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AROUND FURSTENBERG’S TIMES p, TIMES ¢ CONJECTURE:
TIMES p-INVARIANT MEASURES WITH SOME LARGE
FOURIER COEFFICIENTS

by

Catalin Badea & Sophie Grivaux

Abstract. — For each integer n > 1, denote by 7;, the map « — nx mod 1 from the circle
group T = R/Z into itself. Let p,q = 2 be two multiplicatively independent integers. Using
Baire Category arguments, we show that generically a Tjp-invariant probability measure p
on T with no atom has some large Fourier coefficients along the sequence (¢")n>0. In
particular, (Ty» )n>0 does not converges weak-star to the normalised Lebesgue measure on
T. This disproves a conjecture of Furstenberg and complements previous results of Johnson
and Rudolph. In the spirit of previous work by Meiri and Lindenstrauss-Meiri-Peres, we
study generalisations of our main result to certain classes of sequences (cn)n>0 other than
the sequences (¢")n>0, and also investigate the multidimensional setting.

1. Introduction and main results

1.a. Synopsis. — In the late 1960s, Furstenberg proved significant results and proposed
fascinating conjectures that aimed to express in various ways the heuristic principle that
expansions in multiplicatively independent bases have no shared structure. For further
details about this idea, readers can refer to the recent survey [40] which also outlines
some progress in Furstenberg’s programme. Here, we shall list one result and three con-
jectures due to Furstenberg; some known partial results related to these conjectures will
be mentioned in the following subsection. In all these statements, p,q = 2 are two fized
multiplicatively independent integers. Recall that p,q > 2 are called multiplicatively inde-
pendent if logp/logq ¢ Q. For each integer n > 1, denote by 7T, the map x — nz mod 1
from the circle group T = R/Z, identified with [0, 1), into itself. A subset F' of T is said to
be T),-invariant if T, (F) < F. Notice that T), shifts the n-ary expansion of a real number
and that each map 7, has many closed, infinite invariant subsets.

The following topological rigidity result has been proved in [16].

Theorem 1.1 (Furstenberg). — The only infinite closed subset F' of T which is simul-
taneously T),- and Ty-invariant is I = T.
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Furstenberg formulated a conjecture, called Conjecture (C1) in [35], which is stronger
than Theorem 1.1 and deals with the asymptotic behaviour of a T),~invariant subset under
the action of Tj,.

Conjecture 1.2. — Let F' be an infinite closed T,-invariant subset. Then the iterates
T(?(F) converge in the Hausdorff distance to T as n tends to infinity.

The measure-theoretical analogue statements of Theorem 1.1 and Conjecture 1.2 are
both conjectural statements. Recall that a Borel probability measure g on T is said to
be T,-invariant if g = T,u, where Tp,u is the measure defined by T,u(C) = u(T,1C)
for every measurable set C'. There are uncountable many T),-invariant, or even ergodic,
measures; see for instance (4, p. 141]. The next measure-theoretical rigidity conjecture,
called Conjecture (C2) in [35], is the renowned xp, xq conjecture of Furstenberg, one of
the most fundamental open questions in ergodic theory. We say that a probability measure
is continuous if it has no atom.

Conjecture 1.8 (xp, xq conjecture). — The only continuous Borel probability mea-
sure on T which is simultaneously Tp- and Ty-invariant is the (normalised) Lebesgue mea-
sure Leb.

The natural analogue of Conjecture 1.2 for measures was also conjectured by Fursten-
berg: this is Conjecture (C3) in [35] and concerns now the convergence in the weak-star
topology of a Tj-invariant measure under the action of Tj,.

Conjecture 1.4. — Let j1 be a continuous Borel probability measure on T which is T)-
invariant. Then T3'u converge w* to Leb.

It is easy to see that Conjecture 1.4 implies the xp, xgq conjecture (Conjecture 1.3):
suppose indeed that Conjecture 1.4 is true, and let p be a continuous and simultaneously

T,- and Ty-invariant measure as in Conjecture 1.3. Since T;(u) = Tynpt e, Leb, the
Fourier coefficients of p verify fi(ag™) — 0 for every a € Z\{0}. Since p is Tj-invariant, this
implies that ji(a) = 0 for every a € Z\{0}, so that u = Leb.

The main aim of this manuscript is to show that generically (in the Baire Category
sense), a continuous 7T)-invariant probability measure p on T has some large Fourier coeffi-
cients along the sequence (¢")n>0. This implies that the sequence (T7'(1t))n=0 = (Tyn ft)nz0
does not converge w* to Leb, disproving thus Conjecture 1.4. The precise statement is given
in Theorem 1.5 below.

It follows from our results and some results of Johnson and Rudolph in [25] that gener-
ically, in the Baire Category sense, (Tynft)n>0 does not converge w* to the Lebesgue mea-
sure, but the convergence of Ty»u to Leb holds along a “large” sequence of integers (a
sequence of upper density 1); see Corollary 1.6. This sheds some light on the complexity
of the asymptotic behaviour of the action of T, on a generic T)-invariant measure. In the
spirit of previous work by Meiri [36] and Lindenstrauss-Meiri-Peres [33], we study general-
isations of our main result to certain classes of sequences (¢, )n>0 other than the sequences
(¢")n=0, and also investigate the multidimensional setting.

Our methods are mainly functional-analytic, based for instance on Baire category meth-
ods and the Hahn-Banach theorem. We also use tools from classical harmonic analysis
(Fourier coefficients of measures, p-Bernoulli measures), ergodic theory (the periodic spec-
ification property, the ergodic decomposition theorem) and elementary number theory.
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1.b. Background. — Without claiming completeness, we mention some previous con-
tributions related to Theorem 1.1 and Conjectures 1.2, 1.3 and 1.4.

Many aspects of the dynamics of subsemigroups of (7},),>1 were discussed in the seminal
paper [16] by Furstenberg. The proof of Theorem 1.1 in [16] used the disjointness of specific
dynamical systems, a notion introduced in [16]. An elementary proof of Theorem 1.1 has
been given by Boshernitzan [8] and an “effective” version has been proved in [9] by Bourgain,
Lindenstrauss, Michel and Venkatesh. Starting with Berend 5], several authors studied
multidimensional generalisations of Theorem 1.1.

Conjecture 1.2 is largely open. It is known that if I is a Tp-invariant subset of T, then
there exists a subsequence (¢"*) such that T (F) converges to T in the Hausdorff metric;
see for instance [28, Lemma 2.1]. Another result related to Conjecture 1.2 can be found
in [37, Th. 1.1]. Starting with the papers [2,6] by Berend-Peres and Alon-Peres, several
authors studied the so-called Glasner sets. A set S of integers is said to be a Glasner
set if for every infinite closed subset F' of T, there exists a sequence (¢,) of elements in
S such that T, (F') converges to T in the Hausdorff metric. With this terminology, a
result from [17] can be formulated as the fact that the set of integers is a Glasner set.
Other quite small sets of integers are Glasner, like sets of positive (Banach) density or the
sets of values assumed by any non-constant polynomial mapping the natural numbers to
themselves. Note however that a finite union of lacunary sequences is not a Glasner set
(|6, Th. 1.4]). Glasner sets have been also studied in the multidimensional setting.

The first result about the xp, xg conjecture has been proved by Lyons in [35], the
first place where Conjecture 1.3 appeared in print: if p and ¢ are relatively prime, any
probability measure on T which is T)- and T,-invariant and T)-exact (i.e. has completely
positive entropy with respect to 7},), must be the Lebesgue measure. Rudolph substantially
strengthened this theorem in [39], showing that the conclusion is true with only the weaker
assumption that the measure is ergodic under the joint action of 7}, and T, and of positive
entropy under the action of T},. Johnson [24| then generalised this to the case where p and
q are multiplicatively independent. A different argument, along the lines of Lyons [35],
was given by Feldman [14]. Other different proofs were given by Host [22] and Parry
[38]. In all these proofs the positive entropy remains a crucial assumption. The Rudolph-
Johnson theorem has been used by Einsiedler and Fish [12| to prove that a continuous
Borel probability measure on T invariant under the action of a multiplicative semigroup
with positive lower logarithmic density is the normalised Lebesgue measure. An important
advance was made by Katok and Spatzier [27]|, who discovered that Rudolph’s proof can
be extended to give partial information on invariant measures in much greater generality.
We also mention the works [19-21,30], as well as the surveys [13,31, 32|, for an account
of recent progress on measure rigidity for higher rank diagonal actions on homogeneous
spaces.

