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ABSTRACT This work presents a full metal circularly-polarized lens-like antenna for Satcom applications
at Ka-band. The antenna is composed of two continuous parallel plate waveguide (PPW) quasi-optical
beamformers (QOBF), feeding an array of septum polarizers to generate circular polarization. The QOBFs
operate over a wide band and provide a multi-beam coverage over a large field of view in the azimuthal
plane, while maintaining a relatively simple mechanical design. The array of septum polarizers is based on
a stepped profile to generate circular polarization with a good polarization purity in the uplink of Ka-band
(27 - 31 GHz). The antenna is fully realized in aluminium. The antenna system provides 14 beams with
alternating right/left handed circular polarization (RHCP/LHCP) with an axial ratio (AR) below 3 Db over
an angular range of +19° in the uplink of Ka-Band. The maximum gain in the azimuthal plane at 30 GHz
is about 21 dB over the whole angular range, with a scan loss lower than 1.5 dB. The antenna efficiency is
better than 78% for all beams in the operative band.

INDEX TERMS Beamformers, circular polarization, parallel plate waveguides, satcom applications, septum
polarizer.

I. INTRODUCTION

The increasing demand for high performance and low-cost
multiple-beam antennas in the millimeter-wave range for
satellite communications has driven the development of novel
solutions. Multiple-beam antennas have been often realized
using beamforming networks (BFN) based on Blass [1], [2],
Nolen [3], [4], or Butler [5], [6], matrices which combine
several elementary components (e.g., couplers and phase
shifters) to provide aperture sharing and beam switching
capabilities. However, such BFNs are complex and often
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narrow band as they generally rely on a phase shifting
approach rather than a true-time delay approach [33]. For
broadband applications it is usually preferred to use QOBFs
such as pillbox reflectors [13], Luneburg lenses [7], [8],
[37] and constrained lenses, also referred to as bootlace
lenses [12], Ruze [9], Rotman [10]. These lenses exhibit
multiple true focal points (except for the pillbox system),
thus resulting in low phase aberrations over a wide scanning
range. However, the constrained lens design is based on
discrete transmission lines connecting the outer lens contour
and the radiating aperture. The discretization of the aperture
entails some limitations highly dependent on the transmission
line technology used. The original design by Rotman and
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Turner [11] is very wideband thanks to the use of coaxial
transmission lines which allows a very fine discretization of
the aperture, but with the drawback of integration complexity.

The QOBF exhibits wideband characteristic, thanks to the
continuous PPW lens beamformer, with less complexity and
usually with more compactness with respect to common Rot-
man lens designs.

In literature there are alternative planar designs in printed
technology using either microstrip or substrate integrated
waveguide (SIW) [19], [20]. These structures are simpler to
manufacture and low profile, but they have in general a more
coarse discretization (typically around half-a-wavelength at
the operating frequency) leading to a limitation of the upper
frequency of operation due to the appearance of grating
lobes in the scanning range. These solutions also tend to
have higher losses due to the use of dielectric materials
and higher mismatch losses between the PPW section and
the transmission lines for large scanning angles. Folded
and modulated geodesic lenses are discussed in [32], [34],
and [35]. These antennas present wide frequency band and
large scanning range, but they generate beams with a sin-
gle linear polarization. A continuous PPW lens beamformer
providing wide scanning performance, wide bandwidth and
relatively easy mechanical design was introduced in [15].
A design procedure using a bifocal constrained lens equiv-
alence was proposed and experimentally validated in [14],
[16], and [17]. The beamformer in [17] converts the cylin-
drical waves launched by a feeding horn inside the PPW to
nearly plane waves by means of a ridge introduced within the
PPW structure and operating as a delay lens. The proposed
lens is defined by its inner contour (X1) and ridge height
profile (h,,). Both are optimized to minimize phase aberra-
tions for extreme offset feeds defined at angular positions
+o and generating beams pointing in diametrically opposite
directions. The other feeds are defined along an optimized
focal curve, as for a Rotman lens design [10].

