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Abstract
This paper deals with a particular case of Bi-Objective Optimization called Bi-Objective
Discrete Optimization (BODO), where the feasible set is discrete, and the two objectives
take only positive values. Since the feasible set of a BODO problem is discrete and usually
finite, it can theoretically be enumerated to identify the Pareto set, which consists of all
Pareto-optimal solutions representing different trade-offs between two objectives. However,
in general, this problem is challenging due to two main issues: time complexity, as the
number of Pareto-optimal solutions can be exponentially large, and lack of decisiveness.
From a practical point of view, the Central Decision Maker (CDM) may be interested in
a reduced Pareto set reflecting the own preference of the CDM, which a computationally
tractable algorithm can obtain.

In this paper, we propose a new criterion for selecting solutions within the Pareto set
of BODO. For this purpose, we focus on solutions achieving proportional fairness between
two objectives, called generalized Nash Fairness solutions (ρ-NF solutions). The positive
parameter ρ provided by the CDM reflects the relative importance of the first objective
compared to the second one.

We first introduce the ρ-NF solution concept for BODO. We then show that the ρ-
NF solution set is a subset of the Pareto set, and this inclusion can be strict. We also
propose a recursive Newton-like algorithm for determining the ρ-NF solution set. Finally,
an illustrative example of BODO is given.

Keywords: Bi-Objective Discrete Optimization, Bi-Criteria Decision Making, Pareto
optimal, Proportional Fairness, Generalized Nash Fairness solution

1. Introduction

Bi-Objective Discrete Optimization (BODO) is a branch of optimization with many
applications in different areas, such as applied mathematics, economics, and computer sci-
ence. In practice, the feasible set of BODO is discrete and its objectives take only positive
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values, including some well-studied examples of BODO in resource allocation, such as the
bi-objective knapsack problem [39], in networks, such as the bi-objective shortest path prob-
lem [40], the bi-objective spanning tree problem [41] and in capital budgeting, such as the
bi-objective assignment problem. The latter problem assembles the objectives of the classic
assignment problem [23] and the balanced assignment problem mentioned in [24].

In multi-objective optimization, the concept of Pareto-optimal (non-dominated) solution
plays an important role as it distinguishes between efficient and non-efficient solution [5].
Based on this concept, three main approaches proposed in the literature can be applied
to handle BODO: the Pareto set approach, the budget approach, and the aggregation ap-
proach. In the first approach, the BODO will be solved by determining the Pareto set,
which contains all Pareto-optimal solutions. If the objective functions are linear and under
some structural conditions, there exist several polynomial time algorithms to approximate
the Pareto set. For example, Papadimitriou et al. constructed a ϵ-approximate Pareto set
for the web access problem [6]. Notice that this theory can be applied to multi-objective op-
timization with more than two objectives. The budget approach reduces the multi-objective
problem into a standard optimization problem. The focus here is on managing and allo-
cating a fixed resource or ’budget’ efficiently. For example, the ϵ-constraints method [11]
is applied in the context of bi-objective combinatorial optimization with integer objectives
[13]. Similarly, Eusebio et al. found representative non-dominated points for bi-objective
integer network flow problems [12]. Moreover, several approximate algorithms have been
proposed in [7], [8]. The aggregation approach usually forms a single-objective optimiza-
tion problem whose optimal solutions are the Pareto-optimal solutions to the bi-objective
optimization problem. The most simple aggregation approach is the weighted sum method
[4]. By scalarizing two objectives into a single objective, it provides a solution that reflects
preferences incorporated in selecting the weights and possibly multiple solutions when vary-
ing the weights consistently. However, its fundamental drawback is not finding a uniform
spread of Pareto-optimal solutions, even if a uniform spread of weight vectors is used. More
seriously, those in non-convex regions are not detected [34], [35].

Besides these three main approaches, BODO can also be solved by determining solutions
that are near-optimal to all objectives. For example, Stein et al. considered a bi-objective
scheduling problem and derived existence and non-existence theorems on schedules that are
simultaneously near-optimal to both objectives [9]. Similarly, Angel et al. considered a
generalization of the classical MAX-CUT problem and showed that under some conditions,
the approximate solutions can be computed in polynomial time [10].

For a general BODO problem without any structural conditions, since its feasible set
is discrete and usually finite, it can theoretically be enumerated to identify the Pareto set.
However, this problem is generally known to be algorithmically unsolvable (e.g., see [30]).
It is challenging due to two main issues: time complexity, as the number of Pareto-optimal
solutions can be exponentially large, and lack of decisiveness. From a practical point of view,
the Central Decision Maker (CDM) may be interested in a reduced Pareto set reflecting the
own preference of the CDM, which a computationally tractable algorithm can obtain.

In a recent paper [27], a new criterion for selecting solutions within the Pareto set has
been applied for Bi-Objective Minimization Problems, i.e., two objectives are to be simul-
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taneously minimized. The authors utilized the notion of proportional fairness − which is a
well-known rule in communication networks, operation research, and general social choice
introduced in [1], [2], [3] − as a criterion for selecting the preferred solutions. They also
presented the concept of generalized Nash Fairness (ρ-NF) solution, a Pareto-optimal solu-
tion achieving some proportional fairness between two objectives. The positive parameter
ρ provided by the CDM reflects the relative importance of the first objective compared to
the second one. They then focused on finding two particular ρ-NF solutions, called extreme
ρ-NF solutions, having the smallest values of each objective. In this paper, we extend the
findings presented in [27] by generalizing the concept of ρ-NF solution for BODO problems
where each objective can be either maximized or minimized. We then show that the ρ-NF
solution set is a subset of the Pareto set. We also propose a recursive Newton-like algorithm
for determining the ρ-NF solution set.

Notice that we introduced a particular case of ρ-NF solution when ρ = 1, called NF
solution, and the idea to determine the NF solution set for an example of Min-Min BODO
in our conference paper [26]. Thus, this paper is an extended and generalized work of [26].

Let us introduce the notations used in this paper. Let P (x), Q(x) denote two positive
objective functions, and (P,Q) = (P (x), Q(x)) denote a feasible solution corresponding to a
decision vector x ∈ X where X is a finite feasible set. Notice that the ρ-NF solutions will be
characterized by the solutions (P,Q) and not by the corresponding decision vectors. Thus,
two solutions having the same value of (P,Q) will be considered equivalent. Throughout this
paper, we use the notation "≡" to denote equivalent solutions. Assume that we know the
algorithms to optimize every single objective and the linear combination of two objectives
P,Q over X . These hypotheses are verified for most practical examples of BODO.

We will consider BODO in three cases: Max-Max BODO with two objectives to be max-
imized, such as the bi-objective knapsack problem [39], Max-Min BODO with one objective
to be maximized, and another one to be minimized, such as some fractional programming
problems [25] and Min-Min BODO with two objectives to be minimized, such as the bi-
objective assignment problem [26].

The paper is organized as follows. Section 2 discusses the concept and the existence of
ρ-NF solutions for BODO. Then, we show the Pareto efficiency of ρ-NF solutions in Section
3. Section 4 provides a recursive Newton-like algorithm for determining the ρ-NF solution
set. Section 5 presents an example of BODO to illustrate this algorithm. Finally, we give
some conclusions and future works in Section 6.

2. Definition and existence of ρ-NF solutions for BODO

2.1. Max-Max BODO
2.1.1. Definition of ρ-NF solution for Max-Max BODO

Max-Max BODO can be formulated as

max
x∈X1

(P (x), Q(x)),

February 3, 2024



where X1 denotes the set of all feasible decision vectors x. For Max-Max BODO, we
suppose that X1 is finite and P (x), Q(x) > 0,∀x ∈ X .

We first recall the notion of proportional fairness introduced in [1], [2], [3]. Proportional
fairness for the two-player resource allocation problem is defined using the Nash standard of
comparison: a transfer of utilities between the two players is considered fair if the percentage
increase in the utility of one player is larger than the percentage decrease in the utility of
the other player. For the multiple-player problem, the aggregate proportional change is
non-positive when comparing the fair allocation to any other feasible allocation of utilities.

The definition of ρ is related to the works of Kelly et al. [1]. They introduced the
concept of proportional fairness for a general communication network problem. Then the
choice of parameter ρ by users corresponds to an implicit weighting by the network of the
relative utilities of two users, with weights related to the users’ various marginal utilities.
In the context of Max-Max BODO, we explain the parameter ρ as follows. ρ is a positive
parameter supplied by the CDM to reflect the relative importance of P to Q. Notice that ρ
can be defined beforehand based on the characterization of two objectives. In other words,
ρ percent change of P will be comparably equivalent to a one percent change of Q. Thus,
based on the proportional fairness, the ρ-NF solution for Max-Max BODO should be such
that, if compared to any other feasible solutions, the sum of the factor ρ of the proportional
change of P and the proportional change of Q is non-positive.

Let S1 be the set of all feasible solutions (P,Q) for Max-Max BODO. Since X1 is finite,
S1 is also finite. If (P ∗, Q∗) ∈ S1 is a ρ-NF solution for Max-Max BODO, we have

ρ
P − P ∗

P ∗ +
Q−Q∗

Q∗ ≤ 0 ⇐⇒ ρ
P

P ∗ +
Q

Q∗ ≤ ρ+ 1, ∀(P,Q) ∈ S1,

Hence, the ρ-NF solution for Max-Max BODO can be defined as follows.

Definition 1. (P ∗, Q∗) ∈ S1 is a ρ-NF solution for Max-Max BODO if and only if

ρ
P

P ∗ +
Q

Q∗ ≤ ρ+ 1, ∀(P,Q) ∈ S1, (1)

2.1.2. Existence of ρ-NF solution for Max-Max BODO
In this section, we show that the ρ-NF does not always exist for Max-Max BODO, and

if it exists, it is the unique solution to the optimization problem

H1 = max
(P,Q)∈S1

P ρQ,

Theorem 1. If (P ∗, Q∗) is a ρ-NF solution for Max-Max BODO, then it is necessarily the
unique solution of H1 with respect to the values of P and Q.

