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Abstract

This paper provides a framework for understanding preferences over utility streams

across different time periods. We analyze preferences for the close future, for the

distant future, and a synthesis of both, establishing a representation involving

weights over time periods. Examining scenarios where two utility streams cannot

be robustly compared to each other, we introduce notions in which one has more

“potential” to be preferred over another, which lead to MaxMin, MaxMax, and

α-MaxMin representations. Finally, we consider temporal bias in the form of vi-

olations of stationarity. For close future preferences, we obtain a generalization

of quasi-hyperbolic discounting. For distant future preferences, we obtain Banach

limits and discuss the relationship with exponential discounting.

Keywords: Axiomatisation, Myopia, Multiple Discounts, α-MaxMin Citeria,

Temporal Biases, Banach Limits, Infinite Dimensional Topologies.
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1. Introduction

1.1 Motivation and results

Consider a scenario where a government is required to assess very long-term policies,

such as environmental ones. One of its goals is to strike a balance between the welfare

of the present generations and that of far remote future generations. The government

may rely on the advice of a group of experts to evaluate the close and distant

future values of the projects. When evaluating very long-term projects, a scientific

committee of this kind can include economics, politicians, environmentalists, and

even philosophers. Therefore, pointing out that opinions would significantly differ

is anything from surprising. Based on these recommendations, it is assumed that

the government establishes two orders �c and �d representing its preferences for the

near and the far remote future.

In the evaluations under the close future order �c, the far remote future becomes

negligible. Following a substantial body of preferences in the literature, the utility

levels of a finite number of generations end up mostly defining the value of the near

future. The distant future order, �d, as for itself, displays a drastically distinct

behavior: the preferences would not change if the utility levels were changed for

a finite number of generations. Finally, the government’s total order �, which

incorporates both the close and the distant futures, synthesizes these two classes of

preferences.

Under standard conditions of axiomatic intertemporal literature, namely transla-

tion invariance and positive homogeneity, such orders can be represented by index

functions that are constantly additive and positively homogeneous. By adding the

natural Pareto condition that the options preferred by both �c and �d are also

preferred by the total order �, the index function of � can be represented by a

convex combination of the two other ones. Interestingly, the parameter of the con-

vex combination is not a constant but depends on the utility stream at stake. Two

configurations emerge: a first where the economic agent desires to smooth the dif-

ference between the close and the distant futures and a second that corresponds to
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the opposite behavior.

We present the robust preorders �∗c and �∗d to further investigate the potential for

an expert comparison that is unanimous. A given utility stream is robustly superior

to another under an order belonging to {�c,�d} if and only if this comparison does

not depend on the reference stream, in the sense that combining two streams with

a third one does not affect the comparison between them. As a result, each order

can be characterized by a set of probabilities such that the robust comparison is

equivalent to the agreement of every evaluation under these probabilities. In other

words, a robust comparison is possible if and only if every expert agrees to it.

These robust pre-orders are generally incomplete and can be represented by a set

of weights overtime periods, which reflects the diversity of experts’ opinions. For

the close future pre-order �∗c , this set is a subset of countably additive probabilities,

representing different discount rate systems.1 For the distant future pre-order �∗d,

the corresponding set builds from a set purely finitely additive probabilities.2

For each order �c and �d, the difference in opinions of experts naturally leads to

situations where two utility streams are not robustly comparable, but one has more

potential to be preferred than the other one. We present two categories of potentially

better properties. In the first category, a utility stream is thought to have a greater

chance of being preferred if it is robustly superior to every constant stream that

is robustly dominated by the other one. Additionally, in the second category, if a

stream is not robustly worse than every constant stream that is not robustly better

than the other, it has a greater chance of being preferred.

We obtain a MaxMin criterion, where the value of a utility stream is determined

by the worst evaluation, under the assumption that having more potential in the

first category suggests being favored. We also obtain a MaxMax criterion, where

only the best evaluation is taken into account if a stream that has greater potential
1A countably additive probability can be presented as a real sequence (ω0, ω1, ω2, . . . ) such that

ωs ≥ 0 for every s and
∑∞

s=0 ωs = 1.
2They are also known under the name charges, see Bhaskara Rao and Bhaskara Rao (1983).

The evaluation of a utility stream under a purely finitely additive probability does not change if

we change only a finite number of values in this stream. A detailed definition is given in Appendix

A.
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in the second category is preferred. Under a more demanding condition than the

aforementioned ones, establishing that the satisfaction of having more potential in

both categories implies being better, we obtain an α-MaxMin representation that

encompasses the MaxMin and MaxMax criteria as special cases.

We assume a weakened version of stationarity to address the third concern of the

article, which is the potential for present biases.3 Every expert’s assessment com-

plies with the delay-stationary property, meaning that it becomes independent of

the departure date. Therefore, a delayed equivalence assumption is taken into con-

sideration in the case of a close future order. According to this, for every stream,

there exists a delayed stream that preserves its robustly improving capacity while

mixing with another delayed one. A generalization of the quasi-hyperbolic discount-

ing representation is established. A convex hull of discount rate systems having the

feature that the rate of trade-off between a day and its subsequent ones becomes

constant from a day in the future makes up the set that defines the resilient order.

Under the same delay-stationarity assumption applied to the close future, in the case

of purely finitely additive measures that characterize the distant future robust pre-

order, these measures belong to the set of Banach limits, which are linear functions

on the set `∞4 with a special property that the evaluation of a utility stream under a

Banach limit does not change if it is shifted one (or many) period(s) to the future.5

This property echoes the close future evaluation under exponential discounting for

which the comparison between two streams does not change if we shift them to the

same date in the future. This property makes Banach limits the counterpart of

exponential discounting in the evaluation of the close future.
3In inter-temporal axiomatic literature, stationarity is usually understood as the comparison

between two streams does not depend on the departure date. A weaker version of it can be found

in the property Invariance to stationary relabelling in Chambers and Echenique (2018).
4The set of bounded real sequences (x0, x1, x2, . . . ) such that sups≥0 |xs| <∞.
5For every b ∈ R and x, y ∈ `∞, using a Banach limit, the comparison between (b, x0, x1, x2, . . . )

and (b, y0, y1, y2, . . . ) is the same as between x and y. For intuition about these objects, one can

have in mind the infimum limit liminf and the supremum limit limsup of utility streams. These

functions satisfy every property of Banach limits, minus the linearity. For a rigorous definition,

see page 55 in Becker and Boyd (1997).

3



1.2 Contribution and related literature

A statistician faced with a class of potential probabilities may choose to use the α-

MaxMin anticipated utility criteria, which was initially proposed by Hurwicz (1951),

which takes the form of a convex combination of the best and worst evaluations.

In an article that is considered as a “Big Bang in decision theory after Savage”,6

Gilboa and Schmeidler (1989) introduced an approach to taking decisions under

uncertainty and the associated MaxMin criteria. By using two distinct approaches,

Kopylov (2003) and Ghirardato et al. (2004) established the α-MaxMin presentation,

where α represents the ambiguous attitude. 7 The recursive version for α-MaxMin

preference in a continuous time configuration was explored by Beißner et al. (2020)

as an application in optimization problems, and the differentiability aspects were

examined by Beißner and Werner (2021).

Chambers and Echenique (2018) analyzed how regular discounting criteria could

reconcile conflicting viewpoints held by different experts; however, another stream of

the literature focuses on phenomena related to temporal biases. This parked interest

in the quasi-hyperbolic discounting representation, which was first introduced by

Phelps and Pollack (1968) and was more recently analyzed by Laibson (1997) and

Montiel Olea and Strzalecki (2014).

This study’s main objective is to examine the applicability of such representation

while dealing with discounted infinite utility streams. We develop the analysis in

three regards.

First, this article considers the arbitrarily remote components of the utility streams.

The purpose is to provide alternative representations that would complement the

close future, which is largely used in most researches. In this sense, we add an

additional concept to the one that is well described in Brown and Lewis (1981) and

Sawyer (1988) and is referred to as myopic economic agent.8 While in Gilles (1989),
6See Karni et al. (2022).
7While Kopylov (2003) assumes that the decisio- maker conforms to the expected utility on a

set called unambiguous acts, Ghirardato et al. (2004), using the unambiguous preference, derived

the set of possible probabilities and the degree of ambiguity attitude. For a survey, see Trautmann

and van de Kuilen (2015).
8A myopic agent attributes very small values for utilities in the distant future. A very strong
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purely finitely additive measures indicate the presence of asset bubbles in exchange

and production economies, in our article, they characterize the distant future order

and its index function being presented in Drugeon and Ha-Huy (2022).

