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Bershadsky, Cecotti, Ooguri and Vafa constructed a real valued invariant for Calabi-Yau manifolds, which is now called the BCOV torsion. Based on it, a metric-independent invariant, called BCOV invariant, was constructed by Fang-Lu-Yoshikawa and Eriksson-Freixas i Montplet-Mourougane. The BCOV invariant is conjecturally related to the Gromov-Witten theory via mirror symmetry. Based upon previous work of the second author, we prove the conjecture that birational Calabi-Yau manifolds have the same BCOV invariant. We also extend the construction of the BCOV invariant to Calabi-Yau varieties with Kawamata log terminal singularities, and prove its birational invariance for Calabi-Yau varieties with canonical singularities. We provide an interpretation of our construction using the theory of motivic integration.

Introduction 0.1 Background: mirror symmetry

BCOV torsion, introduced by Bershadsky, Cecotti, Ooguri, and Vafa in the outstanding papers [START_REF] Bershadsky | Holomorphic anomalies in topological field theories[END_REF][START_REF] Bershadsky | Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes[END_REF], is a real valued invariant for Calabi-Yau manifolds equipped with Ricci-flat metrics [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF]. More precisely, let X be a Calabi-Yau manifold, i.e., a compact Kähler manifold with trivial canonical bundle, and let ω be a Ricci-flat Kähler metric, the BCOV torsion of (X, ω) is the weighted product

TBCOV(X, ω) := dim X p=1 T (-1) p p p , (0.1) 
where Tp is the analytic torsion, introduced by Ray-Singer [START_REF] Ray | Analytic torsion for complex manifolds[END_REF], of the p-th exterior power of the holomorphic cotangent bundle p (T * X) equipped with the induced metric.

The motivation of Bershadsky-Cecotti-Ooguri-Vafa [START_REF] Bershadsky | Holomorphic anomalies in topological field theories[END_REF][START_REF] Bershadsky | Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes[END_REF] comes from string theory and has impact on mirror symmetry, which predicts that for a family of Calabi-Yau manifolds, there is another family of Calabi-Yau manifolds with maximal degeneration, called the mirror family, such that the symplectic geometry (e.g. Gromov-Witten invariants) of the first family, called the Amodel, is "equivalent" to the complex geometry (e.g. variation of Hodge structures) of the mirror family, called the B-model. Candelas-de la Ossa-Green-Parkes [START_REF] Candelas | A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory[END_REF] conjectured a precise relation between the potential (J-function) of the genus zero Gromov-Witten invariants of quintic threefolds (A-model) and the potential (I-function) of the Yukawa coupling for the quintic mirror family (B-model). Such a relation is expected to hold in general for mirror Calabi-Yau families (see [START_REF] Morrison | Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians[END_REF]) and gives surprising predictions in enumerative geometry. This genus zero mirror symmetry conjecture was proved by Givental [START_REF]Equivariant Gromov-Witten invariants[END_REF][START_REF]A mirror theorem for toric complete intersections[END_REF] and Lian-Liu-Yau [START_REF] Lian | Mirror principle[END_REF] for a large class of examples including the original case of quintic threefolds. Bershadsky-Cecotti-Ooguri-Vafa [START_REF] Bershadsky | Holomorphic anomalies in topological field theories[END_REF][START_REF] Bershadsky | Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes[END_REF] computed certain invariants on the B-model that conjecturally correspond to higher genus Gromov-Witten invariants. This allows them to put forth conjectural formulas for all genus Gromov-Witten invariants of quintic threefolds. The genus one part of this conjecture was proved by Zinger [START_REF] Zinger | Standard versus reduced genus-one Gromov-Witten invariants[END_REF][START_REF] Zinger | The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces[END_REF] in the broader setting of Calabi-Yau hypersurfaces in projective spaces. A lot of progress has been made recently on the study of Gromov-Witten invariants of genus 2 (see [START_REF] Chang | Mixed-Spin-P fields of Fermat quintic polynomials[END_REF][START_REF] Chang | An effective theory of GW and FJRW invariants of quintic Calabi-Yau manifolds[END_REF][START_REF] Guo | A mirror theorem for genus two gromov-witten invariant of quintic 3-fold[END_REF][START_REF] Guo | Structure of higher genus Gromov-Witten invariants of quintic 3-folds[END_REF][START_REF] Chang | The theory of N-Mixed-Spin-P fields[END_REF][START_REF] Chang | Polynomial structure of Gromov-Witten potential of quintic 3-folds[END_REF][START_REF] Chang | BCOV's Feynman rule of quintic 3-folds[END_REF][START_REF] Chen | The logarithmic gauged linear sigma model[END_REF] and references therein). Despite the recent increasing interest on A-model invariants in genus 2, the research on B-model invariants is currently focused on the genus one theory and the particular case of Bershadsky-Cecotti-Ooguri-Vafa's B-model invariant corresponding to the genus one Gromov-Witten invariant is the aforementioned BCOV torsion (0.1).

The central object in this paper is the following normalization of the BCOV torsion, called the BCOV invariant. Let X be an n-dimensional Calabi-Yau manifold equipped with a Ricci-flat metric of Kähler form ω, its BCOV invariant [START_REF] Fang | Analytic torsion for Calabi-Yau threefolds[END_REF][START_REF] Eriksson | BCOV invariants of Calabi-Yau manifolds and degenerations of Hodge structures[END_REF] is defined 1 by T (X) := TBCOV(X, ω)

n k=1 covol L 2 H k (X, Z), ω (-1) k k 2π -n X ω n n! χ(X) 12 , (0.2) 
where χ(X) is the topological Euler characteristic of X, and covol L 2 H k (X, Z) is the covolume of the lattice Im H k (X, Z) → H k (X, R) with respect to the L 2 -metric induced by ω. The virtue of the BCOV invariant is that it depends only on the complex structure, but not on the Kähler metric.

Fang-Lu-Yoshikawa [START_REF] Fang | Analytic torsion for Calabi-Yau threefolds[END_REF] constructed the BCOV invariant for strict Calabi-Yau threefolds and studied its asymptotic behavior along degenerations. Their work confirmed the conjectural formula of Bershadsky-Cecotti-Ooguri-Vafa [START_REF] Bershadsky | Holomorphic anomalies in topological field theories[END_REF][START_REF] Bershadsky | Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes[END_REF] for the BCOV invariant near the large complex structure limit of the quintic mirror family (see [34, Conjecture 1.2 (B)]). Eriksson-Freixas i Montplet-Mourougane [START_REF] Eriksson | BCOV invariants of Calabi-Yau manifolds and degenerations of Hodge structures[END_REF] generalized the construction as well as the asymptotic study of the BCOV invariant to Calabi-Yau manifolds of arbitrary dimension. They proved in [START_REF] Eriksson | On genus one mirror symmetry in higher dimensions and the BCOV conjectures[END_REF] a higher-dimensional generalization of the conjectured formula mentioned above, and showed the compatibility with Zinger's result on the A-model [START_REF] Zinger | Standard versus reduced genus-one Gromov-Witten invariants[END_REF][START_REF] Zinger | The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces[END_REF], thus completing the genus one mirror symmetry conjecture of Bershadsky-Cecotti-Ooguri-Vafa [START_REF] Bershadsky | Holomorphic anomalies in topological field theories[END_REF][START_REF] Bershadsky | Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes[END_REF] in this case.

Throughout this paper, for an n-dimensional Calabi-Yau manifold X, we will use the following "normalized logarithmic BCOV invariant":

τ (X) = log T (X) + log(2π) 2 2n k=0 (-1) k k(k -n)b k (X) , (0.3) 
where b k (X) is the k-th Betti number of X. This normalization comes from [61, (0.13)].

Birational invariance conjecture

As two birationally isomorphic Calabi-Yau varieties share the same mirror, their BCOV invariants should coincide. This leads to the following conjecture.

Conjecture 0.1. For birational Calabi-Yau manifolds X and X , we have τ (X) = τ (X ).

In view of (0.3), Conjecture 0.1 is equivalent to say that T (X) = T (X ), since birational Calabi-Yau manifolds have the same Betti numbers, by Batyrev [START_REF] Batyrev | Birational Calabi-Yau n-folds have equal Betti numbers[END_REF].

Conjecture 0. Since the BCOV invariant can be thought as a "secondary" analogue of variation of Hodge structures associated with deformations of Calabi-Yau manifolds, Conjecture 0.1 is a "secondary" analogue of the theorem of Batyrev [START_REF] Batyrev | Birational Calabi-Yau n-folds have equal Betti numbers[END_REF] and Kontsevich [45] that birational Calabi-Yau manifolds have the same Hodge numbers.

Several results were obtained towards Conjecture 0.1:

• Maillot and Rössler [START_REF] Maillot | On the birational invariance of the BCOV torsion of Calabi-Yau threefolds[END_REF]Theorem 1.1] showed that for two smooth projective Calabi-Yau threefolds X, X defined over a subfield K of C such that XC and X C are birational, then for any fixed finite set T of complex embeddings of K, there exist n ∈ N>0 and

α ∈ K × , such that τ (X σ ) -τ (Xσ) = 1 n log σ(α) for any σ ∈ T , (0.4) 
where Xσ := X ⊗K,σ C. Maillot and Rössler also proved the same result under the strictly more general hypothesis that XC and X C are derived equivalent2 .

• The second author [62, Corollary 0.5] proved Conjecture 0.1 for Atiyah flops of (-1, -1)curves in Calabi-Yau threefolds.

Main results

In this paper, we confirm Conjecture 0.1.

Theorem A. Let X and X be projective Calabi-Yau manifolds. If X and X are birationally isomorphic, then τ (X) = τ (X ).

The BCOV invariants can be extended to projective manifolds with torsion canonical bundle (or equivalently, with vanishing first Chern class by [START_REF] Beauville | Variétés Kähleriennes dont la première classe de Chern est nulle[END_REF]), see [START_REF] Zhang | BCOV invariant and blow-up[END_REF]. Theorem A still holds in this more general case. In fact, we can prove the birational invariance in a much broader setting involving singular varieties.

