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ABSTRACT International organizations have collaborated to revise standards and guidelines for human
protection from exposure to electromagnetic fields. In the frequency range of 6–300 GHz, the permissible
spatially averaged epithelial/absorbed power density, which is primarily derived from thermal modeling,
is considered as the basic restriction. However, for the averaging methods of the epithelial/absorbed power
density inside human tissues, only a few groups have presented calculated results obtained using different
exposure conditions and numerical methods. Because experimental validation is extremely difficult in this
frequency range, this paper presents the first intercomparison study of the calculated epithelial/absorbed
power density inside a human body model exposed to different frequency sources ranging from 10–90 GHz.
This intercomparison aims to clarify the difference in the calculated results caused by different numerical
electromagnetic methods in dosimetry analysis from 11 research groups using planar skin models. To reduce
the comparison variances caused by various key parameters, computational conditions (e.g., the antenna type,
dimensions, and dielectric properties of the skin models) were unified. The results indicate that the maximum
relative standard deviation (RSD) of the peak spatially averaged epithelial/absorbed power densities for one-
and three-layer skin models are less than 17.49% and 17.39%, respectively, when using a dipole antenna as
the exposure source. For the dipole array antenna, the corresponding maximum RSD increases to 32.49%
and 42.55%, respectively. Under the considered exposure scenarios, the RSD in the spatially averaged
epithelial/absorbed power densities decrease from 42.55% to 16.7% when the frequency is increased from
10–90 GHz. Furthermore, the deviation from the two equations recommended by the exposure guidelines
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for deriving the spatially averaged epithelial/absorptive power density is mostly within 1 dB. The fair agreement
in the intercomparison results demonstrates that the variances of the spatially averaged epithelial/absorbed power
densities calculated using planar skin models are marginal.

INDEX TERMS Dosimetry modeling, electromagnetic field, epithelial/absorbed power density, millimeter wave
exposure, standardization, skin model.

I. INTRODUCTION
Owing to the development of various wireless systems,
research on the protection of humans exposed to electro-
magnetic fields (EMFs) has attracted considerable atten-
tion [1], [2], [3], [4]. In 2019 and 2020, the IEEE International
Committee on Electromagnetic Safety (ICES) Technical
Committee (TC) 95 and the International Commission on
Non-Ionizing Radiation Protection (ICNIRP) revised the
exposure standards and guidelines, respectively, to pre-
scribe the exposure limits for people in restricted environ-
ments/occupational exposure and for unrestricted environ-
ments/general public exposure conditions [5], [6].

In the revised standard/guidelines, the two-tier approach is
used, similar to the previous versions. The epithelial/absorbed
power density (hereafter referred as APD) is used as a new
internal physical quantity to set the dosimetric reference limit
(DRL) or basic restriction (BR), which is derived from the
operational threshold of adverse health effects, considering
the safety or reduction factor in the frequencies from 6–
300 GHz. These DRL or BR were derived based on thermal
modeling [7], [8], [9], [10], [11], [12], which provides a
high degree of protection against dominant adverse health
effects of exposure, that is, localized temperature elevation on
the surface of human skin tissue. To correlate well with the
local maximum temperature increase, it is suggested that the
APD be averaged over an area of 4 cm2 from 6–300 GHz.
Above 30 GHz, a smaller spatial averaging area of 1 cm2

should also be considered to account for possible narrow-
beam exposure scenarios. For this averaging area, the limit
was relaxed by a factor of 2. Conversely, the permissible
external exposure reference level (ERL) [5] or reference level
(RL) [6], that is, the incident power density (IPD) in free
space, which is derived from the APD, has been prescribed
conservatively. Based on the exposure guidelines/standards,
the IPD should be averaged over an area of 4 cm2 for frequen-
cies ranging from 6–300 GHz. For frequencies higher than
30GHz, additional criteria of the IPD averaged over 1 cm2 are
given with a relaxation of ERL/RL by a factor of two for local
beam-like exposures, similar to those of the spatial average of
the APD.