Usually, the decision is based on a set of different weight systems.9 The second

purpose of this study is to present an approach that aggregates such differences and

extends the usual MaxMin criterion to the more general class of α-MaxMin criteria.

This effort echoes contributions of α-MaxMin in literature on multiple probabili-

ties, such as Frick et al. (2022) and Chateauneuf et al. (2021). Our “potentially

better” categories are similar to the notions of “potential” and “security-potential

dominance” presented in Frick et al. (2022). We define our notion using the robust

order whereas Frick et al. (2022) based their definition on a fundamental being called

objective rational preference.

The third concern of this article is to encompass general temporal biases within

a multiple discounting configuration and present a generalized version of quasi-

hyperbolic representation, passing through the robust order and the delay station-

arity axiom. In a recent contribution, Bach et al. (2023) generalized the system of

axioms in Chambers and Echenique (2018) to the scope for one-step present bias and

quasi-hyperbolic discounting, with a property named delay-Invariance to stationary

relabeling as key axiom.10 The similarity between this article and Bach et al. (2023)

is that, in order to establish quasi-hyperbolic representation or its generalization,

they both require a stationarity property that starts at some date in the future.

version of myopia, where the agent cares only about what happens before some fixed date but is

indifferent afterward, is studied in de Andrade et al. (2021).
9For example, in situations with the lack of available information, the ambiguity about the

system of appropriate discount rate, or the difference in opinions of the experts that the economic

agent consults, etc.
10In a different approach, Drugeon and Ha-Huy (2023) focused on recursive time-dependent

orders as Wakai (2007), where the discount rate is chosen in each period by a comparison between

the utility value of the present and that of the future.
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1.3 Contents

Section 2 describes the Pareto aggregation of close future and distant future prefer-

ences. Section 3 presents robust pre-orders and conditions for MaxMin, MaxMax,

and α-MaxMin representations are presented. Section 4 strengthens these results by

incorporating them in a temporally-biased multiple discounts configuration. Section

5 concludes the article. The mathematical preparations and the proofs are given in

the Appendix.

2. Pareto aggregation of close future and

distant future preferences

This paper adopts an axiomatic approach to the evaluation of bounded utility

streams in a discrete-time configuration. Letters such as x, y, z will be used for

streams of utilities with values in R. Denote by `∞ the set of bounded real se-

quences.

Notation 1 will denote the constant stream (1, 1, . . .). Similarly, b1 and b∗1 will be

used for constant streams (b, b, . . .) and (b∗, b∗, . . .). The notations λ, µ, and χ will

be used for constant scalars.

For every x ∈ `∞ and T ≥ 0, let x[0,T ] = (x0, x1, . . . , xT ) be its head T + 1 first com-

ponents and x[T+1,∞) = (xT+1, xT+2, . . .) its tail starting from date T + 1. Given se-

quences x and y, the sequence (y[0,T ], x[T+1,+∞)) denotes (y0, y1, . . . , yT , xT+1, xT+2, . . .).

The sequence (y[0,T ], x) denotes (y0, y1, . . . , yT , x0, x1, x2, . . .). By convention, if T =

−1, let (y[0,T ], x[T+1,+∞)) be the sequence x = (x0, x1, x2, . . .).

An economic agent evaluates utility streams that belong to `∞, while attempting

to strike a balance between the welfare of the close and the distant futures. She

has two original preferences, which are represented by the close future order �c and

the distant future order �d. The distant future order has an opposite tendency

and ignores the close future, whereas the close future order ignores the distant

future. The economic agent establishes her main preference, �, based on these two

preferences, synthesizing the comparisons made by �c and �d.
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As a constructive example, imagine a situation where a government has to evalu-

ate very long-run policies. The government may rely on the advice of a group of

economists, environmentalists, politicians, or even philosophers to evaluate the val-

ues of the close and distant future of projects. Each expert shares her opinion on an

appropriate discount rate system for the close future as well as some rules for the

calculus of the distant future. The evaluation of the close and distant future will be

determined based on the experts’ advice.

Any expert will recognize that the calculus rule must satisfy two basic properties:

positive homogeneity of degree one and additivity. These guarantee that the proper-

ties homogeneity and additivity are satisfied. According to homogeneity, an expert’s

comparison of two streams after multiplying a positive scalar by both of them re-

mains unchanged. Additivity ensures that by adding a third stream, the expert’s

comparison of two streams remains intact. In other words, the preferences of an

expert do not depend on the reference stream. After having consulted the experts,

the preferences are described by two completed orders: �c and �d.

The opinions of such experts obviously differ due to their diverse experiences, and

the purpose of this article is to propose an axiomatic approach that combines their

disparities.

We now return to the basic properties concerning preferences. The intuition behind

the orders in the above illustration is presented in Axiom F1. For any order �̂ ∈

{�,�c,�d}, let x∼̂y denote x�̂y and y�̂x. The order �̂ is nontrivial if there is x

and y such that x � y and y � x. Let the notation be presented as x�̂y.

Axiom F 1. Every order �̂ belonging to {�c,�d,�} satisfies the following proper-

ties.11

(i) Completeness, transitivity and monotonicity: For every x, y ∈ `∞, either x�̂y

or y�̂x. If x�̂y and y�̂z, then x�̂z. If xs ≥ ys for every s ∈ N, then x�̂y.

(ii) Archimedeanity: For x ∈ `∞ and real values b, b′ satisfying b1 �̂ x �̂ b′1, there

are λ, µ ∈ (0, 1) such that (1− λ)b1 + λb′1 �̂ x �̂ (1− µ)b1 + µb′1.
11These properties are well-known in the literature, and an interested reader may find a detailed

discussion about their significance in Chambers and Echenique (2018), Bach et al. (2023), or

Drugeon and Ha-Huy (2022).
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(iii) Constant additivity: For every stream x, y, constants b and scalar λ ∈ [0, 1),

x�̂y if and only if (1− λ)x+ λb1�̂(1− λ)y + λb1.

(iv) Nontriviality of the main order : There exist x, y ∈ `∞ such that x � y.

The completeness, transitivity, and monotonicity properties are standard in the

literature. Archimedeanity ensures continuity with respect to the sup-norm topology

in `∞.

The constant additivity property is admittedly less immediate. It guarantees that

constant streams are comparison-neutral: mixing two sequences with a constant

stream does not alter their comparison. In decision theory literature, this trait is

known as certainty independence. In the context of intertemporal preferences, this

condition states that the utility level of different dates is given in the same unit. As

in Chambers and Echenique (2018), this allows us to perform interpersonal (or in

the case of this article, intertemporal) comparison of utility.12

These conditions, combined with the nontriviality property, have as a consequence

that the order �̂ can be represented by an index function Î: for every x and y in

`∞, x�̂y if and only if Î(x) ≥ Î(y). The function Î satisfies constant additivity and

homogeneity of degree 1 properties. Precisely, this function is defined as:

Î(x) = sup
{
b such that x�̂b1

}
.

For every x ∈ `∞, λ ≥ 0 and b ∈ R, we have:13

(i) Î(λx) = λÎ(x),

(ii) Î(x+ b1) = Î(x) + b.

By convention, if the order �̂ is trivial, we let Î(x) = 0 for every x ∈ `∞. We then

have three index functions Ic(x), Id(x) and I(x) corresponding to the three orders

�c,�d and �.

The following axiom details the precise properties of these three orders. The close

future order satisfies a myopia property, as described in Brown and Lewis (1981):
12See Chambers and Echenique (2018), pages 1331-1332 for a detailed discussion.
13The proof of this property can be found in Drugeon and Ha-Huy (2022), Lemma 2.1.
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it attributes a very small value for utilities in distant dates. Otherwise, the distant

future order attributes no value for the close future. The main order satisfies a

version of the Pareto property in aggregating close future and distant future orders.