This system exhibits very good performance in terms of
bandwidth and scanning capability. However this antenna
radiates a linearly-polarized field while circular polarization
(CP) is generally preferred for broadband SatCom applica-
tions. To overcome this limitation the QOBF has been used
together with a wideband curved polarizing reflector [21].
Reflectors can offer very attractive performance in terms
of axial ratio purity; however they present a drawback in
terms of compactness. A more compact solution consists
in using a stepped septum polarizer in a square waveguide.
Such a component consists of a three port device formed
by a square waveguide with a septum located in the middle
creating two rectangular waveguides at the other end of the
device. By exciting one of the two rectangular waveguides
with its fundamental Transverse Electric mode (TEjg), the
energy is partially transferred by the septum to the orthogonal
TEy; mode of the square waveguide. A right-handed (RHCP)
or left-handed (LHCP) circularly-polarized field is gener-
ated at the output of the polarizer depending on the feeding
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rectangular waveguide. The waveguide polarizing septum
(WPS) has been extensively used and was first introduced
with a sharp profile in [23]. The shape of the septum was
successively improved; a notch septum was presented in [24],
which allows a very compact design at the expense of a
reduced bandwidth with respect to [25] and [26]. However,
those solutions require an additional dielectric slab for phase
adjustment, which may be undesirable for space applications.
A stepped septum polarizer without any additional phase
adjustment was proposed in [27]. In [28] the thickness of
the septum was taken in account, showing its impact on
the bandwidth and axial ratio and in [29] a computer-aided
optimization technique was described. In more recent works,
stepped septum polarizers are used as stand-alone devices
to provide circularly polarized sources for various applica-
tions and frequency bandwidth. In [43], a septum polarizer is
used to feed a quad-ridged horn antenna covering a band of
40% in X-band. In [46] a compact stepped-thickness septum
polarizer with a square-to-circular transition, operating in the
X-band 7.25 — 8.60 GHz, is designed with 3 steps. In [41]
a wide band, up to 46% septum polarizer is achieved by
using a triangular common port instead of a square one,
while in [42] the authors provide a design technique to reduce
the impact of misalignment errors for the split-block manu-
facturing technique. In [47], [48], and [49] stepped septum
polarizers has been designed for sub-millimeter wave appli-
cations (above 100 GHz) showing good performance. Those
works all presents stepped septums polarizers as a stand-alone
device. The first attempt to introduce a septum polarizer in
a quasi-optical system is presented in [36], where a septum
polarizer is directly realized in a parallel plate waveguide.
Although it may be a simpler solution, this antenna has a dis-
persive response because of the use of PPW quasi Transverse
Electromagnetic (q-TEM) and TE(; modes to obtain circular
polarization, which have a different wave’s impedance and a
different phase velocity. In this paper we propose the design
of a full-metal array of septum polarizers [50], realized in
electrical discharge machining (EDM) technique, which has
been optimized and integrated with a pair of PPW QOBEF to
obtain a multi-beam antenna capable of generating circularly
polarized beams in the the Ka-band uplink for Satcom appli-
cations. To the best of our knowledge this is the first design
of a circularly polarized quasi-optical multi-beam antenna in
a fully integrated system, validated by a measured prototype.
This paper is organized as follows. The antenna architec-
ture and the design guidelines for each part of the antenna are
presented in Sec. II. Manufacturing and measured results are
discussed in Sec. III. Conclusions are drawn in Sec. IV.

Il. PROPOSED ANTENNA SYSTEM

The proposed antenna system is designed to provide 14 circu-
larly polarized beams covering a +19° scanning range with a
step of about 3° and alternating RHCP and LHCP between
adjacent beams for higher isolation, as depicted in Fig. 1.
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FIGURE 1. Proposed antenna system: (a) 14 beams alternating RCHP and
LHCP are generated in xy-plane or azimuthal plane, (b) The upper QOBF
generates 7 RCHP beams while the lower 7 LHCP beams, (c) Cross
sectional detail of the shaped ridge and cavity profile.

