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Abstract
This paper deals with a particular case of Bi-Objective Optimization called Bi-Objective
Discrete Optimization (BODO), where the feasible set is discrete, and the two objectives
take only positive values. Since the feasible set of a BODO problem is discrete and usually
finite, it can theoretically be enumerated to identify the Pareto set, which consists of all
Pareto-optimal solutions representing different trade-offs between two objectives. However,
in general, this problem is algorithmically unsolvable. From a practical point of view, the
Central Decision Maker (CDM) may be interested in a reduced Pareto set reflecting the own
preference of the CDM, which a computationally tractable algorithm can obtain.

In a recent paper [14], we introduced the concept of generalized Nash Fairness (ρ-NF ) so-
lution for Bi-Objective Minimization Problems, where their two positive objectives are to be
simultaneously minimized. The ρ-NF solutions are the Pareto-optimal solutions achieving
some proportional fairness between two objectives. The positive parameter ρ provided by
the CDM reflects the relative importance of the first objective compared to the second one.
We then focused on finding two particular ρ-NF solutions, called extreme ρ-NF solutions,
having the smallest values of each objective.

In this paper, our main contribution is a stronger result than in [14]: we generalize the
concept of ρ-NF solution for BODO problems where each objective can be either maximized
or minimized. We then show that the ρ-NF solution set is a subset of the Pareto set, and
this inclusion can be strict. We also propose several algorithms for determining the ρ-NF
solution set, including a recursive Newton-like algorithm. Finally, an illustrative example of
BODO is given.

Keywords: Bi-Objective Discrete Optimization, Bi-Criteria Decision Making, Pareto
optimal, Proportional Fairness, Generalized Nash Fairness solution

1. Introduction

Bi-Objective Discrete Optimization (BODO) is a branch of optimization with many ap-
plications in different areas, such as applied mathematics, economics, and computer science.
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In practice, the objectives of BODO take only positive values, including some well-studied
examples of BODO in resource allocation, such as the bi-objective knapsack problem [28],
in networks, such as the bi-objective shortest path problem [29], the bi-objective spanning
tree problem [30] and in capital budgeting, such as the bi-objective assignment problem.
The latter problem assembles the objectives of the classic assignment problem [9] and the
balanced assignment problem mentioned in [11]. Therefore, this paper considers the BODO
problems with positive objectives.

Since the feasible set of a BODO problem is discrete and usually finite, it can theoretically
be enumerated to identify the Pareto set, which consists of all Pareto-optimal solutions.
However, this problem is generally known to be algorithmically unsolvable (e.g., see [18]).
From a practical point of view, the Central Decision Maker (CDM) may be interested in
a reduced Pareto set reflecting the own preference of the CDM, which a computationally
tractable algorithm can obtain.

In a recent paper [14], we considered the Bi-Objective Minimization Problems, where
their two positive objectives are to be simultaneously minimized. We utilized the notion
of proportional fairness - which is a well-known rule in communication networks, operation
research, and general social choice introduced in [1], [2], [3] - as a criterion for selecting the
preferred solutions in the Pareto set. In [14], we introduced the concept of generalized Nash
Fairness (ρ-NF ) solution, a Pareto-optimal solution achieving some proportional fairness
between two objectives. The positive parameter ρ provided by the CDM reflects the relative
importance of the first objective compared to the second one. We then focused on finding
two particular ρ-NF solutions, called extreme ρ-NF solutions, having the smallest values
of each objective. In this paper, our main contribution is a stronger result than in [14]: we
generalize the concept of ρ-NF solution for BODO problems where each objective can be
either maximized or minimized. We then show that the ρ-NF solution set is a subset of
the Pareto set. We also propose several algorithms for determining the ρ-NF solution set,
including a recursive Newton-like algorithm.

Note that we also introduced a particular case of ρ-NF solution when ρ = 1, called NF
solution, and the idea to determine the NF solution set for an example of Min-Min BODO
in our conference paper [13]. This paper is an extended and generalized work of [13].

Let us introduce the notations used in this paper. Let P (x), Q(x) denote two positive
objective functions, and (P,Q) = (P (x), Q(x)) denote a feasible solution corresponding to
a decision vector x ∈ X where X is a finite feasible set. Note that the ρ-NF solutions
will be characterized by the solutions (P,Q) and not by the corresponding decision vectors.
Thus, two solutions having the same value of (P,Q) will be considered the same. Assume
that each objective is a convex or concave function, depending on whether it is minimized
or maximized, and we know the algorithms to minimize a convex function (or equivalently
maximize a concave function) over X . These hypotheses are verified for most practical
examples of BODO.