Axiom F 2. The close future, distant future, and main orders respectively satisfy:

(i) Distant future insensitivity: Consider the close future order �c. For every

x, y, z ∈ `∞, ε > 0, there exists T0 such that for T ≥ T0,

(
x[0,T ], y[T+1,∞)

)
�c

(
x[0,T ], z[T+1,∞)

)
− ε1.

(ii) Close future insensitivity: Consider the distant future order �d. For every

x, y, z ∈ `∞, (
y[0,T ], x[T+1,∞)

)
∼d

(
z[0,T ], x[T+1,∞)

)
,

for every T ≥ 0.

(iii) Consistency: Consider the main order �. For x, y ∈ `∞, if x �c y and x �d y,

then x � y.

It is easy to verify that, under axioms F1 and F2, for every x, y ∈ `∞:

Ic(x) = lim
T→∞

Ic
(
x[0,T ], y[T+1,∞)

)
,

Id(x) = Id
(
y[0,T ], x[T+1,∞)

)
, for every T ≥ 0.

From now on, we always impose F1 and F2 on the three orders �c, �d and �.

The consistency condition requires that the main order never contradicts the close

future and the distant future orders when these two orders are in agreement with

each other. With the nontriviality of the main order, a direct consequence of con-

sistency is that at least one of the two close future and distant future orders is

nontrivial.

More specifically, if the distant future order �d is trivial, the two orders � and �c
are equivalent. The economic agent cares only about the close future. This is the

usual situation of literature where the remote future is negligible. Similarly, if the

close future order �c is trivial, then � and �d do coincide.
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We now focus on the relation between the index functions. The evaluation of a utility

stream is a convex combination of its close future and distant future values. The

parameter of the convex combination is characterized by two following parameters.

Let

χg = lim
T→∞

I(01[0,T ],1[T+1,∞)),

χ` = − lim
T→∞

I(01[0,T ],−1[T+1,∞)).

These two values can be interpreted as the perception of the economic agent about

the importance of constant gains and losses in the distant future. They both belong

to the closed interval [0, 1]. The case χg = χ` = 1 corresponds to the configuration

where the close future order is trivial and �=�d. In opposition to this, χg = χ` = 0

implies that the distant future order is trivial and �=�c, a well-known configuration

of the literature.

Lemma 2.1 is crucial in the establishment of the formula linking the close and the

distant future values of the utility streams. The value of a stream is a convex com-

bination of its close and distant values. The parameter of this convex combination

in use is χg if the close future value is smaller than the other one. In the reverse

situation, it is χ` that is selected to determine the weight in the convex combination.

Lemma 2.1. Consider a stream x.

(i) If Ic(x) ≤ Id(x), then

I(x) = (1− χg)Ic(x) + χgId(x).

(ii) If Ic(x) ≥ Id(x), then

I(x) = (1− χ`)Ic(x) + χ`Id(x).

We can establish two different behaviors based on Lemma 2.1. The first one corre-

sponds to the situation where the economic agent desires to smooth the difference

between the close future and the distant future values. The second one exhibits the

opposite behavior.

Proposition 2.1. Consider χg and χ`.
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(i) If χg ≤ χ`, then, for every stream x,

I(x) = min
χg≤λ≤χ`

[
(1− λ)Ic(x) + λId(x)

]
.

(ii) If χg ≥ χl, then, for every stream x,

I(x) = max
χ`≤λ≤χg

[
(1− λ)Ic(x) + λId(x)

]
.

As an example, consider the order � that is represented as follows, with 0 < χg <

χ` < 1 and D a compact subset of (0, 1):

I(x) = min
χg≤λ≤χ`

[
(1− λ) min

δ∈D

(
(1− δ)

∞∑
s=0

δsxs

)
+ λ lim inf

s→∞
xs

]
.

In this example, the initial order � can be decomposed into two suborders �c and

�d with two associated index functions that are available as:

Ic(x) = min
δ∈D

(
(1− δ)

∞∑
s=0

δsxs

)
,

Id(x) = lim inf
s→∞

xs.

3. Axiomatization of α-MaxMin

representations

We want to study a preorder that represents the unanimous comparison, in the close

as well as in the distant future, after the orders �c and �d have been established. An

important question is: what this order’s principal properties should be? A simple

answer that comes to mind: is that the preorder must preserve the homogeneity and

additivity properties since every expert provides her evaluation rule that satisfies

them. Such a line of reflect intuitively leads to the well-known definition of a robust

order in decision theory: one stream is robustly better than another one if mixing

them with a third one does not alter the comparison.

Definition 3.1. Consider an order �̂ ∈ {�c,�d}. Let the pre-order �̂∗ be defined

by

x�̂∗y iff for every λ ∈ (0, 1) and z ∈ `∞, we have (1− λ)x+ λz�̂(1− λ)y + λz.
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We may also interpret robust dominance as being preferred independently from the

reference stream. It is always preferable to mix z with x rather than with y if we

begin from z. Generally, this preorder is not complete. This brings to mind Bewley

(2002), whose contribution saw the establishment of a set of probability distributions

rather than a single one, due to a lack of completeness. A choice is robustly better

than another one if, calculated by every probability of this set, its expected utility

is always better than the other one.

Similarly, for each order �̂ ∈ {�c,�d}, there exists a set of probabilities (finitely

additive or infinitely additive) such that a utility stream x is robustly �̂-better than

a utility stream y if and only that is confirmed by every evaluation using these

probabilities. In other words, these probabilities characterize the difference between

the opinions of the experts.

Section 3.1 will present in detail their characterization.

3.1 Representation of the robust preorders

This approach leads to a characterization of the order �̂ by a set of continuous

linear functions on `∞, similar to Gilboa and Schmeidler (1989) and Bewley (2002).

These can be considered as finitely additive measures on the set of natural numbers

{0, 1, 2, . . .}. Interestingly, they are countably additive in the case of the close future

order �c, and purely finitely additive in the case of the distant future order �d. A

rigorous definition of these notions is given in Appendix A.

3.1.1 Representation of close future Order

Axiom A1 states a strong version of myopia: though there are disagreements be-

tween experts about discount rate system to evaluate the close future, their close

future evaluations all attribute very small values for sufficiently remote dates. The

well-known axiom continuity at infinity in Chambers and Echenique (2018) might

be viewed as the close future equivalent of this axiom.

Axiom A 1. For every b ∈ (0, 1), there exists T0 such that, for every T ≥ T0,(
1[0,T ], 01[T+1,∞)

)
�∗c b1.
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Under axiom A1, the robust preorder �∗c is represented by a set of weights Ωc that

builds from countably additive probabilities. To be more precised, Ωc is a set of

sequences ω = (ω0, ω1, ω2, . . .) such that ωs ≥ 0 for every s, and ∑∞
s=0 ωs = 1. A

probability in this set can be considered a possible system of discount rates that is

used to evaluate the close future.

Proposition 3.1. Assume that the close future order �c is nontrivial. Under axiom

A1, there exists a set of discount rate systems Ωc ⊂ `1
14 that is compact with respect

to the weak topology in `1 and satisfies the two following properties:

(i) For every ω ∈ Ωc, ωs ≥ 0, ∀s, and ∑∞s=0 ωs = 1.

(ii) For every streams x and y, we have x �∗c y if and only if
∞∑
s=0

ωsxs ≥
∞∑
s=0

ωsys,

for every ω ∈ Ωc.

As a remark, observe that for every stream x,

inf
ω∈Ωc

∞∑
s=0

ωsxs ≤ Ic(x) ≤ sup
ω∈Ωc

∞∑
s=0

ωsxs.

The economic agent attributes to the close future of x a value lying between the

worst and the best evaluations of experts.

3.1.2 Representation of distant future Order

Since the distant future order �d does not take into account the close future, the

robust preorder �∗d satisfies that same property and depends only on the distant

future of the utility streams. It is characterized by a set Ωd that builds from purely

finitely additive properties.

Under the evaluation of a continuous linear function φ ∈ Ωd, the value of a stream

x, denoted φ · x, depends only on the distant behavior of x and does not change if

there are only a finite number of changes in the values xs. More precisely, for every

stream y and T ≥ 0, we have

φ ·
(
y[0,T ], x[T+1,∞)

)
= φ · x.

14The set of absolutely convergent real sequences (ω0, ω1, ω2, . . . ) such that
∑∞

s=0 |ωs| <∞.
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Hence, the value φ · x can be interpreted as the evaluation under φ of the stream x

in the distant future.