Proof. Suppose that (P ∗, Q∗) is a ρ-NF solution for Max-Max BODO. We have

ρ
P

P ∗ +
Q

Q∗ ≤ ρ+ 1 =⇒ 1 ≥ ρ

ρ+ 1
× P

P ∗ +
1

ρ+ 1
× Q

Q∗ , ∀(P,Q) ∈ S1, (2)
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Using Young’s inequality for products (see [28]), we obtain

ρ

ρ+ 1
× P

P ∗ +
1

ρ+ 1
× Q

Q∗ ≥ (
P

P ∗ )
ρ

ρ+1 × (
Q

Q∗ )
1

ρ+1 = (
P ρQ

(P ∗)ρQ∗ )
1

ρ+1 , (3)

From (2) and (3), we obtain (P ∗)ρQ∗ ≥ P ρQ, ∀(P,Q) ∈ S1 which implies (P ∗, Q∗) is a
solution of H1.

Now suppose that there exists another ρ-NF solution (P ∗∗, Q∗∗) ∈ S1 such that
(P ∗∗)ρQ∗∗ = (P ∗)ρQ∗. We also have

ρ
P ∗∗

P ∗ +
Q∗∗

Q∗ ≤ ρ+ 1 =⇒ 1 ≥ ρ

ρ+ 1
× P ∗∗

P ∗ +
1

ρ+ 1
× Q∗∗

Q∗ ,

Using Young’s inequality for products, we have

1 ≥ ρ

ρ+ 1
× P ∗∗

P ∗ +
1

ρ+ 1
× Q∗∗

Q∗ ≥ (
P ∗∗

P ∗ )
ρ

ρ+1 × (
Q∗∗

Q∗ )
1

ρ+1 = (
(P ∗∗)ρQ∗∗

(P ∗)ρQ∗ )
1

ρ+1 = 1,

Thus, the equality in Young’s inequality above must hold, which implies P ∗∗/P ∗ =
Q∗∗/Q∗. Moreover, since (P ∗∗)ρQ∗∗ = (P ∗)ρQ∗, we obtain

1 =
(P ∗∗)ρQ∗∗

(P ∗)ρQ∗ = (
P ∗∗

P ∗ )
ρ(
Q∗∗

Q∗ ) = (
P ∗∗

P ∗ )
ρ+1,

Thus, we have P ∗∗ = P ∗ and Q∗∗ = Q∗.

Notice that a solution of H1 is not necessarily the ρ-NF. Let us suppose that ρ = 1
and the feasible set S1 has two solutions (P1, Q1) = (13, 15), (P2, Q2) = (10, 20). We see
that (P2, Q2) is the solution having the maximal value of P ρQ but it is not a ρ-NF solution
because

ρ
P1

P2

+
Q1

Q2

=
13

10
+

15

20
=

41

20
> 2 = ρ+ 1,

Consequently, the ρ-NF solution for Max-Max BODO is not guaranteed to exist. If it
exists, it is the unique solution of H1.

2.2. Max-Min BODO
2.2.1. Definition of ρ-NF solution for Max-Min BODO

Since minimizing Q(x) over X2 is equivalent to maximizing −Q(x) over X2, Max-Min
BODO can be formulated as

max
x∈X2

(P (x),−Q(x))
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where X2 denotes the set of feasible decision vectors x (i.e., we simultaneously maximize
P (x) and minimize Q(x) over X2). Moreover, for Max-Min BODO, we suppose that X2 is
finite and P (x), Q(x) > 0,∀x ∈ X2.

In the context of Max-Min BODO, we prefer an alternative assigning a greater value for
P and a smaller value for Q. Thus, the ρ-NF solution should be such that, when compared to
any other feasible solutions, the difference between the factor ρ of the proportional change
of P and the proportional change of Q is non-positive (i.e., from the definition (1) of ρ-
NF solution for Max-Max BODO, we change the sign for the proportional change of Q as
negative).

Let S2 be the set of all feasible solutions (P,Q) for Max-Min BODO. Since X2 is finite,
S2 is also finite. If (P ∗, Q∗) ∈ S2 is a ρ-NF solution for Max-Min BODO, we have

ρ
P − P ∗

P ∗ − Q−Q∗

Q∗ ≤ 0 ⇐⇒ ρ
P

P ∗ −
Q

Q∗ ≤ ρ− 1, ∀(P,Q) ∈ S2,

Hence, the ρ-NF solution for Max-Min BODO can be defined as follows.

Definition 2. (P ∗, Q∗) ∈ S2 is a ρ-NF solution for Max-Min BODO if and only if

ρ
P

P ∗ −
Q

Q∗ ≤ ρ− 1, ∀(P,Q) ∈ S2, (4)

2.2.2. Existence of ρ-NF solutions for Max-Min BODO with 0 < ρ ≤ 1

This section discusses the existence of ρ-NF solutions for Max-Min BODO. For that, we
consider the following optimization problem.

H2 = max
(P,Q)∈S2

P ρ

Q
,

We will show that in case 0 < ρ ≤ 1, a ρ-NF solution is necessarily a solution of H2, and
in case ρ > 1, there always exists a ρ-NF solution which is a solution of H2.

Theorem 2. If (P ∗, Q∗) is a ρ-NF solution for Max-Min BODO with 0 < ρ ≤ 1, then it is
necessarily a solution of H2. Moreover, in case 0 < ρ < 1, the ρ-NF solution (if it exists) is
the unique solution of H2.

Proof. Suppose that (P ∗, Q∗) is a ρ-NF solution for Max-Min BODO with 0 < ρ ≤ 1. Using
Young’s inequality for products, we have

Q

Q∗ ≥ ρ× P

P ∗ + (1− ρ) ≥ (
P

P ∗ )
ρ =

P ρ

(P ∗)ρ
,∀(P,Q) ∈ S2,

which is equivalent to

(P ∗)ρ

Q∗ ≥ P ρ

Q
,∀(P,Q) ∈ S2,
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Thus, (P ∗, Q∗) is a solution of H2.
Now suppose that 0 < ρ < 1 and there exists another ρ-NF solution (P ∗∗, Q∗∗) ∈ S2 such

that (P ∗∗)ρ/Q∗∗ = (P ∗)ρ/Q∗.
Using Young’s inequality for products, we also have

Q∗∗

Q∗ ≥ ρ× P ∗∗

P ∗ + (1− ρ) ≥ (
P ∗∗

P ∗ )
ρ =

Q∗∗

Q∗ ,

Thus, the equality in Young’s inequality above must hold, which implies P ∗∗ = P ∗ and
then Q∗∗ = Q∗.

Notice that a solution of H2 is not necessarily the ρ-NF solution. Let us suppose that
ρ = 1/2 and the feasible set S2 has two solutions (P1, Q1) = (17, 4), (P2, Q2) = (9, 3). We
see that (P1, Q1) is the solution having the maximal value of P ρ/Q but it is not a ρ-NF
solution because

ρ
P2

P1

− Q2

Q1

=
1

2
× 9

17
− 3

4
= −33

68
> −1

2
= ρ− 1,

Consequently, the ρ-NF solution for Max-Min BODO with 0 < ρ < 1 is not guaranteed
to exist. If it exists, it is the unique solution of H2.

2.2.3. Existence of ρ-NF solutions for Max-Min BODO with ρ > 1

In this case, we show that the ρ-NF solution always exists by the following theorem.

Theorem 3. There always exists a ρ-NF solution for Max-Min BODO with ρ > 1.

Proof. Since S2 is finite, there always exists (P ∗, Q∗) ∈ S2 as a solution of H2.
Let us show that (P ∗, Q∗) is a ρ-NF solution. We have (P ∗)ρ/Q∗ ≥ P ρ/Q, ∀(P,Q) ∈ S2.

Using Young’s inequality for products, we obtain

1

ρ
× Q

Q∗ +
ρ− 1

ρ
≥ (

Q

Q∗ )
1
ρ ≥ P

P ∗ ,

Thus,

ρ
P

P ∗ −
Q

Q∗ ≤ ρ− 1, ∀(P,Q) ∈ S2,

Consequently, (P ∗, Q∗) is a ρ-NF solution.

Let us show that there may be more than one ρ-NF solution for Max-Min BODO with
ρ > 1. Suppose that ρ = 2 and the feasible set S2 has two solutions (P1, Q1) = (10, 8),
(P2, Q2) = (8, 5). We see that both (P1, Q1) and (P2, Q2) are ρ-NF solutions because

ρ
P2

P1

− Q2

Q1

= 2× 10

8
− 8

5
=

9

10
< 1 = ρ− 1,

ρ
P1

P2

− Q1

Q2

= 2× 8

10
− 5

8
=

39

40
< 1 = ρ− 1,
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2.3. Min-Min BODO
In this section, we restate the definition and the existence of ρ-NF solution for Min-Min

BODO, which has been introduced in [27].

2.3.1. Definition of ρ-NF solution for Min-Min BODO
Min-Min BODO can be formulated as

min
x∈X3

(P (x), Q(x)),

where X3 denotes the set of feasible decision vectors x. Moreover, for Min-Min BODO,
we suppose that X3 is finite and P (x), Q(x) > 0,∀x ∈ X3.

In the context of Min-Min BODO, we prefer an alternative assigning a smaller value for
both P and Q, which is opposite to Max-Max BODO. Thus, the ρ-NF solution should be
such that, when compared to any other feasible solutions, the sum of the factor ρ of the
proportional change of P and the proportional change of Q should be non-negative.

Let S3 be the set of all feasible solutions (P,Q) for Min-Min BODO. Since X3 is finite,
S3 is also finite. If (P ∗, Q∗) ∈ S3 is a ρ-NF solution for Min-Min BODO, we have

ρ
P − P ∗

P ∗ +
Q−Q∗

Q∗ ≥ 0 ⇐⇒ ρ
P

P ∗ +
Q

Q∗ ≥ ρ+ 1, ∀(P,Q) ∈ S3,

Hence, the ρ-NF solution for Max-Max BODO can be defined as follows.

Definition 3. [27] (P ∗, Q∗) ∈ S3 is a ρ-NF solution for Min-Min BODO if and only if

ρ
P

P ∗ +
Q

Q∗ ≥ ρ+ 1, ∀(P,Q) ∈ S3, (5)

2.3.2. Existence of ρ-NF solution for Min-Min BODO
For the Min-Min BODO, we consider the optimization problem:

H3 = min
(P,Q)∈S3

P ρQ,

We will show that the ρ-NF solution always exists for Min-Min BODO by the following
theorem.

Theorem 4. [27] There always exists a ρ-NF solution for Min-Min BODO.

Proof. Since S3 is finite, there always exists (P ∗, Q∗) ∈ S3 as a solution of H3.
Let us show that (P ∗, Q∗) is a ρ-NF solution. We have P ρQ ≥ (P ∗)ρQ∗, ∀(P,Q) ∈ S3.

