rd on Rd. We thus suppose that there exists
a constant C ą 0 such that

(5) |fpxxx1q ´ fpxxx2q| ď C inf
!

||xxx1 ´ xxx2 ´ lll||8,Rd ; lll P Zd
)

for every xxx1, xxx2 P Td.
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For any integer k ě 1 and any element xxxk of Td such that pANk ´ Iqxxxk “ 0, the measure

µxxxk “
1
Nk

řNk´1
j“0 δtAjxxxku belongs to FFFA,pNkq

. Applying (4) to this measure yields that

(6)
1

Nk

Nk´1
ÿ

j“0

fpAjxxxkq ď γ1 ă γ2 ď

ż

Td

f dµ0.

Let now xxx be an arbitrary element of Td, and let k ě 1. Consider the vector yyyk “
pANk ´ Iqxxx, seen as an element of Rd (and not as an element of Td). There exists lllk P Zd
such that ||yyyk ´ lllk||8,Rd ď 1. Recalling that A “ PDP´1, with D “ diagpλ1, . . . , λdq, we
thus have

ˇ

ˇ

ˇ

ˇP pDNk ´ IqP´1xxx´ lllk
ˇ

ˇ

ˇ

ˇ

8,Rd ď 1,

so that

ˇ

ˇ

ˇ

ˇ pDNk ´ IqP´1xxx´ P´1lllk
ˇ

ˇ

ˇ

ˇ

8,Cd ď ||P
´1||8(7)

where ||P´1||8 is the norm of the matrix P´1 seen as an endomorphism of pCd, || . ||8,Cdq.
The inequality (7) means exactly that

(8) sup
1ďiďd

ˇ

ˇ pλNk
i ´ 1q pP´1xxxqi ´ pP

´1lllkqi
ˇ

ˇ ď ||P´1||8.

Since no eigenvalue of A belongs to the unit circle, ANk ´ I is invertible in MdpRq and
it is legitimate to set zzzk “ pA

Nk ´ Iq´1lllk P Rd. Let xxxk be the corresponding element of
Td, obtained by taking mod 1 all the coordinates of zzzk. Then xxxk belongs to CCCA,pNkq

, with

pANk ´ Iqxxxk “ 0 in Td. Also, zzzk “ P pDNk ´ Iq´1P´1 lllk, so that

P´1zzzk “
´ 1

λNk
i ´ 1

¨
`

P´1lllk
˘

i

¯

1ďiďd
.

It follows from (8) that for every i P t1 . . . , du,

(9)
ˇ

ˇpP´1xxxqi ´ pP
´1zzzkqi

ˇ

ˇ ď
||P´1||8

|λNk
i ´ 1|

¨

By (5),

ˇ

ˇ fpAjxxxq ´ fpAjxxxkq
ˇ

ˇ ď C inf
!

||Ajxxx´Ajxxxk ´ lll||8,Rd ; lll P Zd
)

ď C
ˇ

ˇ

ˇ

ˇAjxxx´Ajzzzk
ˇ

ˇ

ˇ

ˇ

8,Rd

ď C ||P ||8
ˇ

ˇ

ˇ

ˇDjpP´1xxx´ P´1zzzkq
ˇ

ˇ

ˇ

ˇ

8,Cd

“ C ||P ||8 sup
1ďiďd

|λji | .
ˇ

ˇpP´1xxx´ P´1zzzkqi
ˇ

ˇ

ď C ||P ||8

d
ÿ

i“1

|λji | .
ˇ

ˇpP´1xxx´ P´1zzzkqi
ˇ

ˇ.