We will consider BODO in three cases: Max-Max BODO with two objectives to be max-
imized, such as the bi-objective knapsack problem [28], Max-Min BODO with one objective
to be maximized, and another one to be minimized, such as some fractional programming
problems [12] and Min-Min BODO with two objectives to be minimized, such as the bi-
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objective assignment problem [13].
The paper is organized as follows. Section 2 discusses the concept and the existence of ρ-

NF solutions for BODO. Then, we show the Pareto efficiency of ρ-NF solutions in Section 3.
Section 4 provides the algorithms for determining the ρ-NF solution set. Section 5 presents
an example of BODO to illustrate these algorithms. Finally, we give some conclusions and
future works in Section 6.

2. Definition and existence of ρ-NF solutions for BODO

2.1. Max-Max BODO
2.1.1. Definition of ρ-NF solution for Max-Max BODO

Max-Max BODO can be formulated as

max
x∈X1

(P (x), Q(x)),

where X1 is a finite feasible set. Moreover, for Max-Max BODO, we suppose that
P (x), Q(x) are positive concave functions.

We first recall the notion of proportional fairness introduced in [1], [2], [3]. Proportional
fairness for the two-player resource allocation problem is defined using the Nash standard of
comparison: a transfer of utilities between the two players is considered fair if the percentage
increase in the utility of one player is larger than the percentage decrease in the utility of
the other player. For the multiple-player problem, when comparing the fair allocation to
any other feasible allocation of utilities, the aggregate proportional change is non-positive.

We explain the parameter ρ as follows. ρ is a positive parameter supplied by the CDM
to reflect the relative importance of P to Q. In other words, ρ percent change of P will
be comparably equivalent to a one percent change of Q. Note that the contexts of Max-
Max BODO and the two-player resource allocation problem introduced in [1] are similar
since their objective functions are to be both maximized. Thus, based on the proportional
fairness, the ρ-NF solution for Max-Max BODO should be such that, if compared to any
other feasible solutions, the sum of the factor ρ of the proportional change of P and the
proportional change of Q is non-positive.

Let S1 be the set of all feasible solutions (P,Q) for Max-Max BODO. Since X1 is finite,
S1 is also finite. If (P ∗, Q∗) ∈ S1 is a ρ-NF solution for Max-Max BODO, we have

ρ
P − P ∗

P ∗ +
Q−Q∗

Q∗ ≤ 0 ⇐⇒ ρ
P

P ∗ +
Q

Q∗ ≤ ρ+ 1, ∀(P,Q) ∈ S1,

Hence, the ρ-NF solution for Max-Max BODO can be defined as follows.

Definition 1. (P ∗, Q∗) ∈ S1 is a ρ-NF solution for Max-Max BODO if and only if

ρ
P

P ∗ +
Q

Q∗ ≤ ρ+ 1, ∀(P,Q) ∈ S1, (1)
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2.1.2. Existence of ρ-NF solution for Max-Max BODO
In this section, we show that the ρ-NF does not always exist for Max-Max BODO, and

if it exists, it is the unique solution to the optimization problem

H1 = max
(P,Q)∈S1

P ρQ,

Theorem 1. If (P ∗, Q∗) is a ρ-NF solution for Max-Max BODO, then it is necessarily the
unique solution of H1 with respect to the values of P and Q.

Proof. Suppose that (P ∗, Q∗) is a ρ-NF solution for Max-Max BODO. We have

ρ
P

P ∗ +
Q

Q∗ ≤ ρ+ 1 =⇒ 1 ≥ ρ

ρ+ 1
× P

P ∗ +
1

ρ+ 1
× Q

Q∗ , ∀(P,Q) ∈ S1, (2)

Using Young’s inequality for products (see [15]), we obtain

ρ

ρ+ 1
× P

P ∗ +
1

ρ+ 1
× Q

Q∗ ≥ (
P

P ∗ )
ρ

ρ+1 × (
Q

Q∗ )
1

ρ+1 = (
P ρQ

P ∗ρQ∗ )
1

ρ+1 , (3)

From (2) and (3), we obtain P ∗ρQ∗ ≥ P ρQ, ∀(P,Q) ∈ S1 which implies that (P ∗, Q∗) is
a solution of H1.