Some partial results about Conjecture 1.4 (conjecture (C3) in [35]), which will be dis-
proved in this manuscript, are also known. The study of convergence of the sequence
(Tgn 1)n=0 to the Lebesgue measure for certain classes of Tp-invariant measures p lies at the
core of the works of Lyons [34,35], Feldman and Smorodinsky [15], Johnson and Rudolph
[25], and Host [22]. Given p,q > 2 two multiplicatively independent integers, it is shown in

[34] (see also [35]) that if p is a non-degenerate p-Bernoulli measure, then Tynp %, Leb.
The main result of [15] states that under the same assumption, u-almost every x € [0, 1]
is normal to the base ¢. It is proved by Host in [22] that whenever p and ¢ are relatively
prime, any measure p € P,(T) which is ergodic and has positive entropy with respect to
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T, is such that p-almost every x € [0, 1] is normal to the base ¢. The generalisation to
the case where p and ¢ are multiplicatively independent was obtained by Hochman and
Shmerkin [20]. The Host-Hochman-Shmerkin result implies easily a result by Johnson and
Rudolph [25] that for every such ergodic with positive entropy measure p € Py(T),

N-1
Z Tn,u—>Leb
n=0

1
N

Johnson and Rudolph observe the following consequence: if i € Py(T) is ergodic and of

*
positive entropy with respect to T, then Tynp ~ Leb on a sequence of Banach density
one (called a sequence of uniform full density in [25]). As a consequence, they obtain that
the set

Gy =€ Ppe(T) s Tynp %, Leb along a sequence of upper density 1}

is residual in (P,(T),w*). So, generically in the Baire Category sense, convergence of
Tyn i to the Lebesgue measure holds along a “large” sequence of integers. But the Baire
Category arguments leave room for possible “bad” sequences where convergence to the
Lebesgue measure, as predicted by Conjecture 1.4, cannot be guaranteed. Quoting from
[25]: “As we have no ezamples showing such bad sequences can actually exist, perhaps it is
possible by some more explicit investigation to eliminate these bad sequences along which
convergence to the Lebesgue measure fails”. Our first main result, which is Theorem 1.5
below, shows that generically such bad sequences do exist, and cannot be eliminated.

1l.c. Notation. — Denote by P(T) the space of Borel probability measures on T, and, for
any p = 2, by Pp(T) the space of T)-invariant measures p € P(T). We endow P(T) with the
topology of w*-convergence of measures, which turns it into a compact metrizable space.

Recall that given measures py, k = 1, and p belonging to P(T), we say that ug o, wif

f F — f Fd

as k — +oo for every f € C(T), where C(T) is the space of continuous functions on T,
endowed with the sup norm ||. ||, on T. This is equivalent to requiring that fi;(a) —
fi(a) for every a € Z, where the a-th Fourier coefficient of a measure v € P(T) is defined in
this manuscript as

b(a) = JT 2du(2).

We denote by P.(T) the set of continuous (i.e. non-atomic) measures on T, and by P, .(T)
the set of continuous T)-invariant measures on T. Since Pp(T) is w*-closed in P(T),
(Pp(T),w*) is also a compact metrizable space. In particular, (P,(T),w*) is a Polish
space, in which the Baire Category Theorem applies. Recall that a subset of a Polish
space is called residual if it contains a dense G; set (i.e. a countable intersection of dense
open sets).

For our study of the multidimensional setting the following notation is required. For
each d > 2, we denote by P(T¢) the set of Borel probability measures on T?, and by P.(T%)
the set of continuous measures y € P(T?). Given a matrix A € My(Z) with det(A) # 0,
we denote by T4 the associated transformation z — Az mod 1 of T¢ into itself. This
transformation preserves the normalised Lebesgue measure on T¢, which we write as Leby.
Notice that T4 is an ergodic transformation of (T¢,Leby) if and only if no eigenvalue of
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A is a root of unity. The set of Ty-invariant measures on T¢ is denoted by PA(T), and
Pa.(T) is the set of continuous T4-invariant measures on T.

1.d. Main results. — Here is our first main result, showing that generically a continuous
T,-invariant probability measure p on T has some large Fourier coefficients along the
sequence (¢")n>0-

Theorem 1.5 (large Fourier coefficients). — Let p,q > 2 be two distinct integers.
Then the set

Spg = {M € Ppe(T); limiup \(q™)| > 0}
n——+0o0

is residual in (Pp(T), w*). In particular, the set

Gpq = {1 €Ppe(T); Tynp ﬁw/*—> Leb as n — +o0}
is residual in (Pp(T),w*), thus disproving Conjecture 1./.

We should note that the proof of Theorem 1.5 does not require that p and ¢ be multi-
plicatively independent; if p and ¢ are powers of the same integer, then a simple and direct
proof of Theorem 1.5 can be given.

By combining Theorem 1.5 with the results presented in [25], we can derive the following
corollary.

Corollary 1.6. — Let p,q = 2 be two multiplicatively independent integers. Then the set
of all measures p € Ppo(T) such that

Tyt ﬁw/*—> Leb as n — +o0
and

Tynp wh Leb along a sequence of upper density 1
is residual in (Pp(T), w*).

Meiri [36] and Lindenstrauss, Meiri and Peres [33] generalised the results from [22]
and [25] to certain classes of sequences (¢y)n>0 other than the sequences (¢"),>0. More
precisely ([36]), if the sequence of remainders (¢, mod p™)y<, <pv, N = 1, satisfies certain
combinatorial properties, then every T)-invariant ergodic measure p of positive entropy is
such that (¢,z)p>0 is uniformly distributed mod 1 for p-almost every = € [0,1]. A weaker
combinatorial condition on the sequence (¢;,)n>0 is introduced in [33]: if the so-called p-
adic collision exponent I'y((cy)) is less that 2, then every measure p € Py(T) which is
ergodic and of positive entropy is (¢, )-generic in the sense that

1 N=t -

N Z T, — Leb.
n=0
It follows that the set of measures p € P, (T) such that T, p %, Leb along a sequence of
upper density 1 is residual in (P,(T), w*).

Conjecture 1.4 thus fits in a much broader framework: given a strictly increasing se-
quence of integers (¢, )n>0 of integers, is it true that the set

Gn(cn) = {M € Pp,C(T) ) iv/*—> Leb asn— +OO}
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is residual in (Pp,(T),w*)? We prove in Theorem 2.1 below a very general criterion on the
sequence (¢p)n>0 implying an affirmative answer to this question. It allows to deal with
most of the classes of sequences considered in [36] and [33|, and we obtain for instance the
following theorem, which complements [33, Th. 1.4] and [36, Th. B]:

Theorem 1.7 (linear recurrent sequences as (¢,)). — Let (¢n)n=0 be a sequence of
wntegers satisfying a linear recursion of the form

Cp = Q1Cp—1 + @2¢p—2 + - +arcp—, n>1L

for some L = 1 and integer coefficients aq,...,ar, with ap, # 0. If the integers ar and p
are relatively prime, then the set

Gp,(cn) = {M eP ,c(T) s Te iﬂ/*—> Leb asn— -|-oo}
is residual in (Pp(T), w™).

Notice that when L = 1 and a; = ¢, Theorem 1.7 reduces to the case studied in
Theorem 1.5, but with the additional requirement that p and ¢ are relatively prime.

We also mention the following related result. In [3], a continuous probability measure
w on T was constructed with the property that for any increasing sequence (c,) in the

multiplicative semigroup {p™q¢"™ : m,n > 0}, one has T, u ﬂ/*—> Leb. This disproved
Conjectures (C4) and (C5) from [35]. However, it appears that the construction from [3]
cannot be modified to produce a measure that is T)-invariant.

We now move over to the multidimensional setting. The equidistribution result [22]
of Host was generalised to the multidimensional setting by Meiri-Peres [37], Host [23]
himself and Algom [1]. The general framework of these works is the following: given two
endomorphisms A and B of T% and a measure p € P4(T%), study the equidistribution
properties of the sequence (B™x),>o for p-almost every z € T¢. This problem is studied
in [23] when p is A-ergodic and has positive entropy, under the condition that det(A) and
det(B) are relatively prime (which is exactly condition (b) of Theorem 1.8 below), plus
some other assumptions on matrices A and B. It is proved in [23] that for every ergodic
measure p € Pa(T?) of positive entropy, the sequence (B™x),>¢ is uniformly distributed
in T¢ for p-almost every € T¢. The paper [37] considers the case where A and B are
both diagonal matrices, A = diag(aq,...,aq), B = diag(b1,...,bq), with |a;| > 1, |b;] > 1,
and ged(a;, b;) = 1 for every i € {1...d}.

Accordingly, we complement these results by showing a multidimensional version of
Theorem 1.5.

Theorem 1.8 (multidimensional setting). — Let d > 2 and let A, B € My(Z) with
det(A) # 0 and det(B) # 0. Suppose that

(a) A is similar to a diagonal matriz D = diag(\1,...,\q), where [\j| #1, 1 <j <d;
and either

(b) det(A) and det(B) are relatively prime;
or

(b") A is upper or lower triangular.
Then the set

Gapi={nePac(T?; Tpnp SR Lebg }

is residual in (Pa(T?), w*).
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l.e. Overview. — The paper is organised as follows. We present in Section 2 a general
criterion on a sequence (c,)n>o0 of integers implying that the set Gy, () is residual in
(Pp(T),w*). This criterion is the object of Theorem 2.1. Its proof relies on a density result
for certain classes of discrete measures in (P,(T), w*) (Theorem 2.3), which is of interest
in itself and involves the so-called periodic specification property of the transformation 7).
We present in Section 3 various examples of sequences considered in [36] and [33] which
satisfy the assumptions of Theorem 2.1, and derive Theorems 1.5 and 1.7 from Theorem
2.1. The multidimensional case is treated in Section 4. Since assumption (a) of Theorem
1.8 does not necessarily imply that T4 : TY — T¢ has the periodic specification property,
we need a different argument (Theorem 4.1) in order to show the density in (P4 (T?), w*) of
the relevant classes of T4-invariant measures. We discuss in Section 5 a different approach
to the Johnson-Rudolph result of [25] that the set

G;Lq = {puePpe(T); Tynp 2%, Leb along a sequence of upper density 1}

is residual in (Pp(T),w*) for multiplicatively independent integers p and ¢, and present
some related results and open questions.