Plugging into (9) yields that

ˇ

ˇ fpAjxxxq ´ fpAjxxxkq
ˇ

ˇ ď C ||P ||8 . ||P
´1||8

d
ÿ

i“1

|λi|
j

|λNk
i ´ 1|

¨
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Hence

ˇ

ˇ

ˇ

1

Nk

Nk´1
ÿ

j“0

fpAjxxxq ´
1

Nk

Nk´1
ÿ

j“0

fpAjxxxkq
ˇ

ˇ

ˇ
ď C ||P ||8 ||P

´1||8
1

Nk

d
ÿ

i“1

1

|λNk
i ´ 1|

Nk´1
ÿ

j“0

|λi|
j

ď C ||P ||8 ||P
´1||8

1

Nk

d
ÿ

i“1

|λi|
Nk ´ 1

|λNk
i ´ 1| p|λi| ´ 1q

¨

Notice that |λi| ‰ 1 for all i “ 1 . . . d. Observe that p|λi|
Nk ´ 1q{|λNk

i ´ 1| ÝÑ 1 as

k ÝÑ `8 if |λi| ą 1, while p|λi|
Nk ´ 1q{|λNk

i ´ 1| ÝÑ ´1 as k ÝÑ `8 if |λi| ă 1. We
obtain the existence of a positive constant C 1 such that

sup
kě1

d
ÿ

i“1

|λi|
Nk ´ 1

|λNk
i ´ 1| p|λi| ´ 1q

ď C 1.

Thus there exists C2 ą 0 such that

(10)
ˇ

ˇ

ˇ

1

Nk

Nk´1
ÿ

j“0

fpAjxxxq ´
1

Nk

Nk´1
ÿ

j“0

fpAjxxxkq
ˇ

ˇ

ˇ
ď
C2

Nk
for every k ě 1.

The right hand bound in (10) tends to 0 as k tends to in�nity. Combining this with the
fact that inequalities (6) and (10) hold true for every k ě 1, we obtain that

(11) lim sup
kÑ`8

1

Nk

Nk´1
ÿ

j“0

fpAjxxxq ď γ1 ă γ2 ď

ż

Td

f dµ0 for every xxx P Td.

Let ε ą 0 be such that γ1 ă γ2 ´ ε. Applying the Ergodic Decomposition Theorem to the
measure µ0 yields the existence of an ergodic TA-invariant measure ν0 on Td such that

ż

Td

f dν0 ě

ż

Td

f dµ0 ´ ε.

It then follows from (11) that

(12) lim sup
kÑ`8

1

Nk

Nk´1
ÿ

j“0

fpAjxxxq ď γ1 ă γ2 ´ ε ď

ż

Td

f dν0

for every xxx P Td.

But since the measure ν0 is ergodic, the Birkho� Pointwise Ergodic Theorem implies
that

lim sup
kÑ`8

1

Nk

Nk´1
ÿ

j“0

fpAjxxxq “

ż

Td

f dν0

for ν0-almost every xxx P Td, which contradicts (12). So the initial assumption that the set
PApTdqzFFFA,pNkq

is non-empty cannot hold, and Theorem 4.1 is proved

4.b. Proof of Theorem 1.8. � The proof of Theorem 1.8 is similar in spirit to that of
Theorem 1.5. Of course, assumption (H) and Theorem 2.1 are not available anymore, and
they have to be replaced by the following analogue of Fact 3.2:
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Lemma 4.2. � Let A PMdpZq with detA ‰ 0 and detpA´ Iq ‰ 0, and let p1, . . . , ps ě 2
be prime numbers such that gcd ppi,detAq “ 1 for every i P t1, . . . , su. There exist an
in�nite subset I of N and an integer γ ě 1 such that for every i P t1, . . . , su and every
N P I,

det
`

AN ´ I
˘

ı 0 mod pγi .

Proof of Lemma 4.2. � Since detpA ´ Iq ‰ 0, there exists γ ě 1 such that for every
i P t1, . . . , su, pγi does not divide detpA ´ Iq. Since gcd ppi,detAq “ 1 and pi is prime,
gcd ppγi , detAq “ 1 as well, and A is invertible modulo pγi . Proceeding as in the proof of

Theorem 1.7, we obtain an integer ni ě 2 such that Ani ” I mod pγi , and hence Alni ” I

mod pγi for every l ě 1. Setting n0 “ n1 . . . ns, we have A
ln0 ” I mod pγi for every l ě 1

and every i P t1, . . . , su. Thus Aln0`1´I ” A´I mod pγi and detpAln0`1´Iq ” detpA´Iq

mod pγi . Since detpA ´ Iq ı 0 mod pγi , we have detpAln0`1 ´ Iq ı 0 mod pγi for every
l ě 1 and every i P t1, . . . , su, and the lemma follows by setting I “ n0.N` 1.