An array of septum polarizers is therefore used together with
two identical QOBFs mirrored with respect to the beam-
forming plane. The septum array polarizer is connected to
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the QOBFs through a transition able to convert the q-TEM
mode, supported by the PPW, into the fundamental TE(
supported by the input rectangular waveguides of the septum
polarizers. Each QOBF can generate seven linearly polarized
beams, according to the selected feeding horn. The feeding
horns, positioned along the focal curve of the PPW lens, are
angularly spaced of about 2 = 6° and shifted of Y = 3°
with respect to the other QOBF’s feeds as depicted in Fig. 1b.
This particular arrangement, similar to the one also described
in [18], allows to have alternate RHCP/LHCP between two
adjacent beams, inasmuch they are generated by different
PPWs, and it allows also an adequate beam cross-over level
(sightly over 3 dB below the peak directivity) while preserv-
ing enough space between two consecutive horns. The horns
were designed to provide an adequate edge tapering (about
—10 dB considering broadside beam) over the lens contour
(Sec. II-A). The edge tapering is fundamental to minimize
the effect of the side walls, which may increase the phase
aberration and SLL.

A. PPW CONTINUOUS LENS-LIKE BEAMFORMER

The QOBFs have a design similar to the one described in [18],
and optimized to achieve a maximum scanning angle on the
azimuthal plane of ¢y = £31.5°. In particular a polynomial
shaped delay lens profile (inner lens contour ¥; and ridge
height profile A, as shown in Fig. 1c) is defined as follow:

n

ORI ®

k=1
hw () = D qry’ —min (Z Qkyk) ()
k=1 k=1

where x, y, z are normalized to the focal distance f, py and g
are the k™ order coefficients with 1 < k < n, nthe maximum
degree of the polynomial function.

Using the Geometrical Optics (GO) continuous lens model
pattern optimization detailed in [18] two identical QOBFs
have been designed. The optimized polynomial profile coef-
ficients are shown in table 1, while the maximum height of
the ridge £,,(zmax) = 21 mm.

The thickness of the ridge is |¥2 — ¥{| = 2 mm, where
3, is the outer contour of the ridge and it is obtained by a
translation of the inner contour X along the x-axis (Fig. 1c).
The choice of the thickness is the minimum achievable by
milling machining without potentially bending the blade. The
PPW’s height is hppw = 2 mm, which guarantee the propa-
gation of the fundamental q-TEM of the PPW structure over
the whole operative band. The lens diameter is D = 201 at
the operative frequency fo = 30 GHz, and the focal distance
is F = 0.7D.

Each QOBEF is fed by one of the 7 horns disposed along
a circular focal curve centered in O and traced between the
two focal points F; and F, as shown in Fig. 2b, so that one
QOBEF covers the angular range between —16.5° and 19.5°
and the other from —19.5° and 16.5°. Both focal points are

VOLUME 11, 2023



N. Bartolomei et al.: Circularly Polarized PPW Lens-Like Multiple-Beam Linear Array Antenna for Satcom Applications

IEEE Access
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PPW lens

Parallel plate waveguide

Focal curve
Feeding horn

b

FIGURE 2. Parallel plate lens-like structure: (a) 2D sketch of the QOBF,
(b) 3D view of one of the two identical continuous PPW lens-like
beamformers.

TABLE 1. Optimized polynomial profile coefficients with the GO tool
in [18] and a polynomial maximum order set to n = 10.

P1 b2 b3 yZ b5 Dbe
-0.2167 -0.7468 -0.165 -0.0901 -0.2462 0.0131
q1 q2 g3 g4 a5 g6
-0.5267 -0.0476 0.0381 0.0613 -0.2364 0.121

symmetrical with respect to the x-axis, and they are defined
by their angular positions o = £31.5°. The horns launch a
cylindrical wave inside the PPW which is converted in a
nearly plane wave feeding in turn one of the two ports of
the septum polarizers linear array. They have an aperture size
Afeeq = 14 mm, about 1.5X¢ at fy, and height of ppyw = 2 mm.
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FIGURE 3. Normalized field amplitude at f; launched inside the PPW,
calculated along a line I, posed at the output of the QOBF.
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/D

FIGURE 4. Phase distribution calculated along a line J, posed at the
output of the QOBF.