2. Classes of x,-invariant measures with some large Fourier coefficients

In the whole section, p > 2 will be a fixed integer. Let (c¢,)n>0 be a strictly increasing
sequence of integers. We say that (¢, )n>0 satisfies assumption (H) if the following is true:

There exist finitely many nonnegative integers t1,...,t., hi,..., hg with by # 0
for every [ € {1,...,d}, and an infinite subset I of N such that for every N € I,
there exist i € {1,...,r} and [ € {1,...,d} with the property that hjc, = t;
mod (p’V — 1) for infinitely many integers n.

(H)

Our aim in this section is to prove the following theorem:

Theorem 2.1. — Let (cy)n>0 be a strictly increasing sequence of integers satisfying as-
sumption (H). Then the set

Gp,(cn) = {M € Pp,c(T) ; e, iU/*—> Leb asn— —l—oo}
is residual in (Pp(T), w™).

Condition (H) may look somewhat technical, but it is actually a rather weak one. We
shall exhibit in Section 3 many examples of sequences (¢, )n>0 satisfying (H). In particular,
the sequence (c¢,) = (¢") satisfies it for any ¢ > 2. This disproves Conjecture 1.4.

Assumption (H) is of the same nature as the congruence assumptions mod p” which
appear in the works of Host [22] and Meiri [36], and which are formalised in terms of
p-adic collision exponent in [33]. These two assumptions are nonetheless different, be it
only because (H) involves congruences mod (p" — 1), while the p-adic collision exponent
is defined in terms of congruence mod p'V.

Our main tool for the proof of Theorem 2.1 is a density result for certain families of
discrete T)-invariant measures on T.
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2.a. Density of discrete x,-invariant measures. — The periodic points of the trans-

formation 7}, are exactly the points A € T such that APY = X for some N > 1. In this case,
the probability measure py on T, defined as

1 N-1
M=N Z;) Oy
J:

is a discrete Tp-invariant measure on T whose support is the orbit of the point A under the
action of T),. It is ergodic for T}, and the set of all such measures (where A varies over the
set of all (pY — 1)-th roots of 1, N > 1) is dense in (P,(T), w*) [41,42].

This density property is deeply linked to the fact that the dynamical system (T, T},) has
the so-called specification property introduced by Bowen in [10] (see also [41,42]). Since
it will be needed in the sequel, we recall here the definition from [41]. The setting is that
of compact dynamical systems (X,T), where (X, d) is a compact metric space and T is a
continuous self-map of X. This property is often referred to as the periodic specification
property, and it is the terminology we shall use here. The article [29] contains an overview
of the specification property and its many variants.

Definition 2.2. — The system (X, T) is said to have the periodic specification property if
for every € > 0 there exists V. € N such that for every integers 0 < a1 < by and 0 < as < by
with ao — by > Ng, for every vectors x1,x2 € X, and for every integer d > by — a1 + N,
there exists a periodic point x for T' with period d such that

(i) d(TJ:JU,TJ:xl) <e forevery j =ai,...,b;
(ii) d(T7x,T?z3) < e for every j = ag,...,ba.

If x is periodic for T with period d, the measure

1 d—1
Ho = 5 2 Oria)
j=0

is called a CO-measure. Here CO stands for Closed-Orbit; see for instance Sigmund [42].
If (X,T) has the specification property, the set of CO-measures is dense in the set of
T-invariant Borel probability measures on X (see [42, Th. 1]).

Let (Ng)k=1 be a strictly increasing sequence of integers. We denote by Cp,(n,,) the set
of all (p¥* — 1)-th roots of 1:

Cp,(Ny) = {)\ eT; A1 1 for some k > 1},
Let Dy, (n,) be the family of CO-measures associated to elements A of C), (v, ):
DIL(N}@) = {M)\ P AE va(Nk)}'

We are now going to prove the following density result, which will be crucial for the
proof of Theorem 1.5:

Theorem 2.3. — The set D), (n,y is dense in (Py(T), w*).

Proof. — Our aim is to show that given pu € P,(T), fi,...,fi belonging to C(T), and
e > 0, there exists A € C), (y,) such that

U fid/ﬁ)\—f fidu’<6 for every i€ {1,...,1}.
T T



ON THE ACTION OF x4 ON x,-INVARIANT MEASURES 9

Since CO-measures are w*-dense in Pp(T), we can suppose without loss of generality that
w is a CO-measure, which we write as

N-1
1
Wy = N Z 6{ij} for some z € T and N > 1 such that sz_l = 1.
§=0

Because Lipschitz functions, with respect to the distance induced by C on T, are dense
in C(T) by the Stone-Weierstrass theorem, we can also suppose without loss of generality
that the functions fi,..., f; are Lipschitz. Let C' > 0 be such that for every i € {1,...,1}
and every z1,22 € T, |fi(z1) — fi(22)] < C|z1 — 22|. We are looking for A € T and k > 1
with AP"*~1 = 1 such that

Nj—1

N-1
1 j 1 j .
- Z fi(z?) — — Z fiWP)| <e forevery ie{1,...,1}.
‘Nj_o Ni 7=0

Fix ¢ > 0. Let N. be given by the specification property. Let & > 1 be such that
Ni > 2N! + 2. Applying Definition 2.2 to 1 = x93 = 2, a1 = 0, by = Ny — 2N — 2,
ag = by = by + Ny + 1, and d = Ni, we obtain the existence of A € T with AP M — X such
that, for every j =0,..., Ny — 2N, — 2,

‘zpj — /\pj‘ <€, and hence ‘fi(zpj) - fi(/\pj)’ < C¢.

Then, for every i € {1,...,1},

1 Nj,—2N_—2 1 Nj,—2N_—2
(PN (NP ‘g Cce.
Ny — 2N — 1 ;0 LG Rl Ay v ;o [T < Ce
Now
1 Nk_%vsl_z ; 1 NkZl ; 1 Nkzl ;
I v I fi(?") = — fi(ZP)| < | fi(z)]
N, — 2N, —1 = N = N =Ny N1
Nj—2N_—2 '
A e DY |
N, —2N.—1 N, =
2N€/ +1 N — 2N —
L e
4Ngl + 2 Na/
illur < 632 1l
and
1 Nk;_2N€/ —2 Nk 1
Y W) - Z £ 8’ sz
_ _ T
N, — 2N —1 = = 0,
Therefore
Ni—1 Ni—1

’]\lrk 2 fi(zpj)—]\lfk PIACLOIES

j=0 J=0

<ce 12 = [1fill
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Let now ri be the unique integer with rx N < Nj < (rp + 1)N. Then, proceeding in the
same way as above, we obtain that

Nkfl ) 1 T‘k.Nfl ) 1 Nkfl . 1 1 'I‘kN*l .
= Y ) - Y < X R | - > 1A
Nk =0 Tk.N =0 Nk G N Nk V“k.N =0

N
AT
Since N is fixed and N —— +0o0 , we can choose N > 2N, + 2 sufficiently large so that
g
max(12N/ 255 HleocT<€ for every i € {1...1}. As
1 rpN—1 ) 1 N—-1 ]
J J
— D R = N 2 fitZ");
AR i =0
we get that
Nj—1
‘NZszpJ ——Zflxﬂ (C +2)
Taking &’ so small that (C +2) <¢ ylelds the result we are looking for. O
Remark 2.4. — The argument presented above actually holds in a much more general

setting, and shows the following result. Let (X, T') be a dynamical system with the periodic
specification property. Given a strictly increasing sequence (Ng)i>1 of integers, let

Cry(vy) = {37 e X ; Tz =2 forsome k > 1}

denote the set of periodic points for 7" having a period within the set {Ny ; k > 1}. Let
Dy (ny) = {#e ; © € Cr(n,)}- Then Dy (y,) is dense in the set Pr(X) of T-invariant Borel
probablhty measures on X, endowed with the w*-topology.

2.b. Proof of Theorem 2.1. — Let (¢,)n=0 be a sequence of integers satisfying as-
sumption (H), and let t1,...,t,, h1,...,hqg and I < N be given by (H). For any 0 <y < 1,
consider the set

Gy = {1 EPY(T) s Vie{1,...,r} At;) #0 and
Vng, 3n=ng, 3l e{l,...,d}; |a(hecy)| >~ mln ()]}

The interest of introducing this somewhat strange-looking set is the followmg fact.