Now suppose that there exists another ρ-NF solution (P ∗∗, Q∗∗) ∈ S1 such that
P ∗∗ρQ∗∗ = P ∗ρQ∗. We also have

ρ
P ∗∗

P ∗ +
Q∗∗

Q∗ ≤ ρ+ 1 =⇒ 1 ≥ ρ

ρ+ 1
× P ∗∗

P ∗ +
1

ρ+ 1
× Q∗∗

Q∗ ,

Using Young’s inequality for products, we have

1 ≥ ρ

ρ+ 1
× P ∗∗

P ∗ +
1

ρ+ 1
× Q∗∗

Q∗ ≥ (
P ∗∗

P ∗ )
ρ

ρ+1 × (
Q∗∗

Q∗ )
1

ρ+1 = (
P ∗∗ρQ∗∗

P ∗ρQ∗ )
1

ρ+1 = 1,

Thus, the equality in Young’s inequality above must hold, which implies P ∗∗

P ∗ = Q∗∗

Q∗ .
Moreover, since P ∗∗ρQ∗∗ = P ∗ρQ∗, we obtain

1 =
P ∗∗ρQ∗∗

P ∗ρQ∗ = (
P ∗∗

P ∗ )
ρ(
Q∗∗

Q∗ ) = (
P ∗∗

P ∗ )
ρ+1,

Thus, we have P ∗∗ = P ∗ and Q∗∗ = Q∗.

Note that the unique solution of H1 is not necessarily the ρ-NF . Let us suppose that
ρ = 1 and the feasible set S1 has two solutions (P1, Q1) = (13, 15), (P2, Q2) = (10, 20). We
see that (P2, Q2) is the solution having the maximal value of P ρQ but it is not a ρ-NF
solution because

ρ
P1

P2

+
Q1

Q2

=
13

10
+

15

20
=

41

20
> 2 = ρ+ 1,

Consequently, the ρ-NF solution for Max-Max BODO is not guaranteed to exist. If it
exists, it is the unique solution of H1.

March 2, 2023



2.2. Max-Min BODO
2.2.1. Definition of ρ-NF solution for Max-Min BODO

Since minimizing Q(x) over X2 is equivalent to maximizing −Q(x) over X2, Max-Min
BODO can be formulated as

max
x∈X2

(P (x),−Q(x))

where X2 is a finite feasible set (i.e., we simultaneously maximize P (x) and minimize
Q(x) over X2). Moreover, for Max-Min BODO, we suppose that P (x) is a positive concave
function and Q(x) is a positive convex function.

In the context of Max-Min BODO, we prefer an alternative assigning a greater value for P
and a smaller value for Q. Thus, the ρ-NF solution should be such that, when compared to
any other feasible solutions, the difference between the factor ρ of the proportional change
of P and the proportional change of Q is non-positive (i.e., from the definition (1) of ρ-
NF solution for Max-Max BODO, we change the sign for the proportional change of Q as
negative).

Let S2 be the set of all feasible solutions (P,Q) for Max-Min BODO. Since X2 is finite,
S2 is also finite. If (P ∗, Q∗) ∈ S2 is a ρ-NF solution for Max-Min BODO, we have

ρ
P − P ∗

P ∗ − Q−Q∗

Q∗ ≤ 0 ⇐⇒ ρ
P

P ∗ −
Q

Q∗ ≤ ρ− 1, ∀(P,Q) ∈ S2,

Hence, the ρ-NF solution for Max-Min BODO can be defined as follows.

Definition 2. (P ∗, Q∗) ∈ S2 is a ρ-NF solution for Max-Min BODO if and only if

ρ
P

P ∗ −
Q

Q∗ ≤ ρ− 1, ∀(P,Q) ∈ S2, (4)

2.2.2. Existence of ρ-NF solutions for Max-Min BODO with 0 < ρ ≤ 1

This section discusses the existence of ρ-NF solutions for Max-Min BODO. For that, we
consider the following optimization problem.

H2 = max
(P,Q)∈S2

P ρ

Q
,

We will show that in case 0 < ρ ≤ 1, a ρ-NF solution is necessarily a solution of H2,
and in case ρ > 1, there always exists a ρ-NF solution which is a solution of H2.