Our aim is now to show that under the assumptions of Theorem 1.8, the following fact
holds:

Fact 4.3. � Suppose that A,B P MdpZq satisfy assumption (a), and either assumption
(b) or (b') of Theorem 1.8. There exist a strictly increasing sequence pNkqkě1 of integers
and a �nite subset F of Zzt0u such that, for every k ě 1, the integers qk :“ detpANk ´ Iq
can be decomposed as qk “ hk.rk, where hk P F , rk ě 1, and gcd prk,detBq “ 1.

Proof of Fact 4.3. � Recall that since A has no eigenvalue of modulus 1, ANk ´ I is
invertible inMdpCq, and hence qk :“ detpANk ´ Iq ‰ 0. If detB “ ˘1, it su�ces to choose
Nk “ k, k ě 1, and F “ t˘1u. So we suppose without loss of generality that | detB| ě 2.

We decompose detB as detB “ ε pb11 . . . pbss , where ε “ ˘1, bi ě 1 and pi is a prime
number for every i P t1, . . . , su. We now treat separately two cases:

Case 1: assumption (b) is satis�ed, i.e. gcd pdetA, detBq “ 1. In this case gcd ppi, detAq “
1 for every i P t1, . . . , su, and Lemma 4.2 applies: there exist γ ě 1 and an in�nite set
I Ď N such that for every i P t1, . . . , su and every N P I, pγi does not divide detpAN ´ Iq.
We enumerate the set I as a strictly increasing sequence pNkqkě1, and for each k ě 1 we
decompose qk “ detpANk ´ Iq as qk “ εk p

a1,k
1 . . . p

as,k
s rk, where εk “ ˘1, 0 ď ai,k ă γ and

gcd prk, piq “ 1 for each i P t1, . . . , su. Setting

F “
 

˘pa11 . . . pass ; 0 ď ai ă γ, i “ 1 . . . s
(

yields the conclusion of Fact 4.3 in this case.

Case 2: assumption (b') is satis�ed. Let a1, . . . , ad be the diagonal coe�cients of A, which

belong to Zzt0u. For every N ě 1, detpAN ´ Iq “
śd
l“1pa

N
l ´1q. By Fact 3.2 applied with

u “ 2, there exist for each l P t1, . . . , du integers N1,l ě 3, . . . , Ns,l ě 3 as well as γl ě 1
such that for every i P t1, . . . , su and every N P Nz

Ťs
i“1Ni,l .N,

|al|
N ı 1 mod pγli .

Since the integers Ni,l are all greater or equal to 3, the set J “ Nz
Ťd
l“1

Ťs
i“1Ni,l .N

contains an in�nite subset J 1 consisting of even integers. Let I “ tM ě 1 ; 2M P J 1u. For
every i P t1, . . . , su, every l P t1, . . . , du and every M P I,

aMl ı 1 mod pγli .
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Setting γ0 “ max1ďlďd γl, we have thus

aMl ı 1 mod pγ0i

for every l P t1, . . . , du, i P t1, . . . , su and M P I. We now set γ :“ dγ0. Then pγi cannot

divide the product
śd
l“1pa

M
l ´ 1q, since else pγ0i would divide one of the terms aMl ´ 1,

1 ď l ď d. Hence detpAM ´ Iq ı 0 mod pγi for every i P t1, . . . , su, and we conclude the
proof as in the �rst case.