Fact 2.5. — If i belongs to G;(Cn), then there exists [ € {1...d} such that
lim sup |f1(hiey)| > 0.

n—+aoo

*
In particular, T,y —— Leb as n — +o0.

Proof. — Let p € G;(Cn). There exists [ € {1...d} such that |fa(hcy)| > v mini<j<, [1(¢5)]
for infinitely many n’s, and so

limsup |f(hicn)| = v min |f(t;)| > 0.
1<j<r

n——+0o0

Hence m(hl) —+— 0 as n — +00, and as h; # 0 this implies that T, p W, Leb. O
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We first prove:

Lemma 2.6. — For every 0 <y < 1, the set G}:’(Cn) is a dense G5 subset of (Pp(T), w*).

Proof. — The set G;(Cn) is clearly G in (P,(T),w*), so we only need to show that it is

dense. Order the infinite set I < N as a strictly increasing sequence (Ng)g>1.
We have the following:

Fact 2.7. — Let p belong to D), y,). There exist i € {1,...,r} and [ € {1,...,d} such
that fi(hic,) = f(t;) for infinitely many integers n.

Proof of Fact 2.7. — There exists A € C, (y,), with APYE=1 — 1 for some k > 1, such that

1 Ml
H=px = ]\Tk Z;] 5{)\pj}~
]:

For every a € Z, we have

1 Nest _
fia) = — Y A%,
ile) = & JZ;)

Since N, € I, there exist i € {1,...,r} and l € {1,...,d} such that hjc, =t; mod (p™* —1)
for infinitely many n’s. Hence

hicnp’ = tip’ mod (p™Nk — 1) for every 0 < j < N.
As A1 = 1 it follows that Muen?’ = X’ This yields that w(hien) = pa(t;). O

Let now V be a non-empty open subset of (P,(T), w*). By Theorem 2.3, there exists
pe Dy vy n V. Letie{l,...,r} and l € {1,...,d} be such that ji(hc,) = ji(t;) for every
n belonging to a certain infinite subset D of N. Then

limsup [(hica)| > [t)] > min [7i(t;)],

n—+o0 Isjsr

and if fi(t;) # 0 for every j € {1,...,r}, then p belongs to G; (en)” Hence G; (en) O V#G
in this case.

Suppose now that 1r<r1i£1 |Li(t;)| = 0, and write {1,...,7} =1 U J, where
IJKT

I={je{l,....r}; A(t;) =0} and J={je{l,...,r}; A(t;) # 0}.

For any 0 < p < 1, consider the measure p, = pd1 + (1 —p)p: it is Tp-invariant and belongs
to V if p is sufficiently small. For every j € {1,...,7}, [i,(t;) = p+ (1 — p)[i(t;), so that
Ly(tj) = p > 0 for every j e I. If p is sufficiently small, |fi,(¢;)| > 0 for every j € J and
thus lrgjigr\ﬁp(tj)\ > 0. Since fiy(hicn) = p+ (1 — p)i(t;) = [,(t;) for every n e D, it

follows that i, belongs to G; () O V in this case as well. Lemma 2.6 is proved. O

The last step in our proof of Theorem 2.1 is the following classical fact:

Fact 2.8. — The set P, .(T) is a dense G subset of (Pp(T), w*).
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Proof. — Tt is a known result that if X is a Polish space, the set P.(X) of continuous
probability measures on X is a G subset of the set P(X) of all Borel probability measures
on X, endowed with the w*-topology (see for instance [11, Proposition 2.16] or [18, Fact
3.2]). So Ppc(T) is Gs in (Pp(T), w*). The density of Pp.(T) in Pp(T) is proved in [41],
using the density of CO-measures in P,(T). It can also be retrieved by using the following
elementary observation: there exists a sequence (ux)g>1 of elements of P, .(T) such that
*

[k — 61.

The measures py can be constructed as Cantor-type measures, also called p-Bernoulli
in [34], [35], or [15]: given a p-tuple © = (0y,61,...,0p,—1) of elements of (0,1) with
Z?;(l) 0; = 1, let me be the product measure

n=1

p—1
me = ® <20]5{j}> on {O,l,...,p—l}N,
7=0

and let ug € P(T) be the image measure of mg by the map @ :{0,1,...,p—1}N — T
defined by
Cb((‘”n)n}l) = eXp (2i77 Z Wnp_n>~

n=1

Each measure ug is easily seen to belong to P, (T), and pe A b as © —(1,0,...,0).

*
Once we have obtained a sequence (uy)g>1 of elements of P, .(T) such that py, =5 61,
the density of Pp.(T)in Pp(T) immediately follows, since for each measure p € P,(T),
(g * 1) k=1 1s a sequence of Tp-invariant continuous measures which converges w* to p. [

Proof of Theorem 2.1. — It follows from Lemma 2.6 and Fact 2.8 and from the Baire
Category Theorem that for any v € (0, 1), the set G;(Cn) NPp.c(T) is residual in (P,(T), w*).
By Fact 2.5, the set

{1ePpe(T); I e{l,...,d} limsupl|i(hc,)| > 0}
n—+00

is residual in (P,(T), w*), and hence G is residual as well. Theorem 2.1 is proved. [

p,(cn)

3. Proofs of Theorems 1.5 and 1.7, and further examples

In this section, we apply Theorem 2.1 to various classes of sequences (¢, )n>0, and show
that generically in the Baire Category sense, a measure p € P,(T) has infinitely many
“large” Fourier coefficients along the sequence (¢p)n>0, or along some dilated sequence
(a.cn)n=0 for some a € Z\{0}. We begin by proving Theorem 1.5.

3.a. Disproving Conjecture (C3): proof of Theorem 1.5. — Let p > 2. Given
another integer ¢ > 2 (not necessarily multiplicatively independent from p), we consider
the sequence ¢, = ¢, n = 0. In order to show that the sets

Spag = {M € Pp,C(T) ; limsup [(q")| > 0}
n—-+ao0

and

w*
Gpg={p € Ppe(T); Tynpp —— Leb}
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are dense in (P o(T), w*) it suffices to show that this sequence (¢p,)p>0 satisfies assumption
(H), and then to apply Theorem 2.1. That assumption (H) is satisfied is a consequence of
the following lemma, which relies on considerations from elementary number theory:

Lemma 3.1. — Let p,q = 2. There exists an integer No = 1 such that for every a > 1
sufficiently large, the following assertion holds:

for every N € I := No.N + 1, there ezists an integer rn = 1 such that

¢t =% mod (pY —1)  for every k = 0.

Proof. — Write q as ¢ = qll’l. .. qgg, where ¢qq,...,qs are primes and bq,...,bs are positive
integers. Let ag = 1 be such that 1 < p < qfobi for every i € {1,...,s}. A first step in the
proof of Lemma 3.1 is to show the following

Fact 3.2. — Let u > 1 be a positive integer. Let v = 1 be such that for every i € {1,..., s}
and every v € {1,...,u}, q; does not divide p’ — 1. There exist integers N1 > u,..., Ny > u
such that for every i € {1,...,s} and every N € N\ U;=1 N;.N,

pY #£1 mod qz.

Proof. — Let i € {1,...,s}. If pY # 1 mod ¢] for every N > 1, then clearly pV # 1
mod ¢ for every N € N\ U§=1 N;.N, whatever the choice of the integers Ni,..., Ns. So
we can suppose without loss of generality that there exists an integer N > 1 such that
pY =1 mod q;. Let N; be the smallest such integer. Necessarily, N; > u, since else ¢
would divide p¥ — 1 for some v € {1,...,u}. Moreover any integer N such that p/¥ =1
mod ¢ is a multiple of N;. It follows that p" # 1 mod ¢ for every N € N\NV;.N. O

We apply Fact 3.2 to u = 1 and v = ag. maxi<;<s b;- Let Ny, ..., Ng be given by Fact
3.2. Since N; > 2 for every j € {1,...,s}, the set J := N\szl N;.N is infinite. Set
Ng = Ni...N;. Then I := Nyg.N + 1 is contained in J.

Fix N e . Foreachie {1,...,s},let 0 < a; ny < be the largest integer such that q:-”‘N
divides pV —1, and write p¥ —1 = q;“’Nsu\/ for some integer s; y = 1 with ged(s; v, ;) = 1.
By the Fermat-Euler Theorem, there exists 7; y = 1 such that q:i’N =1 mod s; n. Set
*N =T1,N.T2N -..TsN. Then for every [ > 1 and every i e {1,..., s}, qf-'rN =1 mod s; N,

aiN+lry _ anN

so that g =gq mod (pV — 1) for every i € {1,...,s}. If a is sufficiently large,

K3 (2

we have a; v < v < a.b; for every i € {1,...,s}, so that qf'bﬁl'w = qf'bi mod (pV —1).