We call a normal projective complex variety X a Calabi-Yau variety with canonical (resp. KLT) singularities, if it has canonical (resp. Kawamata log terminal) singularities (cf. [START_REF] Kollár | Birational geometry of algebraic varieties[END_REF] or Definition 6.1) and KX ∼Q 0, where ∼Q is the linear equivalence relation for Q-Cartier divisors. We will propose a natural definition of the BCOV invariant for Calabi-Yau varieties with KLT singularities (see Definition 6.9), which we still denote by τ . It coincides with the usual one in the smooth case. Theorem A admits the following extension: Theorem B. Let X and X be Calabi-Yau varieties with canonical singularities. If X and X are birationally isomorphic, then τ (X) = τ (X ).

A resolution of singularities f : X → X is called crepant if the relative canonical divisor K X/X is trivial. By Theorem B, the BCOV invariant of a canonical Calabi-Yau variety equals to the BCOV invariant of any crepant resolution. Note that neither the existence nor the uniqueness of crepant resolution is guaranteed. Bridgeland-King-Reid [START_REF] Bridgeland | The McKay correspondence as an equivalence of derived categories[END_REF] proved its existence in dimension 3 for Gorenstein quotient singularities.

It is worth mentioning that in the recent work [START_REF] Dai | Analytic torsion for log-Enriques surfaces and Borcherds product[END_REF], Dai and Yoshikawa constructed examples showing that certain analytically defined BCOV invariants for orbifolds is not a birational invariant already in dimension 2. The orbifold surfaces in their examples have singular points worse than canonical (i.e. du Val) singularities, hence compatible with our Theorem B. Nevertheless, quotient singularities are KLT and it is highly interesting to compare our extended definition and the analytic definition for Calabi-Yau orbifolds; see Remark 6.10.

The curvature formula is of fundamental importance in the theory of BCOV invariants. We refer the readers to [START_REF] Fang | Analytic torsion for Calabi-Yau threefolds[END_REF]Theorem 4.9], [START_REF] Eriksson | BCOV invariants of Calabi-Yau manifolds and degenerations of Hodge structures[END_REF]Proposition 5.10] and [START_REF] Zhang | BCOV invariant and blow-up[END_REF]Theorem 0.4] for the precise formulation in the smooth case. We have the following curvature formula for the BCOV invariant of locally trivial deformation families (in the sense of Flenner-Kosarew [START_REF] Flenner | On locally trivial deformations[END_REF], cf. Definition 6.11) of KLT Calabi-Yau varieties.

Theorem C. Let S be a complex manifold. Let π : X → S be a flat family of normal projective KLT Calabi-Yau varieties. Let Xs = π -1 (s) for s ∈ S. Assume that π is locally trivial. Then the following function is C ∞ , τ (X /S) : S → R s → τ (Xs) .

(0.5)

Moreover, we have the following identity of (1, 1)-forms on S,

∂∂ 2πi τ (X /S) = ω Hdg,X /S - χ(X) 12 ω WP,X /S , (0.6) 
where χ(X) is the stringy Euler characteristic of Xs (cf. Definition 6.8), ω Hdg,X /S is the Hodge form of the family X /S (cf. Definition 6.14) and ω WP,X /S is the Weil-Petersson form of the family X /S (cf. Definition 6.16).

It is still in active research to lay a rigorous foundation of a mathematical theory of B-model invariants in genus 2. Once such a theory is built, its birational invariance will be of great importance. We hope that our results on genus one can serve as the first step towards the big picture.

Overview of proof

To highlight the key ideas, we only explain the proof of Theorem A here. The proof contains three main ingredients.

a) BCOV invariant for pairs

The BCOV invariant for Calabi-Yau manifolds was extended by the second author [START_REF] Zhang | BCOV invariant and blow-up[END_REF] to all pairs (X, γ) with X a compact Kähler manifold and γ a meromorphic canonical form on X such that div(γ) is of simple normal crossing support and without component of multiplicity -1.

We denote div(γ) = D = m1D1 + • • • + m l D l and DJ = j∈J Dj for J ⊆ {1, . . . , l}. By convention, D ∅ = X and j∈∅ -m j m j +1 = 1. The BCOV invariant of (X, γ) is defined by

τ (X, γ) = J⊆{1,...,l} j∈J -mj mj + 1 τBCOV(DJ , ω) + correction terms, (0.7) 
where ω is a Kähler form on X, τBCOV(DJ , ω) is the (logarithmic) BCOV torsion of DJ , ω D J (see Definition 1.3), and the correction terms are given by Bott-Chern forms, making τ (X, γ) independent of ω (see Definition 3.2).

b) Blow-up formula

The second author [START_REF] Zhang | BCOV invariant and blow-up[END_REF] worked out the precise behavior of the extended BCOV invariant (0.7) under a blow-up (see Theorem 3.6). The formula of the second author expresses the change of the BCOV invariant under a blow-up in terms of the BCOV invariant of projective spaces endowed with some canonical form, together with certain topological data. The work of the second author is based on the technique of deformation to the normal cone of Baum-Fulton-MacPherson [6, §1.5], and on series of work of Bismut and his collaborators on the Quillen metric [START_REF] Berthomieu | Quillen metrics and higher analytic torsion forms[END_REF][START_REF] Bismut | Quillen metrics and singular fibres in arbitrary relative dimension[END_REF][START_REF] Bismut | Holomorphic and de Rham torsion[END_REF][START_REF] Bismut | Complex immersions and Quillen metrics[END_REF].

c) Birational BCOV To confirm Conjecture 0.1, by the weak factorization theorem of Abramovich, Karu, Matsuki and Włodarczyk [START_REF] Abramovich | Torification and factorization of birational maps[END_REF][START_REF] Włodarczyk | Toroidal varieties and the weak factorization theorem[END_REF], it suffices to normalize the BCOV invariant τ (X, γ) in (0.7) in such a way that the normalized BCOV invariant does not change under blow-ups. The normalization in this paper is a linear combination of the Betti numbers of the strata DJ J⊆{1,••• ,l} .

BCOV invariants and motivic integration

It might seem mysterious that the weighted sum in (0.7) happens to be the right object to study, which eventually allows us to prove the birational invariance of the BCOV invariant. One conceptual progress made in this paper is an explanation of the construction of τ (X, γ) (see (0.7)) using Kontsevich's motivic integration [START_REF] Kontsevich | Motivic integration[END_REF]. It is worth mentioning that the technique of motivic integration already appeared in a less refined form in the paper of Maillot-Rössler [START_REF] Maillot | On the birational invariance of the BCOV torsion of Calabi-Yau threefolds[END_REF] mentioned above. Let (X, γ) be as in a). We temporarily assume that X is projective and D = div(γ) is effective. Let Z(X, ID; L -1 ) be the motivic Igusa zeta function (see §4.1) associated with (X, D), evaluated at L -1 . Its Hodge realization can be computed as follows:

H • Z(X, ID; L -1 ) = J⊆{1,••• ,l} L |J|-n j∈J 1 -L m j L m j +1 -1 H • (DJ ) , (0.8) 
where L on the right hand side is understood as the operator of tensoring with the Lefschetz Hodge structure Z(-1). The following observation is crucial,

H • Z(X, ID; L -1 ) L=1 = J⊆{1,••• ,l} j∈J -mj mj + 1 H • (DJ ) , (0.9) 
where the coefficients are exactly the same as in (0.7). Using (0.9), we will show in §4 that the BCOV invariant τ (X, γ) is essentially the Quillen metric on

k det H k Z(X, ID; L -1 ) (-1) k k . (0.10)
By the change of variables formula in motivic integration (cf. Theorem 4.2), the virtual Hodge structure H • Z(X, ID; L -1 ) in (0.8) is a birational invariant. Hence the virtual determinant line in (0.10) is also a birational invariant, in the sense that there is a canonical isomorphism between the complex lines (0.10) associated with two birational varieties equipped with effective simple normal crossing divisors. This partially explains the reason why τ (X, γ) is almost a birational invariant.

This paper is organized as follows. In §1, we give a reminder on the Quillen metric and the BCOV torsion. A discussion on simple normal crossing divisors is also included.

In §2, we develop some basic properties of the so-called localizable and log-type invariants, which will appear repeatedly throughout the paper.

In §3, we recall the construction of τ (X, γ) and collect several fundamental properties of the BCOV invariant.

In §4, we explain the construction of τ (X, γ) using motivic integration. In §5, we construct a birational BCOV invariant.

In §6, we extend the BCOV invariant to the singular cases and prove Theorem C. In §7, we prove Theorem A and Theorem B.

Convention: When we write a divisor D = l j=1 mjDj, we implicitly assume that the Dj's are distinct prime divisors. For a complex manifold X and a complex submanifold Y , we denote by BlY X the blow-up of X along Y . Lie Fu is supported by the Radboud Excellence Initiative from the Radboud University, by the project FanoHK (ANR-20-CE40-0023) of Agence Nationale de la Recherche in France, and by the University of Strasbourg Institute for Advanced Study (USIAS).

Yeping Zhang is supported by KIAS individual Grant MG077401 at Korea Institute for Advanced Study.

Preliminaries

Quillen metric and topological torsion

Let X be a compact Kähler manifold of dimension n. For any holomorphic vector bundle E over X, its determinant line of cohomology [START_REF] Knudsen | The projectivity of the moduli space of stable curves. I. Preliminaries on "det" and[END_REF] is

λ(E) = det H • (X, E) := n q=0 (det H q (X, E)) (-1) q . (1.1)
For any Kähler metric on X and any Hermitian metric on E, one can define the so-called Quillen metric [START_REF] Quillen | Determinants of Cauchy-Riemann operators on Riemann surfaces[END_REF] on the determinant line λ(E), see [START_REF] Bismut | Complex immersions and Quillen metrics[END_REF]Definition 1.10].