Such aperture size is chosen to achieve an edge taper of
about —10 dB considering a focal-to-length ratio F/D = 0.7.
Fig.3 shows the normalized field amplitude launched inside
the PPW by an horn at the center G of the focal curve C
as sketched in Fig. 2. The cylindrical-to-planar wave front
conversion achieved by the QOBF is shown in Fig. 4: the
phase distribution along a line [, = 0.7D long (corresponding
to —10 dB field tapering) at the output of the QOBF is
depicted for a feeding horn at the center G of the focal curve
C and when feed #5 (Fig. 2) is active. The maximum phase
distortion with respect to an ideal TEM-mode phase front is
about +25°, corrisponding to a phase rotation of less than
0.07 wavelengths at the center frequency fo = 30.0 GHz.
The horns are fed by standard WR28 waveguides and thus a
transition to coaxial line is used in measurements.

B. SEPTUM LINEAR ARRAY POLARIZER

The septum array polarizer has been first designed as a stand-
alone device. The circular polarization generation can be
easily explained considering two cases for the excitation of
the two input rectangular waveguides. When the two input
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Square Rectangular
output Septum input
waveguide section waveguide
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y Port 1

‘ T\ Port 2

Y X
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FIGURE 5. Stepped septum polarizer circular polarization generation:
graphical explanation.
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FIGURE 6. Performances of the optimized septum polarizer: (a) Reflection
coefficient and isolation between the input ports, (b) Axial ratio.

ports are excited in phase, the field passes through the septum
section almost unperturbed, as the electric currents circulate
in opposite directions on either side of the septum surface, and
the fundamental TE is launched at the output port. When the
input ports are excited out of phase, the electric current flows
in the same direction on either side of the septum surface,
so that the septum side edge becomes a charge accumulation
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FIGURE 7. Optimized profile of the stepped septum polarizer (the
dimensions, in mm, are listed in Table 2).

point, supporting a field component orthogonal with respect
to the input one, and the fundamental TE;g mode is launched
at the output port. Moreover E, component, propagating
along a stepped septum, has a slower phase velocity with
respect to £, component. The stepped profile introduces a
spatially varying height ridge effect, which lowers the cutoff
frequency controlling the delay. The operation of the septum
polarizer is graphically reppresented in Fig. 5 for clarity.
The profile has been optimized considering a three ports
device: the goal is minimizing the input matching ratio while
maximizing the transmission to the common port forcing the
delay of the E, component with respect to E, to be about
+90° over the operating frequency band. An approximated,
but still accurate enough formula, is provided in [30] The
general approximated formula for axial ratio is given by:

1
ARlgp = [42+ 0.1 @+ 507 O

assuming the complex voltage excitation for the two compo-
nents E; and E), as:

E )

= = Ae? )
Ey
The error coefficients in [30] are defined as follows:

Aclas = 20logio (A) )
¢e|deg =90 — fo]] (6)
ﬁe'deg =90-p @)

Equation (3) takes in account all the possible sources of
errors for two perfectly linear sources generating circular
polarization: amplitude and phase error (A., ¢.), account-
ing for unequal amplitude of the field components and
deviation from nominal quadrature-phase difference respec-
tively, and orthogonality error (B,), accounting for slightly
non-orthogonal modal field distributions at the radiating aper-
ture. The thickness of the septum ¢ is set to 0.5 mm, which
is sightly higher than standard values used at these frequen-
cies [22], but necessary to guarantee the feasibility through
EDM. This particular technique allows to manufacture the
septum linear array polarizer in a monolithics metal block,
avoiding possible electrical contact problems in multiple
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FIGURE 9. Scanning performance along the azimuthal plane (constant
0 = 90° with respect to the coordinate system in Fig. 8) of the optimized
septum polarizer in a periodic environment.