Applying this to [ = k.b;, k = 1, yields that (qi’”)‘”k'w = (qf")a mod (p"V — 1) for every
ie{l,...,s},ie. that ¢®™*"™~ =¢% mod (p" —1). O

Proof of Theorem 1.5. — By Lemma 3.1 above, the sequence (¢"),>1 satisfies assumption
(H). The proof of Theorem 2.1 combined with Lemma 3.1 shows the density of

Spa = {1 € Ppe(T) ; limsup|fi(q")| > 0
in (Ppe(T), w*). O

Remark 3.3. — The proof of Theorem 1.5 does not make use of all the information
provided by Lemma 3.1: we apply it with u = 1, the particular form of the set I is not
used, and we only need the fact that for every N € I, there exist infinitely many n’s such
that ¢" = ¢* mod (p" — 1). This additional information will be important, however, in
the forthcoming proofs of Theorems 3.4 and 1.7.
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3.b. A generalisation of Theorem 1.5. — In this section, we consider sequences
(cn)n=o of the following form: ¢, = fi(n)ql" + fa(n)gsy + -+ + fa(n)q}}, n = 0, where for
each [ € {1,...,d}, ¢ = 2 is an integer and f; is a polynomial with coefficients in Z. This
class of sequences is considered in [36] and [33]|, where the following result is proved: if
p = 2 admits a prime factor p* which does not divide one of the integers ¢;, 1 < i < d,
then any measure p € P,(T) which is ergodic and of positive entropy is (cy,)-generic. It
follows that the set

G;?(Cn) = {,u € Ppo(T) ;s Te, 1t 2%, Leb on a set of upper density 1}

is residual in (P,(T), w*) — see Section 5.a for details on this argument.
We complement this result by showing the following

Theorem 8.4. — If (cn)n>0 is a sequence of the form ¢, = fi(n)¢! + fa(n)gy + -+ +
fa(n)qy, n =0, where for each l € {1,...,d}, @ = 2 is an integer and f; is a polynomial
with coefficients in Z, then the set

Gpen) = {H € Ppe(T) 5 T, iv/*—> Leb as n— +oo}
is residual in (Pp(T), w*).

Proof. — Let us show that (¢,)n>0 satisfies assumption (H). By Lemma 3.1, there exist
integers @ > 1 and N;, 1 <1 < d, such that for every [ € {1,...,d} and every N € [} :=
N;.N + 1, there exists an integer r; ; = 1 such that for every k > 0,

atk.ry N a

q = ¢ mod (pN —1).

The set I = ﬂ?lzl I; is infinite. If we set, for each N € I, ry = ri n...7q N, We get that
for every N € I and every k > 0,

(1) qlaJrk'TN =¢' mod (p"¥ —1) forevery le{1,...,d}.
For each [ € {1,...,d}, write the polynomial f; as
Ay,
fi(z) = Z bg-l)a:j, where bg-l) € Z for every j € {0,..., A}
§=0

For every N € I and every integer k' > 0, we have

A )
fi(a+ E (N — Dry) = Z bg-l) (a+ K (pN — ry)’
j=0

and
(a+ K (" - 1)7“N)j =a’ mod (pV —1) for every j = 0.
Hence
(2) fila+ K (@™ —1Dry) = fila) mod (p" —1) for every e {1,...,d}.

Putting together (1) and (2) yields that for every N € I,
Catk/(pN—1)r y = Ca mod (pN —1) for every k' =0,

which implies that assumption (H) is true. Theorem 3.4 thus follows from Theorem 2.1. [
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Remark 3.5. — We notice that if ¢,, = f(n) for some polynomial f € Z[X], then the set

{:“’ € Ppe(T) s Te, % Leb}

is also residual in (P, (T), w*). Remark that in this case, the sequence (¢, 2),>0 is uniformly
distributed mod 1 for every x € R\Q, and hence

N-1
1
(3) N 2 exp(2imhc,z) —— 0 as N —— +0 for every h € Z\{0}.
n=0
If 1 belongs to Pp(T), integrating (3) with respect to the measure p yields that
1 N1 1 N1 .
N Z p(he,) —— 0 for every h e Z\{0}, i.e. N Z T., 1t~ Leb.
n=0 n=0
3.c. Further examples: proof of Theorem 1.7. — Let (¢,)n>0 be defined by a linear
recursion: there exist L > 1 and coefficients aq,...,ar, in Z with ay, # 0 such that

Cp = A1Cp—1 + A2Cp—o + -+ +arcy,—y, for every n = L.

Let p = 2. Meiri introduces in [36] the following two assumptions on the sequence (¢y)n>0:

(a) (¢n)n=0 has no non-constant arithmetic subsequence;
(b) ar and p are relatively prime.

It is observed in [36, Prop. 5.1] that assumption (a) is satisfied as soon as the following
property holds:

(@) if A\1,..., A\, with 1 < L' < L, are the distinct roots of the recursion polynomial
p(z) = 2F — Zlel a;z"~!, then none of the quantities \; and Ni/Aj, 1<i<j<Llis
a root of unity.

If assumptions (a) and (b) are satisfied, any measure p € P,(T) which is ergodic and of

%
positive entropy is such that 7., u — Leb as n — +oo (this is a consequence of [36, Th.
5.2]). In particular, the set

G;,(Cn) = {pePpe(T); Te, %, Leb along a set of upper density 1}
is residual in (P,(T), w*). See also |33, Th. 4.3].

Theorem 1.7 complements these results by showing that under the sole assumption (b),
the set

G fen) = {11 € PpelT) ; Toppt 5 Leb}
is residual in (Pp(T), w*).

Proof of Theorem 1.7. — Consider the matrix A € M (Z) given by

al a9 ary,
1 0 0
A=]10 1 0
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Setting C,, = T(cn Cn—1 --- cn_L+1) for every n > L — 1, we have C,41 = AC, for

every n > L — 1. Since det A = (—1)*lay and ay # 0, A is invertible as a matrix of

Mp(Q), and

(_1)L+1
ar,

where adj (A), the adjoint (or adjugate) of A, is the transpose of the matrix of the cofactors

of A. Observe that adj (A) € M (Z).

Let us decompose the integer ay, as ay = qi’l . ..qi’S, where ¢; is prime and b; > 1 for
every i € {1,...,s}. By Fact 3.2, there exist v > 1 and an infinite subset I of N such that
for every N € I, p™ # 1 mod g] for every i € {1,...,s}. Hence, for every N e I, p¥ — 1

A7t = adj (A)

can be written as p —1 = ¢;*".. qu’NrN, where 0 < ;v < v and ged(gi,n) = 1 for
each i € {1,...,s}. Since the prime factors of a, are exactly the ¢;’s, it follows that ay, and

rn are relatively prime, and hence that ay, is invertible modulo ry: there exists an integer
dy with 0 < dy < ry such that ar.dy =1 mod ry. Setting By = (—1)1"1dy adj(A),
we observe that By € Mp(Z) and that ABy = ByA = 1 mod ry. So A is invertible
modulo 7y, and its inverse is By.

Consider now the set of matrices in M (Z) consisting of all powers A" n > 0, of
A, taken modulo ry. This set being finite, there exist two integers 0 < n;y < nan
such that A™~N = A"~ mod ry. Setting ny = naony —ni,n, A™ = I mod ry, and
thus the sequence (C),) taken modulo ry is periodic, with period ny. It follows that

the sequence (¢y,) itself taken modulo 7y is periodic of period ny, so that, in particular,
Ciny = ¢o mod ry for every j = 0. Setting hy = qu{ .. qES’N and remembering that
pY —1 = hy.ry, we obtain that hn.Cjny = hncy mod (pV — 1) for every j > 0. Since
0 < fBin < for every i € {1,...,s}, the set {hy ; N € I} is finite and consists of non-
zero integers. Assumption (H) is satisfied, and the proof is concluded as usual thanks to
Theorem 2.1. O

4. The multidimensional case: proof of Theorem 1.8

In this section, d > 2 is an integer, and A, B € My(Z) are two d x d matrices with integer
coefficients such that det A # 0 and det B # 0. The matrix A is supposed to be similar in
M,4(C) to a diagonal matrix D whose diagonal coefficients A1, ..., Ay are not of modulus
1. Let P € GL4(C) be such that A = PDP~!. The matrix B is supposed to be invertible
in My(C), i.e. det B # 0. Theorem 1.8 states that the set

d w*
Gap= {M € Pac(T) ; Tpnpp —— Leb}

is residual in (P4 (T%),w*). The proof of Theorem 1.8 follows the same structure as those of
Theorems 2.1 and 1.5, but certain technical difficulties that come with the multidimensional
setting must be overcome.

We begin by proving an analogue of Theorem 2.3.

4.a. Some dense classes of discrete measures in P4(T%). — Let (Ng)>1 be a
strictly increasing sequence of integers. Consider the set

CA,(Nk) = {-’” e T¢ ; ANeg = 2 for some k > 1}
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which consists of periodic points for T4 having a period within the set {Ny ; k£ > 1}. For
each £ € C 4 (n,), let piy be the measure defined by

| Mt
= N S

It is a discrete Ts-invariant probability measure on T¢. Set

D) = {Hz: T€Can,}-

Taking inspiration from Theorem 2.3, we would like to show that the set D4 (y,) is dense
in (Pa(T?),w*). If (T4, T4) has the periodic specification property, this is an immediate
consequence of Remark 2.4. However, T4 is known to have the periodic specification
property only in the case where A is an hyperbolic automorphism of T¢, i.e. det A = +1
and A has no eigenvalue of modulus 1. Since A is not assumed here to be an automorphism
of T?, we need to take a different route. It will lead to the following weaker result, which
is fortunately sufficient for our purposes:

Theorem 4.1. — The convex hull of the set D 4 () is dense in (PA(T?), w*).