We now use the notation from Fact 4.3. Since, for each k ě 1, rk and detB are relatively
prime, B is invertible modulo rk, and there exists an integer mk ě 1 such that Bmk ” I
mod rk (see the proof of Theorem 1.7). Hence hk B

mk ” hk I mod qk for every k ě 1. If
we de�ne h0 to be the product of all the elements of the �nite set F , it follows that

h0.B
mk ” h0.I mod qk for every k ě 1.

Recall that given a measure µ P PpTdq and a d-tuple nnn “ pn1, . . . , ndq P Zd, the nnn-th
Fourier coe�cient of the measure µ is de�ned as

pµpnnnq “

ż

Td

e2iπxnnn,yyyydµpyyyq, where xnnn,yyyy “
d
ÿ

i“1

niyi.

Write hhh0 “ ph0, . . . , h0q. Here is now an analogue of Fact 2.7 in our multidimensional
setting:

Fact 4.4. � Let xxx P Td be such that pANk ´ Iqxxx “ 0 in Td for some k ě 1. Then

{Blmkµxxxphhh0q “ pµxxxphhh0q for every integer l ě 1.

Proof of Fact 4.4. � Recall that

µxxx “
1

Nk

Nk´1
ÿ

j“0

δtAjxxxu.

For every n P Z,

{Bnµxxxphhh0q “
1

Nk

Nk´1
ÿ

j“0

e2iπxhhh0,BnAjxxxy “
1

Nk

Nk´1
ÿ

j“0

e2iπx111,h0BnAjxxxy

while

xµxxxphhh0q “
1

Nk

Nk´1
ÿ

j“0

e2iπx111,h0Ajxxxy

where 111 “ p1, . . . , 1q. Since pANk´Iqxxx “ 0 in Td, there exists lllk P Zd such that pANk´Iqxxx “

lllk, the equality being this time in Rd, so that xxx “
1

qk
adj pANk ´ Iqlllk.

We know that h0B
mk ” h0 I mod qk, so that h0B

lmk ” h0 I mod qk for every l ě 1.
This means that there exists a matrix Ck,l P MdpZq such that h0.B

lmk “ h0I ` qk.Cl,k.
Hence for every j P t0, . . . , Nku, we have

h0B
lmkAjxxx “ h0A

jxxx` qk Ck,lA
jxxx.
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Since xxx “
1

qk
adj pANk ´ Iqlllk with lllk P Zd, the vector qkCk,lA

jxxx belongs to Zd, and thus

h0B
lmkAjxxx “ h0A

jxxx in Td. It follows that
{Blmkµxxxphhh0q “ pµxxxphhh0q for every l ě 1,

and Fact 4.4 is proved.

A direct consequence of Fact 4.4 is that Bnµxxx
w˚ //{ Lebd when n // `8 as soon as

pµxxxphhh0q ‰ 0. Consider, for each 0 ă γ ă 1, the set

G γ
A,B “

 

µ P PApTdq ; pµphhh0q ‰ 0 and @n0 ě 1, Dn ě n0, |zBnµphhh0q| ą γ|pµphhh0q|
(

which is clearly a Gδ subset of pPApTdq, w˚q. In order to prove that it is dense, we proceed
as in the proof of Lemma 2.6, but using Theorem 4.1 instead of Theorem 2.1. Let V be a
non-empty open set in pPApTdq, w˚q. By Theorem 4.1, there exists a convex combination

µ “
r
ÿ

i“1

aiµxxxi , ai ě 0,
r
ÿ

i“1

ai “ 1

of measures µxxxi PDDDA,pNkq
which belongs to V.

Let ki be such that pANki ´ Iqxxxi “ 0, 1 ď i ď r. By Fact 4.4, {Blmkiµxxxiphhh0q “ pµxxxiphhh0q

for every l ě 1. Setting m0 “ mk1 . . .mkr , we have that
{Blm0µxxxiphhh0q “ pµxxxiphhh0q for every

l ě 1 and every i P t1, . . . , ru. Hence zBlm0phhh0q “ pµphhh0q for every l ě 1.