Using Young’s inequality for products, we obtain
ρ

ρ+ 1
× P

P ∗ +
1

ρ+ 1
× Q

Q∗ ≥ (
P

P ∗ )
ρ

ρ+1 × (
Q

Q∗ )
1

ρ+1 = (
P ρQ

(P ∗)ρQ∗ )
1

ρ+1 ≥ 1, ∀(P,Q) ∈ S3,

Thus,

ρ
P

P ∗ +
Q

Q∗ ≥ ρ+ 1, ∀(P,Q) ∈ S3,

Consequently, (P ∗, Q∗) is a ρ-NF solution.
February 3, 2024



Let us show that there may be more than one ρ-NF solution for Min-Min BODO. Suppose
that ρ = 1 and the feasible set S3 has two solutions (P1, Q1) = (11, 4), (P2, Q2) = (9, 5). We
see that both (P1, Q1) and (P2, Q2) are ρ-NF solutions because

ρ
P2

P1

+
Q2

Q1

=
9

11
+

5

4
=

91

44
> 2 = ρ+ 1,

ρ
P1

P2

+
Q1

Q2

=
11

9
+

4

5
=

91

45
> 2 = ρ+ 1,

3. Characterization of ρ-NF solutions

As a particular case of multi-objective optimization, the concept of Pareto efficiency
is applied to describing BODO’s efficient solutions (Pareto-optimal solutions). This section
shows the Pareto efficiency of ρ-NF solutions. Furthermore, the ρ-NF solution set is a subset
of the Pareto set, and this inclusion can be strict. Then, we show that the ρ-NF solutions
can be found by optimizing a linear combination of two objectives.

Theorem 5. The ρ-NF solution set is a subset of the Pareto set. Moreover, this inclusion
can be strict.

Proof. In fact, the Pareto efficiency of ρ-NF solutions can be directly implied from their
mathematical definitions. For example, let (P ∗, Q∗) ∈ S1 be a ρ-NF solution for Max-Max
BODO. If it is not a Pareto-optimal solution, there exists (P ′, Q′) ∈ S1 such that (P ∗, Q∗) is
strictly dominated by (P ′, Q′) (i.e., P ∗ ≤ P ′, Q∗ ≤ Q′ and (P ∗, Q∗) ̸≡ (P ′, Q′)). We obtain

ρ
P ′

P ∗ +
Q′

Q∗ > ρ+ 1,

which leads to a contradiction to Definition 1.
According to the proof of Theorem 1, if ρ = 1 and the feasible set S1 has two solutions

(P1, Q1) = (13, 15) and (P2, Q2) = (10, 20) then (P2, Q2) is a Pareto-optimal solution but not
a ρ-NF solution. Consequently, a Pareto-optimal solution is not necessarily a ρ-NF solution
for Max-Max BODO.

Similarly, the ρ-NF solutions for Max-Min BODO and Min-Min BODO are necessarily
the Pareto-optimal solution, but the inverse may not be true. This concludes the proof.

Then, we show that the ρ-NF solutions for Max-Max BODO, Max-Min BODO, and Min-
Min BODO can be obtained by solving the following optimization problems, respectively.

F1(α) = max
(P,Q)∈S1

f1(α, P,Q) := ρP + αQ,

F2(α) = max
(P,Q)∈S2

f2(α, P,Q) := ρP − αQ,

F3(α) = min
(P,Q)∈S3

f3(α, P,Q) := ρP + αQ,
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where α > 0 is the coefficient to be determined.
Since fi(α, P,Q) are linear combinations of P and Q, we suppose we know how to solve

Fi(α), ∀i = 1, 2, 3.

Theorem 6. For i = 1, 2, 3, (P ∗, Q∗) ∈ Si is a ρ-NF solution if and only if (P ∗, Q∗) is a
solution of Fi(α

∗) with α∗ = P ∗/Q∗.

Proof. We first proof this lemma for Max-Max BODO.
=⇒ Let (P ∗, Q∗) ∈ S1 be a ρ-NF solution and α∗ = P ∗/Q∗. We will show that (P ∗, Q∗)

is a solution of F1(α
∗).

Since P ∗, Q∗ > 0, α∗ > 0. As (P ∗, Q∗) is a ρ-NF solution we have

ρ
P

P ∗ +
Q

Q∗ ≤ ρ+ 1, ∀(P,Q) ∈ S1, (6)

Multiplying (6) by P ∗ > 0 and using α∗ = P ∗/Q∗ give

ρP + α∗Q ≤ ρP ∗ + α∗Q∗, ∀(P,Q) ∈ S1, (7)

Hence, (P ∗, Q∗) is a solution of F1(α
∗).

⇐= Suppose that (P ∗, Q∗) is a solution of F1(α
∗) with α∗ = P ∗/Q∗, we have

ρP + α∗Q ≤ ρP ∗ + α∗Q∗, ∀(P,Q) ∈ S1,

Replacing α∗ by P ∗/Q∗ we obtain

ρ
P

P ∗ +
Q

Q∗ ≤ ρ+ 1, ∀(P,Q) ∈ S1,

Thus, (P ∗, Q∗) is a ρ-NF solution.
Since the proofs for Max-Min BODO and Min-Min BODO are similar to those for Max-

Max BODO, they are omitted.

Based on Theorem 6, we state the following lemma for verifying whether a feasible
solution is a ρ-NF solution or not.

Lemma 1. For i = 1, 2, 3 and a given solution (P0, Q0) ∈ Si, let α1 = P0/Q0 and (P1, Q1)
be a solution of Fi(α1). Then (P0, Q0) is a ρ-NF solution if and only if fi(α1, P1, Q1) =
fi(α1, P0, Q0).

Proof. =⇒ If (P0, Q0) ∈ Si is a ρ-NF solution then (P0, Q0) is also a solution of Fi(α1) due
to Theorem 6. Thus, fi(α1, P1, Q1) = fi(α1, P0, Q0) since (P0, P1) and (P1, Q1) are both the
solutions of Fi(α1).
⇐= If fi(α1, P1, Q1) = fi(α1, P0, Q0) then (P0, Q0) is also a solution of Fi(α1). Since

α1 = P0/Q0, (P0, Q0) is a ρ-NF solution due to Theorem 6.

In the next section, we discuss how to construct an algorithm for determining the ρ-NF
solution set based on Theorem 6 and Lemma 1.
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4. Determining the ρ-NF solution set for BODO

As shown in Section 2.1.2, the ρ-NF solutions for Max-Max BODO and Max-Min BODO
with ρ < 1 are not guaranteed to exist. Thus, finding them is challenging since it is not
equivalent to any known optimization problem. In this section, we focus on constructing
an algorithm for determining the ρ-NF solution set for Max-Min BODO with ρ > 1 and
Min-Min BODO.

4.1. Max-Min BODO with ρ = 1

As a result of Theorem 2, all the ρ-NF solutions for Max-Min BODO with ρ = 1 are the
solutions to the following optimization problem

R2 = max
(P,Q)∈S2

P

Q
,

Notice that R2 is fractional programming, which is well-studied in the literature. There
are many algorithms have been designed and analyzed for fractional programming (see, for
example, surveys [15], [16], [17], [18]). Consequently, in this section, we just restate the
method for solving R2.

Subsequently, we restate the algorithm for solving R2. This algorithm is inspired by the
application of Newton’s method to linear fractional programming that was first discussed
by Isbell and Marlow [29] and then generalized to nonlinear fractional programming by
Dinkelbach [19]. We first consider the following Dinkelbach’s transform [19]:

D2(α) = max
(P,Q)∈S2

P − αQ,

where α ≥ 0 is a suitable efficient to be terminated.

Algorithm 1
Input: An instance of Max-Min BODO with ρ = 1.
Output: A ρ-NF solution.
1: α0 ← 0
2: Solving D2(α0) to obtain a solution (P0, Q0)
3: i← 0
4: repeat
5: αi+1 ← Pi/Qi

6: Solving D2(αi+1) to obtain a solution (Pi+1, Qi+1)
7: Ti ← Pi − αiQi

8: i← i+ 1
9: until Ti = 0

10: Return (Pi, Qi)

Notice that Algorithm 1 returns only one solution of R2, which corresponds to one ρ-NF
solution instead of all possible ρ-NF solutions. For determining the ρ-NF solution set, we
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aim to determine the solution set of R2. If P,Q are linear, there have been some discussions
about its solution set in the literature. Most of them give a unique condition for the solution.
If this condition is not satisfied, computational procedures are presented to determine the
solution set [36], [37]. For example, a method for determining the solution set based on
an adaptation of the convex simplex method credited to Gilmore and Gomory has been
introduced in [38].

When P,Q are nonlinear, determining the solution set of R2 may be difficult since it is
hard to describe the general structure of the solutions. Furthermore, all the solutions of R2

are solutions of D2 with a unique value of α. In the context of this paper, we will refrain
from delving further into dealing with the nonlinear case.

4.2. Max-Max BODO and Max-Min BODO with ρ < 1

We recall that the ρ-NF solutions for Max-Max BODO and Max-Min BODO with ρ < 1
are not guaranteed to exist. Notice that in the simplest case when ρ = 1, the ρ-NF solution
for Max-Max BODO (if it exists) is equivalent to the Nash bargaining solution − a well-
known notion from cooperative game theory − since it maximizes the products of two
objectives [20]. A natural idea for determining ρ-NF solution in such a case is that we
first solve H1, then we verify whether the obtained solution is the ρ-NF solution by using
Lemma 1. However, solving H1, even when ρ = 1, is computationally expensive since the
objective remains nonlinear and the feasible set is non-convex. Consequently, to address
such a case, a few approaches involve considering certain non-convex sets, which are convex
after a logarithmic transformation [21]. An alternative approach is to introduce the concept
of local proportional fairness, which is always achievable, and then analyze its properties
[22].

Similarly, solvingH2 with ρ < 1 is challenging, although it is also fractional programming.
The fact is that solving the corresponding Dinkelbach’s transform

D′
2(α) = max

(P,Q)∈S2

P ρ − αQ with ρ < 1,

requires a highly non-linear optimization, even though when P,Q are linear.
In the next section, we will show the main distribution of this paper: we propose a recur-

sive Newton-like algorithm using the weighted sum scalarization approach for determining
the ρ-NF solution set for Max-Min BODO with ρ > 1 and Min-Min BODO.