Proof. — Denote by F 4 (y,) the w*-closure in PA(T?) of the convex hull of D4 (n,)- This

is a w*-closed convex subset of P4(T%), and also of the Banach space M(T) of complex
measures on T¢, endowed with the norm ||p|| := |p|(T¢). This space M(T) is the dual
space of (C(T?),].]|,.ra), the space of continuous functions on T%.

Our aim is to show that F4 (n,) = PA(T?). Suppose that it is not the case, and that
there exists a measure pg belonging to PA(’]I‘d)\FA(Nk).

Applying the Hahn-Banach Theorem in the locally convex space (M (T?), w*), we obtain
that there exists a w*-continuous linear functional L : M(T9) — C, as well as real
numbers 1 < 2 such that

Re(L(p)) <71 <2 < RNe(L(po))

for every p € F 4 (). Since any w*-continuous functional on M(T?) = C(T%)* acts as
integration against an element of C(T¢), there exists a function f € C(T?) such that

%ef fdu<71<72<§Ref [ dpo
T Td

for every p € F 4 (n,).- The measures p and po being nonnegative, replacing f by its real
part we can assume that f is real-valued, and thus that

(4) J fdp<m <72 < L fduo  for every e Fy (n,).
T T

Moreover, it is possible to assume that f is a Lipschitz map on T¢ = R%/Z? endowed with
the distance induced by the sup norm || . |[,, ga on RY. We thus suppose that there exists
a constant C' > 0 such that

5)  |f(z1) — f(z2)| < C int {||a:1 —y 1| ppa; L€ Zd} for every z1, 2 € T
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For any integer k > 1 and any element zj, of T¢ such that (AVk — I)z;, = 0, the measure
Uy = Nik ZN’“_I O¢aiz,) belongs to Fy (). Applying (4) to this measure yields that

7=0
1Nk—1
6 — Alz) <m < <J dpo.
(6) Nk];)f( k) <71 <2 Tdfﬂo

Let now  be an arbitrary element of T? and let k¥ > 1. Consider the vector y;, =
(ANk — Tz, seen as an element of R? (and not as an element of T¢). There exists I}, € Z¢
such that [lyr — lg||re < 1. Recalling that A = PDP~!, with D = diag(A1,..., Aq), we
thus have

oo]Rd<1

| P(DMe — )P~z — 1 ||

)

so that
(7) (DN = )P~z — P70y || eu < 1Pl

where ||P7!||, is the norm of the matrix P! seen as an endomorphism of (C, || ||, ca).
The inequality (7) means exactly that
(8) sup |(AVF — 1) (P7'2); — (P7')i| < [|1P7Y|oo

1<i<d
Since no eigenvalue of A belongs to the unit circle, AV — I is invertible in My(R) and
it is legitimate to set z = (AM — I)71;, € R Let 2} be the corresponding element of
T¢, obtained by taking mod 1 all the coordinates of z,. Then z;, belongs to C 4,(ny)> With
(AN — Nz = 0in T9. Also, 2, = P(D™Ms — I)71P~11;, so that

1
-1, _ (p—1
P Z = (/\ivk ) (P lk)i)lsigd'
It follows from (8) that for every i e {1...,d},
_ . P!

) (Pia); — (Pt < 10 e

A =1
By (5),

| f(Az) — f(Alzy) | < C int {||Ajz — Ny — 1| g ; Le Zd}
< C||Alz - Ajzk||00’Rd
< C|IPllo || DI (P~ e = PV 21) ||,
= C|P||w sup M| |(P7 iz — P lzy)]

1<i<

d
< ClIPlle 3 NI (P 1z — P i)
i=1
Plugging into (9) yields that
d

| F(&z) — f(Azi) | < CIIPlloo 1P o ) w|v|1|
i=1 17
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Hence
Ni—1 Ni—1 d Ni—1

‘Nk Z F(Aig) — Z fAJa;k‘<C|]P||OO]|P ) ZMM Z B

1=1 -

d
1 |\ |Nk—1
< CIPlleo [1P™Hloo -
221 ANV =1 (N - 1)

Notice that |A\;| # 1 for all i = 1...d. Observe that (|\;|™* — 1)/|>\ka -1 — 1 as
k — 400 if [\| > 1, while (|A\Ve —1)/]AM — 1] — —1 as k — +oo if |\ < 1. We
obtain the existence of a positive constant C’ such that
d Ny,
Al Ve —1
sup x Al <.
k210 (N = 1 (A = 1)

Thus there exists C” > 0 such that

Ni—1 ' L Nt ' o

(10) ‘7 Y, f(4a) - N > f(AJmk)( < gy forevery k=1

j=0 7=0

The right hand bound in (10) tends to 0 as k tends to infinity. Combining this with the
fact that inequalities (6) and (10) hold true for every k > 1, we obtain that

Nip—1
1
(11) hmsup — Z f(Az) <y <72 < J fdug for every z e T%.
k—+00 Td

Let € > 0 be such that v1 < 72 —e. Applying the Ergodic Decomposition Theorem to the
measure po yields the existence of an ergodic T4-invariant measure vy on T4 such that

f fdl/o>f fdpo —e.
Td Td

Ny, —1

1
(12) limsup — Z f(Alx) 71<726<j fduvg
k—too Ni 1 Td

It then follows from (11) that

for every z e T%.

But since the measure vy is ergodic, the Birkhoff Pointwise Ergodic Theorem implies
that
Nip—1

1
. E J
lim sup f(Az ﬁrd fdig

k—+00

for vp-almost every x € T?, which contradicts (12). So the initial assumption that the set
PA(TY\F 4 (n,) is non-empty cannot hold, and Theorem 4.1 is proved O

4.b. Proof of Theorem 1.8. — The proof of Theorem 1.8 is similar in spirit to that of
Theorem 1.5. Of course, assumption (H) and Theorem 2.1 are not available anymore, and
they have to be replaced by the following analogue of Fact 3.2:
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Lemma 4.2. — Let Ae My(Z) with det A # 0 and det(A—1) # 0, and let py,...,ps =2
be prime numbers such that ged (p;,det A) = 1 for every i € {1,...,s}. There exist an
infinite subset I of N and an integer v = 1 such that for every i € {1,...,s} and every
Nel,

det (AN —1) #£0 mod p].

Proof of Lemma 4.2. — Since det(A — I) # 0, there exists v > 1 such that for every
i€ {l,...,s}, p; does not divide det(A — I). Since ged (p;,det A) = 1 and p; is prime,
ged (p], det A) = 1 as well, and A is invertible modulo p;. Proceeding as in the proof of
Theorem 1.7, we obtain an integer n; > 2 such that A" =1 mod p], and hence Al =1
mod p; for every | > 1. Setting ng = np...ns, we have A" =T mod p] for every [ > 1
and every i € {1,...,s}. Thus A0+t —T = A—T mod p] and det(Amo! —]) = det(A—1)
mod p]. Since det(4 — I) # 0 mod p], we have det(A™0+! —T) % 0 mod p] for every
l>1and every i € {1,...,s}, and the lemma follows by setting I = ng.N + 1. O

Our aim is now to show that under the assumptions of Theorem 1.8, the following fact
holds:

Fact 4.3. — Suppose that A, B € My(Z) satisfy assumption (a), and either assumption
(b) or (b’) of Theorem 1.8. There exist a strictly increasing sequence (/NVj)x>1 of integers
and a finite subset I of Z\{0} such that, for every k > 1, the integers g := det(AN* — 1)
can be decomposed as qx = hy.rg, where hy € F, 1, > 1, and ged (rg, det B) = 1.

Proof of Fact 4.3. — Recall that since A has no eigenvalue of modulus 1, AV — I is
invertible in My(C), and hence g, := det(AN* —I) # 0. If det B = £1, it suffices to choose
Ny =k, k=1, and F = {£1}. So we suppose without loss of generality that |det B| > 2.
We decompose det B as det B = Eplfl .. .pgS, where ¢ = +1, b; = 1 and p; is a prime
number for every i € {1,...,s}. We now treat separately two cases:

Case 1: assumption (b) is satisfied, i.e. gcd (det A, det B) = 1. In this case ged (p;, det A) =
1 for every i € {1,...,s}, and Lemma 4.2 applies: there exist v > 1 and an infinite set
I < N such that for every i € {1,...,s} and every N € I, p] does not divide det(AY — I).
We enumerate the set I as a strictly increasing sequence (Ng)g>1, and for each k > 1 we
decompose q; = det(ANr — 1) as qx = 5kp‘111’k ...ps¥Fry, where e, = +1, 0 < a; <y and
ged (rg,pi) = 1 for each i € {1,...,s}. Setting

F:{ip?l---p35;0<a¢<% i=1...s}

yields the conclusion of Fact 4.3 in this case.