If pµphhh0q ‰ 0, it follows that µ belongs to G γ
A,B. If pµphhh0q “ 0, the measure µρ :“

p1 ´ ρqµ ` ρδ000 belongs to V if 0 ă ρ ă 1 is su�ciently small, and pµρphhh0q “ ρ ‰ 0. Also
{Blm0µρphhh0q “ p1 ´ ρq{Blm0µphhh0q ` ρ “ xµρphhh0q for every l ě 0, and hence µρ belongs to

G γ
A,B. We have thus shown that G γ

A,B is a dense Gδ subset of pPApTdq, w˚q.

Any measure µ P G γ
A,B is such that lim supnÑ`8 |zB

nµphhh0q| ą 0, and hence (since

hhh0 ‰ 000) such that Bnµ
w˚ //{ Lebd for every µ P G

γ
A,B. So the set

G 0
A,B “

 

µ P PApTdq ; Bnµ
w˚ //{ Lebd

(

is residual in pPApTdq, w˚q.
In order to complete the proof, it remains to show the following analogue of Fact 2.8:

Fact 4.5. � The set PA,cpTdq is a dense Gδ subset of pPApTdq, w˚q.

Proof of Fact 4.5. � As mentioned already in the proof of Fact 2.8, the set PA,cpTdq is
known to be a Gδ subset of pPApTdq, w˚q, so that only its density remains to be proved.
The argument for this follows closely the proof of [41, Th. 2], and reproves at the same
time that PA,cpTdq is Gδ.

For every τ ą 0, let

Fτ :“
 

µ P PApTdq ; Dxxx P Td such that µptxxxuq ě τ
(

.

Then the set Fτ is easily seen to be closed in pPApTdq, w˚q. Let us now show that Fτ is
nowhere dense. Let pNkqkě1 be a strictly increasing sequence of prime numbers such that
N1 ą 1{τ . By Theorem 4.1, the convex hull of the set

DDDA,pNkq
“

 

µxxx ; ANkxxx “ xxx for some k ě 1
(
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is dense in pPApTdq, w˚q. Hence, given a non-empty open subset V of pPApTdq, w˚q, there
exist vectors xxx1, . . . ,xxxr in Td, integers k1, . . . , kr ě 1 and coe�cients a1, . . . , ar ě 0 with
řr
i“1 ai “ 1 and ANkixxxi “ xxxi for each 1 ď i ď r such that

µ “
r
ÿ

i“1

aiµxxxi belongs to V.

Since Nki is prime, the minimal period of xxxi is Nki , and thus

µxxxiptxxxuq ď
1

Nki

ă τ for every xxx P Td.

It follows that µptxxxuq ă τ for every xxx P Td, and µ does not belong to Fτ . So Fτ is nowhere
dense in pPApTdq, w˚q, and

PA,cpTdq “ PApTdqz
ď

lě1

F2´l

is a dense Gδ subset of pPApTdq, w˚q by the Baire Category Theorem.

The proof of Theorem 1.8 is completed by combining Fact 4.5 with the assertion that
G0
A,B is residual in pPApTdq, w˚q. �

Remark 4.6. � The proof of Fact 4.5 would apply equally well to Fact 2.8, but since the
result is more standard in the one-dimensional case, we preferred to mention the classical
arguments.

5. Further results and remarks

5.a. A complement to a result of Johnson and Rudolph. � Let p ě 2 be an inte-
ger, and let pcnqně0 be a sequence of positive integers. We have recalled in the introduction
and in Section 3 conditions on pcnq implying that each measure µ P PppTq which is ergodic
and of positive entropy is pcnq-generic � thus showing that the set

G1p,pcnq :“
 

µ P PppTq ; Tcnµ
w˚
ÝÝÑ Leb along a sequence of upper density 1

(

is residual in pPppTq, w˚q. We present here an alternative harmonic analysis approach to
this kind of result. It has the bene�t of circumventing the arguments that depend on
positive entropy, when applicable.