Proposition 3.2. Assume that the distant future order �d is nontrivial. There

exists a set of purely finitely additive probabilities Ωd such that x �∗d y if and only if

φ · x ≥ φ · y for every φ ∈ Ωd.

Observe that for every stream x,

inf
φ∈Ωd

φ · x ≤ Id(x) ≤ sup
φ∈Ωd

φ · x.

As in the case of close future value, the economic agent attributes to the distant

future of x a value lying between the worst and the best evaluations of experts.

3.2 MaxMin, MaxMax and α-MaxMin representations

Once the robust preorders �∗c and �∗d have been established, a natural interest arises

about situations where the two utility streams are not robustly comparable, but one

has more potential to be preferred than the other one. We will define two categories

of being potentially better for either of the two orders �c or �d.

The following defines the first category of potentially better. If x is robustly better

than every constant stream that is robustly dominated by y, then it is considered as

having more potential to be preferred. The second category is defined as x having

more potential to be preferred if it is not robustly worse than a constant stream

that is not robustly better than y.

Definition 3.2. Consider an order �̂ ∈ {�c,�d}.

(i) Under the order �̂, x is potentially better than y in the first category if, for

every constant b,

y�̂∗b1 implies x�̂∗b1.

(ii) Under the order �̂, x is potentially better than y in the second category if, for

every constant b,

b1�̂∗y implies b̂1�̂∗x.
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Under the axiom ensuring that having more potential in the first category implies

to be preferred, we obtain a MaxMin criterion, where the value of a utility stream is

determined by the worst evaluation. Similarly, if a stream that is potentially better

in the second category is also the preferred one, we obtain a MaxMax criterion,

where only the best evaluation is taken into account. Under a more demanding

condition than the aforementioned ones, establishing that the satisfaction of having

more potential in both categories implies to be preferred, we obtain an α-MaxMin

representation that encompases the MaxMin and the MaxMax criteria as special

cases.

Proposition 3.3. Consider an order �̂ ∈ {�c,�d} and its corresponding preorder

�̂∗. Assume that this order is nontrivial.

(i) If for every streams x and y, x being potentially better than y in the first

category implies x�̂y, then the order �̂ has a MaxMin representation:

Î(x) = inf
P∈Ω̂

P · x

for every stream x.

(ii) If for every streams x and y, x being potentially better than y in the second

category implies x�̂y, then the order �̂ has a MaxMax representation:

Î(x) = sup
P∈Ω̂

P · x

for every stream x.

(iii) If for every streams x and y, x being potentially better than y in both categories

implies x�̂y, then the order �̂ has an α-MaxMin representation: there exists

unique 0 ≤ α ≤ 1 such that for every stream x,

Î(x) = α sup
P∈Ω̂

P · x+ (1− α) inf
P∈Ω̂

P · x.

The MaxMin representation can be considered as a unanimous choice. The economic

agent determines that a stream x has at least value b if and only if every expert

agrees with that evaluation. We can also consider that the agent is very prudent in

following the experts’ advice. The MaxMax exhibits the exact opposite behavior in
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this aspect. The opinion of one expert that x has at least value b is sufficient for

the agent to have the same conclusion. The α-MaxMin is a way to balance the two.

The agent considers not only the worst but also the best evaluation.

Following two distinct approaches, Chateauneuf et al. (2021) and Frick et al. (2022)

are interested in the uniqueness of the α-MaxMin representation. In this regard, the

“potentially better” categories in this article echoes in some way the security and

potential dominance properties in Frick et al. (2022).

4. Specification of multiple discount sets by

stationarity-type axioms

4.1 Temporal bias axiom

In order to properly characterize the sets Ωc and Ωd, consider the definition 4.1,

which characterizes the impatience and stationary properties of the robust preorders.

Fix the order �̂ ∈ {�c,�d} and its robust preorder �̂∗. The idea expressed in

definition 4.1 represents the intuition that the evaluation of every expert becomes

stationary, beginning at a sufficiently long date in the future. After a certain time,

her comparison between two streams no longer depends on the departure date. The

temporal bias phenomenon, one of the main causes for the violation of the stationary

property, has only a finite range of influence on the experts. In fact, there exists a

date such that their evaluations all become stationary afterward.

Definition 4.1. T ∗-delay stationarity: Let T ∗ ≥ 0. The order �̂ satisfies T ∗-delay

stationarity if for every x ∈ `∞ and a constant b such that

(b1[0,T ∗−1], x)�̂∗b1,

we have

(b1[0,T ∗−1], x)�̂∗(b1[0,T ∗], x)�̂∗b1.

To be more precise, for an order �̂ satisfying this definition:
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(i) Case T ∗ = 0 corresponds to the Stationarity property:

x�̂∗b1 implies x�̂∗(b, x)�̂∗b1.

(ii) Case T ∗ = 1 corresponds to the Quasi-hyperbolic discounting property:

(b, x)�̂∗b1 implies (b, x)�̂∗(b, b, x)�̂∗b1.

(iii) Case T ∗ ≥ 1 can be considered as a T ∗-steps quasi-hyperbolic discounting

property:

(b, b, . . . , b︸ ︷︷ ︸
T ∗ times

, x)�̂∗b1 implies (b, b, . . . , b︸ ︷︷ ︸
T ∗ times

, x)�̂∗(b, b, . . . , b︸ ︷︷ ︸
T ∗+1 times

, x)�̂∗b1.

The choice to build the impatience and stationarity properties from the comparison

of a stream with another constant one is based on the purpose of practicability. It

is indeed simpler to ask an economic agent whether she values a utility stream of at

least b or watch her behavior.

In definition 4.1(iii), the comparison (b1[0,T ∗−1], x)�̂∗(b1[0,T ∗], x) characterizes impa-

tience whereas (b1[0,T ∗], x)�̂∗b1 features T ∗-delay stationarity. In other words, even

while the effect according to preorder �̂∗ weakens over time, if a combination is

robustly better than a constant sequence, it stays robustly better if it is advanced

into the future.

4.2 Temporal bias representation of close future pre-

order

If the close order �c satisfies T ∗-delay stationary, one can obtain a characterization

for the sets discount rate systems Ω. For a stream x, let C(x) be the supremum of

the values b ∈ R such that x �∗c b1. We can interpret C(x) as the lowest evaluation

of the close future of x by experts. A utility stream y may be robustly improved in

close future by mixing with x if we have

C
(
1

2
x+ 1

2
y
)
> C(y).

In other words, every expert agrees mixing y with x is a better choice than y.

Axiom A2 states that, there exists a delay-equivalence of x that keeps its robustly

improving capacity on delayed sequences.
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Axiom A2. Let the close future order �c satisfy the condition in definition 4.1. For

a utility stream x, let b = C(x). There exists a utility stream y such that

(i) C
((
b1[0,T ∗−1], y

))
= b,

(ii) for every stream ŷ satisfying C
((
b1[0,T ∗−1], ŷ

))
= b, one has

C
(
1

2
x+ 1

2

(
b1[0,T ∗−1], ŷ

))
> b if and only if C

(
1

2

(
b1[0,T ∗−1], y

)
+ 1

2

(
b1[0,T ∗−1], ŷ

))
> b.

Let us discuss some intuitions for this property. Stationarity of a preference is

usually explained by the fact that the evaluation (robust or not) is independent of

the departure date. For example, consider the case of a close future index function

that is defined as:

Ic(x) = inf
δ∈D

[
(1− δ)

∞∑
s=0

δsxs

]
,

with D is a closed subset of (0, 1), as in Chambers and Echenique (2018). This

corresponds to a situation where every expert’s criterion is stationary, though they

may have different discount rates. We can verify easily that the following claim is

satisfied: for every T ≥ 0, if C
((
b1[0,T−1], ŷ

))
= C(x) = b, then

C
(
1

2
x+ 1

2

(
b1[0,T−1], ŷ

))
> b if and only if C

(
1

2

(
b1[0,T−1], x

)
+ 1

2

(
b1[0,T−1], ŷ

))
> b.

The robustly improving capacity using utility stream x does not depend on the

departure date. As a result, the condition described in Chambers and Echenique

(2018) can be viewed as a specific kind of stationarity.