For p = 0, • • • , n, set λp(X) = λ p (T * X) = n q=0 det H p,q (X) (-1) q . (1.2)
The determinant lines λp(X), with their Quillen metrics, will be the basic building blocs in the construction of the BCOV invariant. Before doing that, let us first introduce a natural invariant that will appear later, called topological torsion, and recall its vanishing. Set

η(X) = det H • dR (X) := 2n k=0 det H k dR (X) (-1) k . ( 1.3) 
By the Hodge decomposition

H k dR (X) = p+q=k H p,q (X), for any 0 k n, (1.4) 
we have

η(X) = n p=0 λp(X) (-1) p . (1.5)
We fix a square root of i. This choice will be irrelevant. We identify the de Rham cohomology H k dR (X) with the singular cohomology H k Sing (X, C) as follows,

H k dR (X) → H k Sing (X, C) [α] → a → 2πi -k/2 a α , (1.6) 
where α is a closed k-form and a is a k-chain in X. The identification (1.6) endows H k dR (X) with an integral structure. Let X be a generator of the induced integral structure on η(X). More precisely, for

k = 0, • • • , 2n, let σ k,1 , • • • , σ k,b k ∈ H k Sing (X, Z) tf (1.7) be a Z-basis of the quotient of H k Sing (X, Z) modulo its subgroup of torsion elements. Then σ k,1 , • • • , σ k,b k form a basis of H k dR (X). Set X = 2n k=0 σ k,1 ∧ • • • ∧ σ k,b k (-1) k ∈ η(X) , (1.8) 
which is well-defined up to ±1.

Let ω be a Kähler form on X, which induces a Hermitian metric on p (T * X) for any p. Let • λp(X),ω be the Quillen metric on λp(X) associated with ω. Let • η(X) be the metric on η(X) induced by • λp(X),ω via (1.5). Proceeding in the same way as in the proof of [START_REF] Zhang | An extension of BCOV invariant[END_REF]Theorem 2.1],

we can show that • η(X) is independent of ω. Definition 1.1. We define the topological torsion of X as τtop(X) = log X η(X) .

(1.9)

The identification (1.6) allows us to have the following vanishing result.

Proposition 1.2 ([61, Proposition 1.24]). For any compact Kähler manifold X, we have τtop(X) = 0 .

(1.10)

BCOV torsion

Keep the same setting of §1.1. Following [9, §5.8], we consider the weighted product of determinant lines λp(X) defined in (1.2).

λ(X) = 0 p,q n det H p,q (X) (-1) p+q p = n p=1 λp(X) (-1) p p . (1.11) Set λ dR (X) = 2n k=1 det H k dR (X) (-1) k k . (1.12) 
By the Hodge decomposition (1.4), we have

λ dR (X) = λ(X) ⊗ λ(X) .
(1.13)

The identity (1.13) appeared in Kato [42, last identity in §1.3] and was first applied to this setting in [START_REF] Eriksson | BCOV invariants of Calabi-Yau manifolds and degenerations of Hodge structures[END_REF]. Let • λ(X),ω be the metric on λ(X) induced by • λp(X),ω via (1.11). Let • λ dR (X),ω be the metric on λ dR (X) induced by • λ(X),ω via (1.13). Let σX be the integral generator of λ dR (X) defined as follows, using the Z-basis of

H • Sing (X, Z) tf in (1.7), σX = 2n k=1 σ k,1 ∧ • • • ∧ σ k,b k (-1) k k . (1.14)
Definition 1.3. We define the BCOV torsion of (X, ω) as τBCOV(X, ω) = log σX λ dR (X),ω .

(1.15)

In the case where X is a Calabi-Yau manifold equipped with a Ricci-flat metric ω, this invariant τBCOV(X, ω) is precisely the logarithm of the product of the first two factors on the right hand side of (0.2).

Divisor with simple normal crossing support

For I ⊆ 1, • • • , n , set C n I = (z1, • • • , zn) ∈ C n : zi = 0 for i ∈ I ⊆ C n . (1.16)
Let X be a complex manifold of dimension n. Let Y1, • • • , Y l ⊆ X be closed complex submanifolds.

Definition 1.4. We say that Y1, • • • , Y l transversally intersect if for any x ∈ X, there exists a holomorphic local chart ) as the image of γ ∈ M (X, L) via the canonical isomorphism L(-mjDj)

C n ⊇ U ϕ -→ X such that -0 ∈ U and ϕ(0) = x; -for each k = 1, • • • , l, either ϕ -1 (Y k ) = ∅, or ϕ -1 (Y k ) = U ∩ C n I k for certain I k ⊆ 1, • • • , n .
D j L D j ⊗ L -m j j . (1.18) Let C n ⊇ U ϕ -→ X be a local chart as in Definition 1.4. Assume that γ ϕ(U ) = sϕ * z m 1 1 • • • z mr n , (1.19) 
where 0 r n and s ∈ H 0 (ϕ(U ), L) is nowhere vanishing. For j = 1, • • • , r, we have

ResD j (γ) D j ∩ϕ(U ) = sϕ * z m 1 1 • • • z m j-1 j-1 z m j+1 j+1 • • • z mr r (dzj) m j , (1.20) 
where dzj is viewed as a conormal vector of {zj

= 0} ⊆ C n . Note that div ResD 1 (γ) = l j=2 mj D1 ∩ Dj . (1.21)
The following identity holds in

M D1 ∩ D2, L ⊗ L -m 1 1 ⊗ L -m 2 2 , ResD 1 ∩D 2 ResD 1 (γ) = ResD 1 ∩D 2 ResD 2 (γ) . (1.22)
In other words, the order of taking Res•(•) does not matter.

Localizable invariants 2.1 Definitions and examples

Definition 2.1. Let Käh be the category of compact Kähler manifolds. Let φ : Käh → R be a function that depends only on the isomorphism classes of compact Kähler manifolds.

• φ is called a localizable invariant if for any X, X ∈ Käh, and closed complex submanifolds

Y ⊆ X, Y ⊆ X such that Y Y and N Y /X N Y /X , we have φ BlY X -φ(X) = φ Bl Y X -φ(X ) . (2.1)
• φ is called of log-type3 if for any X ∈ Käh and V a holomorphic vector bundle of rank r over X, we have

φ P(V ) = χ CP r-1 φ(X) + χ(X)φ CP r-1 . (2.2)
• φ is called additive if for any X ∈ Käh and Y ⊆ X a closed complex submanifold, we have

φ BlY X -φ(X) = φ P(N Y /X ) -φ(Y ) . (2.3) 
An additive invariant is clearly localizable. A linear combination of localizable (resp. log-type, additive) invariants is again localizable (resp. of log-type, additive).

Let us give several examples of such invariants that will play important roles later.

Examples 2.2. Let X be a compact Kähler manifold.

• For any k ∈ N, the k-th Betti number b k (X) is an additive invariant. Let

Pt(X) = 2 dim X k=0 b k (X)t k (2.4)
be the Poincaré polynomial. For any t ∈ R, Pt(X) is an additive invariant. In particular, the topological Euler characteristic

χ(X) = P-1(X) (2.5) is additive. • The invariant χ (X) = d dt Pt(X) t=-1 = dim(X)χ(X) (2.6)
is of log-type and additive. To show that χ (X) is of log-type (i.e., identity (2.2)), we take the derivative of the identity Pt(P(V )) = Pt(X)Pt(CP r-1 ).

• The invariant

χ (X) = d 2 dt 2 Pt(X) t=-1 -dim(X) 2 χ(X) = Pt(X) d 2 dt 2 log Pt(X) t=-1 (2.7)
is of log-type and localizable (but not additive). To show that χ (X) is of log-type (i.e., identity (2.2)), we take the second derivative of the logarithm of the identity Pt(P(V )) = Pt(X)Pt(CP r-1 ).

Localizable invariant for pairs

Let d be a non-zero integer.

Definition 2.3. For a compact Kähler manifold X and a divisor

D = l j=1 mjDj (2.8)
on X, we say that (X, D) satisfies condition ( d ) if D is of simple normal crossing support and mj = -d for all j.

We will always use the following notation. For J ⊆ {1, . . . , l}, set (2.11)

w J d = j∈J -mj mj + d , DJ = j∈J Dj . ( 2 
Recall that χ is the topological Euler characteristic. Replacing φ by χ in Definition 2.4, we get χ d (•, •). Lemma 2.5. For d ∈ Z\{0} and m0, . . . , mn ∈ Z\{-d}, we have

χ d CP n , Dm 0 ,••• ,mn = n j=0 (mj + d) -1 d n n j=0 (mj + d) .
(2.12)

It follows that χ d CP n , Dm 0 ,••• ,mn vanishes if and only if Dm 0 ,••• ,mn is a d-canonical divisor.
Proof. Let w J d be as in (2.9). By Definition 2.4, we have 

χ d CP n , Dm 0 ,••• ,mn = J⊆{0,...,n} w J d (n + 1 -|J|) . ( 2 
χ d CP n , Dm 0 ,••• ,mn = f (1) , f (1) 
f (1) = d dt log f (t) t=1 = n j=0 mj + d d .
(2.15)

From (2.14) and (2.15), we obtain (2.12). This completes the proof.

Let Y be a compact Kähler manifold and V be a holomorphic vector bundle of rank r over Y . Set X = P(V ). Let π : X → Y be the canonical projection. Let D be a divisor on X. We assume that there exist a divisor DY on Y , non-zero integers m1, • • • , ms, and holomorphic sub-bundles

V1, • • • , Vs ⊆ V of rank r -1, such that D = π * DY + s j=1 mjP(Vj) .
(2.16)

We further assume that V1, • • • , Vs ⊆ V transversally intersect. In particular, s r. We will use the convention ms+1 = • • • = mr = 0. For y ∈ Y , we denote Zy = π -1 (y). Set Proof. It is a straightforward computation from Definition 2.4 by using the fact that χ(•) is an additive invariant and is multiplicative with respect to products of varieties.