Theorem 2. If (P ∗, Q∗) is a ρ-NF solution for Max-Min BODO with 0 < ρ ≤ 1, then it is
necessarily a solution of H2. Moreover, in case 0 < ρ < 1, the ρ-NF solution (if it exists)
is the unique solution of H2.
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Proof. Suppose that (P ∗, Q∗) is a ρ-NF solution for Max-Min BODO with 0 < ρ ≤ 1. Using
Young’s inequality for products, we have

Q

Q∗ ≥ ρ× P

P ∗ + (1− ρ) ≥ (
P

P ∗ )
ρ =

P ρ

P ∗ρ ,∀(P,Q) ∈ S2,

which is equivalent to

P ∗ρ

Q∗ ≥
P ρ

Q
,∀(P,Q) ∈ S2,

Thus, (P ∗, Q∗) is a solution of H2.
Now suppose that 0 < ρ < 1 and there exists another ρ-NF solution (P ∗∗, Q∗∗) ∈ S2

such that P ∗∗ρ

Q∗∗ = P ∗ρ

Q∗ .
Using Young’s inequality for products, we also have

Q∗∗

Q∗ ≥ ρ× P ∗∗

P ∗ + (1− ρ) ≥ (
P ∗∗

P ∗ )
ρ =

Q∗∗

Q∗ ,

Thus, the equality in Young’s inequality above must hold, which implies P ∗∗

P ∗ = 1. Con-
sequently, we have P ∗∗ = P ∗ and Q∗∗ = Q∗.

Note that the unique solution of H2 is not necessarily the ρ-NF solution. Let us suppose
that ρ = 1/2 and the feasible set S2 has two solutions (P1, Q1) = (17, 4), (P2, Q2) = (9, 3).
We see that (P1, Q1) is the solution having the maximal value of P ρ/Q but it is not a ρ-NF
solution because

ρ
P2

P1

− Q2

Q1

=
1

2
× 9

17
− 3

4
= −33

68
> −1

2
= ρ− 1,

Consequently, the ρ-NF solution for Max-Min BODO with 0 < ρ < 1 is not guaranteed
to exist. If it exists, it is the unique solution of H2.

2.2.3. Existence of ρ-NF solutions for Max-Min BODO with ρ > 1

In this case, we show that the ρ-NF solution always exists by the following theorem.

Theorem 3. There always exists a ρ-NF solution for Max-Min BODO with ρ > 1.

Proof. Since S2 is finite, there always exists (P ∗, Q∗) ∈ S2 as a solution of H2.
Let us show that (P ∗, Q∗) is a ρ-NF solution. We have P ∗ρ

Q∗ ≥ P ρ

Q
, ∀(P,Q) ∈ S2. Using

Young’s inequality for products, we obtain

1

ρ
× Q

Q∗ +
ρ− 1

ρ
≥ (

Q

Q∗ )
1
ρ ≥ P

P ∗ ,

Thus,

ρ
P

P ∗ −
Q

Q∗ ≤ ρ− 1, ∀(P,Q) ∈ S2,

Consequently, (P ∗, Q∗) is a ρ-NF solution.
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Let us show that there may be more than one ρ-NF solution for Max-Min BODO with
ρ > 1. Suppose that ρ = 2 and the feasible set S2 has two solutions (P1, Q1) = (10, 8),
(P2, Q2) = (8, 5). We see that both (P1, Q1) and (P2, Q2) are ρ-NF solutions because

ρ
P2

P1

− Q2

Q1

= 2× 10

8
− 8

5
=

9

10
< 1 = ρ− 1,

ρ
P1

P2

− Q1

Q2

= 2× 8

10
− 5

8
=

39

40
< 1 = ρ− 1,

2.3. Min-Min BODO
In this section, we restate the definition and the existence of ρ-NF solution for Min-Min

BODO, which has been introduced in our recent paper [14]. Note that if ρ > 0 reflects the
relative importance of the first objective to the second one, then 1/ρ reflects the relative
importance of the second objective to the first one. Furthermore, the two objectives play
the same role in Min-Min BODO since they are both to be minimized. Thus, without loss
of generality, we only consider ρ ≥ 1, more precisely, which reflects the relative importance
of P to Q.

2.3.1. Definition of ρ-NF solution for Min-Min BODO
Min-Min BODO can be formulated as

min
x∈X3

(P (x), Q(x)),

where X3 is a finite feasible set. Moreover, for Min-Min BODO, we suppose that
P (x), Q(x) are positive convex functions.

In the context of Min-Min BODO, we prefer an alternative assigning a smaller value for
both P and Q, which is opposite to Max-Max BODO. Thus, the ρ-NF solution should be
such that, when compared to any other feasible solutions, the sum of the factor ρ of the
proportional change of P and the proportional change of Q should be non-negative.

Let S3 be the set of all feasible solutions (P,Q) for Min-Min BODO. Since X3 is finite,
S3 is also finite. If (P ∗, Q∗) ∈ S3 is a ρ-NF solution for Min-Min BODO, we have

ρ
P − P ∗

P ∗ +
Q−Q∗

Q∗ ≥ 0 ⇐⇒ ρ
P

P ∗ +
Q

Q∗ ≥ ρ+ 1, ∀(P,Q) ∈ S3,

Hence, the ρ-NF solution for Max-Max BODO can be defined as follows.