blocks realizations. The sizes of the square waveguide width
and height are set to a = 6.35 mm with a walls’ thickness
of t = 0.5 mm. The input ports height is #; = 2.925 mm,
while the length L of the septum middle plate is an opti-
mization parameter. The size of the square waveguide fixes
the periodicity of the septum array to p = 7.35 mm, which
is about 0.7A¢ at fo = 30 GHz. Even if the QOBEF is capable
of wide scanning, namely 6, = =£31.5°, the periodicity of
the septum array limits the scanning to 6; = £20°, due to
the generation of grating lobes for larger angles. A full-wave
optimization based on a global algorithm is thus performed by
considering two waveguide ports feeding a septum made of
seven steps. Designs of conventional septum polarizers have
been reported with less steps while still covering a similar
fractional bandwidth. However, the specific operation of the
proposed polarizer, transitioning from a PPW to a rectangular
waveguide was found to require more degrees of freedom to
guarantee good performance of axial ratio and input matching
as the incident angle increase from broadside. The goal func-
tion takes in account the scattering parameters of the device
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Septum Array
Polarizer

QOBF2

FIGURE 10. Exploded view of the antenna: four metal blocks are screwed
together and the septum array polarizer is fixed between the two QOBFs.

b

FIGURE 11. Manufactured prototype: (a) View from the array of septum
polarizers, (b) View from the input ports.

and the radiated fields: each septum’s step is sized in order
to maximimize the matching for all the three ports of the
polarizer (the two rectangular waveguide input ports and the
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TABLE 2. Dimensions in mm of the stepped septum polarizer.

Ls T T2 T3 T4 T5 T6 T7 T8
19.67 [6.68 [1.29 [2.83 |099 |[1.00 [1.89 [2.39 |2.05
a Y1 Y2 Y3 Y4 Y5 Y6 y7 Y8
635 [6.35 [3.55 [256 [229 [1.05 [1.57 |0.79 [0.29

[dB]

27 275 28 28.5 29 29.5 30 30.5 31
Freq [GHz]

a

[dB]

Freq [GHz]
b

FIGURE 12. Scattering parameters (S-matrix) of the measured prototype:
(a) Reflection coefficient for each input port, (b) Mutual coupling
between the feeding ports.

square waveguide output port) and maximize the isolation
while minimizing the axial ratio cost function (3), over the
operative uplink Ka-band (27 — 31 GHz). In Fig. 6a the
performances of the designed septum polarized are shown:
the reflection coefficient and the isolation between the input
ports are both below —18 dB (Fig. 6). The axial ratio shows
an excellent circularly polarization purity, below 0.4 dB over
the operative band (Fig. 6b).

Then the single element of the array, fed by two PPWs, has
been simulated and optimized in a periodic environment as
in Fig. 8, to study the scanning performances. The transition
between the PPWs and the rectangular input waveguides of
the septum polarizer is obtained by inserting in each input
waveguide a capacitive iris of height 4;;; = 0.69 mm and
thickness t = 0.5 mm, posed at z;;; = 0.44 mm from
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FIGURE 13. Normalized directivity patterns on the principal planes for the
central beam pointing at ¢ = 1.5° at 29 GHz: (a) Azimuthal plane
(constant ¢ = 90°), (b) Elevation plane (constant ¢ = ¢).

the discontinuity. The circular polarization purity can be
estimated through the computation of the far fields consid-
ering the cross-polar component rejection as defined in [44].
Or equivalently it can be expressed in terms of axial ratio,
defined as the ratio of the lengths of the major and minor
axes of the polarization ellipse of the radiated field defined
as in [45]:

_EPHIEP+ Y

= (®)
|E1> + |Ey|1* — /¥
where the parameter y is given by:
y = E|* + |Ey|* + 2|E.|*|Ey|* cos [2 (LE. — LE})] (9)

The optimized width and length of each step, x,, and y,
respectively, are shown in table 2, the final length of the blade
is 19.12 mm, while the total length of the square waveguide
is Ly = 19.67 mm. A small section of x;, = 0.55 mm
right after the septum is required to improve the matching
with free space. Fig. 9 shows the axial ratio, which is sightly
degraded with respect to the performance of the stand-alone
septum polarizer, due to the strong coupling between the array
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TABLE 3. Comparison of the proposed antenna with previously published works on dual circularly polarized antennas in Ka-band.