Dosimetric studies for both plane-wave [13], [14], [15],
[16], [17], [18], [19], [20], [21] and antenna source expo-
sures [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39] were conducted
to determine the relationship between the power densities
and resultant surface temperature elevation above 6 GHz.
Subcommittee 6 of the IEEE ICES TC95 reported on a guide
for defining the spatial average of IPD to correlate surface

temperature elevation [40]. Using intercomparison from
established working groups in dosimetry analysis using var-
ious skin and antenna models, the deviations of the heating
factors of the spatially averaged IPDs were insignificant [41],
including the oblique incidence angle effects caused by
phased array antennas [42]. In comparison with the IPD
outside human tissue, however, the APD, which is closely
correlated with the superficial heating of human tissue, has
not been studied sufficiently and to a greater extent. Only a
few groups computed the APD and resultant temperature rise
at frequencies greater than 6 GHz using different exposure
conditions and methods [43], [44], [45], [46], [47]. Consider-
ing different important factors (e.g., the antenna type (size),
frequency, separation distance from the radiation source,
averaging area, and tissue electrical parameters), it is worth-
while to further discuss and clarify the appropriate schemes
for the spatial average of the APD in conventional planar
models and in non-planar and complex irregular human tissue
models.

Under Subcommittee 6 of the IEEE ICES TC95, a new
working group (WG) was established, which aims to study
and quantify the effects of different schemes on the spatial
average of the APD above 6 GHz. The cause of the vari-
ances of the numerical calculations in the dosimetry analyses
will be evaluated through an objective comparison of the
computation results from participating organizations using
their proper assessment methods and average schemes with
various body and antenna models. This intercomparison of
the specific absorption rate (SAR) has been conducted for
standardization in frequency bands of a few GHz [48]. This
is because the measurement of the field strength in biological
bodies is difficult; thus, a computational approach is often
conducted. Additionally, for exposure at higher frequencies
(particularly above 6 GHz, where the penetration depth is
below approximately 1 cm), precise measurement in the
depth direction becomes extremely difficult.

The WG task for the average scheme and assessment
method of the spatially averaged APD is divided into three
phases:

• intercomparison of spatially averaged APD using con-
ventional planar models

• appropriate average schemes using non-planar shaped
models (e.g., cylinder or sphere)

• ultimate challenge of the complex irregular voxel model
of realistic human tissue, including thermal analysis

To evaluate the deviation of the spatially averaged APD
caused by the numerical calculation method of each research
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TABLE 1. Exposure scenarios.

organization, a traditional planar skin model with unified
computational conditions was utilized for the first step of
the intercomparison, as mentioned above. This study com-
puted the spatially averaged IPD and APD at the skin sur-
face from 10–90 GHz using computational approaches with
unified body and antenna models. An intercomparison of
the numerical calculation variances from different research
organizations using their simulation codes and commercial
electromagnetic (EM) solvers was performed.

II. ANALYTICAL MODEL AND METHOD
A. EXPOSURE SCENARIOS
Eleven different organizations collaborated to conduct this
study: Nagoya Institute of Technology (NITech), South
China Agricultural University (SCAU), Kagawa Univer-
sity (Kagawa Univ.), Aalborg University (AAU), University
of Split (UniSplit), National Institute of Information and
Communications Technology (NICT), Kitami Institute of
Technology (KITech), Institut d’Électronique et des Tech-
nologies du numéRique (IETR), Foundation for Research on
Information Technologies in Society (IT’IS), Dassault Sys-
tèmes SIMULIA (3DS), and Intel Corporation (Intel). Table 1
presents an overview of the scenarios evaluated numerically
by participating organizations. As presented in the table,
a separation distance between the antenna and skin surface
ranging within 5–15 mm was considered for frequencies of
10 and 30 GHz. At 90 GHz, the separation distances were
set from 2–10 mm for the extreme near-field exposure condi-
tions of interest at higher frequencies. Nonetheless, in most
wireless device application scenarios, the antenna was not
located close to the body to such a separation distance. All
the conditions presented in this study clarify the variances
in spatially averaged APD computed by different research
organizations.