4.3. Max-Min BODO with ρ > 1 and Min-Min BODO
4.3.1. General idea of algorithm for determining the ρ-NF solution set

Since many ρ-NF solutions may exist for both Min-Min BODO with ρ > 1 and Min-Min
BODO, this section states the general idea and algorithm for obtaining their ρ-NF solution
set in a unique framework.

According to Theorem 6, the ρ-NF solutions are optimal solutions of weighted sum prob-
lems. Thus, they are supported efficient solutions (i.e., the solutions that can be obtained
by optimizing weighted sum problems), which are on the boundary of the convex hull of all
Pareto points [32]. When dealing with bi-objective mixed integer problems, the supported
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efficient solutions can be identified by the weight space decomposition method [31], [32].
Furthermore, if the objectives are linear, the indifference regions in the weight space are also
computed (see, e.g., [33]). However, as the ρ-NF solution set can be a strict subset of the
Pareto set, we aim to propose a novel method focusing on determining the ρ-NF solution set
without computing all the supported efficient solutions. For this purpose, we construct a re-
cursive Newton-like algorithm based on the weighted sum scalarization approach to identify
all ρ-NF solutions.

Let F(α) represent F2(α) and F3(α) in our algorithm (i.e., if we solve F(α), that means
we solve F2(α) or minimize F3(α), depending on the considered problem is Max-Min BODO
with ρ > 1 or Min-Min BODO). Let C be the set containing all elements α∗ such that there
exists a ρ-NF solution (P ∗, Q∗) as a solution of F(α∗) with α∗ = P ∗/Q∗. We can prove that
each element of C corresponds to a unique ρ-NF solution and vice versa. Thus, determining
the ρ-NF solution set is equivalent to finding all elements of C.

Let us explain the general idea for finding all elements of C. From the given BODO
problem, we first determine αsup as the upper bound for the elements of C. Then, our
algorithm uses Procedure EXPLORE () to recursively explore all elements of C in the interval
[0, αsup]. For each subinterval [αi, αj] ⊆ [0, αsup], Procedure EXPLORE () determines a value
α ∈ [αi, αj] based on the solutions of F(αi) and F(αj). Then, Procedure VERIFY () verifies
whether α ∈ C or not. If not, we use Procedure FIND() to find an element α∗ ∈ C such that
there does not exist any other element of C in the closed interval defined by α and α∗ (i.e.,
[α, α∗] if α < α∗ or [α∗, α] if α∗ < α). Then, we remove such closed interval to obtain at most
two remaining subintervals from [αi, αj], which we will continue to explore. Although we
may need two recursive calls in an iteration, the total number of recursive calls in the worst
case is bounded by the number of Pareto-optimal solutions. Furthermore, our determining
method of α provides some criteria for quickly asserting that no more ρ-NF solution exists
in [αi, αj].

In the following, we discuss how to propose Procedure VERIFY(α0) for verifying α0 ∈ C
from the given α0. Notice that it may be difficult to verify if α0 ∈ C by only solving
F(α0) and then checking if the obtained solution (P0, Q0) satisfies P0−α0Q0 = 0 (based on
Theorem 6). The fact is that the problem F(α0) may have multiple solutions, and we only
obtain one solution, which is possibly not the ρ-NF solution in case α0 ∈ C (i.e., there exists
another solution (P1, Q1) of F(α0) which is a ρ-NF solution. However, (P0, Q0), instead of
(P1, Q1), is returned. Thus, α0 ∈ C although P0 − α0Q0 ̸= 0).

Hence, for Procedure VERIFY (), we define two additional optimization problems

G2(α) = max
(P,Q)∈S2

g2(α, P,Q) := ρP − αQ− |P − αQ|,

G3(α) = min
(P,Q)∈S3

g3(α, P,Q) := ρP + αQ+ |P − αQ|,

where |.| denotes the absolute function.
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Notice that g2(α, P,Q) and g3(α, P,Q) can be transformed as a linear combination of P
and Q. Thus, suppose that we know how to solve G2(α) and G3(α).

Let G(α) represent G2(α) and G3(α) in our algorithm. If we solve G(α), that means we
solve G2(α) or G3(α), depending on the considered problem is Max-Min BODO with ρ > 1
or Min-Min BODO . We first state Procedure VERIFY () as follows.

Procedure 2 Verifying if α0 ∈ C
Input: α0 ∈ [0, αsup].
Output: True if α0 ∈ C or False otherwise.
1: procedure VERIFY (α0)
2: Solving F(α0) and G(α0) to obtain the solutions (P0, Q0) and (P1, Q1)
3: if g(α0, P1, Q1) = f(α0, P0, Q0) then
4: Return True
5: else
6: Return False
7: end if
8: end procedure

For a given α0 ∈ [0, αsup], if we assert that α0 ̸∈ C by Procedure VERIFY(α0), then we
can use Procedure FIND(α0) for finding an element of C from α0. This procedure is also
based on the application of Newton’s method for linear programming. It can be stated as
follows.

Procedure 3 Finding an element of C from α0 ̸∈ C
Input: α0 ∈ [0, αsup] and α0 ̸∈ C.
Output: A unique element of C in the closed interval defined by itself and α0.
1: procedure FIND(α0)
2: Solving F(α0) to obtain a solution (P0, Q0)
3: i← 0
4: repeat
5: αi+1 ← Pi/Qi

6: Solving F(αi+1) to obtain a solution (Pi+1, Qi+1)
7: Ti ← f(αi+1, Pi+1, Qi+1)− f(αi+1, Pi, Qi)
8: i← i+ 1
9: until Ti = 0

10: Return αi+1

11: end procedure

Then, for each subinterval [αi, αj] ⊆ [0, αsup], we present Procedure EXPLORE([αi, αj])
for finding all elements of C in such subinterval.
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Procedure 4 Finding the elements of C in the interval [αi, αj]

Input: αi < αj and αi, αj ∈ [0, αsup], (Pi, Qi) ̸≡ (Pj, Qj) are the solutions of F(αi) and
F(αj), respectively.

Output: All elements of C in the interval [αi, αj].
1: procedure EXPLORE([αi, αj])
2: C = {}
3: if VERIFY(αi) == True then C = C ∪ αi

4: end if
5: if VERIFY(αj) == True then C = C ∪ αj

6: end if
7: αk ← |ρ(Pi−Pj)

Qi−Qj
|

8: while αi < αk and αk < αj do
9: if VERIFY(αk) == True then

10: C ← C ∪ αk ▷ αk is an element of C
11: EXPLORE([αi, αk]),EXPLORE([αk, αj])
12: else
13: Solving F(αk) to obtain a solution (Pk, Qk)
14: if (Pk, Qk) ̸≡ (Pi, Qi) and (Pk, Qk) ̸≡ (Pj, Qj) then ck ← FIND(αk)
15: if αi == ck then EXPLORE([αk, αj])
16: else if αj == ck then EXPLORE([αi, αk])
17: else if αi < ck and ck < αk then C ← C ∪ ck
18: EXPLORE([αi, ck]), EXPLORE([αk, αj])
19: else if αj > ck and ck > αk then C ← C ∪ ck
20: EXPLORE([αi, αk]), EXPLORE([ck, αj])
21: end if
22: end if
23: end if
24: end while
25: Return C
26: end procedure

Finally, we state the main algorithm for determining the ρ-NF solution set by finding all
elements of C.

Algorithm 5 Finding the ρ-NF solution set
Input: A BODO instance (either Max-Min BODO with ρ > 1 or Min-Min BODO).
Output: Set C whose elements correspond to all ρ-NF solutions.
1: Compute αsup from the given BODO instance.
2: EXPLORE([0, αsup])

In the next two sections, we show that Algorithm 5 returns all elements of C, which
correspond to all ρ-NF solutions for Max-Min BODO with ρ > 1 and Min-Min BODO.

February 3, 2024



Notice that the two cases’ statements of lemmas and theorems are almost similar. However,
their proofs are different due to their different characterization of the ρ-NF solution.

4.3.2. Proofs for Max-Min BODO with ρ > 1

For Max-Min BODO with ρ > 1, the set C is defined as follows: C contains all elements
α∗ > 0 such that F2(α

∗) has a solution (P ∗, Q∗) and α∗ = P ∗/Q∗.
We first assert that each element of C corresponds to a unique ρ-NF solution and vice

versa. Consequently, determining the ρ-NF solution set is equivalent to finding all elements
of C.

Lemma 2. For Max-Min BODO with ρ > 1, there is a bijection between the set C and the
ρ-NF solution set.

Proof. According to Theorem 6, each ρ-NF solution corresponds to a unique element of C.
We show that each element of C corresponds to a unique ρ-NF solution with respect to

the values of P and Q.
Suppose that (P ∗, Q∗), (P ∗∗, Q∗∗) ∈ S2 are two ρ-NF solutions corresponding to α∗ ∈ C.

Since both (P ∗, Q∗) and (P ∗∗, Q∗∗) are the solutions of F2(α
∗), we have

ρP ∗ − α∗Q∗ = ρP ∗∗ − α∗Q∗∗, (8)

Furthermore, since α∗ ∈ C, we get

P ∗ − α∗Q∗ = P ∗∗ − α∗Q∗∗ = 0, (9)

From (8) and (9), we have (ρ− 1)P ∗ = (ρ− 1)P ∗∗. Since ρ− 1 > 0, we obtain P ∗ = P ∗∗

and consequently Q∗ = Q∗∗. Thus, (P ∗, Q∗) ≡ (P ∗∗, Q∗∗).

According to Lemma 2, although both Max-Min BODO with ρ = 1 and Max-Min BODO
with ρ > 1 have possibly multiple ρ-NF solutions, they have a main difference. That is,
unlike for Max-Min BODO with ρ > 1, all ρ-NF solutions for Max-Min BODO with ρ = 1
correspond to a unique value, which is the maximal value of the ratio P/Q, ∀(P,Q) ∈ S2.

We then determine αsup as the upper bound for the elements of C. Let Pmax, Qmin be
the optimal values of the problems maximizing P and minimizing Q over X2, respectively.
Let αsup = Pmax/Qmin. We have

α∗ =
P ∗

Q∗ ≤
Pmax

Qmin

= αsup,

Thus, αsup is an upper bound of α∗.
For a given α0 ∈ [0, αsup], we show that verifying if α0 ∈ C can be done by solving F2(α)

and G2(α).