Case 2: assumption (b’) is satisfied. Let ay, ..., aq be the diagonal coefficients of A, which
belong to Z\{0}. For every N > 1, det(AN — 1) = Hf;l(af\f —1). By Fact 3.2 applied with
u = 2, there exist for each [ € {1,...,d} integers Ny; > 3,...,Ns; > 3 as well as v, > 1
such that for every i € {1,...,s} and every N e N\ J/_; N;;.N,

la;|¥ £ 1 mod pt.

Since the integers N;; are all greater or equal to 3, the set J = N\Uld:1 Ui_y Nii-N
contains an infinite subset J' consisting of even integers. Let I = {M > 1; 2M € J'}. For
every i € {1,...,s}, every l € {1,...,d} and every M € I,

afw #1 mod p]".
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Setting vo = maxi<j<q i, we have thus
alM #1 mod p)°

for every 1 € {1,...,d}, i€ {1,...,s} and M € I. We now set v := dvyp. Then p] cannot
divide the product ]_[ld:l(a{\/[ — 1), since else p]° would divide one of the terms a] — 1,

1 <1< d. Hence det(A™ — 1) # 0 mod p] for every i € {1,...,s}, and we conclude the
proof as in the first case. O

We now use the notation from Fact 4.3. Since, for each k > 1, r, and det B are relatively
prime, B is invertible modulo rg, and there exists an integer mj > 1 such that B™ =T
mod 7y (see the proof of Theorem 1.7). Hence hy B™t = h I mod g for every k > 1. If
we define hg to be the product of all the elements of the finite set F', it follows that

ho.B™ = hg.I mod q, for every k > 1.

Recall that given a measure u € P(T?%) and a d-tuple n = (ni,...,nq) € Z%, the n-th
Fourier coefficient of the measure p is defined as

d
i) = | (), where (g = Y na
=1

Write hg = (ho,...,ho). Here is now an analogue of Fact 2.7 in our multidimensional
setting:

Fact 4.4. — Let x € T¢ be such that (AN — Iz = 0 in T? for some k > 1. Then
B%\kux (ho) = f1z(hg) for every integer [ > 1.

Proof of Fact 4.4. — Recall that

1 Nt
7=0
For every n € Z,
. 1 Ni—1 ] . 1 Ni—1 . .
B g (ho) = ~ Z p2imho, B Alz) _ ~ Z (2im(Lho B Al
[ [
while
1 Nl .
—~ _ 2im(1,ho Al z)
iz (ho) = e
0= 3 2

where1 = (1,...,1). Since (AN*—I)x = 0in T, there exists I € Z% such that (AN*—I)x =
1

I;., the equality being this time in RY, so that £ = — adj (AN — I)l;,.
dk

We know that hg B™ = hy I mod g, so that hg B"* = hoI mod g for every [ > 1.
This means that there exists a matrix Cy; € My(Z) such that ho. B = hol + a-Cl k-
Hence for every j € {0,..., N;}, we have

ho Bk Alx = hg Alz + q;, C), Al
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Since ¢ = 1 adj (ANr — D, with I, € Z4, the vector qxCk A’z belongs to Z?, and thus
ho BlmkAj:z(:Jk: ho Alz in T?. Tt follows that

Blmi g (ho) = fig(ho) for every I = 1,
and Fact 4.4 is proved. O

A direct consequence of Fact 4.4 is that B" uy ﬁw’; Lebg when n —— +00 as soon as
fiz(ho) # 0. Consider, for each 0 <y < 1, the set

Gl p = {nePa(T?; filho) # 0 and Vng = 1, In = no, |B u(ho)| > |fi(ho)|}

which is clearly a G5 subset of (P4(T%),w*). In order to prove that it is dense, we proceed
as in the proof of Lemma 2.6, but using Theorem 4.1 instead of Theorem 2.1. Let V be a
non-empty open set in (P4 (T?),w*). By Theorem 4.1, there exists a convex combination

r r
p= Zaiﬂmia a; =z 0, Zai =1
i=1 i=1
of measures fig; € D 4 (n,) which belongs to V.

Let k; be such that (AVk — Ix; = 0, 1 <i < r. By Fact 4.4, B@mi(ho) = [ig, (ho)
for every [ > 1. Setting mgo = my, ... my,, we have that Bl/@zi (ho) = fig, (ho) for every
l>1andeveryie{l,...,r}. Hence %(ho) = ju(hg) for every [ > 1.

If 7i(ho) # 0, it follows that p belongs to GX’B. If fi(ho) = 0, the measure p, :=
(1 — p)p + pdo belongs to V if 0 < p < 1 is sufficiently small, and fi,(ho) = p # 0. Also
Bfn\o,up(hg) = (1- p)B/l”Fu(hg) + p = 1p(ho) for every I > 0, and hence p, belongs to
G} p- We have thus shown that G 5 is a dense G5 subset of (P4(T), w*).

Any measure p € GZLB is such that limsup,_, \@(hg)] > 0, and hence (since

hy # 0) such that B"u —w/*—> Leby for every e G ». So the set
A,B

G&B = {,u € PA(’]I‘d) : B"u —w/*—> Lebd}
is residual in (P4 (T9), w*).
In order to complete the proof, it remains to show the following analogue of Fact 2.8:

Fact 4.5. — The set Pao(T?) is a dense G5 subset of (Pa(T9), w*).

Proof of Fact 4.5. — As mentioned already in the proof of Fact 2.8, the set PA,C(Td) is
known to be a Gg subset of (P4(T?),w*), so that only its density remains to be proved.

The argument for this follows closely the proof of [41, Th. 2|, and reproves at the same
time that P .(T%) is Gs.

For every 7 > 0, let
Fy = {p e Pa(TY) 35 T such that ((e)) > 7}

Then the set F is easily seen to be closed in (P4(T%),w*). Let us now show that F is
nowhere dense. Let (Ng)r>1 be a strictly increasing sequence of prime numbers such that
N; > 1/7. By Theorem 4.1, the convex hull of the set

DN, = {ux . ANeg — gz for some k > 1}
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is dense in (P4(T9),w*). Hence, given a non-empty open subset V of (P4(T¢),w*), there
exist vectors x1,...,x, in T? integers ki,...,k, > 1 and coefficients aq,...,a, > 0 with
di_jai=1and ANkig; = ; for each 1 < i < r such that

-
W= Z aipg, belongs to V.
i=1

Since Ny, is prime, the minimal period of x; is IV, and thus

1
e, ({x}) < — <7 for every x € T%
It follows that p({z}) < 7 for every z € T¢, and u does not belong to F,. So F; is nowhere
dense in (P4 (T%),w*), and

Pae(T?) = Pa(T)N | ) o

=1
is a dense G subset of (P4(T¢),w*) by the Baire Category Theorem. O

The proof of Theorem 1.8 is completed by combining Fact 4.5 with the assertion that
G%B is residual in (P4 (T9), w*). O

Remark 4.6. — The proof of Fact 4.5 would apply equally well to Fact 2.8, but since the
result is more standard in the one-dimensional case, we preferred to mention the classical
arguments.

5. Further results and remarks

5.a. A complement to a result of Johnson and Rudolph. — Let p > 2 be an inte-
ger, and let (¢, )n=>0 be a sequence of positive integers. We have recalled in the introduction
and in Section 3 conditions on (c¢,) implying that each measure p € Pp(T) which is ergodic
and of positive entropy is (¢, )-generic — thus showing that the set

G;,’(Cn) = {,u € Pp(T) ; Te, 1t %, Leb along a sequence of upper density 1}

is residual in (P,(T), w*). We present here an alternative harmonic analysis approach to
this kind of result. It has the benefit of circumventing the arguments that depend on
positive entropy, when applicable.

Theorem 5.1. — Let p > 2, and let (cn),>, be a sequence of integers satisfying the
following condition:

there exists a sequence (ug)k=1 of elements of Pp(T) such that py, wr, 01, and
(*) moreover, the set {n = 1; |fig(a.c,)| < e} has density 1 for every a € Z\{0},
every € > 0 and every k > 1.

Then the set G (cn) 18 TESIduUal in (Pp(T), w*).

A word about terminology: saying that a sequence (v,)n>1 of measures converges to v
along a subset of upper density 1 means that for any neighborhood V of v in P(T), the set
{n>1; v, € V} has upper density 1, i. e.

1
limsup—#{lgngN; VneV}zl.
N—+0 N
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This is equivalent to the followmg property: for any ag = 1 and any € > 0, the set
{n>=1; |Dy(a) —D(a)| <& for every a € Z with |a| < ap}

has upper density 1. In this case, one can construct a strictly increasing sequence (Ng)g>1
of integers such that

1
N—#{lénéNk;VM <k, |Dpla) —D(a)] <27} =1-27*
k

for every k = 1, and Ny > 2¥N,. If we consider the strictly increasing sequence (nj)j=1
obtained by enumerating the set

D = U{Nk,l <n < Ng; Via| <k, |Da(a) — D(a)] < 27%}
k=1
(with the convention that Ny = 0), we obtain that D = {n; ; j > 1} has upper density 1
and that 7, (a) — v(a) as j — +o0 for every a € Z.