The antenna and planar skin models for the numerical sim-
ulations used by different organizations are shown in Fig. 1.
As suggested in the discussion of the WG under Subcom-
mittee 6 of the IEEE ICES TC95, a single half-wavelength
dipole antenna and a 4 × 4 dipole antenna array were used
in this intercomparison study. The half-wavelength dipole
was modeled as a perfect electric conductor. Dipoles were
designed at 10, 30, and 90GHz by each research organization.
For most research organizations, the antenna was resonated
with an adjusted length to obtain the maximum radiation
power emitted from the antenna to the extent possible.

Table 2 summarizes the dipole lengths used by each orga-
nization. For the 4× 4 dipole antenna arrays, almost the same
length (Table 2) was used by the corresponding organization

FIGURE 1. Antenna and skin models for dosimetry analysis.

TABLE 2. Lengths of dipole antenna elements for each organization.

of the dipole element in the array. The separation distance
between the feeding points of any two adjacent dipole ele-
ments is λ/2, where λ is the free-space wavelength. For both
dipole and dipole arrays, the total antenna input power was
normalized to 10 mW representing a typical power level of
mobile devices in the considered frequency range, as in the
previous WG [40], [41].

On the other hand, a one-layer skin model and strati-
fied models composed of skin, fat, and muscle layers were
employed in this study for dosimetry analysis (Fig. 1). The
dimensions of the skin models were L × L × T (mm3;
Table 3). The dielectric properties of the tissues obtained
by a four-Cole–Cole dispersion model [49], [50], [51] were
employed. The electrical parameters for each tissue layer in
the skin model are summarized in Table 4.

Table 5 summarizes the numerical techniques used to eval-
uate the IPD in free space and the APD inside the simplified
human tissue models. The spatial resolutions used in each
organization were also summarized. The finite-difference
time-domain (FDTD) [51] method was adopted by six orga-
nizations that used their own developed in-house codes. In
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TABLE 3. Dimension and thicknesses of skin models at each frequency.

TABLE 4. Dielectric properties for skin models.

TABLE 5. Numerical method and spatial resolution (1) for numerical
simulation by each organization.

addition to the FDTDmethods, the Galerkin-Bubnov indirect
boundary elementmethod (GB-IBEM) [53], finite integration
technique (FIT) [54], finite element method (FEM) [55],
and transmission line method (TLM) [56] have been used
separately by other research organizations. It should be noted
that the FIT, FEM, and TLM methods used by O4, O8, and
O10, respectively, are the three different EM-solvers from
commercial simulation software. The other group (O11) that

used the FEM method was performed using different types
of commercial software. Therefore, this study first covered
almost all the commonly used methods of EM simulation
for dosimetry analysis without the duplication of commercial
software and code. This enables the provision of very neutral
and representative intercomparison results to determine the
deviation of the calculated APD caused by different numeri-
cal methods.

First, the IPDs in free space were calculated without the
presence of the body to clarify the influence of the dif-
ferent algorithms on the EM calculations of the antenna
near-field. Similar to the previous WG, two definitions
of the spatial-average incident power density (sIPD), i.e.,
the normal (sIPDn) and norm (sIPDtot) component of the
time-averaged power density for the EMF, were examined in
the absence of the human body (Eqs. (6) and (7) in [41]).
The spatial-average APD (sAPD) in the tissue was calcu-
lated for the modeling scenario using the simplified human
blockmodel. As recommended in the ICNIRP-2020 exposure
guidelines [6], two general equations for deriving the sAPD
were employed by each organization, which are expressed by
the following formulae:

sAPD (r) =
1
A

∫∫
A

∫ zmax

0
σ (r) |E (r)|2 dzds, (1)

sAPD =
1
A

∫∫
A
Re

(
E (r) ×H∗ (r)

)
· ds, (2)

where E and H indicates the effective values of the com-
plex electric and magnetic fields inside the body surface,
respectively; ∗ denotes the complex conjugate; zmax is the
depth where the EMF is negligibly small in respect to that
at the skin surface; r denotes the position vector; and ds is
the integral variable vector whose direction is normal to the
integral area A on the body surface (x-y plane at z = 0).
Because only the planar skin model was considered in this
paper, the averaging areas in Eqs. (1) and (2) were averaged
over a cubic volume and square area of the flat body surface,
respectively, corresponding to the average area of the sIPDs.