Lemma 3. For a given α0 ∈ [0, αsup], let (P0, Q0), (P1, Q1) ∈ S2 be the solutions of F2(α0)
and G2(α0), respectively. Then α0 ∈ C if and only if g2(α0, P1, Q1) = f2(α0, P0, Q0).
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Proof. =⇒ Suppose that α0 ∈ C. According to Theorem 6, there exists (P ∗, Q∗) ∈ S2 such
that (P ∗, Q∗) is a solution of F2(α0) and P ∗ = α0Q

∗. Since both (P0, Q0) and (P ∗, Q∗) are
the solutions of F2(α0) and P ∗ − α0Q

∗ = 0, we have

ρP0 − α0Q0 = ρP ∗ − α0Q
∗ − |P ∗ − α0Q

∗|,

The optimality of (P0, Q0) gives

ρP0 − α0Q0 ≥ ρP1 − α0Q1,

Since |P1 − α0Q1| ≥ 0, we deduce ρP0 − α0Q0 ≥ ρP1 − α0Q1 − |P1 − α0Q1|. Thus,

ρP ∗ − α0Q
∗ − |P ∗ − α0Q

∗| ≥ ρP1 − α0Q1 − |P1 − α0Q1|, (10)

Since (P1, Q1) is a solution of G2(α0), we have

ρP1 − α0Q1 − |P1 − α0Q1| ≥ ρP ∗ − α0Q
∗ − |P ∗ − α0Q

∗|, (11)

From (10) and (11), we get

ρP1 − α0Q1 − |P1 − α0Q1| = ρP ∗ − α0Q
∗ − |P ∗ − α0Q

∗| = ρP0 − α0Q0,

which implies g2(α0, P1, Q1) = f2(α0, P0, Q0).
⇐= Suppose that g2(α0, P1, Q1) = f2(α0, P0, Q0). We obtain ρP1−α0Q1−|P1−α0Q1| =

ρP0 − α0Q0. Since ρP1 − α0Q1 − |P1 − α0Q1| ≤ ρP1 − α0Q1 ≤ ρP0 − α0Q0, we must have
|P1 − α0Q1| = 0 and ρP1 − α0Q1 = ρP0 − α0Q0. Consequently, (P1, Q1) is a solution of
F2(α0) and P1 = α0Q1. Thus, (P1, Q1) is a ρ-NF solution and α0 ∈ C due to Theorem 6.

Let Ti = f2(αi+1, Pi+1, Qi+1) − f2(αi+1, Pi, Qi) where (Pi, Qi) is the solution of F2(αi)
and {αi}i≥0 (including α0) is the sequence constructed by Procedure FIND(α0). We then
prove that if α0 ̸∈ C, Procedure FIND(α0) returns an element of C such that it is a unique
element of C in the closed interval defined by α0 and itself.

Lemma 4. For α0 ∈ [0, αsup], during the execution of Procedure FIND(α0), αi+1 > 0,
(Pi+1, Qi+1) is a Pareto-optimal solution and Ti ≥ 0 ∀i ≥ 0. Furthermore, Procedure
FIND(α0) terminates after a finite number of iterations.

Proof. Since Pi, Qi > 0, we have αi+1 = Pi/Qi > 0,∀i ≥ 0. Thus, (Pi+1, Qi+1) is a Pareto-
optimal solution due to Theorem 5, ∀i ≥ 0.

For all i ≥ 0, the optimality of (Pi+1, Qi+1) gives

ρPi+1 − αi+1Qi+1 ≥ ρPi − αi+1Qi, (12)

Thus, Ti = f2(αi+1, Pi+1, Qi+1)−f2(αi+1, Pi, Qi) = ρPi+1−αi+1Qi+1−(ρPi−αi+1Qi) ≥ 0.
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Moreover, replacing αi+1 by Pi/Qi, (12) yields

ρPi+1 ≥
Pi

Qi

Qi+1 + (ρ− 1)Pi =⇒ Pi+1

Pi

≥ 1

ρ
× Qi+1

Qi

+
ρ− 1

ρ
,

Using Young’s inequality for products, we have

Pi+1

Pi

≥ 1

ρ
× Qi+1

Qi

+
ρ− 1

ρ
≥ (

Qi+1

Qi

)
1
ρ =⇒

P ρ
i+1

Qi+1

≥ P ρ
i

Qi

,

In other words, the value of P ρ
i /Qi is increasing after each iteration of Procedure

FIND(α0). Since S2 is finite, the set of values P ρ/Q is also finite. Thus, we get P ρ
k+1

Qk+1
=

P ρ
k

Qk

after a finite number of iterations. Now, the equality of Young’s inequality above must
hold. We have then Pk+1

Pk
= Qk+1

Qk
= 1 =⇒ Pk+1 = Pk and Qk+1 = Qk. Consequently,

Tk = f2(αk+1, Pk+1, Qk+1) − f2(αk+1, Pk, Qk) = ρPk+1 − αk+1Qk+1 − (ρPk − αk+1Qk) = 0.
That is to say, Procedure FIND(α0) terminates after a finite number of iterations.

Suppose that Procedure FIND(α0) returns a coefficient αn+1 satisfying Tn =
f2(αn+1, Pn+1, Qn+1) − f2(αn+1, Pn, Qn) = 0 where n ≥ 0. Thus, (Pn, Qn) is a ρ-NF
solution and αn+1 ∈ C due to Lemma 1. In addition, if n ≥ 1 then Ti > 0, ∀0 ≤ i ≤ n− 1.

In the next lemma, we show the monotonic relationship between α ∈ [0, αsup] and the
solution of F2(α) with respect to the values of P and Q.

Lemma 5. Let α′, α′′ ∈ [0, αsup], α′ < α′′ and (P ′, Q′), (P ′′, Q′′) ∈ S2 be the solutions of
F2(α

′) and F2(α
′′), respectively. Then P ′ ≥ P ′′ and Q′ ≥ Q′′.

Proof. The optimality of (P ′, Q′) and (P ′′, Q′′) gives

ρP ′ − α′Q′ ≥ ρP ′′ − α′Q′′, and (13a)
ρP ′′ − α′′Q′′ ≥ ρP ′ − α′′Q′ (13b)

Adding (13a) and (13b) gives (α′ − α′′)(Q′ −Q′′) ≤ 0. Since α′ < α′′, we have Q′ ≥ Q′′.
On the other hand, the inequality (13a) implies ρ(P ′ − P ′′) ≥ α′(Q′ − Q′′) ≥ 0. Since

ρ > 1, we get P ′ ≥ P ′′.

Theorem 7. For α0 ∈ [0, αsup] and α0 ̸∈ C, Procedure FIND(α0) returns αn+1 as the unique
element of C in the closed interval defined by α0 and αn+1.

Proof. Since (P0, Q0) is a solution of F2(α0) and α0 ̸∈ C, we have P0 − α0Q0 ̸= 0. Thus, we
consider two cases: P0 − α0Q0 > 0 and P0 − α0Q0 < 0.

We first suppose that P0−α0Q0 > 0. We will prove αi < αi+1,∀i ≥ 0 by induction on i.
Since P0−α0Q0 > 0, we have α0 < P0/Q0 = α1. Thus, our hypothesis is true with i = 0.
Suppose our hypothesis is true until i = k ≥ 0. We have αi < αi+1, ∀0 ≤ i ≤ k. The

optimality of (Pk+1, Qk+1) gives

ρPk+1 − αk+1Qk+1 ≥ ρPk − αk+1Qk,
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which is equivalent to

(ρ− 1)Pk+1 + Pk+1 − αk+1Qk+1 ≥ (ρ− 1)Pk + Pk − αk+1Qk, (14)

Since αk < αk+1, Pk ≥ Pk+1 and Qk ≥ Qk+1 due to Lemma 5.
If Pk = Pk+1 and Qk = Qk+1 then Tk = ρPk+1 − αk+1Qk+1 − (ρPk − αk+1Qk) = 0.

Consequently, Procedure FIND(α0) returns the value αk+1 and the sequence {αi}0≤i≤k+1 is
strictly increasing.

If Pk = Pk+1 and Qk > Qk+1 then αk+1 =
Pk

Qk
< Pk+1

Qk+1
= αk+2.

If Pk > Pk+1 then (14) yields Pk+1 − αk+1Qk+1 > Pk − αk+1Qk = Pk − Pk

Qk
Qk = 0. Thus,

αk+1 <
Pk+1

Qk+1
= αk+2.

Since we obtain αk+1 < αk+2 in both two cases above, our hypothesis is also true with
i = k + 1. Hence, {αi} is strictly increasing, ∀i ≥ 0.

In the following, we will show that αn+1 is the unique element of C in the interval
[α0, αn+1].

Suppose that we have α∗ = (α0, αn+1) ∩ C corresponding to a ρ-NF solution (P ∗, Q∗).
Since the sequence {αi}0≤i≤n+1 is strictly increasing, there exists 0 ≤ k ≤ n such that
α∗ ∈ (αk, αk+1].

Since α∗ > αk, we have P ∗ ≤ Pk and Q∗ ≤ Qk due to Lemma 5. Furthermore, as
(P ∗, Q∗) is a ρ-NF solution, we get

ρ
Pk

P ∗ −
Qk

Q∗ ≤ ρ− 1 =⇒ Pk

P ∗ −
Qk

Q∗ ≤ (ρ− 1)(1− Pk

P ∗ ) ≤ 0, (15)

If Pk

P ∗ = Qk

Q∗ then (15) yields Pk

P ∗ = Qk

Q∗ = 1. It follows that Pk = P ∗, Qk = Q∗ and αk+1 =
Pk

Qk
= P ∗

Q∗ = α∗. Since αk+1 = α∗ < αn+1, we have k ≤ n−1 and n ≥ 1. As both (P ∗, Q∗) and
(Pk+1, Qk+1) are the solutions of F2(αk+1), we obtain ρPk+1−αk+1Qk+1−(ρP ∗−αk+1Q

∗) = 0.
Consequently, Tk = ρPk+1− αk+1Qk+1− (ρPk − αk+1Qk) = 0 which leads to a contradiction
due to Tk > 0, ∀0 ≤ k ≤ n− 1.

Thus, we have
Pk

P ∗ <
Qk

Q∗ =⇒ α∗ =
P ∗

Q∗ >
Pk

Qk

= αk+1,

which leads to a contradiction due to the fact that α∗ ≤ αk+1.
Hence, αn+1 is the unique element of C in the interval [α0, αn+1].
Similarly, in case P0 − α0Q0 < 0, we obtain that the sequence {αi} is strictly decreasing

and αn+1 is the unique element of C in the interval [αn+1, α0]. That concludes the proof.