Proposition 2.7. Let φ be a log-type localizable invariant and d ∈ Z\{0}. Assume that D is a d-canonical divisor and satisfies the condition ( d ). We have

φ d (X, D) = χ d (Y, DY )φ d (Z, DZ ) . (2.19)
Proof. By Definitions 2.1 and 2.4, we have

φ d (X, D) = χ d (Y, DY )φ d (Z, DZ ) + φ d (Y, DY )χ d (Z, DZ ) . (2.20)
Since (X, D) is d-canonical, so is (Z, DZ ). By Lemma 2.5, we have 

χ d (Z, DZ ) = 0 . ( 2 
Y ⊆ Dj for j = 1, • • • , s ; Y Dj for j = s + 1, • • • , l . ( 2 
χ d (X , D ) -χ d (X, D) = 0 , φ d (X , D ) -φ d (X, D) = χ d (Y, DY ) χ d CP r-1 , Dm 1 ,••• ,ms φ d CP 1 , D d;me -φ d CP r , D d;m 1 ,••• ,ms .
(2.28)

Proof. Denote by 1 the trivial line bundle. Set W = P(N Y /X ⊕ 1). Let π : W → Y be the canonical projection. Let ι : Y → W be the inclusion by the zero section of N Y /X . Let g : W → W be the blow-up along ι(Y ). Set

DW = π * (DY ) -(me + 2d)P N Y /X + s j=1 mjP N Y /D j ⊕ 1 . (2.29)
Let DW be the strict transformation of DW . We still use E to denote the exceptional divisor of g : W → W . Set D W = DW + meE. By Definition 2.4 and (2.1), we have 

χ d (X , D ) -χ d (X, D) = χ d (W , D W ) -χ d (W, DW ) , φ d (X , D ) -φ d (X, D) = φ d (W , D W ) -φ d (W, DW ) . ( 2 
χ d (W, DW ) = χ d (Y, DY )χ d CP r , D d;m 1 ,••• ,ms = 0 , φ d (W, DW ) = χ d (Y, DY )φ d CP r , D d;m 1 ,••• ,ms . (2.31) 
We denote DE = DW E . Note that W is a fibration over Y with fiber Bl0CP r , and Bl0CP r is a fibration over CP r-1 with fiber CP 

χ d (W , D W ) = χ d (E, DE)χ d CP 1 , D d;me = 0 , φ d (W , D W ) = χ d (E, DE)φ d CP 1 , D d;me . (2.32) 
Note that (E, DE) is fibration over (Y, DY ) with fiber CP r-1 , Dm 1 ,••• ,ms , by Lemma 2.6, we have

χ d (E, DE) = χ d (Y, DY )χ d CP r-1 , Dm 1 ,••• ,ms . (2.33) 
From (2.30)-(2.33), we obtain (2.28). This completes the proof.

BCOV invariants for pairs

In this section, we recall the construction of BCOV invariants, as well as their properties, such as their behavior under projective bundles and blow-ups. See [START_REF] Zhang | BCOV invariant and blow-up[END_REF] for more details. Moreover, in §3.2, we compute the BCOV invariants for projective spaces in dimension 1 and 2.

BCOV invariants

Let X be a compact Kähler manifold. Let KX be the canonical bundle of X. Let d ∈ Z\{0}. Let γ ∈ M (X, K d X ) be an invertible element (in the commutative ring k∈Z M (X, K k X )). In other words, γ is non-zero on any connected component of X. We denote

div(γ) = D = l j=1 mjDj , (3.1) 
where mj ∈ Z\{0} and D1, • • • , D l ⊆ X are mutually distinct prime divisors.

Definition 3.1. We call (X, γ) a d-Calabi-Yau pair if (X, div(γ)) satisfies the condition ( d ) in Definition 2.3. In particular, if X is Calabi-Yau and γ ∈ H 0 (X, KX ) is nowhere vanishing, then (X, γ) is a 1-Calabi-Yau pair. Now we assume that (X, γ) is a d-Calabi-Yau pair.

Let DJ be as in (2.9). For any j ∈ J ⊆ 1, • • • , l , let LJ,j be the normal line bundle of

DJ → D J\{j} . For J ⊆ 1, • • • , l , set KJ = K d X D J ⊗ j∈J L -m j J,j = K d D J ⊗ j∈J L -m j -d J,j . (3.2)
which is a holomorphic line bundle over DJ . In particular, we have K ∅ = K d X . Recall that Res•(•) was defined in Definition 1.7. By (1.22), there exist

γJ ∈ M (DJ , KJ ) J⊆{1,••• ,l} (3.3) such that γ ∅ = γ , γJ = ResD J (γ J\{j} ) for j ∈ J ⊆ 1, • • • , l . (3.4)
Let ω be a Kähler form on X. Let • K D J ,ω be the metric on KD J induced by ω. Let • L J,j ,ω be the metric on LJ,j induced by ω. Let • K J ,ω be the metric on KJ induced by • K D J ,ω and

• L J,j ,ω via (3.2).
Let g T D J ω be the metric on T DJ induced by ω. Let c k T DJ , g T D J ω be k-th Chern form of T DJ , g T D J ω . Let n be the dimension of X. Let |J| be the number of elements in J. Set

aJ (γ, ω) = 1 12 D J c n-|J| T DJ , g T D J ω log γJ 2/d K J ,ω . (3.5) 
We consider the short exact sequence of holomorphic vector bundles over DJ , Let w J d be as in (2.9). For ease of notations, we denote τBCOV(DJ , ω) = τBCOV DJ , ω D J . The second author [61, Definition 3.2] defined the following extended BCOV invariant. Definition 3.2. The BCOV invariant of a d-Calabi-Yau pair (X, γ) is defined by

0 → T DJ → T D J\{j} D J → LJ,j → 0 . ( 3 
τ d (X, γ) = J⊆{1,••• ,l} w J d τBCOV(DJ , ω) -aJ (γ, ω) - j∈J mj + d d bJ,j(ω) . (3.9) It is shown in [61, Theorem 3.1] that τ d (X, γ) is independent of ω.

Projective spaces of dimension 1 and 2

We identify CP n with C n ∪ CP n-1 . Let (z1, • • • , zn) ∈ C n be the affine coordinates. For positive integers m1, (3.12)

• • • , mn, let γm 1 ,••• ,mn ∈ M CP n , K d CP n be such that γm 1 ,••• ,mn C n = z m 1 1 • • • z mn n dz1 ∧ • • • ∧ dzn d . (3.10) Then (CP n , γm 1 ,••• ,mn ) is a d-Calabi-Yau pair. We denote τ (CP n ) = τ d CP n , γ0,••• ,0 . ( 3 
In other words, τ d CP 1 , γm is independent of m.

Proof. Let w = 1/z. We have 

γm = z m (dz) d = (-1) d w m+2d (dw) d . ( 3 
τ d CP 1 , γm = τBCOV CP 1 , ω - 1 12 CP 1 c1 T CP 1 , g T CP 1 log dz 2 + m d log z 2 + m 12 log dz 2 0 - m + 2d 12 log dw 2 ∞ , (3.16) 
where the second term corresponds to a ∅ (γ, ω) and the last two terms correspond to aJ (γ, ω) with |J| = 1.

In the sequel, we take the Fubini-Study metric on CP 1 , whose Kähler form is

ω = idz ∧ dz 1 + |z| 2 2 . (3.17) We have c1 T CP 1 , g T CP 1 = ω π , dz 2 = 1 + |z| 2 2 . (3.18)
By (3.17) and (3.18), we have

log dz 2 0 = log dw 2 ∞ = 0 , CP 1 c1 T CP 1 , g T CP 1 log z 2 = 0 . (3.19)
By (3.16) and (3.19), we obtain (3.12). This completes the proof.

Theorem 3.4. For any m1, m2 ∈ N, we have

τ d CP 2 , γm 1 ,m 2 = τ (CP 2 ) + 3 2 - m1 m1 + d - m2 m2 + d - m1 + m2 + 3d m1 + m2 + 2d τ (CP 1 ) . (3.20)
Proof. Let [ξ0 : ξ1 : ξ2] be homogenous coordinates on CP 2 . Let H1 ⊆ CP 2 (resp. H2 ⊆ CP 2 , H∞ ⊆ CP 2 ) be defined by ξ1 = 0 (resp. ξ2 = 0, ξ0 = 0). Set z1 = ξ1/ξ0 , z2 = ξ2/ξ0 , w0 = ξ0/ξ2 , w1 = ξ1/ξ2 , t0 = ξ0/ξ1 , t2 = ξ2/ξ1 .

(3.21)

Then (z1, z2) (resp. (w0, w1), (t0, t2)) are affine coordinates on CP 2 \H∞ (resp. CP 2 \H2, CP 2 \H1).

We have

γm 1 ,m 2 = z m 1 1 z m 2 2 dz1 ∧ dz2 d = w m 1 1 w m 1 +m 2 +3d 0 dw0 ∧ dw1 d = t m 2 2 t m 1 +m 2 +3d 0 dt2 ∧ dt0 d . (3.22) 
We remark that div(γm 1 ,m 2 ) = m1H1 + m2H2 -(m1 + m2 + 3d)H∞.