Definition 3. [14] (P ∗, Q∗) ∈ S3 is a ρ-NF solution for Min-Min BODO if and only if

ρ
P

P ∗ +
Q

Q∗ ≥ ρ+ 1, ∀(P,Q) ∈ S3, (5)
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2.3.2. Existence of ρ-NF solution for Min-Min BODO
For the Min-Min BODO, we consider the optimization problem:

H3 = min
(P,Q)∈S3

P ρQ,

We will show that the ρ-NF solution always exists for Min-Min BODO by the following
theorem.

Theorem 4. [14] There always exists a ρ-NF solution for Min-Min BODO.

Proof. Since S3 is finite, there always exists (P ∗, Q∗) ∈ S3 as a solution of H3.
Let us show that (P ∗, Q∗) is a ρ-NF solution. We have P ρQ ≥ P ∗ρQ∗, ∀(P,Q) ∈ S3.

Using Young’s inequality for products, we obtain

ρ

ρ+ 1
× P

P ∗ +
1

ρ+ 1
× Q

Q∗ ≥ (
P

P ∗ )
ρ

ρ+1 × (
Q

Q∗ )
1

ρ+1 = (
P ρQ

P ∗ρQ∗ )
1

ρ+1 ≥ 1, ∀(P,Q) ∈ S3,

Thus,

ρ
P

P ∗ +
Q

Q∗ ≥ ρ+ 1, ∀(P,Q) ∈ S3,

Consequently, (P ∗, Q∗) is a ρ-NF solution.

Let us show that there may be more than one ρ-NF solution for Min-Min BODO.
Suppose that ρ = 1 and the feasible set S3 has two solutions (P1, Q1) = (11, 4), (P2, Q2) =
(9, 5). We see that both (P1, Q1) and (P2, Q2) are ρ-NF solutions because

ρ
P2

P1

+
Q2

Q1

=
9

11
+

5

4
=

91

44
> 2 = ρ+ 1,

ρ
P1

P2

+
Q1

Q2

=
11

9
+

4

5
=

91

45
> 2 = ρ+ 1,

3. Pareto efficiency of ρ-NF solutions

As a particular case of multi-objective optimization, the concept of Pareto efficiency [17]
is applied to describing BODO’s efficient solutions (Pareto-optimal solutions). This section
shows the Pareto efficiency of ρ-NF solutions. More precisely, the ρ-NF solution set is a
subset of the Pareto set.

We first show that the ρ-NF solutions for Max-Max BODO, Max-Min BODO, and
Min-Min BODO can be respectively obtained by solving the optimization problems.

max
(P,Q)∈S1

F1(α, P,Q) = ρP + αQ,

max
(P,Q)∈S2

F2(α, P,Q) = ρP − αQ,

min
(P,Q)∈S3

F3(α, P,Q) = ρP + αQ,
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where α > 0 is the coefficient to be determined.
According to the convexity and the concavity of P,Q in each case, F1(α, P,Q), F2(α, P,Q)

are concave, and F3(α, P,Q) is convex. Consequently, we suppose we know how to solve the
three problems above. Note that if we optimize Fi(α, P,Q) for i = 1, 2, 3, that means we
maximize F1(α, P,Q), F2(α, P,Q) and minimize F3(α, P,Q).

Lemma 1. For i = 1, 2, 3, (P ∗, Q∗) ∈ Si is a ρ-NF solution if and only if (P ∗, Q∗) is a
solution for optimizing Fi(α

∗, P,Q) with α∗ = P ∗/Q∗.

Proof. We first proof this lemma for Max-Max BODO.
=⇒ Let (P ∗, Q∗) ∈ S1 be a ρ-NF solution and α∗ = P ∗/Q∗. We will show that (P ∗, Q∗)

is a solution for maximizing F1(α
∗, P,Q).

Since P ∗, Q∗ > 0, α∗ > 0. As (P ∗, Q∗) is a ρ-NF solution we have

ρ
P

P ∗ +
Q

Q∗ ≤ ρ+ 1, ∀(P,Q) ∈ S1, (6)

Multiplying (6) by P ∗ > 0 gives

ρP +
P ∗

Q∗Q ≤ ρP ∗ + P ∗, ∀(P,Q) ∈ S1, (7)

Since α∗ = P ∗/Q∗, we deduce from (7)

ρP + α∗Q ≤ ρP ∗ + α∗Q∗, ∀(P,Q) ∈ S1,

Hence, (P ∗, Q∗) is a solution for maximizing F1(α
∗, P,Q).