Proof of Theorem 5.1. — We first observe that the set G;) (cn) CAD be written as G; (cn) =

C:Vp,(cn) N Ppe(T), where
ép,(cn> = {pePy(T); VNo,a0 =1, Ve, 6€(0,1)nQ
AN >Ny, dFc{l,...,N} with#F=>(1-9§N
such that Va € Z with 0 < |a| < ag, Yn € F, |i(a.cp)| < 5}

The set ép’(cn) is clearly G in (P,(T), w*). Since P, (T) is residual in Pp(T), it suffices
to show that CNJP’(CH) is dense in P,(T). In order to do this, we are going to exhibit a dense
set of measures p € Pp(T) with the following property:

(13) VaeZ\{0}, Ye >0, the set {n >1; |l(ac,)| < e} has density 1.

Since the intersection of finitely many sets of density 1 is again of density 1, the measures
in this set will be such that

(14)  Vap=1, Ye>0, theset {n>1; V0 < |a| < ap, |fi(acy)| < e} has density 1

and hence upper density 1. Such measures will hence belong to the set Gp (n)"

Our assumption () states that the measures py, k > 1, satisfy (13). Fix v € P,(T),
and set vy = ug * v for every n = 1. For any € > 0, the set {n > 1; |Uk(a.cy)| < &} has
density 1, and it follows that the measures vy satisfy (13). Since vy W as k——s +00,

this concludes the proof of Theorem 5.1. O

Theorem 5.1 applies for instance to the case where ¢, = ¢", n = 0, provided that p,q > 2
are two multiplicatively independent integers, and allows to retrieve [25, Th. 8.2], which
states that G;/D,(q") is residual in (P,(T), w™*).

To this aim, it suffices to exhibit a sequence (j)r>1 of measures from P,(T) satisfying
(13) and such that pug , 01. The measures that we shall consider are the Bernoulli con-
volutions pg introduced at the end of the proof of Theorem 1.5, where © = (6, ...,0,-1)
is a p-tuple of elements of (0,1) with Z?;l 0; = 1. They are T,-invariant, and

p—1
fe(m) = H (90 + Z Qjezmmjpin) for every m € Z.

n>1 j=1
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It is shown by Lyons in 34| and by Feldman and Smorodinsky in [15] that Tin e 2%, Leb

as n—— +00. Since ug wr, 01 as © — (1,0,...,0), assumption () from Theorem
5.1 is satisfied, and G (gn) 18 residual in (Pp(T), w*).

The behaviour of the Fourier coefficients of Bernoulli convolutions has been studied
extensively, particularly when p is equal to 2 or 3; see for instance the classical book [26]
by Kahane and Salem. An important work on the subject is that of Blum and Epstein
[7], where the authors provide upper and lower bounds on |fig(m)|? which allow them to
give a characterisation of sequences of positive integers along which jig(m) tends to 0. In
the case p = 2, this characterisation is given in terms of the order of magnitude of R(m),
which is the number of runs, ¢. e. of maximal blocks of the same digit 0 or 1, appearing
in the binary expansion of m. Equivalently, R(m) is the number of digits changes in the
binary expansion of m. Then as soon as © # (1/2,1/2) (in which case pg is the Lebesgue
measure on T), there exist two constants C7,Cy > 0 such that, for every m € Z,

exp(—C2R(m)) < |pe(m)| < exp(—C1R(m)).
It follows that if (my) is any strictly increasing sequence of integers, we have fig(my) — 0
as k — +oo0 if and only if R(my) — +00 as k —> +o0.

For general p, here is the result proved by Blum and Epstein in [7]:

Theorem 5.2 (|[7]). — Let p > 2. Let © = (0p,...,0,-1) be a p-tuple of elements from
(0,1) with the property that the polynomial Qe(z) = Z?;é 0;27 does not vanish on T. Let,
form =0,

(m) = Ro(m) + Ry—1(m) + N(m),
where Ro(m) is the number of mazimal blocks of 0s, R,—1(m) is the number of mazimal

blocks of (p—1)s, and N(m) is the number of digits other than 0 and p—1 in the expansion
of m in base p. Then there exist two constants C1,Co > 0 such that

exp(—Catp(m)) < e (m)| < exp(=Citp(m))  for every m € Z.
Hence fig(my) — 0 as k — +o0 if and only if (my) — +00 as k —> +0.

As a consequence, we obtain the following result, which we state using the notation from
Theorem 5.2:

Proposition 5.3. — Let (¢p)n>0 be a sequence of integers such that, for every a € Z\{0},
the sequence (Y(a.cp))n=o tends to infinity along a sequence of density 1. Then the set
G, (cn) 18 TESIdual in (Pp(T), w*).

Proof. — 1t suffices to show that (c,)n>0 satisfies assumption (x) of Theorem 5.1. Let
© = (bo,...,0,—1) be a sequence of elements of (0,1) summing up to 1, and suppose that

6o > 1/2. Then Z?: 0; < 1/2, and hence we have

p—1
[Qo(2)] = 00— > 0;]zF >0

j=1
for every z € C with |z| < 1. Thus the polynomial Qg does not vanish on T. Let (Og)x>1
be such that Oy — (1,0,...,0) as k—— +o0, and Qg, does not vanish on T. Then

*
He, ~ 61 as k—— +00 . Moreover, the assumption of Proposition 5.3 combined with
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Theorem 5.2 implies that for every a € Z\{0}, fie,(ac,) — 0 along a sequence of density
1. The assumption (x) is thus satisfied, and Proposition 5.3 follows. O

Remark 5.4. — If p,q = 2 are multiplicatively independent integers, and ¢, = ¢", n = 0,
it is shown in [15, Prop. 1| that any word w in the letters 0,1,...,p — 1 appears in the
expansion of ¢" in base p for every n belonging to a set of integers of density 1. The proof
given there can be extended to show that for any a € Z\{0}, w appears in the expansion
of a.q™ in base p for every n belonging to a set of integers of density 1.

5.b. Some open questions. — In Sections 2 and 3, numerous examples of sequences
(cn) were presented, for which the set

w*
Gpy(en) = {1 € Ppe(T) 5 Topt 7= Leb}

was found to be a residual subset of (Py(T), w*). The condition (H) presented in Section
2 is the most general one that we can provide for the residuality of G, () to hold. How-
ever, it does not apply to all sequences (¢, )n>0, leaving the following intriguing question
unanswered.

Question 5.5. — Let p > 2, and let (¢,)n>0 be any strictly increasing sequence of inte-
gers. Is it true that the set G .,y is residual in (Pp(T),w*)?

*
If yu is (cn)-generic, then + SN AT, w25 Teb as N —— +co . Tt is thus natural to
consider the set

N-1
1 *
G;;(cn) = {p e Ppe(T) ; N Z T.,i ——Leb as N — 40}
n=0
and to ask the following question.
Question 5.6. — Let p > 2, and let (¢;,)n>0 be a strictly increasing sequence of integers.

Is the set Gg’(cn) residual in (Pp,(T), w*)?

For the sequences considered in [22,25,33,36], the density of the set Gg’(cn) in (Pp(T), w*)
follows from the result that ergodic measures of positive entropy in Py (T) are (cy)-generic.
But the question of the residuality remains widely open, and it is actually not known if
the set G (gn) 18 residual in (Py(T), w*) when ¢ > 2 is an integer which is multiplicatively
independent from p. This question is also connected to another conjecture from [35], called
(C7), which runs as follows:

Conjecture (CT7): Let p,q = 2 be multiplicatively independent integers. For any
measure 1 € Pp(T), p-almost every x € T is normal in base g, i.e.

N-1

1 S

N Z 2T’ 0 as N——=0 for every a € Z\{0}.
n=0

In our examination of Conjecture 1.4 in the multidimensional context, we have estab-
lished conditions on matrices A, B € My(Z) with non-zero determinant that imply that
the set

’LU*
Gap = {pePac(T); Tgnpu —+ Leby}
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is residual in (Pa(T%),w*). These conditions (that A be diagonalisable in Mgy(C), that
det A and det B be relatively prime...) arise due to technical difficulties in the proofs in
the higher dimensional case. However, it may be that these conditions are not necessary;
this is true in the one-dimensional setting.

Question 5.7. — Let d > 2 and A, B € My(Z) with det A # 0 and det B # 0. Is it true
that the set G p is residual in (Pa(T9), w*)?

Let also
1 Nt «
GZLB = {:U’ € PA,C(Td) ) N Z TB"M SN Lebd as N — —|—oo},
n=0

In analogy to Question 5.6 , one may also ask:

Question 5.8. — Let d > 2 and A, B € My(Z) with det A # 0 and det B # 0. Is it true
that the set G p is residual in (Pa(T?),w*)?
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