Recall that Res•(•) was defined in Definition 1.7. We have

ResH 1 (γm 1 ,m 2 ) = z m 2 2 dz1 m 1 +d dz2 d , ResH 2 (γm 1 ,m 2 ) = z m 1 1 dz2 m 2 +d dz1 d , ResH ∞ (γm 1 ,m 2 ) = w m 1 1 dw0 -m 1 -m 2 -2d dw1 d , ResH 1 ∩H 2 ResH 1 (γm 1 ,m 2 ) = dz1 m 1 +d dz2 m 2 +d , ResH 1 ∩H∞ ResH ∞ (γm 1 ,m 2 ) = dw0 -m 1 -m 2 -2d dw1 m 1 +d , ResH 2 ∩H∞ ResH ∞ (γm 1 ,m 2 ) = dt0 -m 1 -m 2 -2d dt2 m 2 +d . (3.23) 
We fix a Fubini-Study metric on CP 2 , whose Kähler form is as follows:

ω = i dz1 ∧ dz1 + dz2 ∧ dz2 -z1z2dz1 ∧ dz2 -z1z2dz1 ∧ dz2 1 + |z1| 2 + |z2| 2 2 . ( 3.24) 
We will use the notations in (3.9). With the Kähler form (3.24), we have

aJ (γm 1 ,m 2 , ω) = bJ,j(ω) = 0 for |J| = 2 , bJ,j(ω) = 0 for |J| = 1 . (3.25) 
By (3.9), (3.24), (3.25) and the fact that τBCOV(pt) = 0, we have 

τ d CP 2 , γm 1 ,m 2 = τBCOV CP 2 , ω - 1 12 
1 d CP 2 c2 T CP 2 , g T CP 2 log z m 1 1 z m 2 2 dz1 ∧ dz2 d 2 - m1 m1 + d τBCOV H1, ω - 1 12 
1 d H 1 c1 T H1, g T H 1 log z m 2 2 dz1 m 1 +d dz2 d 2 - m2 m2 + d τBCOV H2, ω - 1 12 
1 d H 2 c1 T H2, g T H 2 log z m 1 1 dz2 m 2 +d dz1 d 2 - m1 + m2 + 3d m1 + m2 + 2d τBCOV H∞, ω - 1 12 
1 d H∞ c1 T H∞, g T H∞ log w m 1 1 dw0 -m 1 -m 2 -2d dw1 d 2 . ( 3 
τ d CP 2 , γm 1 ,m 2 = τBCOV CP 2 , ω - 1 12 CP 2 c2 T CP 2 , g T CP 2 log dz1 ∧ dz2 2 - 1 12 
1 d CP 2 c2 T CP 2 , g T CP 2 m1 log z1 2 + m2 log z2 2 - m1 m1 + d τ (CP 1 ) - 1 12 m1 + d d H 1 c1 T H1, g T H 1 log dz1 2 - m2 m2 + d τ (CP 1 ) - 1 12 m2 + d d H 2 c1 T H2, g T H 2 log dz2 2 - m1 + m2 + 3d m1 + m2 + 2d τ (CP 1 ) + 1 12 m1 + m2 + 2d d H∞ c1 T H∞, g T H∞ log dw0 2 . (3.27) 
Similarly to (3.19), we have

CP 2 c2 T CP 2 , g T CP 2 log z1 2 = CP 2 c2 T CP 2 , g T CP 2 log z2 2 = 0 . (3.28) 
On the other hand, by (3.24), we have

H 1 c1 T H1, g T H 1 log dz1 2 = H 2 c1 T H2, g T H 2 log dz2 2 = H∞ c1 T H∞, g T H∞ log dw0 2 . (3.29) 
From (3.27)-(3.29), we obtain (3.20). This completes the proof.

Projective bundle

Let Y be a compact Kähler manifold. Let N be a holomorphic vector bundle of rank r over Y . Set

X = P(N ⊕ 1) . (3.30) 
Let N be the total space of N . We have X = N ∪ P(N ). Let s ∈ {0, • • • , r}. Let Lj j=1,••• ,s be holomorphic line bundles over Y . We assume that there is a surjective map

N → L1 ⊕ • • • ⊕ Ls . (3.31) 
Let N * be the dual of N . Taking the dual of (3.31), we get

L -1 1 ⊕ • • • ⊕ L -1 s → N * . (3.32) Let m1, • • • , ms be positive integers. Let d ∈ N\{0}. Let γY ∈ M Y, K d Y ⊗ (det N * ) d ⊗ L -m 1 1 ⊗ • • • ⊗ L -ms s (3.33)
be an invertible element. We assume that div(γY ) is of simple normal crossing support;

div(γY ) does not possess components of multiplicity -d.

We denote m = m1 + • • • + ms. Let S m N * be the m-th symmetric tensor power of N * . By (3.32) and (3.33), we have

γY ∈ M Y, K d Y ⊗ (det N * ) d ⊗ S m N * . (3.34) 
Let π : X = P(N ⊕ 1) → Y be the canonical projection. We have

KX N = π * KY ⊗ det N * . (3.35) 
We may view a section of S m N * as a function on N . By (3.34) and (3.35), γY may be viewed as an element of

M (N , K d X ). Let γX ∈ M (X, K d X ) be such that γX N = γY . For j = 1, • • • , s, set Nj = Ker N → Lj , Xj = P(Nj ⊕ 1) ⊆ X , X∞ = P(N ) ⊆ X . (3.36) 
We have

div(γX ) = π * div(γY ) -(m + rd + d)X∞ + s j=1 mjXj . (3.37) 
Hence (X, γX ) is a d-Calabi-Yau pair.

Let Z be the fiber of π : X → Y . Let U ⊆ Y be a small open subset. We fix an identification 

π -1 (U ) = U × Z such that there exist γU ∈ M (U, K d U ) and γZ ∈ M (Z, K d Z ) satisfying γX π -1 (U ) = pr * 1 (γU ) ⊗ pr * 2 (γZ ) . (3.38) 

Blow-up

Let (X, γ) be a d-Calabi-Yau pair. We denote

div(γ) = D = l j=1 mjDj . (3.40)
Let Y ⊆ X be a connected complex submanifold intersecting D1, • • • , D l transversally (see Definition 1.4). Assume that for j ∈ {1, • • • , l} satisfying Y ⊆ Dj, we have mj > 0. Let r be the codimension of Y ⊆ X. Let s be the number of Dj containing Y . We have s r. Without loss of generality, we assume that

Y ⊆ Dj for j = 1, • • • , s ; Y Dj for j = s + 1, • • • , l . (3.41) 
Let f : X → X be the blow-up along Y . Let D j ⊆ X be the strict transformation of Dj ⊆ X. Set E = f -1 (Y ). We denote D = div(f * γ). We denote

m0 = m1 + • • • + ms + rd -d . (3.42) 
We have

D = m0E + l j=1 mjD j . (3.43) Hence (X , f * γ) is a d-Calabi-Yau pair. Set DY = l j=s+1 mj(Dj ∩ Y ) , DE = l j=s+1 mj(D j ∩ E) , (3.44) 
which are divisors with simple normal crossing support. Now we introduce a pair involving projective spaces, which is a slightly different way of denoting the one defined in Equation (3.10). More precisely: we identify CP r with C r ∪ CP r Theorem 3.6. The following identity holds,

τ d (X , f * γ) -τ d (X, γ) = χ d (E, DE)τ d CP 1 , γ1,m 0 -χ d (Y, DY )τ d CP r , γr,m 1 ,••• ,ms . (3.46) 
Remark 3.7. Keep the notation as is in Theorem 3.6. Let g : Bl0CP r → CP r be the blow-up along 0 ∈ C r ⊆ CP r . Since Bl0CP r is a CP 1 -bundle over CP r-1 , apply Theorem 3.5, with N = L = O CP r-1 (-1),

τ d Bl0CP r , g * γm 1 ,••• ,ms = χ d CP r-1 , Dm 1 ,••• ,ms τ d CP 1 , γm 0 . (3.47)
Let d be a positive integer. We define

F d (X, D) := Z(X, D; L -1/d ) = ∞ m=0 µ ord -1 D (m) L -m/d ∈ M[L 1/d ] . (4.5) 
By (4.4), we have Theorem 4.2. Let X be a projective complex manifold. Let f : X → X be the blow-up along a smooth center. Let K X /X be the relative canonical divisor. Let d be a positive integer. Let D be an effective divisor on X such that both D and f * (D) + dK X /X are of simple normal crossing support. We have

F d (X, D) = J⊆{1,...,l} L |J|-n j∈J 1 -L m j /d L 1+m j /d -1 [DJ ] . ( 4 
F d (X, D) = F d X , f * D + dK X /X . (4.7)

From motivic integration to BCOV invariant

Let X be a smooth projective complex variety. Let γ be a d-canonical form on X such that D = div(γ) satisfies the condition ( d ) in Definition 2.4. Hence (X, γ) is a d-Calabi-Yau pair in the sense of Definition 3.1.

Recall that the Hodge realization is the ring homomorphism

χ Hdg : K0(VarC) → K0(HS) (4.8) 
that sends the class of a smooth projective variety X to the class of its cohomology H • (X, Z) endowed with Hodge structure. It is easy to see that χ Hdg (L) = Z(-1) is the Lefschetz Hodge structure, which we will denote by L in the sequel. Therefore, for a Hodge structure H • and s ∈ Z, L s H • is the Tate twist H • (-s), namely,

L s H k Z = H k-2s Z , L s H p,q C = H p-s,q-s C . (4.9) 
For a polynomial f (x) = a0 + a1x

+ • • • + amx m ∈ Z[x], we denote f (L)H • = m s=0 L s H • ⊕as . (4.10) 
By (4.6), we have

χ Hdg F d (X, D)L n 2 = J L |J|-n 2 j∈J 1 -L m j /d L 1+m j /d -1 H • (DJ ) . (4.11) 
Mimicking (1.3) and (1.12), for a Hodge structure H • , we define

η(H • ) = k det H k (-1) k , λ dR (H • ) = k det H k (-1) k k . ( 4.12) 
We are interested in applying λ dR to (4.11). First we remark that

η LH • = η(H • ) , λ dR LH • = η(H • ) 2 ⊗ λ dR (H • ) . (4.13)
Therefore, for any polynomial f , we have

λ dR f (L)H • = η(H • ) 2f (1) ⊗ λ dR (H • ) f (1) 
.

Let w J d be as in (2.9). For

f (x) = x |J|-n 2 j∈J 1 -x m j /d x 1+m j /d -1 , (4.15) 
we have gives rise to τtop(DJ ), which vanishes by (1.10). Therefore, our BCOV invariant is essentially the Quillen metric on the determinant line (4.17).

λ dR f (L)H • = η(H • ) (|J|-n)w J d ⊗ λ dR (H • ) w J d . ( 4 
λ dR χ Hdg F d (X, D)L n 2 = J λ dR H • (DJ ) w J d ⊗ η H • (DJ ) (|J|-n)w J d . ( 4 
5 Birational BCOV invariants Definition 5.1. For any d-Calabi-Yau pair (X, γ), its birational BCOV invariant is

τ bir d X, γ = τ d X, γ - 1 2 τ (CP 1 )χ d X, γ + - 1 2 τ (CP 2 ) + 3 4 τ (CP 1 ) χ d X, γ , (5.1) 
where χ d (X, γ) and χ d (X, γ) are as in Definition 2.4, applied to the invariants χ and χ in Example 2.2.