III. INTERCOMPARISON RESULTS
The intercomparison results in terms of the peak spatial-
average IPD and APD (psIPD and psAPD) using different
antennas are presented in this section. The psIPDn, psIPDtot,
and psAPD were averaged over an area of A = 4 cm2 and
A = 1 cm2 at 10–90 GHz.

A. COMPARISON OF PEAK SPATIAL-AVERAGE INCIDENT
POWER DENSITY
Figures 2 and 3 show the results of psIPD as a function
of the antenna-to-skin separation distance d exposed to the
single half-wavelength dipole or 4 × 4 dipole array antenna
for the exposure scenarios in Table 1, respectively. The solid
lines indicate the psIPDn, whereas the dashed lines denote the
psIPDtot when A = 1 cm2. The dash-dotted and dotted lines
represent the corresponding results for A = 4 cm2.
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FIGURE 2. Spatially averaged incident power densities as a function of
the antenna-to-skin separation distance for half-wavelength dipoles at
frequencies of (a) 10, (b) 30, and (c) 90 GHz.

In the case of the dipole antenna (Fig. 2), both psIPDn
and psIPDtot decrease monotonically with an increase in
the separation distance d . psIPDtot is greater than psIPDn
in the 5–10 mm range at 10–30 GHz and the 2–5 mm
range at 90 GHz. At d > 10 mm, all the results do not
show any significant differences between the two defini-
tions of the sIPD. The maximum absolute differences of
the psIPD among all the research groups are within 0.62,
0.45, and 0.43 dB respectively, at 10, 30, and 90 GHz when
d > 5 mm.

FIGURE 3. Spatially averaged incident power densities as a function of
the antenna-to-skin separation distance for 4 × 4 dipole array at
frequencies of (a) 10, (b) 30, and (c) 90 GHz.

For the 4 × 4 dipole array (Fig. 3), the profiles of both
psIPDn and psIPDtot exhibit different trends compared to
those of the dipole antennas owing to the dispersion of mul-
tiple near-field peaks generated by the wave source of the
antenna array. Moreover, the difference between the psIPDn
and psIPDtot was reduced.

The maximum absolute differences of psIPD among all
the organizations for the 4 × 4 dipole array are within 5.09,
0.77, and 0.6 dB respectively, at 10, 30, and 90 GHz when
d is greater than 5 mm. The above results indicate that,
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TABLE 6. Mean value and standard deviation of spatially averaged
incident power densities for dipole antennas.

at a separation distance d > 5 mm, there is no obvious
discrepancy between the different EM-simulation and spatial
average methods for the calculation of psIPDn and psIPDtot
for either the dipole or dipole antenna arrays.

Tables 6 and 7 summarize the mean value and standard
deviation of computed psIPDn and psIPDtot for the dipole
and dipole array, respectively. The separation distances from
the antenna for the cases of d = 5, 10, and 15 mm for
10–30 GHz and d = 2, 5, and 10 mm for 90 GHz were
compared. The relative standard deviation (RSD), which is
defined as the ratio of the standard deviation to the mean
value, was analyzed as a metric for the intercomparison of
different research groups.

For the dipole source, as presented in Table 6, the maxi-
mum RSD values of psIPD were 4.05% (d = 5 mm), 2.58%
(d = 15 mm), and 4.84% (d = 2 mm), respectively, at a
frequency of 10–90 GHz. Conversely, for the case of the 4 ×

4 dipole array, as presented in Table 7, the maximum RSD
was approximately 23.55% (d = 5 mm), 5.0% (d = 5 mm),
and 5.26% (d = 2 mm) at a frequency of 10–90 GHz. The
above results agree well with the outcomes of previous WG
activities (see Tables 6 and 7 in [41]). This shows that the
impact on the calculation of the antenna near-field distribu-
tion in free space caused by the different numerical methods
used by each organization is very small, demonstrating the
effectiveness of EM-simulation methods for the antennas
themselves.