Ref. N. Elements Tech. Scan. Range BW [%] Gain [dBi] Avg. Eff. [%]
[39] 1x4 SIW +38° 22.5% 10.4-12.8 50
[40] 16x16 Full Metal Fix. Beam 16 31.4-32.8 60
[38] 8x8 Full Metal Fix. Beam 4.96 27-27.8 75
This work 1x32 Full Metal +19.5° 8.85% 20-22 85
V#*Bandwidth considered in the scanning range.
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realized gain for all the ports over frequency.

elements. However a good purity of circular polarization is
maintained, namely below 2 dB over the operative band for
the whole scan range. It is also worth noticing that the asym-
metry in the performance is due to the asymmetric design of
the septum polarizer.

C. FINAL ANTENNA STRUCTURE

The two mirrored QOBFs are connected to an array of septum
polarizers made of 32 elements, through a PPW bent section.
The connection of all antenna parts is not trivial. In particular
the input ports of the arrays of septum are separated by a
metallic wall of 0.5 mm. Such a thickness cannot be used for
the bottom parts of the QOBFs for mechanical constraints.
Therefore a PPW 90° bend has been added at the end of
QOBFs as sketched in Fig. 10. The bend has been designed
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following the procedure outlined in [31] and optimized to
reduce reflections. A smooth transition of about Ag has been
added to connect the PPW of the lens (hppw = 2 mm)
to the input rectangular waveguide of the septum with an
height 7, = 2.925 mm. The array of septum polarizers is
then connected between the two stacked QOBFs with the
metallic wall of the septums housed in a specific slot in the
lower plates of the QOBFs, as shown in the exploded wiew
in Fig. 10. To guarantee the electrical contact between the
components an RF choke is introduced on the lower plate of
both the QOBFs.

IIl. MANUFACTURING AND EXPERIMENTAL RESULTS
The antenna has been manufactured in a modular way, with
5 different parts: each QOBF has been realized by milling of
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aluminium blocks, while the array of septum polarizers by
EDM at IETR. The various parts are then connected by using
dowel pins and screws as shown in Fig. 11. The overall size
of the assembled antenna is 281.5 mm width, 245 mm length
and 68.35 mm thickness. The antenna has been measured
at IETR. The measured reflection coefficient, reported in
Fig. 12a for each port, shows a good input matching, namely
below —15 dB over the whole design bandwidth. The mea-
sured isolation between the ports, plotted in Fig. 12b, is better
than —17 dB in the same band.