According to Theorem 7, from α0 ∈ [0, αsup] and α0 ̸∈ C, we can use Procedure FIND(α0)
to find an element αn+1 of C such that there does not have any other element of C in the
interval[α0, αn+1] (if α0 < αn+1) or [αn+1, α0] (if α0 > αn+1).

For each interval [αi, αj] ⊆ [0, αsup] and (Pi, Qi) ̸≡ (Pj, Qj) are the solutions of F2(αi)
and F2(αj) where 0 ≤ αi < αj ≤ αsup, we present some criteria to quickly verify if there
does not exist any ρ-NF solution in the interval (αi, αj) which is different to (Pi, Qi) and
(Pj, Qj).
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Lemma 6. Given an interval [αi, αj] defined by 0 ≤ αi < αj ≤ αsup and let (Pi, Qi), (Pj, Qj)

be the solutions of F2(αi) and F2(αj) such that (Pi, Qi) ̸≡ (Pj, Qj). Let αk = |ρ(Pi−Pj)

Qi−Qj
| and

(Pk, Qk) be a solution of F2(αk). If one of the following conditions is satisfied, then there
does not exist any ρ-NF solution which is different to (Pi, Qi) and (Pj, Qj) in the interval
(αi, αj).

1. αk ∈ {αi, αj};
2. αk ̸∈ C and (Pk, Qk) ≡ (Pi, Qi) or (Pk, Qk) ≡ (Pj, Qj);

Proof. We first show that αk is well defined. Since αi < αj, we have Pi ≥ Pj, Qi ≥ Qj due
to Lemma 5. Assume that Qi = Qj. The optimality of (Pj, Qj) gives

ρPj − αjQj ≥ ρPi − αjQi,

Since Qi = Qj, we obtain Pj ≥ Pi. Thus, Pi = Pj and then (Pi, Qi) ≡ (Pj, Qj) which
leads to a contradiction.

Hence, Qi > Qj and consequently, αk is well defined.
Since Pi ≥ Pj and Qi > Qj, we have αk =

ρ(Pi−Pj)

Qi−Qj
. Now we show that αk ∈ [αi, αj].

The optimality of (Pi, Qi) and (Pj, Qj) gives

ρPi − αiQi ≥ ρPj − αiQj,

ρPj − αjQj ≥ ρPi − αjQi,

Thus, we obtain αi ≤ ρ(Pi−Pj)

Qi−Qj
≤ αj which leads to αi ≤ αk ≤ αj.

If αk = αi then ρPi − αiQi = ρPj − αiQj. Thus, (Pi, Qi) and (Pj, Qj) are both solutions
of F2(αi). Hence, for all α ∈ (αi, αj), (Pj, Qj) is the solution of F2(α) as a result of Lemma
5.

Similarly, if αk = αj, (Pi, Qi) is the solution of F2(α) for all α ∈ (αi, αj).
Consequently, in case αk ∈ {αi, αj}, there does not exist any ρ-NF solution which is

different to (Pi, Qi) and (Pj, Qj) in the interval (αi, αj).
Now let (Pk, Qk) be a solution of F2(αk). Without loss of generality, we suppose that

αk ̸∈ C and (Pk, Qk) ≡ (Pi, Qi).
Since (Pk, Qk) ≡ (Pi, Qi), (Pi, Qi) is the solution of F2(αk). Since αk =

ρ(Pi−Pj)

Qi−Qj
, we have

ρPi − αkQi = ρPj − αkQj. Thus, (Pj, Qj) is also a solution of F2(αk).
Consequently, if α ∈ (αi, αk) then (Pi, Qi) is the solution of F2(α) and if α ∈ (αk, αj)

then (Pj, Qj) is the solution of F2(α). That means there does not exist any ρ-NF solution
in the interval (αi, αj) which is different to (Pi, Qi) and (Pj, Qj).

Theorem 8. Algorithm 5 returns all the elements of C corresponding to all ρ-NF solutions
for Max-Min BODO with ρ > 1.

Proof. Let K2 denote the finite number of Pareto-optimal solutions. Consequently, [0, αsup]
can be separated by at most K2 consecutive subintervals [ci, cj] where 0 ≤ ci < cj ≤
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αsup and ci, cj correspond to two different Pareto-optimal solutions. By using Procedure
EXPLORE([ci, cj]), each recursive call gives us a ρ-NF solution where the corresponding
coefficient in the subinterval [ci, cj] or show that such subinterval is well explored without any
new ρ-NF solution. As we use Procedure FIND() and Procedure VERIFY () in each recursive
call, Procedure EXPLORE ([0, αsup]) also terminates after a finite number of iterations. Since
Algorithm 5 terminated when the interval [0, αsup] is totally explored, it found all elements
of C corresponding to all ρ-NF solutions.

4.3.3. Proofs for Min-Min BODO
For Min-Min BODO, the set C is defined as follows: C contains all elements α∗ > 0 such

that F3(α
∗) has a solution (P ∗, Q∗) with α∗ = P ∗/Q∗.

We also assert that each element of C corresponds to a unique ρ-NF solution and vice
versa.

Lemma 7. For Min-Min BODO, there is a bijection between the set C and the ρ-NF solution
set.

Proof. According to Theorem 6, each ρ-NF solution corresponds to a unique element of C.
We also show that each element of C corresponds to a unique ρ-NF solution with respect

to the values of P and Q.
Suppose that (P ∗, Q∗), (P ∗∗, Q∗∗) are two ρ-NF solutions corresponding to α∗ ∈ C. Since

both (P ∗, Q∗) and (P ∗∗, Q∗∗) are the solutions of F3(α
∗), we have

ρP ∗ + α∗Q∗ = ρP ∗∗ + α∗Q∗∗, (16)

Furthermore, since α∗ ∈ C, we get

P ∗ − α∗Q∗ = P ∗∗ − α∗Q∗∗ = 0, (17)

Adding (16) and (17) gives (ρ + 1)P ∗ = (ρ + 1)P ∗∗. Since ρ ≥ 1, we obtain P ∗ = P ∗∗

and consequently Q∗ = Q∗∗. Thus, (P ∗, Q∗) ≡ (P ∗∗, Q∗∗).

We then determine the upper bound αsup for the elements of C. Let (Pq, Qq) ∈ S3 be a
solution for minimizing Q and αsup = Pq/Qq. We state the following lemma.

Lemma 8. Let α∗ ∈ C. We have α∗ ≤ αsup.

Proof. Let (P ∗, Q∗) ∈ S3 be a ρ-NF solution for Min-Min BODO corresponding to α∗ ∈ C.
The optimality of (P ∗, Q∗) gives

ρP ∗ + α∗Q∗ ≤ ρPq + α∗Qq, (18)

Moreover, since (Pq, Qq) ∈ S3 is a solution for minimizing Q, we have Q∗ ≥ Qq which
implies P ∗ ≤ Pq due to (18). Thus,

α∗ =
P ∗

Q∗ ≤
Pq

Qq

= αsup,
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For a given α0 ∈ [0, αsup], we show that verifying if α0 ∈ C can be done by solving F3(α)
and G3(α).

Lemma 9. For a given α0 ∈ [0, αsup], let (P0, Q0), (P1, Q1) ∈ S3 be the solutions of F3(α0)
and G3(α0), respectively. Then α0 ∈ C if and only if g3(α0, P1, Q1) = f3(α0, P0, Q0).

Proof. =⇒ Suppose that α0 ∈ C. According to Theorem 6, there exists (P ∗, Q∗) ∈ S3 such
that (P ∗, Q∗) is a solution of F3(α0) and P ∗ = α0Q

∗. Since both (P0, Q0) and (P ∗, Q∗) are
the solutions of F3(α0) and P ∗ − α0Q

∗ = 0, we have

ρP0 + α0Q0 = ρP ∗ + α0Q
∗ + |P ∗ − α0Q

∗|,

The optimality of (P0, Q0) gives

ρP0 + α0Q0 ≤ ρP1 + α0Q1,

Since |P1 − α0Q1| ≥ 0, we deduce ρP0 + α0Q0 ≤ ρP1 + α0Q1 + |P1 − α0Q1|. Thus,

ρP ∗ + α0Q
∗ + |P ∗ − α0Q

∗| ≤ ρP1 + α0Q1 + |P1 − α0Q1|, (19)

Since (P1, Q1) is a solution of G3(α0), we have

ρP1 + α0Q1 + |P1 − α0Q1| ≤ ρP ∗ + α0Q
∗ + |P ∗ − α0Q

∗|, (20)

From (19) and (20), we get

ρP1 + α0Q1 + |P1 − α0Q1| = ρP ∗ + α0Q
∗ + |P ∗ − α0Q

∗| = ρP0 + α0Q0,

which implies g3(α0, P1, Q1) = f3(α0, P0, Q0).
⇐= Suppose that g3(α0, P1, Q1) = f3(α0, P0, Q0). We obtain ρP1+α0Q1+ |P1−α0Q1| =

ρP0 + α0Q0. Since ρP1 + α0Q1 + |P1 − α0Q1| ≥ ρP1 + α0Q1 ≥ ρP0 + α0Q0, we must have
|P1 − α0Q1| = 0 and ρP1 + α0Q1 = ρP0 + α0Q0. Consequently, (P1, Q1) is a solution of
F3(α0) and P1 = α0Q1. Thus, (P1, Q1) is a ρ-NF solution and α0 ∈ C due to Theorem 6.

Let Ti = f3(αi+1, Pi+1, Qi+1) − f3(αi+1, Pi, Qi) where (Pi, Qi) is the solution of F3(αi)
and {αi}i≥0 (including α0) is the sequence constructed by Procedure FIND(α0). We then
prove that if α0 ̸∈ C, Procedure FIND(α0) returns an element of C such that it is a unique
element of C in the closed interval defined by α0 and itself.

Lemma 10. For α0 ∈ [0, αsup], during the execution of Procedure FIND(α0), αi+1 > 0,
(Pi+1, Qi+1) is a Pareto-optimal solution and Ti ≤ 0 ∀i ≥ 0. Furthermore, Procedure
FIND(α0) terminates after a finite number of iterations.
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Proof. Since Pi, Qi > 0, we have αi+1 = Pi/Qi > 0,∀i ≥ 0. Thus, (Pi+1, Qi+1) is a Pareto-
optimal solution due to Theorem 5, ∀i ≥ 0.