B. COMPARISON OF PEAK SPATIAL-AVERAGE
EPITHELIAL/ABSORBED POWER DENSITY
Figures 4 and 5 show the intercomparison results of the
psAPD as a function of the antenna-to-skin separation dis-

TABLE 7. Mean values and standard deviations of spatially averaged
incident power densities for dipole antenna arrays.

tance d exposed to the dipole when the averaging area A is
1 and 4 cm2, respectively. In Figs. 4 and 5, the solid lines with
circular markers indicate the results obtained using the one-
layer model, whereas the dashed lines with square markers
denote those obtained using the three-layer model.

As shown in Figs. 4 and 5, for both the one- and three-
layer skin models exposed to a dipole antenna, the profiles
of psAPD decrease gradually as d increases. At 10 GHz,
relatively large deviations are observed in the different orga-
nizations. The maximum absolute differences of psAPD are
3.24 and 3.0 dB at d = 5 mm, respectively, for the one- and
three-layer models when A = 1 cm2. When A increases to
4 cm2, the corresponding differences are reduced to 3.62 and
2.89 dB, respectively.

However, at frequencies ranging from 30–90 GHz, the
deviations caused by the EM simulation methods are very
small for both the one- and three-layer models. As shown
in Figs. 4 (b) and (c) and Figs. 5 (b) and (c), the maximum
absolute differences of psAPD are within 1.07 and 2.46 dB,
respectively, at 30 and 90 GHz when A = 1 cm2. This
difference is further reduced to 1.21 and 2.49 dB, respectively,
for A = 4 cm2.
Figures 6 and 7 show the intercomparison results of the

psAPD as a function of the antenna-to-skin separation dis-
tance d exposed to the radiation sources of the 4 × 4 dipole
array when the average area A is 1 and 4 cm2, respectively.
Unlike the dipoles illustrated in Figs. 4 and 5, the deviation
of psAPDs at 10 GHz is nonexistent at d = 5 mm, but at
d = 15 mm. The maximum absolute differences of psAPD
at 10 GHz are 9.84 and 10.15 dB at d = 15 mm when A is
1 and 4 cm2, respectively.
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FIGURE 4. Spatially averaged epithelial/absorbed power density as a
function of the antenna-to-skin separation distance for a dipole when
A = 1 cm2 at frequencies of (a) 10, (b) 30, and (c) 90 GHz.

Particularly at 30 GHz, there are also significant variations
in the numerical results from the different research groups.
The maximum absolute differences of the psAPD at 30 GHz
increase to 5.49 and 4.27 dB at d = 5 mm when A is
1 and 4 cm2, respectively. At 90 GHz, the largest deviation
of psAPD changes at d = 5 mm to 2.75 and 2.74 dB,
respectively, when A is 1 and 4 cm2. Furthermore, similar to
the results of the dipoles in Figs. 4 and 5, the difference in the
psAPD values obtained using the one- and three-layer skin
models is still small for the dipole arrays.

FIGURE 5. Spatially averaged epithelial/absorbed power density as a
function of the antenna-to-skin separation distance for a dipole when
A = 4 cm2 at frequencies of (a) 10, (b) 30, and (c) 90 GHz.

Tables 8 and 9 list the statistical mean values and stan-
dard deviations of psAPD for cases of the dipole and dipole
array, respectively. For the dipole source (Table 8), the maxi-
mum RSD of the one-layer models were 20.0%, 8.03%, and
13.33%, which occurred at frequencies of 10 GHz when d =

5 mm, 30 GHz when d = 10 mm, and 90 GHz when d =

10 mm.
When using the three-layer skin models, the corresponding

maximum RSD were 17.39%, 5.77%, and 7.02%, which
occurred at 10 GHz when d = 5 mm, 30 GHz when d =

5 mm, and 90 GHz when d = 2 mm.
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FIGURE 6. Spatially averaged epithelial/absorbed power density as a
function of the antenna-to-skin separation distance for 4 × 4 dipole
arrays when A = 1 cm2 at frequencies of (a) 10, (b) 30, and (c) 90 GHz.