Theorem 5.1. � Let p ě 2, and let pcnqně0 be a sequence of integers satisfying the
following condition:

p‹q
there exists a sequence pµkqkě1 of elements of PppTq such that µk

w˚
ÝÝÑ δ1, and

moreover, the set
 

n ě 1 ; |pµkpa.cnq| ă ε
(

has density 1 for every a P Zzt0u,
every ε ą 0 and every k ě 1.

Then the set G1p,pcnq is residual in pPppTq, w
˚q.

A word about terminology: saying that a sequence pνnqně1 of measures converges to ν
along a subset of upper density 1 means that for any neighborhood V of ν in PpTq, the set
tn ě 1 ; νn P Vu has upper density 1, i. e.

lim sup
NÑ`8

1

N
#
 

1 ď n ď N ; νn P V
(

“ 1.
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This is equivalent to the following property: for any a0 ě 1 and any ε ą 0, the set
 

n ě 1 ; |pνnpaq ´ pνpaq| ă ε for every a P Z with |a| ď a0

(

has upper density 1. In this case, one can construct a strictly increasing sequence pNkqkě1

of integers such that

1

Nk
#
 

1 ď n ď Nk ; @ |a| ď k, |pνnpaq ´ pνpaq| ă 2´k
(

ě 1´ 2´k

for every k ě 1, and Nk`1 ě 2kNk. If we consider the strictly increasing sequence pnjqjě1

obtained by enumerating the set

D “
ď

kě1

 

Nk´1 ă n ď Nk ; @ |a| ď k, |pνnpaq ´ pνpaq| ă 2´k
(

(with the convention that N0 “ 0), we obtain that D “ tnj ; j ě 1u has upper density 1
and that pνnj paq ÝÑ pνpaq as j ÝÑ `8 for every a P Z.

Proof of Theorem 5.1. � We �rst observe that the set G1p,pcnq can be written as G1p,pcnq “

rGp,pcnq X Pp,cpTq, where

rGp,pcnq “
 

µ P PppTq ; @N0, a0 ě 1, @ ε, δ P p0, 1q XQ
DN ą N0, DF Ď t1, . . . , Nu with #F ě p1´ δqN

such that @ a P Z with 0 ă |a| ď a0, @n P F, |pµpa.cnq| ă ε
(

.

The set rGp,pcnq is clearly Gδ in pPppTq, w˚q. Since Pp,cpTq is residual in PppTq, it su�ces

to show that rGp,pcnq is dense in PppTq. In order to do this, we are going to exhibit a dense
set of measures µ P PppTq with the following property:

(13) @ a P Zzt0u, @ ε ą 0, the set tn ě 1 ; |pµpacnq| ă εu has density 1.

Since the intersection of �nitely many sets of density 1 is again of density 1, the measures
in this set will be such that

(14) @ a0 ě 1, @ ε ą 0, the set tn ě 1 ; @ 0 ă |a| ď a0, |pµpacnq| ă εu has density 1

and hence upper density 1. Such measures will hence belong to the set G1p,pcnq.

Our assumption p‹q states that the measures µk, k ě 1, satisfy (13). Fix ν P PppTq,
and set νk “ µk ˚ ν for every n ě 1. For any ε ą 0, the set tn ě 1 ; |pνkpa.cnq| ă εu has

density 1, and it follows that the measures νk satisfy (13). Since νk
w˚
ÝÝÑ ν as k // `8,

this concludes the proof of Theorem 5.1.

Theorem 5.1 applies for instance to the case where cn “ qn, n ě 0, provided that p, q ě 2
are two multiplicatively independent integers, and allows to retrieve [25, Th. 8.2], which
states that G1p,pqnq is residual in pPppTq, w

˚q.