For a Calabi-Yau manifold X and a d-canonical form γ on X such that X γγ 1/d = (2π) dim X , we have 

τ bir d (X, γ) = τ (X) - 1 2 τ (CP 1 )χ (X) + - 1 2 τ (CP 2 ) + 3 4 τ (CP 1 ) χ (X) . ( 5 
χ(CP 1 ) = 2 , χ (CP 1 ) = 2 , χ (CP 1 ) = 0 , χ(CP 2 ) = 3 , χ (CP 2 ) = 6 , χ (CP 2 ) = 2 .
(5.6) By Definition 2.4 and (5.6), for any m1, m2 ∈ N, we have (5.12)

χ d CP 1 , γm 1 = 0 , χ d CP 2 , γm 1 ,m 2 = 2 , χ d CP 1 , γm 1 = 2 , χ d CP 2 , γm 1 ,m 2 = 6 -2 m1 m1 + d + m2 m2 + d + m1 + m2 + 3d m1 + m2 + 2d . ( 5 
Proof. This is a direct consequence of Lemma 5.3 and Theorem 5.4.

Extension to the singular cases

We extend the theory of BCOV invariants to Calabi-Yau varieties with mild singularities. In this section, X is a normal projective complex variety of dimension n.

Definitions and basic properties

Recall that a variety X is called Q-Gorenstein if the canonical divisor KX is Q-Cartier, i.e., there exists a positive integer d such that dKX is a Cartier divisor. The minimal value of such d is called the index of X. Definition 6.1 (Canonical and KLT singularities [START_REF] Kollár | Birational geometry of algebraic varieties[END_REF]Definition 2.34]). Let X be a Q-Gorenstein normal variety and let f : X → X be a log-resolution, i.e., f is a resolution of singularities and the support of the exceptional divisor E = l j=1 Ej is simple normal crossing. Write the equality of Q-divisors

K X /X = l j=1 ajEj , (6.1) 
where K X /X is the relative canonical divisor K X -1 d f * (dKX ) for any positive integer d divisible by the index of X, where K X is such that f * K X = KX . We say that X has canonical singularities if aj 0 for all j. Similarly, X is said to have Kawamata log terminal (KLT) singularities if aj > -1 for all j. The coefficients aj ∈ Q are called discrepancy numbers. The definitions are independent of the log-resolution f . Definition 6.2. A canonical (resp. KLT) Calabi-Yau variety is a Q-Gorenstein normal projective complex variety X with canonical (resp. KLT) singularities such that KX ∼Q 0, where ∼Q is the linear equivalence relation for Q-divisors.

Let us record the following basic result. converges, where Xreg is the regular part of X and γγ 1/d is the unique positive volume form on X whose d-th power equals to i n 2 γ ∧ γ.

We extend the birational BCOV invariant studied in §5 to varieties with KLT singularities, equipped with a pluricanonical form or a pluricanonical effective divisor. where Xreg γγ 1/d is the function s → Xs,reg γsγs 1/d whose convergence is guaranteed by Proposition 6.3. Thanks to the next lemma, the partial derivatives make sense in (6.16).

Lemma 6.17. The function S s → Xs,reg γsγs 1/d is smooth.

Proof. The question is local on S. We may assume that γ ∈ H 0 (S, π * O(dK X /S )), i.e. a holomorphic family of d-canonical forms on the fibers. By Lemma 6.12, there is a simultaneous logresolution f : X → X with simple normal crossing exceptional divisor E = l j=1 Ej, which is also locally trivial over S. Set γ = f * γ, which is a family of meromorphic d-canonical forms on the fibers of X /S. We obviously have is smooth. On the other hand, by the KLT condition, the order of poles of γ along each Ej is at most d -1. Hence we have

β * k γ = g w d-1 1 • • • w d-1 n dw1 ∧ • • • ∧ dwn d , (6.21) 
where g is a holomorphic function of z1, • • • , zm, w1, • • • , wn. Then a straightforward computation shows that the integration (6.20) results in a smooth function in z1, • • • , zm.

We are now ready to prove Theorem C, which we state again for convenience.

Remark 1 . 5 .Definition 1 . 7 .

 1517 The definition of transversal intersection above is more general than the usual one. Let Y, Z ⊆ X be connected complex submanifold which transversally intersect in the sense of Definition 1.4. If Y ⊆ X is of codimension 1, then -either Y and Z transversally intersect in the usual sense, -or Z ⊆ Y . We denote D = l j=1 mjDj , (1.17) where mj ∈ Z\{0} and D1, • • • , D l ⊆ X are mutually distinct prime divisors. Definition 1.6. A divisor D on X is said with simple normal crossing support if D1, • • • , D l are smooth and transversally intersect. Now let D be a divisor on X with simple normal crossing support. Let L be the holomorphic line bundle OX (D). Denote by M (X, L) the space of meromorphic sections of L. Let γ ∈ M (X, L) such that div(γ) = D. Let Lj be the normal line bundle of Dj → X. We define ResD j (γ) ∈ M (Dj, L ⊗ L -m j j

. 9 )Definition 2 . 4 .

 924 By convention, w d ∅ = 1 and D ∅ = X. Let φ be a localizable invariant. Let d ∈ Z\{0}. For (X, D) satisfying the condition ( d ), we define φ d (X, D) = J⊆{1,...,l} w J d φ(DJ ) . (2.10) If there is a meromorphic section γ of a holomorphic line bundle over X such that div(γ) = D, we define φ d (X, γ) = φ d (X, D). Let [ξ0 : • • • : ξn] ∈ CP n be homogenous coordinates. For j = 0, • • • , n, we denote Hj = {ξj = 0} ⊆ CP n . For m0, . . . , mn ∈ Z, we denote Dm 0 ,••• ,mn = n j=0 mjHj .

ThenLemma 2 . 6 .

 26 Zy, DZ y is isomorphic to CP r-1 , Dm 1 ,••• ,mr for any y ∈ Y . In the sequel, we omit the index y in Zy, DZ y . Such a pair (X, D) will be called a fibration over (Y, DY ) with fiber (Z, DZ ). Assume that D satisfies the condition ( d ) in Definition 2.3. We have χ d (X, D) = χ d (Y, DY )χ d (Z, DZ ) .(2.18)

26 )Proposition 2 . 8 .

 2628 Let f : X → X be the blow-up along Y . Let D be the strict transformation of D.Let E = f -1 (Y ) ⊆ X be the exceptional divisor. Set D = D + meE , where me = (r -1)d + m1 + • • • + ms .(2.27)Note that if D is a d-canonical divisor, then so is D . Indeed,dK X = f * KX + d(r -+ d(r -1)E = D + meE.Let φ be a log-type localizable invariant and d ∈ Z\{0}. Assume that D is a d-canonical divisor and satisfies the condition ( d ) in Definition 2.3. We have

  J\{j} ω be the metric on T D J\{j} induced by ω. Let c T DJ , T D J\{j} D J , g Bott-Chern form as in [62, §1.1]. Set bJ,j(ω) = 1 12 D J c T DJ , T D J\{j} D J , g

Theorem 3 . 3 .

 33 .11) By[START_REF] Zhang | BCOV invariant and blow-up[END_REF] Proposition 3.3], τ (CP n ) is well-defined, i.e., independent of d. For any m ∈ N, we haveτ d CP1 , γm = τ (CP 1 ) .

. 13 )

 13 We have div(γm) = m{0} -(m + 2d){∞}. Recall that Res•(•) was defined in Definition 1.7. We haveRes {0} (γm) = (dz) m+d , Res {∞} (γm) = (-1) d (dw) -m-d . (3.14)Let ω be a Kähler form on CP 1 . We will use the notations in (3.9). Since DJ = pt for |J| = 1 and DJ = ∅ for |J| > 1, we have bJ,j(ω) = 0 for any J and j ∈ J , τBCOV(DJ , ω) = 0 for |J| 1 .(3.15)Let g T CP 1 (resp. g T * CP 1) be the metric on T CP 1 (resp. T * CP 1 ) induced by ω. Let dz (resp. dw ) be the norm of dz (resp. dw) with respect to g T * CP 1 . By (3.9) and (3.13)-(3.15), We have

6 ] 3 . 5 .

 635 Then (Z, γZ ) is a d-Calabi-Yau pair.The following theorem was proved by the second author [61, Theorem 3.TheoremThe following identity holds,τ d X, γX = χ d Y, γY τ d Z, γZ .(3.39)

- 1 .

 1 Let (z1, • • • , zr) ∈ C r be the coordinates. Let γr,m 1 ,••• ,ms ∈ M (CP r , K d CP r ) be such that γr,m 1 ,••• ,ms C r = dz1 ∧ • • • ∧ dzr r , γr,m 1 ,••• ,ms ) is a d-Calabi-Yau pair. Note that γr,m 1 ,••• ,ms is precisely γm 1 ,••• ,ms,0,0,••• ,0 with r -s zeros in the end, in the notation of (3.10).The following blow-up formula was proved by the second author [61, Theorem 0.5].

. 6 )

 6 An equivalent form of (4.6) when d = 1 is in Craw [26, Theorem 1.1]. Now we state the formula of change of variables, due to Kontsevich [45] and Denef-Loeser [30, Theorem 1.16]), in the following form taken from Craw [26, Theorem 2.19] (when d = 1).

. 17 )

 17 Observe that the BCOV invariant τ d (X, D) (cf. Definition 3.2) is essentially the Quillen metric onJ λ dR H • (DJ ) w J d .On the other hand, by Definition 1.1, the Quillen metric on η H • (DJ )

. 7 )By Theorem 3 . 3 ,CP 1 ,CP 2 ,Theorem 5 . 5 .