For the dipole array, as presented in Table 9, the maxi-
mum RSD of the one-layer models were 33.13%, 32.49%,
and 12.07% at 10 GHz when d = 15 mm, 30 GHz when
d = 5 mm, and 90 GHz when d = 10 mm, respectively.
When using the three-layer skin models, the corresponding
maximum RSDs were within 42.55%, 29.55%, and 16.7%,
respectively, at 10 GHz when d = 15 mm, 30 GHz when d =

5 mm, and 90 GHz when d = 5 mm.
The above results indicate no evident difference exists

between the psAPD values in the different organizations
when using dipole antennas at 30 GHz and 90 GHz; however,

FIGURE 7. Spatially averaged epithelial/absorbed power density as a
function of the antenna-to-skin separation distance for 4 × 4 dipole
arrays when A = 4 cm2 at frequencies of (a) 10, (b) 30, and (c) 90 GHz.

some deviations occur at 10 GHz when d = 5 mm. The
difference in the psAPD from 11 organizations when using
the 4 × 4 dipole array was relatively greater than that of
the dipole at 30 and 90 GHz. Additionally, a significant
difference is observed at 10 GHz when d = 15 mm.

These facts indicate that a difference in the numerical anal-
ysis of the spatial-average APD among various organizations
may exist depending on the different antenna types at spe-
cific frequency ranges as well as antenna-to-skin separation
distances, whereas the difference caused by the skin mod-
els is relatively marginal. Particularly, when using a dipole
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TABLE 8. Mean values and standard deviations of spatially averaged
epithelial/absorbed power densities for dipole antennas.

TABLE 9. Mean values and standard deviations of spatially averaged
epithelial/absorbed power densities for dipole antenna arrays.

array at 30 GHz, relatively large deviations were observed,
regardless of the skin models. To determine the skewness
and tail weights of the data batches, statistical analysis of

FIGURE 8. Statistical analysis of sIPD as a function of frequency from
10 to 90 GHz considering all the potential effects caused by the
EM-method, antenna-to-skin separation distance, definition of power
density, and averaging area: (a) single dipole and (b) 4 × 4 dipole arrays.

the significant differences in the calculated sPDs is conducted
hereafter.

C. STATISTICAL ANALYSIS OF THE SIGNIFICANT
DIFFERENCE
The variations in the psAPD values between the different
groups in the previous sections suggest that they may be
affected by the antennas types. In this section, the variability
in psAPD caused by antenna models is evaluated.

Figures 8 and 9 show the box plots of the calculated
psIPD and psAPD, respectively, as a function of the frequency
from 10 to 90 GHz. The results are shown in Figs. 8 (a-b)
and 9(a-b), respectively, when using a half-wavelength dipole
and 4 × 4 dipole array. In Figs. 8 and 9, the height of
the rectangular box indicates the interquartile range (IQR),
which is the range between the 75th and 25th percentiles. The
horizontal line in the middle of the box denotes the statistical
median value of psPD from different groups. The error bars
show the range of maximum to minimum values, where the
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FIGURE 9. Statistical analysis of sAPD as a function of frequency from
10 to 90 GHz considering all the potential effects caused by the
EM-method, antenna-to-skin separation distance, definition of power
density, and averaging area: (a) single dipole and (b) 4 × 4 dipole arrays.

plus sign indicates the outliers. Notably, for each box with
error bars, three sets of antenna-to-skin separation distances
(5, 10, and 15 mm or 2, 5, and 10 mm) and two types of skin
models (one- and three-layer; or two definitions for sIPD,
namely, sIPDn and sIPDtot) were included. Therefore, the
11 research groups provided a maximum of 66 sets of data in
each frequency band and averaging area, which was sufficient
for statistical analysis.

In Fig. 8 (a), for the sIPD values obtained using a dipole
antenna, only one outlier was observed at 90 GHz when A =

4 cm2. When using a dipole array, as can be seen in Fig. 8 (b),
four outliers appear at 10 GHz. However, the IQRs of the
sIPD values for the dipole array cases are much smaller than
those of the dipole antennas. For the psAPD values obtained
using the dipole antennas, as illustrated in Fig. 9 (a), two
outliers occurred at 10 GHz when A = 4 cm2. When the
dipole array was used, there were no outliers. Conversely,
the IQRs of the psAPD values for the dipole arrays at 30
and 90 GHz are comparable or even larger than those of the
dipole antennas, particularly when A = 1 cm2. However, the

FIGURE 10. sIPDtot as a function of the antenna-to-skin separation
distance with different antenna types of the single dipole, 2 × 2, and 4 ×

4 dipole arrays at 30 GHz averaged over (a) 1 cm2 and (b) 4 cm2.

deviation caused by the numerical calculation error is not
evident for both the psIPD and psAPD values.