This stationarity property is not satisfied now since it is assumed that each expert

may be affected by temporal bias phenomena, hence we are interested in studying

a weaker version of it. Axiom A2 captures this bias phenomena, by assuming the

existence of a T ∗-delay equivalence of x, namely
(
b1[0,T ∗−1], y

)
, with the property

that, if we can robustly improve the delayed sequence
(
b1[0,T ∗−1], ŷ

)
by mixing it

with x, then we obtain the same result using
(
b1[0,T ∗−1], y

)
. In other words, the

T ∗-delay equivalence
(
b1[0,T ∗−1], y

)
preserves the robustly improving capacity of x

in mixing with delayed streams. We then can interpret the results in Proposition 4.1

as: beginning from the date T ∗ in the future, the robustly improving capacity does

not depend on the beginning date of the stream. The evaluation of every expert

becomes stationary after date T ∗.
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Proposition 4.1. Assume axiom A1. Assume also that the order �c is nontrivial

and satisfies the delay stationarity property.

(i) Stationarity: If T ∗ = 0, then there exists D ⊂ (0, 1) such that Ωc is the convex

hull of probabilities

{(
1− δ, (1− δ)δ, . . . , (1− δ)δs, . . .

)}
δ∈D

.

(ii) Quasi-hyperbolic discounting: Consider the case T ∗ = 1. By adding axiom

A2, there exists D ∈ (0, 1)2 such that Ωc is the convex hull of the probabilities
{(
1− δ0, δ0(1− δ), δ0δ(1− δ), δ0δ2(1− δ), . . . , δ0(1− δ)δs, . . .

)}
(δ0,δ)∈D

.

(iii) T ∗-steps quasi hyperbolic discounting: Consider the case T ∗ ≥ 1. By adding

axiom A2, there exists D ∈ (0, 1)T ∗+1 such that Ωc is the convex hull of the

set of discount rate systems:
{(
1− δ0, δ0(1− δ1), δ0δ1(1− δ2), . . . , δ0δ1 · · · δT ∗−1(1− δ), . . .

. . . , δ0δ1 . . . δT ∗−1δ
s(1− δ), . . .

)}
(δ0,δ1,...δT∗−1,δ)∈D

.

The Invariance to stationary relabeling property, which was imposed by Cham-

bers and Echenique (2018), presupposes that that for any x that is equivalent to

a constant sequence b1, x is equivalent to any convex combination between x and(
b1[0,T ], x

)
, for every T . Recently, dealing with multiple temporal biased discount

rates, working in a similar axiomatic system configuration, Bach et al. (2023) gen-

eralized their result with a property that is known as delay-Invariance to station-

ary relabeling, and obtained a multiple quasi-hyperbolic discounting representation.

This condition and T ∗-delay stationary have a common point in the sense that they

both impose a weaker version of the stationarity property that is usually observed

in exponential discounting(s).

The difference between the two mentioned papers and this one essentially comes

from the fact that while Chambers and Echenique (2018) and Bach et al. (2023)

worked on a complete order � and established a MaxMin representation of the

index function, this study works on a robust preorder �∗, corresponding to a larger
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family of possible orders and index functions, such as the α-MaxMin representation.

Unsurprisingly, the two different approaches involve two rather different systems of

axioms.

4.3 Temporal bias representation of distant future pre-

order

Under the condition that �d satisfies the T ∗-delay stability property, one can also

obtain important properties of the set of purely finitely additive measures that

characterize the preorders �∗d. The set Ωd builds from Banach limits. This reflects

an exponential discounting property where the comparison between two sequences

does not depend on the chosen date of the departure.

Proposition 4.2. Assume that the order �d is not trivial and satisfies T ∗-delay

stability with T ∗ ≥ 1. Then every purely finitely additive probability φ ∈ Ωd is a

Banach limit: for every x ∈ `∞,

φ · x = φ · (0, x).

From this result, we have φ ·x ≥ φ ·y if and only if φ ·(0, x) ≥ φ ·(0, y). This property

echoes the stationarity of exponential discounting. The comparison between two

utility streams under exponential discounting remains the same if we shift them to

a future date, similar to the case of Banach limits. As a result, the Banach limits in

the evaluation of the distant future can be considered as a counterpart of exponential

discounting in the evaluation of the close future.

Axiom A3 establishes that a utility stream dominates (or is dominated) by a con-

stant one if and only if its values are all greater (or worse) in distant future.

Axiom A 3. For any x ∈ `∞ and b ∈ R,

(i) If there exist ε > 0 and an infinite number of times s such that b > xs + ε,

then x 6�∗d b1.

(ii) If there exist ε > 0 and an infinite number of times s such that xs > b + ε,

then b1 6�∗d x.
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Proposition 4.3. Assume that under the order �d, for every streams x and y, x

being potetially better than y implies x �d y. Adding axiom A3, there exists unique

0 ≤ αd ≤ 1 such that the distant future index function can be represented as:

Id(x) = αd lim sup
s→∞

xs + (1− αd) lim inf
s→∞

xs.

5. Conclusion

This article deviates from the classical method of intertemporal preferences analy-

sis.15 We offer a new approach to the literature using utility streams rather than

choice under uncertainty over a range of states of the world. This approach en-

ables us to characterize preferences by sets of finitely additive probabilities, using

techniques well developped in decision theory. This work makes three major con-

tributions: it considers the distant future, it identifies circumstances that guaran-

tee α-MaxMin representations, and provides a generalized form of multiple quasi-

hyperbolic discounting. The method used, which involves robust comparison, may

complement the approaches followed by Chambers and Echenique (2018) and Bach

et al. (2023) in the studies of temporal preferences.

The results can be used to depict how rational economic agents would behave if they

were given advice by a group of experts with a finite range of temporal biases. By

observing the choice between couples of streams that “potentially better” compa-

rable, we can determine whether our agent has a MaxMin, MaxMax or α-MaxMin

criteria. The parameter α could be used as a degree of prudence while considering

experts’ opinions. The case α = 0 corresponds to a very high prudence level. The

agent exclusively evaluates x values at least b if and only if experts unanimously

agree with that. Case α = 1 represents an opposite behavior, where the evaluation

of at least one expert is sufficient.

The issue of how to incorporate these preferences in an optimization context with

long-term policies, for example, optimal growth model with natural resources, espe-
15To name some contributions in the axiomatic of discounted utilities literature, see the seminal

articles by Koopmans (1960) and Koopmans (1972), or more recent ones, Fishburn and Rubinstein

(1982) and Dolmas (1995). For a review, see Bleichrodt et al. (2008).
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cially the renewable ones, could be of interest. However, in our opinion, this question

is complicated, and that should be the subject of another research, hopefully in the

close future.

A. Mathematical preparations

A.1 Topologies

The set of bounded utility streams `∞ is equipped the sup−norm topology. A

sequence of streams {xn}∞n=0 ⊂ `∞ converges to x in this topology if

lim
n→∞

[
sup
s≥0
|xn,s − xs|

]
= 0.

The set of continuous linear functions defined on `∞, namely its dual, is denoted by

(`∞)∗. This set can be decomposed as (`∞)∗ = `1 ⊕ `d1. The set `1 is constituted by

real number sequences ω = (ω0, ω1, ω2, . . .) such that
∞∑
s=0
|ωs| <∞.

A sequence of {ωn}∞n=0 ⊂ `1 converges to ω in weak-topology if for every x ∈ `∞, we

have

lim
n→∞

∞∑
s=0

ωns xs =
∞∑
s=0

ωsxs.

Sometimes, instead of ∑∞s=0 ωsxs, we can write simply ω · x. If ωs ≥ 0 for every s

and ∑∞s=0 ωs = 1, we call ω a countably additive probability.

The set `d1 is constituted by purely finitely signed measures.16 In this article, we will

focus only on a special subset of it, the set of purely finitely additive probabilities,

with a characterization that will be presented in the second part of this section.

A.2 Characterization set of the robust preorder and

probability decomposition

Fix an order �̂ ∈ {�c,�d}. Suppose that this order is not trivial. Define Ω̂ as:

Ω̂ =
{
P ∈ (`∞)∗ such that P · x ≥ 0 for every x�̂∗01 and P · 1 = 1

}
.