⇐= Suppose that (P ∗, Q∗) is a solution for maximizing F1(α
∗, P,Q) with α∗ = P ∗/Q∗,

we show that (P ∗, Q∗) is a ρ-NF solution.
As (P ∗, Q∗) is a solution for maximizing F1(α

∗, P,Q) we have

ρP + α∗Q ≤ ρP ∗ + α∗Q∗, ∀(P,Q) ∈ S1,

Replacing α∗ by P ∗/Q∗ we obtain

ρ
P

P ∗ +
Q

Q∗ ≤ ρ+ 1, ∀(P,Q) ∈ S1,

That means (P ∗, Q∗) is a ρ-NF solution.
Since the proofs for Max-Min BODO and Min-Min BODO are similar to those for Max-

Max BODO, they are omitted.

Theorem 5. The ρ-NF solution set is a subset of the Pareto set. Moreover, this inclusion
can be strict.
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Proof. We first show that for α0 > 0, a solution for maximizing F1(α0, P,Q) is a Pareto-
optimal solution.

Let (P0, Q0) ∈ S1 be a solution for maximizing F1(α0, P,Q). If (P0, Q0) is not a Pareto-
optimal solution, then there exists a feasible solution (P1, Q1) ∈ S1 such that (P0, Q0) is
dominated by (P1, Q1). Without loss of generality, we suppose that P1 > P0 and Q1 ≥ Q0.
Since ρ, α0 > 0, we have

ρP0 + α0Q0 < ρP1 + α0Q1,

which is contradict to the optimality of (P0, Q0).
Thus, (P0, Q0) is a Pareto-optimal solution, and then a ρ-NF solution for Max-Max

BODO is necessarily a Pareto-optimal solution due to Lemma 1.
Using the proof of Theorem 1, if ρ = 1 and the feasible set S1 has two solutions (P1, Q1) =

(13, 15) and (P2, Q2) = (10, 20) then (P2, Q2) is a Pareto-optimal solution but not a ρ-NF
solution. Consequently, a Pareto-optimal solution is not necessarily a ρ-NF solution for
Max-Max BODO.

Similarly, the ρ-NF solutions for Max-Min BODO and Min-Min BODO are necessarily
the Pareto-optimal solution, but the inverse may not be true. This concludes the proof.

Note that using the definitions of ρ-NF solutions, we can also obtain their Pareto ef-
ficiency. However, we state Lemma 1 because it is necessary for determining the ρ-NF
solution set in the next section.

4. Determining the ρ-NF solution set for BODO

As shown in Section 2.1.2, the ρ-NF solution for Max-Max BODO is not guaranteed to
exist. Thus, after obtaining the solution of H1, we verify if it is exactly the ρ-NF solution.

In general, verifying if a feasible solution is the ρ-NF solution can be done by the
following lemma.

Lemma 2. For i = 1, 2, 3 and a given solution (P0, Q0) ∈ Si, let α1 = P0/Q0 and (P1, Q1)
be a solution for optimizing Fi(α1, P,Q). Then (P0, Q0) is a ρ-NF solution if and only if
Fi(α1, P1, Q1) = Fi(α1, P0, Q0).

Proof. =⇒ If (P0, Q0) ∈ Si is a ρ-NF solution then (P0, Q0) is also a solution for optimiz-
ing Fi(α1, P,Q) due to Lemma 1. Thus, Fi(α1, P1, Q1) = Fi(α1, P0, Q0) since (P0, P1) and
(P1, Q1) are both the solutions for optimizing Fi(α1, P,Q).
⇐= If Fi(α1, P1, Q1) = Fi(α1, P0, Q0) then (P0, Q0) is also a solution for optimizing

Fi(α1, P,Q). Since α1 = P0/Q0, (P0, Q0) is a ρ-NF solution due to Lemma 1.

4.1. Max-Max BODO
We recall that the ρ-NF solution for Max-Max BODO is not guaranteed to exist. Thus,

we first solve H1, then verify if the obtained solution is the ρ-NF solution by using Lemma
2. Note that solving H1 is equivalent to solving the following problem
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H∗
1 = max

(P,Q)∈S1

ρ logP + logQ,

where log denotes the natural logarithmic function.
According to the concavity of P,Q, ρ logP + logQ is concave, ∀ρ > 0. Thus, suppose

that we know how to solve H∗
1 over X1. The algorithm for finding the ρ-NF solution for

Max-Max BODO can be stated as follows.