D. VARIABILITY OF APD FOR THE DIPOLE ARRAY
AT 30 GHz
As shown in Figs. 6 (b) and 7 (b), relatively large variations
in the psAPD values occurred when using the 4 × 4 dipole
array antennas at 30 GHz. In this section, the variability in
the psAPD caused by the number of dipole antenna elements
is evaluated.

Figures 10 and 11 show the calculated psIPD and psAPD
values, respectively, as a function of the antenna-to-skin
separation distance d at 30 GHz, which were provided by
O1. For simplicity, only the results for sIPDtot are shown in
Fig. 10. Figs. 10 (a-b) and 11 (a-b) denote the average areas
of 1 and 4 cm2, respectively. To evaluate the impact of the
number of antenna arrays, three different antenna types—
half-wavelength single dipole, 2 × 2, and 4 × 4 dipole
arrays—were compared.

As shown in Fig. 10 (a), all the results of psIPD smoothly
change with an increase in the antenna-to-skin separation d .
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FIGURE 11. sAPD as a function of antenna-to-skin separation distance
with different antenna types of single dipole, 2 × 2, and 4 × 4 dipole
arrays at 30 GHz averaged over (a) 1 cm2 and (b) 4 cm2.

For the single dipole and 2 × 2 dipole arrays, the trends are
close to monotonically decreasing as d increases. For the case
of the 4 × 4 dipole array, the curve first exhibits an upward
trend and then slowly declines as d increases. This may be
due to the increased number of antenna arrays or dimensions,
which changes the boundary conditions of the near field.
However, when A = 4 cm2, the above changes become less
observable, as illustrated in Fig. 10 (b).

However, in Fig. 11 (a), the curves of psAPD when using
the dipole arrays show evident periodic fluctuations as d
increases. Particularly, at integer multiples of half wave-
length, that is, 10 mm at 30 GHz, some bursts can be
observed. This phenomenon did not change as the average
area increased from 1 to 4 cm2, as shown in Fig. 11 (b).
From the above results, it is deduced that, unlike the results

of psAPD when using a single dipole, an increase in the
number of dipole arrays may significantly change the mutual
interaction between the antennas and skin models. This even-
tually results in a calculation error of psAPD at 5, 10, or
15 mm at 30 GHz, which corresponds well with the relatively
large deviation shown in Figs. 6 (b) and 7 (b).

TABLE 10. Maximum absolute difference in spatially averaged
epithelial/absorbed power densities due to different definitions using
dipoles and dipole arrays investigated using FDTD method.

TABLE 11. Maximum absolute difference in spatially averaged
epithelial/absorbed power densities due to different definitions using
dipoles and dipole arrays investigated using FEM method.

E. VARIABILITY OF APD DEFINITION
In this intercomparison study, the formula for deriving the
sAPD was not unified among all research groups. Therefore,
it is necessary to discuss the difference in the calculated
sAPD caused by the two definitions in (1) and (2), that is,
the volumetric integral for the entire skin model and surface
integral of the normal component of the Poynting vector per-
pendicular to the skin model, respectively, as recommended
by the ICNIRP exposure guidelines [6].

Tables 10 and 11 list the results of the maximum absolute
difference in psAPD (1psAPD) due to different definitions
using dipole and dipole array antennas evaluated by O6 and
O8, which employed the numerical methods of the FDTD and
FEM, respectively. The same separation-distance conditions
and skin models were used.

7430 VOLUME 11, 2023



K. Li et al.: Calculated Epithelial/Absorbed Power Density for Exposure From Antennas at 10–90 GHz

In Table 10, for the FDTDmethod, the maximum1psAPD
caused by the use of different equations are within 0.2 dB for
the dipole and dipole array at frequencies within 10−90 GHz
when one-layer skin models are employed. When using the
three-layer models, the corresponding difference did not
exceed 0.51 dB. When using the FEM method, as shown in
Table 11, the maximum 1psAPD slightly increases to within
0.49 and 0.51 dB, respectively, for cases of the dipole and
dipole array at 10−90 GHz when the one-layer skin models
are used. The corresponding difference is up to 0.69 and
1.3 dB, respectively, when using the three-layer skin models.