For all i ≥ 0, the optimality of (Pi+1, Qi+1) gives

ρPi+1 + αi+1Qi+1 ≤ ρPi + αi+1Qi, (21)

Thus, Ti = f3(αi+1, Pi+1, Qi+1)−f3(αi+1, Pi, Qi) = ρPi+1+αi+1Qi+1−(ρPi+αi+1Qi) ≤ 0.
Moreover, replacing αi+1 by Pi/Qi, (21) yields

ρPi+1 +
Pi

Qi

Qi+1 ≤ (ρ+ 1)Pi =⇒ 1 ≥ ρ

ρ+ 1
× Pi+1

Pi

+
1

ρ+ 1
× Qi+1

Qi

,

Using Young’s inequality for products, we have

1 ≥ ρ

ρ+ 1
× Pi+1

Pi

+
1

ρ+ 1
× Qi+1

Qi

≥ (
Pi+1

Pi

)
ρ

ρ+1 (
Qi+1

Qi

)
1

ρ+1 =⇒ P ρ
i Qi ≥ P ρ

i+1Qi+1,

In other words, the value of P ρ
i Qi is decreasing after each iteration of Procedure

FIND(α0). Since S3 is finite, the set of values P ρQ is also finite. Thus, we get P ρ
k+1Qk+1 =

P ρ
kQk after a finite number of iterations. Now the equality of Young’s inequality above must

hold. We have then Pk+1

Pk
= Qk+1

Qk
= 1 =⇒ Pk+1 = Pk and Qk+1 = Qk. Consequently,

Tk = f3(αk+1, Pk+1, Qk+1) − f3(αk+1, Pk, Qk) = ρPk+1 + αk+1Qk+1 − (ρPk + αk+1Qk) = 0.
That is to say, Procedure FIND(α0) terminates after a finite number of iterations.

Suppose that Procedure FIND(α0) returns a coefficient αn+1 satisfying Tn =
f3(αn+1, Pn+1, Qn+1) − f3(αn+1, Pn, Qn) = 0 where n ≥ 0. Thus, (Pn, Qn) is a ρ-NF
solution and αn+1 ∈ C due to Lemma 1. In addition, if n ≥ 1 then Ti < 0, ∀0 ≤ i ≤ n− 1.

Like Lemma 5, we also show the monotonic relationship between α ∈ [0, αsup] and the
solution of F3(α) with respect to the values of P and Q.

Lemma 11. Let α′, α′′ ∈ [0, αsup], α′ < α′′ and (P ′, Q′), (P ′′, Q′′) ∈ S3 be the solutions of
F3(α

′) and F3(α
′′), respectively. Then P ′ ≤ P ′′ and Q′ ≥ Q′′.

Proof. The optimality of (P ′, Q′) and (P ′′, Q′′) gives

ρP ′ + α′Q′ ≤ ρP ′′ + α′Q′′, and (22a)
ρP ′′ + α′′Q′′ ≤ ρP ′ + α′′Q′ (22b)

Adding (22a) and (22b) gives (α′ − α′′)(Q′ −Q′′) ≤ 0. Since α′ < α′′, we have Q′ ≥ Q′′.
On the other hand, the inequality (22a) implies ρ(P ′′ − P ′) ≥ α′(Q′ − Q′′) ≥ 0. Since

ρ ≥ 1, we get P ′ ≤ P ′′.

Theorem 9. For α0 ∈ [0, αsup] and α0 ̸∈ C, Procedure FIND(α0) returns αn+1 as the unique
element of C in the closed interval defined by α0 and αn+1.
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Proof. For Min-Min BODO, we also consider two cases: P0−α0Q0 > 0 and P0−α0Q0 < 0.
We first suppose that P0−α0Q0 > 0. We will prove αi < αi+1,∀i ≥ 0 by induction on i.
Since P0 − α0Q0 > 0, α0 < P0/Q0 = α1. Thus, our hypothesis is true with i = 0.
Suppose our hypothesis is true until i = k ≥ 0. We have αi < αi+1,∀0 ≤ i ≤ k. Since

αk < αk+1, we have Pk+1 ≥ Pk > 0 and Qk ≥ Qk+1 > 0 due to Lemma 11. It leads to
QkPk+1 ≥ PkQk+1 and QkPk+1 = PkQk+1 ⇐⇒ (Pk, Qk) ≡ (Pk+1, Qk+1).

If Tk = 0 then Procedure FIND(α0) returns the value αk+1. Hence, the sequence {αi}
for i = 0, 1, ..., k + 1 is strictly increasing.

If Tk < 0 then we have (Pk, Qk) ̸≡ (Pk+1, Qk+1). It implies QkPk+1 > PkQk+1. We get

αk+1 =
Pk

Qk

<
Pk+1

Qk+1

= αk+2,

Thus, in this case, our hypothesis is also true with i = k + 1. Consequently, {αi} is
strictly increasing, ∀i ≥ 0.

In the following, we will show that αn+1 is the unique element of C in the interval
[α0, αn+1].

Suppose that we have α∗ = (α0, αn+1) ∩ C corresponding to a ρ-NF solution (P ∗, Q∗).
Since the sequence {αi}0≤i≤n+1 is strictly increasing, there exists 0 ≤ k ≤ n such that
α∗ ∈ (αk, αk+1].

Since α∗ > αk, we have P ∗ ≥ Pk and Q∗ ≤ Qk due to Lemma 11. Furthermore, as
(P ∗, Q∗) is a ρ-NF solution, we get

ρ
Pk

P ∗ +
Qk

Q∗ ≥ ρ+ 1 =⇒ Qk

Q∗ −
Pk

P ∗ ≥ (ρ+ 1)(1− Pk

P ∗ ) ≥ 0, (23)

If Qk

Q∗ = Pk

P ∗ then (23) yields Qk

Q∗ = Pk

P ∗ = 1. It follows that Pk = P ∗, Qk = Q∗ and αk+1 =
Pk

Qk
= P ∗

Q∗ = α∗. Since αk+1 = α∗ < αn+1, we have k ≤ n−1 and n ≥ 1. As both (P ∗, Q∗) and
(Pk+1, Qk+1) are the solutions of F2(αk+1), we obtain ρPk+1+αk+1Qk+1−(ρP ∗+αk+1Q

∗) = 0.
Consequently, Tk = ρPk+1 + αk+1Qk+1 − (ρPk + αk+1Qk) = 0 which leads to a contradiction
due to Tk < 0, ∀0 ≤ k ≤ n− 1.

Thus, we have
Qk

Q∗ >
Pk

P ∗ =⇒ α∗ =
P ∗

Q∗ >
Pk

Qk

= αk+1,

which leads to a contradiction due to the fact that α∗ ≤ αk+1.
Hence, αn+1 is the unique element of C in the interval [α0, αn+1].
Similarly, in case P0 − α0Q0 < 0, we obtain that the sequence {αi} is strictly decreasing

and αi+1 is the unique element of C in the interval [αn+1, α0]. That concludes the proof.

According to Theorem 9, from α0 ∈ [0, αsup] and α0 ̸∈ C, we can use Procedure FIND(α0)
to find an element αn+1 of C such that there does not exist any other element of C in the
interval [α0, αn+1] (if α0 < αn+1) or [αn+1, α0] (if α0 > αn+1).

For each interval [αi, αj] and (Pi, Qi) ̸≡ (Pj, Qj) are the solutions of F3(αi) and F3(αj),
respectively, where 0 ≤ αi < αj ≤ αsup, we also present some criteria to quickly verify if
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there does not exist any ρ-NF solution in the interval (αi, αj) which is different to (Pi, Qi)
and (Pj, Qj). Then, we show that Algorithm 5 returns all the elements of C corresponding
to all ρ-NF solutions for Min-Min BODO. Notice that the proofs of the following lemma and
theorem can be omitted since they are similar to those for Max-Min BODO with ρ > 1.

Lemma 12. Given an interval [αi, αj] defined by 0 ≤ αi < αj ≤ αsup and let (Pi, Qi),
(Pj, Qj) be the solutions of F3(αi) and F3(αj), respectively, such that (Pi, Qi) ̸≡ (Pj, Qj).
Let αk = |ρ(Pi−Pj)

Qi−Qj
| and (Pk, Qk) be a solution of F3(αk). If one of the following conditions

is satisfied, then there does not exist any ρ-NF solution which is different to (Pi, Qi) and
(Pj, Qj) in the interval (αi, αj).

1. αk ∈ {αi, αj};
2. αk ̸∈ C and (Pk, Qk) ≡ (Pi, Qi) or (Pk, Qk) ≡ (Pj, Qj);

Theorem 10. Algorithm 5 returns all the elements of C corresponding to all ρ-NF solutions
for Min-Min BODO.

According to Theorem 8 and 10, Algorithm 5 returns all the elements of C, which cor-
respond to all ρ-NF solutions, in a finite number of iterations. In general, estimating its
complexity may be difficult. This difficulty comes from the fact that we do not know the
BODO problem’s context and the expressions for the objective functions. In some particular
problems, we can show that Algorithm 5 terminates in polynomial time (for example, the
Bi-Objective Assignment Problem described in Section 5).

5. Illustrative example

In this section, the recursive Newton-like algorithm for determining the ρ-NF solution set
is tested on an instance of Min-Min BODO as a variant of the assignment problem called bi-
objective assignment problem (BOAP). The BOAP can be formally defined as follows. Given
a set of n workers, a set of n jobs, and a n× n cost matrix M whose positive elements mij

represent the cost assignments of worker i to job j, the BOAP finds a one-to-one worker-job
assignment (i.e., a perfect bipartite matching) that minimizes simultaneously the total cost
and the max-min distance, which is the difference between the maximum cost assignment
and the minimum one in the assignment solution. Notice that the problem minimizing
only the max-min distance, called balanced assignment problem, has been introduced for
finding the solution where the equitable distribution of assignments is important, which is
considered in some real-life instances of the assignment problems [24].

As shown in Section 4, for finding the ρ-NF solution set, we aim to solve F3(α) and G3(α)
where α ∈ [0, αsup]. In the following, we present linear programming (LP) for solving F3(α).
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min ρP + αQ (24a)

s.t. P =
∑

i∈[n],j∈[n]

mi,jxi,j (24b)

Q = u− l (24c)∑
j∈[n]

xj,i =
∑
j∈[n]

xi,j = 1 ∀i ∈ [n] (24d)

u ≥
∑
j∈[n]

mi,jxi,j ∀i ∈ [n] (24e)

l ≤
∑
j∈[n]

mi,jxi,j ∀i ∈ [n] (24f)

xi,j ≥ 0 ∀i, j ∈ [n] (24g)

where [n] = {1, ..., n} and xi,j represents the assignment between worker i and job j
corresponding to the cost mi,j. In this formulation, the value of P represents the total cost.
To calculate the max-min distance Q, we determine the maximum and the minimum cost
assignments u and l in the assignment solution. Constraints (24e) allow bounding u from
below by the maximum cost assignment in the assignment solution. Similarly, constraints
(24f) allow bounding l from above by the minimum cost assignment in the assignment
solution. As Q = u − l is minimized, u and l will take the maximum and minimum cost
assignments, respectively.