Algorithm 1
Input: An instance of Max-Max BODO with ρ > 0.
Output: The ρ-NF solution (if it exists) or −1 (otherwise).
1: Solving H∗

1 to obtain a solution (P0, Q0)
2: α1 ← P0/Q0

3: Maximizing F1(α1, P,Q) to obtain a solution (P1, Q1)
4: if F1(α1, P0, Q0) = F1(α1, P1, Q1) then
5: Return (P0, Q0)
6: else
7: Return -1
8: end if

4.2. Max-Min BODO with 0 < ρ ≤ 1

As a result of Theorem 2, the ρ-NF solution for Max-Min BODO with 0 < ρ ≤ 1 is
necessarily the solution of H2. Since P ρ is concave and Q is convex, H2 can be considered
as a concave-convex fractional maximization problem, which is well-known in literature [6],
[7]. Note that the objective function of H2 is generally not concave, although it is composed
of a concave and a convex function. For solving H2, we consider the following Dinkelbach’s
transform [8]

D2(α) = max
(P,Q)∈S2

P ρ − αQ,

Since P ρ − αQ is a concave function, suppose that we know how to solve D2(α) over
X2. Thus, the algorithm for finding ρ-NF solution can be stated as follows. This algorithm
is inspired by the application of Newton’s method to linear fractional programming that
was first discussed by Isbell and Marlow [16] and then generalized to nonlinear fractional
programming by Dinkelbach [8].
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Algorithm 2
Input: An instance of Max-Min BODO with 0 < ρ ≤ 1.
Output: The ρ-NF solution (if it exists) or −1 (otherwise).
1: α0 ← 0
2: Solving D2(α0) to obtain a solution (P0, Q0)
3: i← 0
4: repeat
5: αi+1 ← P ρ

i /Qi

6: Solving D2(αi+1) to obtain a solution (Pi+1, Qi+1)
7: Ti ← P ρ

i − αiQi

8: i← i+ 1
9: until Ti = 0

10: if ρ = 1 then
11: Return (Pi, Qi)
12: else ▷ 0 < ρ < 1
13: α′ ← Pi/Qi

14: Maximizing F2(α
′, P,Q) to obtain a solution (P ′, Q′)

15: if F2(α
′, Pi, Qi) = F2(α

′, P ′, Q′) then
16: Return (Pi, Qi)
17: else
18: Return −1
19: end if
20: end if

Like for Max-Max BODO, the ρ-NF solution for Max-Min BODO with 0 < ρ < 1 is not
guaranteed to exist. Thus, after obtaining the solution (Pi, Qi) for which Ti = 0, we verify
if it is the ρ-NF solution based on Lemma 2.

Let us consider the special case when ρ = 1. In this case, all ρ-NF solutions are the
solutions to the following concave-convex fractional maximization problem (see [7])

R2 = max
(P,Q)∈S2

P

Q
,

Consequently, determining the ρ-NF solution set is equivalent to determining the solu-
tion set of R2. If P,Q are linear, there have been some discussions about its solution set
in the literature. Most of them give a unique condition for the solution. If this condition
is not satisfied, computational procedures are presented to determine the solution set [26],
[27]. For example, a method for determining the solution set based on an adaptation of the
convex simplex method credited to Gilmore and Gomory has been introduced in [25].

However, when P,Q are nonlinear, determining the solution set of R2 may be difficult
since it is hard to describe the general structure of the solutions. Furthermore, they are the
optimal solutions of Dinkelbach’s transform D2(α) with a unique value of α [6].

In the next section, we will show the main distribution of this paper: we propose a recur-
sive Newton-like algorithm using the weighted sum scalarization approach for determining
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the ρ-NF solution set for Max-Min BODO with ρ > 1 and Min-Min BODO.

4.3. Max-Min BODO with ρ > 1 and Min-Min BODO
4.3.1. General idea of algorithm for determining the ρ-NF solution set

Since many ρ-NF solutions may exist for both Min-Min BODO with ρ > 1 and Min-Min
BODO, this section states the general idea and algorithm for obtaining their ρ-NF solution
set in a unique framework.

As the ρ-NF solution set is a subset of the Pareto set, one may theoretically find the
latter and check for every Pareto-optimal solution if it is also a ρ-NF solution. However,
most of the methods related to finding the Pareto set in the literature, such as the Nor-
mal Boundary Intersection (NBI) [20] and the Non-dominated Sorting Genetic Algorithm
(NSGA-II) [21], provide an approximate Pareto set instead of the exact one. Moreover, they
are also expensive to implement [22].