16See Dunford and Schwartz (1966).
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It is obvious the set Ω̂ is convex. Moreover, if a stream x satisfies xs ≥ 0 for

every x, then P · x ≥ 0 for every P ∈ Ω̂. This means a P ∈ Ω̂ can be considered a

measure on the set of natural numbers {0, 1, 2, . . .}, in the sense that for every subset

S ⊂ {0, 1, 2, . . .}, we may define P (S) as P · x, where xs = 1 if s ∈ S and xs = 0 if

s /∈ S. Using Theorems 1.23 and 1.24 in Yosida and Hewitt (1952), each P belonging

to Ω̂ is a finitely additive probability on {0, 1, 2, . . .} and can be decomposed as

P = (1− λ)ω + λφ,

where 0 ≤ λ ≤ 1, ω is a countably additive probability belonging to `1, and φ is a

purely finitely additive probability belonging to `d1.

To be precise, φ satisfies the following property: if ω̃ ∈ `1 such that ω̃s ≥ 0 ∀s and

for every subset S ⊂ {0, 1, 2, . . .}, we have ∑s∈S ω̃s ≤ φ(S), then ω̃s = 0 for every s.

In other words, the evaluation of x ∈ `∞ under φ, the value φ · x, is not affected if

we change only a finite numbers of values xs. For every x, y ∈ `∞ and T ≥ 0, we

obtain φ · (y[0,T ], x[T+1,∞)) = φ · x. Hence, we can consider φ an evaluation of the

distant future of utility streams. Function φ is called a Banach limit if for every

x ∈ `∞, we have φ · x = φ · (0, x).

This decomposition will be used in the establishment of finitely additive probabilities

that characterize the robust order �̂, Propositions 3.1 and 3.2.

For a given convex subset Ωc ⊂ `1, ω is an exposed point of Ωc if there exists x ∈ `∞
such that ω̃ · x > ω · x for every ω̃ ∈ Ωc \ {ω}. Though in this article, we consider

only the exposed points of a convex set in `1, curious readers may refer to the note

of Radner (1965) on the same objects in the space of `∞. Recently, Becker (2022)

gave an interesting discussion on the subject, concerning not only exposed points,

but also Banach limits that appear in Proposition 4.2.

B. Proof of Lemma 2.1

Fix x ∈ `∞. To simplify the exposition, let a = Ic(x) and b = Id(x). We will prove

that the evaluation of the whole stream I(x) is a convex combination of a and b and

that the parameter of the convex combination depends on these two values.

According to the monotonicity property, the parameters χg and χ` are limits of
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decreasing sequences. Hence, they are well defined.

Now, we prove the following assertion

I(x) = lim
T→∞

I(a1[0,T ], b1[T+1,∞)).

This is obviously true if the close future order �c is trivial, with a consequence that

�=�d. Consider the case that �c is nontrivial. Fix any ε > 0. From the distant

future insensitivity property, we have

Ic(x) > Ic
(
(a− ε)1

)
= lim

T→∞
Ic
(
(a− ε)1[0,T ], (b− ε)1[T+1,∞)

)
.

Hence, for T that is sufficiently large, x �c
(
(a− ε)1[0,T ], (b− ε)1[T+1,∞)

)
.

From the close future insensitivity property,

Id(x) ≥ Id
(
(b− ε)1

)
= Id

(
(a− ε)1[0,T ], (b− ε)1[T+1,∞)

)
,

for every T . Hence, x �d
(
(a− ε)1[0,T ], (b− ε)1[T+1,∞)

)
.

According to the consistency property, for every T that is sufficiently large, we have

x �
(
(a− ε)1[0,T ], (b− ε)1[T+1,∞)

)
.

This implies

I(x) ≥ lim sup
T→∞

I
(
a1[0,T ], b1[T+1,∞)

)
− ε.

Using the same arguments, we get

I(x) ≤ lim inf
T→∞

I
(
a1[0,T ], b1[T+1,∞)

)
+ ε.

Since ε is chosen arbitrarily,

I(x) = lim
T→∞

I
(
a1[0,T ], b1[T+1,∞)

)
.

The assertion has been proven. Now, assume that Ic(x) ≤ Id(x). Then

I(x) = lim
T→∞

I(a1[0,T ], b1[T+1,∞))

= lim
T→∞

I
(
01[0,T ], (b− a)1[T+1,∞)

)
+ a

= (b− a) lim
T→∞

I
(
01[0,T ],1[T+1,∞)

)
+ a

= (b− a)χg + a

= (1− χg)Ic(x) + χgId(x).
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Consider the case Ic(x) ≥ Id(x). Observe that

χ` = 1− lim
T→∞

I(1[0,T ], 01[T+1,∞)).

Using the same arguments as in the first part of the proof, we have

I(x) = (1− χ`)Ic(x) + χ`Id(x).

C. Proof of Proposition 2.1

Consider the case χg ≤ χ`. For a stream x, if Ic(x) ≤ Id(x), we have

I(x) = (1− χg)Ic(x) + χgId(x)

= min
χg≤λ≤χ`

[
(1− λ)Ic(x) + λId(x)

]
.

The last equality comes from Ic(x) ≤ Id(x) and χg ≤ χ`.

If Ic(x) ≥ Id(x), we have

I(x) = (1− χ`)Ic(x) + χ`Id(x)

= min
χg≤λ≤χ`

[
(1− λ)Ic(x) + λId(x)

]
.

The last equality comes from Ic(x) ≥ Id(x) and χg ≤ χ`.

Using the same arguments, in the case χg ≥ χ`, for every stream x,

I(x) = max
χ`≤λ≤χg

[
(1− λ)Ic(x) + λId(x)

]
.

D. Proof of Proposition 3.1

Relying upon the same arguments as in Section A, there exists a set of finitely

additive probabilities Ωc ⊂ (`∞)∗ such that

x �∗c y ⇔ P · x ≥ P · y,

for every P ∈ Ωc. By Yosida and Hewitt (1952), every P ∈ Ωc can be decomposed

as P = (1 − λ)ω + λφ, with ω ∈ `1 is a countable additivity probability and φ is a

purely finitely additive probability.
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Suppose that λφ 6= 0, or equivalently λφ · 1 > 0. Fix b such that 1− λ < b < 1. By

axiom A1, there exists a large enough T0 such that for T ≥ T0,(
1[0,T ], 01[T+1,∞)

)
�∗c b1.

Hence, (
(1− λ)ω, λφ

)
·
(
1[0,T ], 01[T+1,∞)

)
≥ b,

with a direct consequence that 1− λ ≥ b, a contradiction.

To sum up, for every
(
(1 − λ), λφ

)
∈ Ωc, λφ = 0. Hence, Ωc can be considered a

subset of probabilities that is included in `1. Moreover, for every ε > 0, there exists

T such that ∑T
s=0 ωs > 1 − ε for every ω ∈ Ωc. By the Dunford-Petit critetion in

Dunford and Schwartz (1966), this implies the weak compactness of Ωc in `1. This

property will be used in the proof of Proposition 4.1.

E. Proof of Proposition 3.2

Let Ωd be the set of finitely additive probabilities being defined as P ∈ Ωd if and

only if P · 1 = 1 and P · x ≥ 0 for every x such that x �∗d 01. As presented in

Section A, by Yosida and Hewitt (1952), a probability P ∈ Ωd can be decomposed

as P = (1 − λ)ω + λφ, with ω ∈ `1 is a countably additive probability and φ is a

purely finitely additive probability belonging to `1d.

We prove that (1 − λ)ω = 0. Indeed, suppose the contrary. Then λ < 1 and there

exists T such that ωT > 0. Take a constant c > 0 such that (1− λ)ωT c > λ and let

x =
(
−c1[0,T ],1

)
. For every z ∈ `∞ one has Id(x + z) = Id(1 + z) ≥ Id(z). Hence,

x �∗d 01. Then

(1− λ)ω · x+ λφ · x ≥ 0,

which implies −(1−λ)ωT c+λ ≥ 0, a contradiction. This contradiction implies that

(1 − λ)ω = 0, which also implies λ = 1. The weights set Ωd can be considered a

subset of purely finitely additive probabilities belonging to `1d.

F. Proof of Proposition 3.3

Fix an order �̂ belonging to {�c,�d}. Assume that being potentially better in the

first category implies to be preferred. Consider two streams x and y, we will prove
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that x is potentially better than y in the first category if and only if:

inf
P∈Ω̂

P · x ≥ inf
P∈Ω̂

P · y.