We also present the following LP for solving G3(α). This LP contains all the constraints
from (24b) to (24g). However, to avoid duplication, they are omitted.

min ρP + αQ+ t (25a)
s.t. t ≥ P − αQ (25b)

t ≥ −P + αQ (25c)

Notice that using two additional constraints (25b) and (25c), the parameter t represents
the absolute value of P − αQ in g3(α, P,Q).

We will show that the solutions of LP formulations (24) and (25) are integral, which
correspond to the assignment solutions (i.e., perfect bipartite matching). Moreover, for
BOAP, determining the ρ-NF solution set can be done in polynomial time.

Lemma 13. The solutions of LP formulations (24) and (25) are integral.

Proof. The objective function of (24) assures that u and l will be equal, respectively, to the
maximum and the minimum cost assignments in the optimal solution. Consequently, the
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solution of LP formulation (24) is always integral since the constraints matrix of (24d) is
totally unimodular (e.g., see [14]), and the constraints (24e) and (24f) are bound constraints.

Similarly, the solution of LP formulation (25) is also integral since the constraints (25b)
and (25c) are bound constraints.

Theorem 11. For BOAP, determining the ρ-NF solution set can be done in polynomial
time.

Proof. Consider an instance of BOAP with a n × n cost matrix and suppose that there
are K distinct Pareto-optimal solutions (Pi, Qi) where 1 ≤ i ≤ K. We first show that
K ≤ C2

n2 =
n2(n2−1)

2
.

Let mmax
i and mmin

i be the maximum and the minimum cost assignment in the as-
signment solution corresponding to (Pi, Qi) then Qi = mmax

i − mmin
i . For two dis-

tinct Pareto-optimal solutions (Pi, Qi), (Pj, Qj), we have Qi ̸= Qj which is equivalent to
mmax

i − mmin
i ̸= mmax

j − mmin
j . We have then (mmax

i ,mmin
i ) ̸≡ (mmax

j ,mmin
j ). Thus, the

assignment solutions corresponding to (Pi, Qi), (Pj, Qj) have distinct pairs of assignments
representing the maximum and the minimum cost assignment. Since we have at most n2

distinct assignments, the number of distinct pairs of assignments is at most C2
n2 . Thus,

K ≤ C2
n2 .

According to Lemma 4, the iterations of Procedure FIND() return distinct Pareto-
optimal solutions. Thus, it terminates in a polynomial number of iterations. Consequently,
it terminates in polynomial time since LP formulation (24) for F3(α) can be solved in poly-
nomial time. Notice that Procedure VERIFY () also terminates in polynomial time.

We know that [0, αsup] can be separated by at most K consecutive subintervals [ci, cj] such
that ci < cj and ci, cj correspond to two distinct Pareto-optimal solutions. For Procedure
EXPLORE ([0, αsup]), we use Procedure FIND() and Procedure VERIFY () in each recursive
call, and we have at most K recursive calls. Hence, Procedure EXPLORE ([0, αsup]) also
terminates in polynomial time.

We now consider an instance of BOAP with 17 workers, 17 jobs, and a cost matrix where
its elements are randomly uniformly generated in the range [1,30] (see Appendix C). Let
P,Q represent the total cost and the max-min distance in a feasible assignment solution.
Furthermore, we first consider ρ = 1 (i.e., P and Q are equally important from the CDM’s
point of view). The experiments are conducted on a PC Intel Core i5-9500 3.00GHz with
6 cores and 6 threads. We present the computational procedures for determining the ρ-NF
solution set based on Algorithm 5.

Step 1 We compute a solution (P0, Q0) of F3(0). We obtain (P0, Q0) = (68, 9). Then
we compute a solution (Pq, Qq) for minimizing Q. We obtain (Pq, Qq) = (262, 3). Thus,
αsup = Pq/Qq =

262
3

. We also assert that αsup ̸∈ C by using Procedure VERIFY(αsup). We
aim to explore the interval [0, 262

3
].

Step 2 Since (131, 4) is a solution of F3(α
sup), we take α1 = |68−131

9−4
| = 63

5
and (80, 7)

as a solution of F3(α1). By using Procedure VERIFY(α1), we obtain that α1 ̸∈ C. Thus, we
use Procedure FIND(α1) to find an element of C. We obtain c1 = 80

7
∈ C corresponding to

the ρ-NF solution (80, 7). We have two subintervals [0, 63
5
] and [80

7
, 262

3
] to be explored.
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Step 3 For the subinterval [80
7
, 262

3
], we take α2 = |80−131

7−4
| = 17 and (110, 5) as a solution

of F3(α2). By using Procedure VERIFY(α2), we obtain α2 ̸∈ C. Thus, we use Procedure
FIND(α2) to find another element of C. We obtain c2 =

131
4
∈ C corresponding to the ρ-NF

solution (131, 4). According to Lemma 12, there is no ρ-NF solution in the interval [17, 262
3
]

except (131, 4). We have two subintervals [0, 63
5
] and [80

7
, 17] to be explored.

Step 4 For the subinterval [80
7
, 17], we take α3 = |80−110

7−5
| = 15 and (80, 7) as a solution

of F3(α3). We have α3 ̸∈ C. According to Lemma 12, there is no ρ-NF solution in this
subinterval except (80, 7).

Step 5 For the subinterval [0, 63
5
], we take α4 = |68−80

9−7
| = 6 and (71, 8) as a solution

of F3(α4). By using Procedure VERIFY(α4), we obtain α4 ̸∈ C. Thus, we use Procedure
FIND(α4) to find another element of C. We obtain c3 =

71
8
∈ C corresponding to the ρ-NF

solution (71, 8). We have two subintervals [0, 6] and [71
8
, 63

5
] to be explored.

Step 6 For the subinterval [71
8
, 63

5
], we take α5 = |70−80

8−7
| = 10 and (80, 7) as a solution

of F3(α5). We have α5 ̸∈ C. According to Lemma 12, there is no ρ-NF solution in this
subinterval except (71, 8) and (80, 7).

Step 7 Finally, for the subinterval [0, 6], we take α6 = |68−71
9−8
| = 3 and (68, 9) as a

solution of F3(α6). We have α6 ̸∈ C. According to Lemma 12, there is no ρ-NF solution in
this subinterval except (71, 8).

Hence, the interval [0, 262
3
] is totally explored and we obtain three ρ-NF solutions:

(71, 8), (80, 7) and (131, 4).

Figure 1: Pareto frontier with ρ-NF solutions in red, ρ = 1
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We can also compute all the Pareto-optimal solutions for this instance as (68, 9),(71, 8),
(80, 7),(110, 5),(131, 4), and (262, 3). Figure 1 shows the Pareto frontier with three ρ-NF
solutions in red. Now we suppose that the CDM prefers the objective P to Q, then we can
choose a bigger value of ρ, for example, ρ = 2 (i.e., P is relatively two times more important
than Q from the CDM’s point of view). Then the Pareto frontier does not change but there
is only one ρ-NF solution as shown in Figure 2. In these instances, the ρ-NF solution set
is a strict subset of the Pareto set. Moreover, (131, 4) (resp. (71, 8)) is the ρ-NF solution
that minimizes P ρQ when ρ = 1 (resp. ρ = 2) among all the feasible solutions. In general,
for Min-Min BODO (resp. Max-Min BODO with ρ > 1), we can determine the optimal
solution of the problem H3 = min

(P,Q)∈S3

P ρQ (resp. H2 = max
(P,Q)∈S2

P ρ/Q with ρ > 1) through

determining the ρ-NF solution set, which represents all its local optimums.

Figure 2: Pareto frontier with ρ-NF solution in red, ρ = 2

6. Conclusion

In this paper, we have generalized the concept of the ρ-NF solution for Bi-Objective
Discrete Optimization (BODO), where the feasible set is discrete, and the two objectives
take only positive values. We first discussed the definition and the existence of the ρ-NF
solutions for BODO. Then, we showed that the ρ-NF solution set is a subset of the Pareto
set, and this inclusion can be strict. We also designed a recursive Newton-like algorithm to
determine the ρ-NF solution set. Finally, an illustrative example of BODO is given.
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Future work should provide efficient algorithms for Max-Max BODO and Max-Min
BODO with ρ < 1. Furthermore, we aim to clarify the quantitative link between the ρ-NF
solution set and the Pareto set in more specific BODO cases (for example, in combinatorial
optimization with linear objectives). The algorithm’s complexity in such cases should also
be studied.
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Appendix A. Cost matrix for the instance of BOAP used in Section 5

M =



1 29 14 22 12 27 1 11 9 10 4 1 3 28 5 9 5
23 23 12 24 20 17 21 9 19 17 16 16 12 19 20 19 10
21 10 29 3 28 14 6 15 26 17 4 12 2 29 20 25 1
25 7 21 17 20 28 20 17 19 11 24 17 20 2 15 7 26
19 3 14 10 18 20 7 9 17 11 16 19 8 20 13 22 23
17 1 7 3 12 14 16 11 24 27 15 23 8 29 12 10 22
10 1 8 15 28 26 6 15 12 10 27 21 9 22 9 9 17
19 15 10 17 9 24 21 6 17 21 13 28 15 8 27 21 29
12 3 20 4 24 13 13 18 23 23 18 23 9 10 15 28 28
15 21 22 5 20 2 4 29 5 18 8 29 2 1 17 29 10
16 9 16 26 6 20 15 15 11 25 13 8 26 15 18 2 3
1 8 14 5 1 18 6 4 6 15 15 15 12 15 22 17 12
7 9 2 25 14 1 25 13 28 6 16 3 4 5 28 28 1
21 12 6 8 25 6 26 8 17 17 13 28 16 24 27 5 18
2 27 10 25 6 24 4 29 26 28 25 4 24 16 1 17 22
22 21 29 8 24 17 19 3 22 9 13 4 14 14 3 29 9
27 27 6 18 23 11 4 16 19 15 5 15 3 8 22 3 28


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