To this aim, it su�ces to exhibit a sequence pµkqkě1 of measures from PppTq satisfying
(13) and such that µk

w˚
ÝÝÑ δ1. The measures that we shall consider are the Bernoulli con-

volutions µΘ introduced at the end of the proof of Theorem 1.5, where Θ “ pθ0, . . . , θp´1q

is a p-tuple of elements of p0, 1q with
řp´1
j“0 θj “ 1. They are Tp-invariant, and

pµΘpmq “
ź

ně1

´

θ0 `

p´1
ÿ

j“1

θje
2iπmjp´n

¯

for every m P Z.



ON THE ACTION OF ˆq ON ˆp-INVARIANT MEASURES 25

It is shown by Lyons in [34] and by Feldman and Smorodinsky in [15] that TqnµΘ
w˚
ÝÝÑ Leb

as n // `8. Since µΘ
w˚
ÝÝÑ δ1 as Θ // p1, 0, . . . , 0q, assumption p‹q from Theorem

5.1 is satis�ed, and G1p,pqnq is residual in pPppTq, w
˚q.

The behaviour of the Fourier coe�cients of Bernoulli convolutions has been studied
extensively, particularly when p is equal to 2 or 3; see for instance the classical book [26]
by Kahane and Salem. An important work on the subject is that of Blum and Epstein
[7], where the authors provide upper and lower bounds on |pµΘpmq|

2 which allow them to
give a characterisation of sequences of positive integers along which pµΘpmq tends to 0. In
the case p “ 2, this characterisation is given in terms of the order of magnitude of Rpmq,
which is the number of runs, i. e. of maximal blocks of the same digit 0 or 1, appearing
in the binary expansion of m. Equivalently, Rpmq is the number of digits changes in the
binary expansion of m. Then as soon as Θ ‰ p1{2, 1{2q (in which case µΘ is the Lebesgue
measure on T), there exist two constants C1, C2 ą 0 such that, for every m P Z,

expp´C2Rpmqq ď |pµΘpmq| ď expp´C1Rpmqq.

It follows that if pmkq is any strictly increasing sequence of integers, we have pµΘpmkq ÝÑ 0
as k ÝÑ `8 if and only if Rpmkq ÝÑ `8 as k ÝÑ `8.

For general p, here is the result proved by Blum and Epstein in [7]:

Theorem 5.2 ([7]). � Let p ě 2. Let Θ “ pθ0, . . . , θp´1q be a p-tuple of elements from

p0, 1q with the property that the polynomial QΘpzq “
řp´1
j“0 θjz

j does not vanish on T. Let,
for m ě 0,

ψpmq “ R0pmq `Rp´1pmq `Npmq,

where R0pmq is the number of maximal blocks of 0s, Rp´1pmq is the number of maximal
blocks of pp´1qs, and Npmq is the number of digits other than 0 and p´1 in the expansion
of m in base p. Then there exist two constants C1, C2 ą 0 such that

expp´C2ψpmqq ď |pµΘpmq| ď expp´C1ψpmqq for every m P Z.

Hence pµΘpmkq ÝÑ 0 as k ÝÑ `8 if and only if ψpmkq ÝÑ `8 as k ÝÑ `8.

As a consequence, we obtain the following result, which we state using the notation from
Theorem 5.2:

Proposition 5.3. � Let pcnqně0 be a sequence of integers such that, for every a P Zzt0u,
the sequence pψpa.cnqqně0 tends to in�nity along a sequence of density 1. Then the set
G1p,pcnq is residual in pPppTq, w

˚q.

Proof. � It su�ces to show that pcnqně0 satis�es assumption p‹q of Theorem 5.1. Let
Θ “ pθ0, . . . , θp´1q be a sequence of elements of p0, 1q summing up to 1, and suppose that

θ0 ą 1{2. Then
řp´1
j“1 θj ă 1{2, and hence we have

|QΘpzq| ě θ0 ´

p´1
ÿ

j“1

θj |z|
j ą 0

for every z P C with |z| ď 1. Thus the polynomial QΘ does not vanish on T. Let pΘkqkě1

be such that Θk
// p1, 0, . . . , 0q as k // `8, and QΘk

does not vanish on T. Then

µΘk

w˚
ÝÝÑ δ1 as k // `8 . Moreover, the assumption of Proposition 5.3 combined with
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Theorem 5.2 implies that for every a P Zzt0u, pµΘk
pacnq // 0 along a sequence of density