 7331255 Theorem 3.4, Definition 5.1 and (5.7), we have τ bir d γm 1 = τ bir d γm 1 ,m 2 = 0. Hence (5.5) holds for n 2. We proceed by induction. Let r 2 be an integer. Assume that τ bir d CP n , γm 1 ,••• ,mn = 0 for n r .(5.8)Let i : CP 1 → CP r+1 be the extension of C z → (z, 0, • • • , 0) ∈ C r+1 . Let f : Bl CP 1 CP r+1 → CP r+1be the blow-up along i(CP 1 ). Then Bl CP 1 CP r+1 is a CP 2 -bundle over CP r-1 . By Lemma 5.2 and (5.8), we haveτ bir d Bl CP 1 CP r+1 , f * γm 1 ,••• ,m r+1 = 0 .(5.9) By Lemma 5.3 and (5.8), we haveτ bir d Bl CP 1 CP r+1 , f * γm 1 ,••• ,m r+1 -τ bir d CP r+1 , γm 1 ,••• ,m r+1 = 0 .(5.10)From (5.9) and (5.10), we obtainτ bir d CP n , γm 1 ,••• ,mn = 0 for n r + 1 . (5.11)This completes the proof by induction. Let (X, γX ) and f : X → X be as in Theorem 3.6. Then τ bir d X , f * γX = τ bir d X, γX .

Proposition 6 . 3 (

 63 Integrability of volume form [53, Thm. 2.1],[START_REF] Flenner | Log-canonical forms and log canonical singularities[END_REF] Prop. 1.17]). Let X be an ndimensional variety with KLT singularities. Let d be a positive integer divisible by the index of X. Then for any γ ∈ H 0 (X, OX (dKX )), the integral Xreg γγ

Definition 6 . 4 .. 3 ) 6 . 16 .

 643616 Let X be an n-dimensional variety with KLT singularities. Let d ∈ N>0 divisible by the index of X. Let D ∈ |dKX |. Let f : X → X be a resolution of singularities such that D ∪ E is of simple normal crossing support, where D is the strict transform of D and E is the exceptional divisor. For any γ ∈ H 0 (X, OX (dKX )) such that D = div(γ), we defineτ bir d X, γ := τ bir d X , f * γ . (6Definition Let π : X → S be as above and d an integer divisible by the index of fibers. The Weil-Petersson form of π : X → S, denoted by ω WP,X /S , is defined as follows: for any open subset U ⊆ S and any nowhere vanishing section γ ∈ H 0 (U, π * O(dK X /S )) viewed as holomorphic family γs s∈U , we define ω WP,X /S U = -

  α k : C m ⊇ U k → S k=1,••• ,p , β k : C m × C n ⊇ V k → X k=1,••• ,p(6.18)be holomorphic local charts such that -for each k, we have(π • f )(β k (V k )) = α k (U k ); -for each k, the map α -1 k • π • f • β k is given by the canonical projection C m × C n → C m ; -for each k and each Ej, either β -1 k (Ej) = ∅ or β -1 k (Ej) = (z1, • • • , zm, w1, • • • , wn) ∈ V k ⊆ C m × C n : wq = 0 , where q ∈ {1, • • • , n} depends on j, k. Let η k : β k (V k ) → [0, 1] k=1,••• ,p(6.19)be a partition of unity, i.e., each η k is of compact support and η1 + • • • + ηp = 1. We denote η k X s = η k,s . It is sufficient to show that for each k, the function s → X s η k,s γ s γ s

  N\{0} and m1, • • • , ms ∈ Z with s r, let CP r , Dm 1 ,••• ,ms be such that

	For r ∈ Dm 1 ,••• ,ms =	s	mjHj .	(2.22)
		j=1		
			s	
			mjHj .	(2.23)
			j=1	
	We remark that D d;m 1 ,••• ,ms is a d-canonical divisor.		
	Let X be a compact Kähler manifold. Let			
	l			
	D =	mjDj	(2.24)
	j=1			
				.21)
	From (2.20) and (2.21), we obtain (2.19). This completes the proof.	

For r ∈ N\{0} and m1, • • • , ms ∈ Z with s r, consider a pair CP r , D d;m 1 ,••• ,ms with D d;m 1 ,••• ,ms = -(m1 + • • • + ms + rd + d)H0 + be a divisor on X with simple normal crossing support. Let Y ⊆ X be a connected complex submanifold of codimension r intersecting D1, • • • , D l transversally (see Definition 1.4) and

  .30) Note that (W, DW ) is a fibration over (Y, DY ) with fiber CP r , D d;m 1 ,••• ,ms (in the sense explained before Lemma 2.6), by Lemma 2.5, 2.6 and Proposition 2.7, we have

  Proof. Since χ and χ are log-type localizable invariants (Examples 2.2), Proposition 2.7 yields χ d (X, γX ) = χ d (Y, γY )χ d (Z, γZ ) and χ d (X, γX ) = χ d (Y, γY )χ d (Z, γZ ). Combining them with Theorem 3.5 allows us to conclude.

	Lemma 5.3. Let (X, γX ), (Y, DY ), f : X → X and m0, • • • , ms ∈ Z, be as in Theorem 3.6. We
	have			
	τ bir d	X , f * γX -τ bir d	X, γX
	= χ d Y, DY χ d CP r-1 , Dm 1 ,••• ,ms τ bir d	CP 1 , γm 0 -τ bir d	CP r , γm 1 ,••• ,ms .	(5.4)
	Proof. Similarly to the proof of Lemma 5.2, we use Theorem 3.6, Remark 3.7 and Proposition
	2.8.			
	Theorem 5.4. For any m1, • • • , mn ∈ N, we have
				τ bir d	CP n , γm 1 ,••• ,mn = 0 .	(5.5)
	Proof. We have (see Example 2.2)	
					5 (see (3.30)-(3.38) in Section
	3.3). Then			
			τ bir d	X, γX = χ d Y, γY τ bir d	Z, γZ .	(5.3)

.2) Lemma 5.2. Let (X, γX ), (Y, γY ) and (Z, γZ ) be as in

Theorem 3.

Here we use the definition of[START_REF] Eriksson | BCOV invariants of Calabi-Yau manifolds and degenerations of Hodge structures[END_REF], which differs from the one in[START_REF] Fang | Analytic torsion for Calabi-Yau threefolds[END_REF] by an explicit power of

2π.

i.e., their bounded derived categories of coherent sheaves are equivalent as C-linear triangulated categories. Note that the derived equivalence of birational Calabi-Yau threefolds was proved by Bridgeland [15, Theorem 1.1], and there are derived equivalent Calabi-Yau threefolds that are not birationally equivalent[START_REF] Borisov | The Pfaffian-Grassmannian derived equivalence[END_REF],[START_REF] Cȃldȃraru | Non-birational Calabi-Yau threefolds that are derived equivalent[END_REF],[START_REF] Uehara | A counterexample of the birational Torelli problem via Fourier-Mukai transforms[END_REF].

The terminology refers to the fact that if χ(X) = 0, then φ(P(V ))χ(P(V )) = φ(X) χ(X) + φ(CP r-1 )χ(CP r-1 ) .

It is usually denoted by Z(X, I D ; T ), where I D = O X (-D) is the ideal sheaf of D.
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(3.48)

Motivic integration and BCOV invariants

In this section, we use the theory of motivic integration to explain our key construction, namely, the BCOV invariant for pairs τ (X, γ). We stress the fact that this section is purely heuristic and logically independent of the rest of the paper.

Motivic integration

We consider an n-dimensional smooth complex algebraic variety X and an effective divisor with simple normal crossing support D = l j=1 mjDj on X. Denote by L∞(X) the space of formal arcs in X, that is, the projective limit of jet schemes Ln(X) := X C[t]/(t n+1 ) (see [29, §1]). Let ordD : L∞(X) → N ∪ {+∞} (4.1)

be the function sending a formal arc to its intersection number with the divisor D.

Let VarC be the category of complex algebraic varieties. The Grothendieck group of complex algebraic varieties, denoted by K0(VarC), is the free abelian group generated by the isomorphism classes of objects in VarC, modulo the scissor relation: 

where µ is the motivic measure constructed by Kontsevich [START_REF] Kontsevich | Motivic integration[END_REF] and Denef-Loeser [29, Definition-Proposition 3.2].

The following theorem gives a formula for Z(X, D; T ), see [START_REF] Chambert-Loir | Motivic integration[END_REF]Theorem 3.3.4].

Theorem 4.1. The following identity holds,

where DJ = j∈J Dj with the convention that D ∅ = X.

Here the right hand side is defined in Definition 5.1. Note that X having KLT singularities implies that (X , f * γ) is indeed a d-Calabi-Yau pair (i.e. Condition ( d ) is verified). We also define

Note that the integral on the right hand side converges by Proposition 6.3.

In the next two lemmas, we show that τ bir Proof. As any two resolutions are dominated by a third one, it suffices to show that for a further blow-up g : X → X satisfying the same properties, we have

But this follows from Theorem 5.5.

Lemma 6.6. For any z ∈ C * , the following identity holds,

Consequently, τ bir d X, D is independent of γ.

Proof. This follows directly from [START_REF] Zhang | BCOV invariant and blow-up[END_REF]Proposition 3.4].