Assume that x is potentially better than y under �̂. Stream y robustly dominates

a constant one b1 if and only if inf
P∈Ω̂ P · y ≥ b. Let b = inf

P∈Ω̂ P · y. By the very

definition of the first category of the potentially better property, we have x�̂∗b1,

with a direct consequence that inf
P∈Ω̂ P · x ≥ inf

P∈Ω̂ P · y.

Assume that inf
P∈Ω̂ P ·x ≥ inf

P∈Ω̂ P ·y. If y�̂∗b1, then inf
P∈Ω̂ P ·x ≥ inf

P∈Ω̂ P ·y ≥ b.

This implies that x�̂∗b1.

The condition of Proposition 3.3(i) is thus equivalent to: if inf
P∈Ω̂ P ·x ≥ inf

P∈Ω̂ P ·y,

then x�̂y. For every stream x, let b = inf
P∈Ω̂ P · x and y = b1. Since inf

P∈Ω̂ P · x =

inf
P∈Ω̂ P · y, we have x∼̂y, with Î(x) = b as a direct consequence.

As for part (ii), using the same arguments, we can prove that if having more potential

in the second category implies to be preferred, Î(x) = sup
P∈Ω̂ P · x.

Consider the most interesting part, namely (iii). Using the same arguments as in

the proof of part (i), the condition in part (iii) can be rewritten as: if inf
P∈Ω̂ P ·x ≥

inf
P∈Ω̂ P · y and sup

P∈Ω̂ P · x ≥ sup
P∈Ω̂ P · y, then x�̂y.

For every x, it is obvious that sup
P∈Ω̂ P · x�̂Î(x)�̂ inf

P∈Ω̂ P · x. Hence, there exists

0 ≤ αx ≤ 1 such that

Î(x) = αx sup
P∈Ω̂

P · x+ (1− αx) inf
P∈Ω̂

P · x.

If inf
P∈Ω̂ P · x < sup

P∈Ω̂ P · x, the value αx is unique.

To end the proof and establish an α-MaxMin representation, we prove that for every

streams x and y such that inf
P∈Ω̂ P ·x < sup

P∈Ω̂ P ·x and inf
P∈Ω̂ P ·y < sup

P∈Ω̂ P ·y,

we obtain αx = αy.

First, observe that we can find λ > 0 and a constant b such that

λ sup
P∈Ω̂

P · y + b = sup
P∈Ω̂

P · x,

λ inf
P∈Ω̂

P · y + b = inf
P∈Ω̂

P · x.
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Let x̃ = λy + b. We have

Î(x̃) = λÎ(y) + b,

sup
P∈Ω̂

P · x̃ = λ sup
P∈Ω̂

P · y + b,

inf
P∈Ω̂

P · x̃ = λ inf
P∈Ω̂

P · y + b.

Hence, αx̃ = αy. Observe that

sup
P∈Ω̂

P · x̃ = sup
P∈Ω̂

P · x,

inf
P∈Ω̂

P · x̃ = inf
P∈Ω̂

P · x.

Hence, x̃∼̂x. This implies Î(x̃) = Î(x), and αx = αy. Let the common value be α.

For every stream x, we have

Î(x) = α sup
P∈Ω̂

P · x+ (1− α) inf
P∈Ω̂

P · x.

G. Proof of Proposition 4.1

The proof of this proposition begins by a preparative Lemma G.1. Under the hy-

pothesis that the close future order �c satisfies definition 4.1, for each stream x, the

value of the worst-case scenario corresponding to (b∗1[0,T ∗−1], x), evaluated under

order �c, neither change with a shift of the stream to the future nor with a convex

combination with this shift. In other words, beginning from T ∗, the robust order

satisfies a version of stationarity.

Lemma G.1. Assume that the order �c is not trivial and satisfies the T ∗-delay

stationarity property.

(i) For any constant b, (b1[0,T ∗−1], x) �∗c b1 implies:

(b1[0,T ∗−1], x) �∗c (b1[0,T ∗], x) �∗c (b1[0,T ∗+1], x) �∗c . . . �∗c b1.

(ii) If b∗ = C
(
(b∗1[0,T ∗−1], x)

)
, then for any T ≥ T ∗,

C
(
b∗1[0,T ], x

)
= b∗.
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(iii) If b∗ = C((b∗1[0,T ∗−1], x)), then for any T ≥ T ∗,

C
(
1

2
(b∗1[0,T ∗−1], x) + 1

2

(
b∗1[0,T ], x

))
= b∗.

Proof. The proof of part (i) is obvious, using delay stationary property.

(ii) It is obvious that if x �∗c y, then C(x) ≥ C(y). Let b∗ = C
(
b∗1[0,T ∗−1], x

)
. From

part (i), for T ≥ T ∗,

(b∗1[0,T ∗−1], x) �∗c (b∗1[0,T ], x) �∗c b∗1.

This implies b∗ = C
(
b∗1[0,T ∗−1], x

)
≥ C

(
b∗1[0,T ], x

)
≥ b∗.

(iii) Since (b∗1[0,T ∗−1], x) �∗c (b∗1[0,T ], x),

b∗ = C
(
(b∗1[0,T ∗−1], x)

)
≥ C

(
1

2
(b∗1[0,T ∗−1], x) + 1

2
(b∗1[0,T ], x)

)
≥ b∗.

QED

Now, return to the main part of the proof. For each probability ω = (ω0, ω1, . . .) ∈ `1
and T ≥ 0, let ωT be the probability defined as

ωTs = ωT+s∑∞
s′=0 ωT+s′

.

It is worth noting that, for x ∈ `∞ and a constant b, ω ·
(
b1[0,T−1], x

)
= b if and only

if ωT · x = b.

Let ΩT ∗
c =

{
ωT
∗ such that ω ∈ Ωc

}
. First, observe that from axiom A1, we have

ΩT ∗
c is a weak compact subset of `1. Take ω ∈ Ωc such that ωT ∗ is an exposed point

of ΩT ∗
c .

We will prove that ωT ∗ = (ωT ∗)T for all T ≥ 0.

From the definition of ω, there exists x ∈ `∞ such that ωT ∗ · x < ω̃T
∗ · x for every

ω̃ ∈ Ωc \ {ω}. Let b∗ = ωT
∗ ·x. It is obvious that the following inequality is verified:

b∗ = ω ·
(
b∗1[0,T ∗−1], x

)
< ω̃ ·

(
b∗1[0,T ∗−1], x

)
.
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This implies that C
((
b∗1[0,T ∗−1], x

))
= b∗. Obviously,

(
b∗1[0,T ∗−1], x

)
�∗c b∗1. Fix

T ≥ 0 and from Lemma G.1,

C
(
1

2

(
b∗1[0,T ∗−1], x

)
+ 1

2

(
b∗1[0,T ∗+T ], x

))
= b∗.

This implies that there exists ω′ such that

b∗ = ω′ ·
(
1

2

(
b∗1[0,T ∗−1], x

)
+ 1

2

(
b∗1[0,T ∗+T ], x

))
= min

ω∈Ωc

ω ·
(
1

2

(
b∗1[0,T ∗−1], x

)
+ 1

2

(
b∗1[0,T ∗+T ], x

))
.

From (i), ω′ ·
(
b∗1[0,T ∗−1], x

)
≥ b∗ and ω′ ·

(
b∗1[0,T ∗+T ], x

∗)
)
≥ b∗. It follows that

ω′ ·
(
b∗1[0,T ∗−1], x

)
= ω′ ·

(
b∗1[0,T ∗+T ], x

∗
)

= b∗.

Hence:

(ω′)T ∗ · x = b∗,

(ω′)T ∗ ·
(
b∗1[0,T ∗+T ], x

)
= b∗.

Since ωT ∗ is an exposed point of ΩT ∗
c , the first equality implies that (ω′)T ∗ = ωT

∗ .