Fig. 13a shows the comparison between the measured
radiation patterns in the azimuthal plane (the H-Plane of the
antenna) at the central frequency (29 GHz) for the beam
pointing at 6y = 1.5°. In Fig. 13b, it is shown the measured
normalized pattern in the elevation plane (the E-plane of
the antenna). A good agreement is observed in both planes.
Fig. 14 reports the measured realized gain in the H-plane for
all the beams at the central frequency and at the extremes
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of the band. In Fig. 14a is shown that the realized gain is
better than 20 dB for all the ports in almost all the operating
band. In particular it can be noticed a good quality of the
beams with a 3 dB beamwidth of 63,3 = 3° and a low
scan-loss level (better than 1.75 dB). The SLL is below
—17 dB for all the beams at 27 GHz and 29 GHz, and the
cross-over level is about 3 dB. At 31 GHz, the appearance
of grating lobes can be observed for the extreme angles, due
to the spacing of the septum array elements. Even if not
reported, the cross-polar component discrimination is better
than 15 dB for all the generated beams up to 29.5 GHz,
beyond 29.5 GHz, for the extreme beams, it degrades as clear
from the axial ratio. In Fig. 15a the comparison between the
measured and simulated AR is provided for each input port.
The predicted AR for the complete structure is below 2 dB for
all the beams in the positive angular range while the specular
beams show sightly worse performance. The AR exceeds
3 dB for the extreme beam at 6 = 19.5° for frequencies
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above 30 GHz, for the beam at 6 = —16.5° for frequen-
cies above 30.5 GHz and above 29.5 GHz for the beam at
0 = —19.5°. This is due to diffraction by the surrounding
structure, which was not accounted for at unit-cell level. Full-
wave analyses with an infinite ground plane indicate a flatter
response over frequency. The purity of the generated circular
polarization is overall good, and the measured performance
are in agreement with the prediction, except for the extreme
beams for frequencies above 29.5 GHz where the measured
AR differs from the simulated one. This may be attributed
to fabrication and assembly tolerances, which have a more
significant impact as diffraction effects get into play. Fig. 15h
and Fig. 15h provides the measured efficiency for positive
and negative scanning angles, respectively, in the azimuthal
plane, when different feeds are excited. It can be observed
that this antenna presents an outstanding efficiency, above
78% over the whole bandwidth in the whole scanning range.
Table 3 provides a performance comparison of this contribu-
tion with recently published dual circularly-polarized anten-
nas working in Ka-band. The table shows that the proposed
antenna is bulkier with respect to planar antennas, such as
the SIW array presented in [39], but it exhibits much better
performance in terms of efficiency. Compared to other full-
metal antennas, as the ones presented in [38] and [40], which
are fixed-beam antennas, this contribution offers multi-beam
capability. Moreover the proposed antenna exhibits a relative
bandwidth of 8.85% in the scanning range, which is already
wider than the one achieved in [38]. A fairer comparison
can be made by considering only the central beams and in
this case the relative bandwidth of the presented antenna is
better than 20%. The presented antenna also achieves a better
efficiency than the other full-metal realizations.

IV. CONCLUSION

A circularly polarized parallel plate waveguide lens-like
multiple-beam antenna has been designed in the uplink of
the Ka-band for SatCom applications. The antenna prototype
has been manufactured completely in aluminium, adopting
standard milling for the QOBFs and EDM for the septum
polarizers. The antenna covers the whole uplink of the Ka-
band (27 — 31 GHz) with a reflection coefficient and isolation
between the ports below —15 dB and —18 dB, respectively.
The antenna generates 14 circularly polarized beams with
SLL below —17 dB, and a beamwidth of about 3° and a
cross-over level between adjacent beams of about 3 dB.
Moreover polarization agility is provided alternating RHCP
and LHCP between adjacent beams with an axial ratio below
3 dB for a scanning range of £19° in the band 27 —29.5 GHz
in measurements. Above 29.5 GHz at the extreme angles,
there is the appearance of grating lobes due to manufacturing
constrains. The waveguide walls thickness of 0.5 mm entails
a metallization of 1 mm between two adjacent waveguides so
that the spacing at 31.0 GHz is about 0.76A¢. These grating
lobes in measurements appear over 6y = £60°, but it dete-
riorates the purity of the circular polarization. By reducing
the spacing between the waveguides, it may be possible to
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improve the performances of this antenna in bandwidth and
axial ratio. The overall size of the assembled antenna results
281.5x245x68.35mm>. Such a size may be improved by
considering multi-lens configurations. Moreover variations
on the septum polarizer design allowing further compactness
without sacrificing performance may be considered. In this
work the choice of 7 steps septum polarizer was found neces-
sary to provide stable response over frequency and incidence
range. The proposed system presents an average efficiency
of about 85%. The presented solution can only allow 1D
coverage. However, 2D coverage may be achieved by stack-
ing several lenses along the vertical direction. The rows of
quasi-optical systems may be then electronically controlled
to further improve the agility in scanning of the resulting
antenna. Such a configuration may also increase the gain
of the radiated beam. The proposed concept represents a
quasi-optical sub-system, and a key building block for its 2D
extensions. To the best knowledge of the authors this is the
first time that such a system is fully validated experimentally,
demonstrating scanning capabilities and polarization conver-
sion and it may be considered as possible antenna solutions
for Satcom applications.
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