In the sequel, we use the same notation as in §4.1. Definition 6.7. Let X be a variety with KLT singularities. In the situation of Definition 6.1, the Gorenstein volume of X is by definition µ Gor (X) := J⊆{1,...,l}

In other words, for any d ∈ N>0 divisible by the index of X, µ Gor (X) is equal to F d (X , dK X /X ) defined in (4.6). By Theorem 4.2, the definition is independent of the choice of d and the logresolution X . Note that when X is smooth,

Let Pt : K0(VarC) → Z[t] be the ring homomorphism sending a smooth projective variety to its Poincaré polynomial, which extends to a ring homomorphism Pt : [19, §3.4.7]). Definition 6.8. Let X be an n-dimensional variety with KLT singularities. The stringy Poincaré polynomial of X is defined as Pt(X) := Pt(L n µ Gor (X)) . (6.8)

Following Batyrev [START_REF] Batyrev | Stringy Hodge numbers of varieties with Gorenstein canonical singularities[END_REF], we define the stringy Betti numbers of X as the coefficients of Pt(X). The quantities χ(X), χ (X) and χ (X) are defined by the same formulas (2.5)-(2.7) with Betti numbers replaced by stringy Betti numbers. If X admits a crepant resolution Y , the stringy invariants of X equal to the corresponding invariants of Y . Definition 6.9. Let X be an n-dimensional KLT Calabi-Yau variety (Definition 6.2). We define the (stringy) BCOV invariant of X as

where d ∈ N>0 is divisible by the index of X and such that |dKX | = ∅, τ bir d X, ∅ is defined in (6.4) (it is independent of d by [61, Proposition 3.3]), χ (X) and χ (X) are the stringy invariants introduced in Definition 6.8. By (5.2), we recover the BCOV invariant when X is smooth. Remark 6.10. Quotient singularities form one of the most important instances of KLT singularities, see [START_REF] Kollár | Birational geometry of algebraic varieties[END_REF]Proposition 5.20]. In particular, (complex effective) orbifolds, or equivalently, V-manifolds in the sense of Satake [START_REF] Satake | On a generalization of the notion of manifold[END_REF][START_REF] Satake | The Gauss-Bonnet theorem for V -manifolds[END_REF], are KLT. A compact Kähler orbifold X is called Calabi-Yau if c1(X) = 0 ∈ H 2 (X, R). On one hand, thanks to the orbifold version of the Beauville-Bogomolov decomposition theorem, due to Campana [START_REF] Campana | Orbifoldes à première classe de Chern nulle[END_REF] and Fujiki [START_REF] Fujiki | On primitively symplectic compact Kähler V -manifolds of dimension four[END_REF], Calabi-Yau orbifolds have torsion canonical divisor. Therefore Calabi-Yau orbifolds are special cases of KLT Calabi-Yau varieties in the sense of Definition 6.2, hence their BCOV invariants can be defined as in Definition 6.9. On the other hand, the Quillen metric can be extended to orbifolds (see Ma [47, §2]) and enjoys similar properties as in the smooth case (see Ma [START_REF] Ma | Orbifolds and analytic torsions[END_REF][START_REF] Ma | Orbifold submersion and analytic torsions[END_REF]). Hence the definition of BCOV invariant (see Definition 3.2) can be directly extended to Calabi-Yau orbifolds. We plan to compare the two definitions in the future.

Curvature formula

We extend the curvature formula [61, Theorem 0.4] to locally trivial families (in the sense of Flenner-Kosarew [35, Page 627]) of KLT Calabi-Yau varieties. Definition 6.11. Let S be a complex manifold and X a complex space. Let π : X → S be a flat and proper morphism, viewed as a family of complex spaces Xt := π -1 (t) t∈S . The family π is called locally trivial if for any t ∈ S and any x ∈ Xt, there are analytic open neighborhoods ∆ ⊂ S of t and U ⊂ π -1 (∆) ⊂ X of x such that we have a ∆-isomorphism (U ∩ Xt) × ∆ U.

Locally trivial families admit (strong) simultaneous resolution. Lemma 6.12 (Simultaneous resolution [3, Lemma 4.9 and Remark 4.10]). Let π : X → S be a locally trivial family. Then there is a proper bimeromorphic S-morphism Y → X , which is a composition of blow-ups along locally trivial centers which are smooth over S and disjoint from the smooth locus of π, such that the composed map π : Y → S is a submersion and for any t ∈ S, the map Yt := (π ) -1 (t) → Xt is a log resolution.

In the sequel, a Hodge structure (resp. variation of Hodge structures) is a finite direct sum of pure polarizable Q-Hodge structures (resp. variations of pure polarizable Q-Hodge structures), possibly of different weights. Following [33, Proposition 2.8], [31, (5.6)] and [62, (0.6)], we make the following definition: Definition 6.13. Let S be a complex manifold. Let (H, H, F • ) be a variation of Hodge structures over S, where H is a local system, H = H ⊗ OS and F • is a Hodge filtration on H. For any k ∈ Z, denote by H k the weight-k part of the variation. For any p, q ∈ Z, denote H p,q := Gr p F H p+q , which we view as a holomorphic vector bundle over S. The Hodge form of the variation is the following (1, 1)-form on S:

(-1) p+q (p -q)c1(H p,q , g H p,q ) ∈ A 1,1 (S) . (6.10)

Here g H p,q is a Hermitian metric on H p,q such that g H p,q (u, u) = g H q,p (u, u). One can show (cf. [62, Proposition 1.1]) that ωH is independent of the Hermitian metrics g H p,q

. Clearly, ω is additive with respect to short exact sequences of variations of Hodge structures, hence it gives rise to a group homomorphism:

where VHSS is the category of variations of Hodge structures over S.

On the other hand, the Hodge realization can be performed in the relative setting: given a complex variety S, there is a group homomorphism χ Hdg,S : K0(VarS) → K0(MHMS)

where MHMS is the category of mixed Hodge modules over S. However, note that if we start with a smooth proper morphism π : X → S, then the image Rπ ! QX lies in K0(VHSS), the subgroup generated by variations of Hodge structures over S. Now let π : X → S be a locally trivial family of KLT Calabi-Yau varieties. The Gorenstein volume in Definition 6.7 can be extended as follows. Take a simultaneous resolution (see Lemma 6.12) f : X → X with simple normal crossing exceptional divisor E = l j=1 Ej, which is locally trivial over S. For any 1 j l, let aj ∈ Q>-1 be the discrepancy number of the resolution f along Ej. Then define the relative Gorenstein volume µ Gor (X /S) := J⊆{1,...,l}

where MS is the completion of K0(VarS)[L -1 ] with respect to the dimension filtration. Similarly to Theorem 4.2, µ Gor (X /S) is independent of the resolution f . Taking the Hodge realization and denoting L := QS(-1) the Lefschetz variation of Hodge structure over S, we get χ Hdg,S µ Gor (X /S) = J⊆{1,...,l}

where H • (EJ /S) denotes the variation of Hodge structures RπJ, * QE J := k R k πJ, * QE J , where πJ : EJ → S is the natural projection. Definition 6.14. Let π : X → S be as above. Its (stringy) Hodge form, denoted by ω Hdg,X /S , is the image of χ Hdg,S µ Gor (X /S) via (6.11).

Lemma 6.15. Notation is as before. Taking a simultaneous resolution f : X → X as above, the Hodge form can be computed as ω Hdg,X /S = J⊆{1,...,l} j∈J

Proof. It suffices to apply the homomorphism (6.11) to the right hand side of (6.14), and use the fact that ω

Theorem 6.18. Let π : X → S be a flat family of KLT Calabi-Yau varieties. Assume that π is locally trivial. Then the function τ (X /S) : S t → τ (Xt) is smooth, where τ is the BCOV invariant in Definition 6.9. Moreover, we have

where χ(X) is the stringy Euler characteristic of a fiber of π, ω X /S is the Hodge form in Definition 6.14, and ω WP,X /S is the Weil-Petersson form in Definition 6. [START_REF] Bridgeland | The McKay correspondence as an equivalence of derived categories[END_REF].

Proof. The smoothness of the function τ X /S comes from the existence of simultaneous resolutions. Let d ∈ N>0 be such that |dKX t | = ∅. Notation being as before, we have

Here the first and the third equalities come from the fact that τ bir d -τ d consists of topological invariants, which are constant in locally trivial families. The second equality comes from (6.3) 

Birational invariance

In this section, we prove our main result Theorem B. Although it clearly contains Theorem A as the smooth case, we nevertheless choose to give first the proof in this special case to highlight the main idea:

Proof of Theorem A. Let X and X be n-dimensional birationally isomorphic Calabi-Yau manifolds. By the weak factorization theorem of Abramovich, Karu, Matsuki, and Włodarczyk [1, Theorem 0.3.1] (see also [START_REF] Włodarczyk | Toroidal varieties and the weak factorization theorem[END_REF]), there is a sequence of blow-ups and blow-downs along smooth centers:

such that for each 0 i r, the unique canonical divisor Di ∈ KX i is of simple normal crossing support. For each i, let γi ∈ H 0 Xi, OX i (Di) = H 0 Xi, OX i (KX i ) be such that X i γiγi = (2π) n . By Theorem 5.5 and [61, Proposition 3.4], we have

for all i. Hence τ bir 1 X, γ0 = τ bir 1

X , γr

Combining this with (5.2), we see that in order to prove τ (X) = τ (X ), it is enough to show that χ (X) = χ (X ) and χ (X) = χ (X ). However, χ (•) and χ (•), defined in (2.6) and (2.7) respectively, are certain linear combinations of Betti numbers, hence are birational invariant for Calabi-Yau manifolds by Batyrev [START_REF] Batyrev | Birational Calabi-Yau n-folds have equal Betti numbers[END_REF]. Now let us proceed to the proof in the general case.

Proof of Theorem B. Recall that µ Gor (•) was defined in Definition 6.7. By a result of Kontsevich [START_REF] Kontsevich | Motivic integration[END_REF] and Yasuda [58, Proposition 1.2], which extends a result of Batyrev [START_REF] Batyrev | Birational Calabi-Yau n-folds have equal Betti numbers[END_REF], we have µ Gor (X) = µ Gor (X ). Then, by Definition 6.8, we have

Let f : X → X and f : X → X be log-resolutions. Let d ∈ N>0 be such that dKX ∼ 0 and dK X ∼ 0 as Cartier divisors. Note that the hypothesis that X and X have canonical singularities implies that any smooth birational model of X and X admits a unique d-canonical divisor.

By Abramovich-Temkin [2, Theorem 1.2.1 and §1.6], there is a sequence of blow-ups and blow-downs along smooth centers:

such that for each 0 i r, the (unique) d-canonical divisor Di ∈ dKX i is of simple normal crossing support. For each i, let γi ∈ H 0 Xi, OX i (Di) = H 0 Xi, OX i (dKX i ) be such that From Definition 6.9, (7.3), (7.5) and (7.6), we obtain τ (X) = τ (X ).