Observe that ω ·
(
b∗1[0,T ∗+T ], x

)
= b∗ is equivalent to (ωT∗)T · x = b∗. Moreover,

(ωT∗)T belongs to ΩT ∗
c . Indeed, suppose the contrary: from the weak compactness

of ΩT ∗
c , there exists ε > 0 such that the intersection between ΩT ∗

c and the open set{
ω̃ such that

∥∥∥ω̃−(ωT∗)T
∥∥∥
`1
< ε

}
is empty. From Hahn-Banach theorem, there exist

x′ and a constant b such that ω̃T ∗ · x′ > b > ωT∗ · x′ for every ω̃ ∈ Ωc. This implies

that
(
b1[0,T ∗−1], x

′
)
�∗c b1 and therefore that

(
b1[0,T ∗−1], x

′
)
�∗c

(
b1[0,T ∗+T ], x

′
)
�∗c b1,

hence ω ·
(
b1[0,T ∗+T ], x

′
)
≥ b, which is equivalent to (ωT∗)T · x′ ≥ b, a contradiction.

The probability (ωT∗)T belongs to ΩT ∗
c , and satisfies (ωT∗)T · x = b∗. From the

definition of ωT ∗ and x, ωT ∗ = (ωT∗)T , for every T ≥ 0. It follows that

ωT
∗

s = ωT ∗+T+s∑∞
s′=0 ωT ∗+T+s′

and ωT
∗

s+1 = ωT ∗+T+s+1∑∞
s′=0 ωT ∗+T+s′

.

This implies that for every T, s:

ωT
∗

s+1
ωT ∗s

= ωT ∗+T+s+1

ωT ∗+T+s
.
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This is equivalent, for some δ > 0 and for every s ≥ 0, to

ωT
∗

s+1
ωT ∗s

= δ,

or to ωT
∗

s = δsωT
∗

0 for every s ≥ 0. Since ∑∞s=0 ωT ∗s = 1, we have 0 < δ < 1 and

ωs =
(
1− δ

)
δs for s ≥ 0.

To sum up, every exposed point of ΩT ∗
c has an exponential representation. The set

ΩT ∗
c is weakly compact, according to Theorem 4 in Amir and Lindentrauss (1968),

ΩT ∗
c is the convex hull of its exposed points. This implies the existence of a subset

D∗ ⊂ (0, 1) such that

ΩT ∗

c = convex
{

(1− δ, (1− δ)δ, . . . , (1− δ)δs, . . .)
}
δ∈D∗

.

Part (i), where T ∗ = 0 is proven.

Consider the case T ∗ ≥ 1. Observe that if ωT ∗ is an exposed point of ΩT ∗
c , then

ω is an exposed point of Ωc. Indeed, in that case, there exists x ∈ `∞ such that

ωT
∗ · x < ω̃T

∗ · x for every ω̃ ∈ Ωc \ {ω}. Let b = ωT
∗ · x. It is easy to verify that

b = ω ·
(
b1[0,T ∗−1], x)

)
and b < ω̃ ·

(
b1[0,T ∗−1], x). Hence, ω is an exposed point of Ωc.

Consider an exposed point ω of Ωc. We will prove that ωT ∗ is an exposed point

of ΩT ∗
c . In this stage of the proof, we need axiom A2, to prove that the T ∗-delay

equivalence of an exposed point of Ωc is an exposed point of ΩT ∗
c .

By the choice of ω, there exists x ∈ `∞ such that ω ·x < ω̃ ·x, for every ω̃ ∈ Ωc \{ω}.

Let b = C(x) = ω · x. Consider the utility stream y, which is a T ∗-delay equivalence

of x, being defined in the statement of axiom A2. Taking ŷ = y, from the obvious

property C
(
1
2

(
b1[0,T ∗−1], y

)
+ 1

2

(
b1[0,T ∗−1], y

))
= b, one has

C
(
1

2
x+ 1

2

(
b1[0,T ∗−1], y

))
= b.

Using the same arguments as those used in the proof of Lemma G.1, we obtain

ω · x = ω ·
(
b1[0,T ∗−1], y

)
= b.

Since C
((
c1[0,T ∗−1], y

))
= b, for every ω̃ ∈ Ωc, ω̃ ·

(
b1[0,T ∗−1], y

)
≥ b, which is

equivalent to ω̃T ∗ · y ≥ b. We prove that for every exposed point ω̂T ∗ of ΩT ∗
c that

differs to ωT ∗ , ω̂T ∗ · y > b.
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Assume the contrary, and consider a point ω̂T ∗ , which is an exposed point and

ω̂T
∗ · y = b. There exists y′ such that ω̂T ∗ · y′ < ω̃T

∗ · y′, for every ω̃T ∗ ∈ ΩT ∗ \ {ω̂T ∗},

including ωT∗. Let ŷ = y′ +
(
b− ω̂T ∗ · y′

)
1. The stream ŷ satisfies

b = ω̂T
∗ · ŷ < ω̃T

∗ · ŷ,

for every ω̃T ∗ ∈ ΩT ∗ \ {ω̂T ∗}, including ωT ∗ . Moreover, for every ω̃T ∗ ∈ ΩT ∗
c ,

ω̃T∗ ·
(
1

2
y + 1

2
ŷ
)
≥ b,

with the equality being obtained at ω̃T ∗ = ω̂T
∗ . One has

C
(
1

2

(
b1[0,T ∗−1], y

)
+ 1

2

(
b1[0,T ∗−1], ŷ

))
= b.

Contrary to this, inequality ωT ∗ · y′ > b implies ω ·
(
b1[0,T ∗−1], y

′
)
> b, and

ω ·
(
1

2
x+ 1

2

(
b1[0,T ∗−1], ŷ

))
> b.

For any ω̃ ∈ Ωc \ {ω}, ω̃ · x > b. Hence, the satisfaction of the strict inequality

ω̃
(
1

2
x+ 1

2

(
b1[0,T ∗−1], ŷ

))
= 1

2
ω̃ · x+ 1

2
ω̃ ·

(
b1[0,T ∗−1], ŷ

)
> b.

The compactness of Ωc implies that C
(
1
2
x+ 1

2

(
b1[0,T ∗−1], ŷ

))
> b, a contradiction.

Hence, for every ω̂T
∗ ∈ ΩT ∗

c \ {ωT
∗}, one has ω̂T ∗ · y > b. This implies ωT ∗ is an

exposed point of ΩT ∗
c , and has an exponential representation with some discount

rate δ. It is easy to find δ0, δ1, . . . , δT ∗−1 ∈ (0, 1) such that ω0 = 1 − δ0, ω1 =

δ0(1− δ1), . . . , ωT ∗−1 = δ0δ1 . . . δ
T ∗−1(1− δ) and ωT+s = δ0δ1 . . . δT ∗−1× δs(1− δ), for

s ≥ 0.

The set Ωc being the convex hull of its exposed points, the proof is completed.

H. Proof of Proposition 4.2

Fix b ≤ infs≥0 xs. Obviously, for every T ≥ T ∗, (b1[0,T ], x[T+1,∞)) �∗d b1. It follows

that (
b1[0,T ], x[T+1,∞)

)
�∗

(
b1[0,T+1], x[T+1,∞)

)
.
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From the head-insensitivity property of the distant future order �d,

x �∗d
(
0, x

)
.

Hence, for every purely finitely additive probability φ belonging to Ωd,

φ · x ≥ φ ·
(
0, x

)
.

By applying the same arguments with −x in the place of x, and b ≤ − sups≥0 xs, it

follows that φ · (−x) ≥ φ ·
(
0,−x

)
. From the linearity of φ, we obtain

φ · x = φ ·
(
0, x

)
.

I. Proof of Proposition 4.3

First, observe that for every purely finitely additive probability φ ∈ Ωd, x ∈ `∞, one

has

lim inf
s→∞

xs ≤ φ · x ≤ lim sup
s→∞

xs.

Axiom A3 implies that

inf
φ∈Ωd

φ · x = lim inf
s→∞

xs,

sup
φ∈Ωd

φ · x = lim sup
s→∞

xs.

Indeed, assume the contrary. Consider the case lim infs→∞ xs < infφ∈Ωd
φ · x. This

implies the existence of b ∈ R and ε > 0 such that b > lim infs→∞ xs+ε and x �∗d b1,

a contradiction with part (i) of axiom A3. For the case in which supφ∈Ωd
φ · x <

lim sups→∞ xs, using part (ii), similar arguments lead us to a contradiction.

Therefore, the decomposition is a direct consequence of Proposition 3.3.
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