IV. DISCUSSION AND CONCLUSION
Compared with the intercomparison study of previous
WG [40], [41], this study unified simulation conditions to
the extent possible, such as the antenna type for the radiation
source, planar skin model, and dielectric constants of body
tissues, to minimize the number of variables that may affect
the fairness of the intercomparison results. Moreover, the
number of research groups as well as the EM-simulation
algorithm have increased from the last 6 to 11.We believe that
the established exposure scenarios considered in this study
are more accurate and rigorous for clarifying the validity of
the APD averaging method, which will be very informative
for the next intercomparison of dosimetry analysis usingmore
realistic body models.

In the first step of the intercomparison of the peak value of
spatially averaged incident power densities, that is, psIPDn
and psIPDtot, all the results provided by the eleven groups
showed good agreement with each other. For the cases using
dipole antennas, the maximum RSDs among the different
organizations were 4.04%, 2.58%, and 4.84% at frequencies
of 10, 30, and 90 GHz, respectively. For the dipole array, the
maximum RSDs did not exceed 23.55%, 5.0%, and 5.26%
at frequencies of 10, 30, and 90 GHz, respectively. Relatively
large deviations of up to 23.55%were observed for the dipole
arrays at 10 GHz when d = 5 mm. For a large dimension
of an array with 16 dipole elements, this distance can be
regarded as an extreme near-field at 10 GHz. In this case,
it is understandable that the difference in the electromagnetic
field distribution obtained by different simulation methods
increases owing to different approaches for solving Maxwell
equations with different boundary conditions and resolutions.
Additionally, the maximum RSDs of all the results did not
exceed 5.26%. The above results are in agreement with the
outcomes from a previous study (Tables 6 and 7 in [41]),
demonstrating the effectiveness of all the employed methods
for the EM simulation of the antenna near-field distribution.

As the second step of intercomparison for the peak value
of spatially averaged epithelial/absorbed power densities, that
is, psAPD, an excellent agreement for the considered expo-
sure scenarios using a dipole antenna can still be observed.
At frequencies of 10, 30, and 90 GHz, the maximum RSDs
among different organizations were 18.83%, 8.03%, and
13.33%, respectively, for both the one- and three-layer skin
models. When using dipole arrays as the radiation source,

relatively obvious deviations in the calculated psAPD are
shown in several scenarios (e.g., 10 GHz at d = 15 mm,
30 GHz when d is from 5 to 15 mm, and 90 GHz at d =

10 mm). Despite this, the maximum RSDs for the cases using
the dipole arrays did not exceed 42.55%, 29.55%, and 16.7%,
respectively, at frequencies of 10, 30, and 90 GHz, regard-
less of the skin model. Based on the statistical significance
analysis, the number of outliers is very small compared to
the overall sample of the calculated data, including all the
parameters of the antenna types, skin models, and separation
distance. Furthermore, it is confirmed that the maximum
difference caused by the equations of deriving the sAPD
recommended by the ICNIRP exposure guidelines, i.e., the
volumetric integral for the entire skin model and surface
integral of the normal component of the Poynting vector
perpendicular to the skin model, is generally approximately
0.5 to 1 dB or even less. The difference depends on the
calculation condition, e.g., field segmentation; here, we found
that the difference can be suppressed to approximately 0.2 dB
or lower in almost all exposure scenarios.

This study represents the first intercomparison of the cal-
culated sAPD in a simplified body model for exposure from
different antennas ranging from 10 GHz to 90 GHz. The
main causes of variance in the numerical calculations in
the dosimetry analysis of psAPD were evaluated using an
objective comparison of the analysis results from different
research groups. The fair agreement among the intercompari-
son results demonstrated that deviations caused by the numer-
ical method, definition, and spatial average of the calculated
psAPD using planar skin models are marginal. However, with
the increasing number of antenna arrays, the dependence on
the antenna types that are used as the radiation sources for the
dosimetry analysis of sAPD may be slightly increased.
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