1. The assumption p‹q is thus satis�ed, and Proposition 5.3 follows.

Remark 5.4. � If p, q ě 2 are multiplicatively independent integers, and cn “ qn, n ě 0,
it is shown in [15, Prop. 1] that any word w in the letters 0, 1, . . . , p ´ 1 appears in the
expansion of qn in base p for every n belonging to a set of integers of density 1. The proof
given there can be extended to show that for any a P Zzt0u, w appears in the expansion
of a.qn in base p for every n belonging to a set of integers of density 1.

5.b. Some open questions. � In Sections 2 and 3, numerous examples of sequences
pcnq were presented, for which the set

Gp,pcnq “
 

µ P Pp,cpTq ; Tcnµ
w˚ //{ Leb

(

was found to be a residual subset of pPppTq, w˚q. The condition (H) presented in Section
2 is the most general one that we can provide for the residuality of Gp,pcnq to hold. How-
ever, it does not apply to all sequences pcnqně0, leaving the following intriguing question
unanswered.

Question 5.5. � Let p ě 2, and let pcnqně0 be any strictly increasing sequence of inte-
gers. Is it true that the set Gp,pcnq is residual in pPppTq, w˚q?

If µ is pcnq-generic, then
1
N

řN´1
n“0 Tcnµ

w˚
ÝÝÑ Leb as N // `8 . It is thus natural to

consider the set

G2p,pcnq “
 

µ P Pp,cpTq ;
1

N

N´1
ÿ

n“0

Tcnµ
w˚
ÝÝÑ Leb as N ÝÑ `8

(

and to ask the following question.

Question 5.6. � Let p ě 2, and let pcnqně0 be a strictly increasing sequence of integers.
Is the set G2p,pcnq residual in pPppTq, w

˚q?

For the sequences considered in [22,25,33,36], the density of the setG2p,pcnq in pPppTq, w
˚q

follows from the result that ergodic measures of positive entropy in PppTq are pcnq-generic.
But the question of the residuality remains widely open, and it is actually not known if
the set G2p,pqnq is residual in pPppTq, w

˚q when q ě 2 is an integer which is multiplicatively

independent from p. This question is also connected to another conjecture from [35], called
(C7), which runs as follows:

Conjecture (C7): Let p, q ě 2 be multiplicatively independent integers. For any
measure µ P Pp,cpTq, µ-almost every x P T is normal in base q, i.e.

1

N

N´1
ÿ

n“0

e2iπaqnx // 0 as N // 0 for every a P Zzt0u.

In our examination of Conjecture 1.4 in the multidimensional context, we have estab-
lished conditions on matrices A,B P MdpZq with non-zero determinant that imply that
the set

GA,B “
 

µ P PA,cpTq ; TBnµ
w˚ //{ Lebd

(
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is residual in pPApTdq, w˚q. These conditions (that A be diagonalisable in MdpCq, that
detA and detB be relatively prime...) arise due to technical di�culties in the proofs in
the higher dimensional case. However, it may be that these conditions are not necessary;
this is true in the one-dimensional setting.

Question 5.7. � Let d ě 2 and A,B P MdpZq with detA ‰ 0 and detB ‰ 0. Is it true
that the set GA,B is residual in pPApTdq, w˚q?

Let also

G2A,B “
 

µ P PA,cpTdq ;
1

N

N´1
ÿ

n“0

TBnµ
w˚
ÝÝÑ Lebd as N ÝÑ `8

(

.

In analogy to Question 5.6 , one may also ask:

Question 5.8. � Let d ě 2 and A,B P MdpZq with detA ‰ 0 and detB ‰ 0. Is it true
that the set G2A,B is residual in pPApTdq, w˚q?
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