Another BODO’s popular solving method is the weighted sum scalarization approach
[4] due to its computational efficiency. By scalarizing two objectives into a single objective,
it provides a solution that reflects preferences incorporated in selecting the weights and
possibly multiple solutions when varying the weights consistently. However, its fundamental
drawback is not finding a uniform spread of Pareto-optimal solutions, even if a uniform
spread of weight vectors is used. More seriously, Pareto-optimal solutions in non-convex
regions are not detected [23], [24]. Thus, it may not provide the Pareto set completely.

Hence, a novel method is required for determining the ρ-NF solution set. For this
purpose, we propose a recursive Newton-like algorithm using the modified weighted sum
scalarization approach to identify all ρ-NF solutions.

Let F (α, P,Q) represent F2(α, P,Q) and F3(α, P,Q) in our algorithm (i.e., if we optimize
F (α, P,Q), that means we maximize F2(α, P,Q) over X2 or minimize F3(α, P,Q) over X3,
depending on the considered problem is Max-Min BODO with ρ > 1 or Min-Min BODO).
According to Lemma 1, let C be the set containing all elements α∗ such that there exists a
ρ-NF solution (P ∗, Q∗) as a solution for optimizing F (α∗, P,Q) with α∗ = P ∗/Q∗. We can
prove that each element of C corresponds to a unique ρ-NF solution and vice versa. Thus,
determining the ρ-NF solution set is equivalent to finding all elements of C.

Let us explain the general idea for finding all elements of C. From the given BODO
problem, we first determine αsup as the upper bound for the elements of C. Then, our
algorithm uses Procedure EXPLORE () to recursively explore all elements of C in the interval
[0, αsup]. For each subinterval [αi, αj] ⊆ [0, αsup], Procedure EXPLORE () determines a
value α ∈ [αi, αj] based on the solutions for optimizing F (αi, P,Q) and F (αj, P,Q). Then,
Procedure VERIFY () verifies whether α ∈ C or not. If not, we use Procedure FIND() to
find an element α∗ ∈ C such that there does not exist any other element of C in the closed
interval defined by α and α∗ (i.e., [α, α∗] if α < α∗ or [α∗, α] if α∗ < α). Then, we remove
such closed interval to obtain at most two remaining subintervals from [αi, αj], which we
will continue to explore. Although we may need two recursive calls in an iteration, the total
number of recursive calls in the worst case is bounded by the number of Pareto-optimal
solutions. Furthermore, our determining method of α provides some criteria for quickly
asserting that no more ρ-NF solution exists in [αi, αj].
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In summary, we divide recursively the interval [0, αsup] by the consecutive subintervals.
Then, either our algorithm shows that there is no element of C in each subinterval or it
provides an element of C and continues for the other subintervals until the interval [0, αsup]
is totally explored. Notice that our algorithm may not provide the Pareto set since some
Pareto-optimal solutions are not guaranteed to be found by the weighted sum scalarization
approach. However, it provides completely the ρ-NF solution set.

In the following, we discuss how to propose Procedure VERIFY(α0) for verifying α0 ∈ C
from the given α0. Notice that it may be difficult to verify if α0 ∈ C by only optimizing
F (α0, P,Q) and then checking if the obtained solution (P0, Q0) satisfies P0 − α0Q0 = 0
(based on Lemma 1). The fact is that the problem optimizing F (α0, P,Q) may have multiple
solutions, and we only obtain one solution, which is possibly not the ρ-NF solution in case
α0 ∈ C (i.e., there exists another solution (P1, Q1) for optimizing F (α0, P,Q) which is a
ρ-NF solution. However, (P0, Q0), instead of (P1, Q1), is returned. Thus, α0 ∈ C although
P0 − α0Q0 ̸= 0).

Hence, for Procedure VERIFY (), we define two additional optimization problems

max
(P,Q)∈S2

G2(α, P,Q) = ρP − αQ− |P − αQ|,

min
(P,Q)∈S3

G3(α, P,Q) = ρP + αQ+ |P − αQ|,

where |.| denotes the absolute function.
Note that G2(α, P,Q) can be transformed as a linear combination of P and Q. More

precisely, if P ≥ αQ then G2(α, P,Q) = (ρ+1)P − 2αQ, and if P ≤ αQ then G2(α, P,Q) =
(ρ− 1)P . In both cases, G2(α, P,Q) is concave since ρ > 1, P is concave and Q is convex.
Thus, suppose that we know how to maximize G2(α, P,Q) over X2.

Similarly, if P ≥ αQ then G3(α, P,Q) = (ρ + 1)P , and if P ≤ αQ then G3(α, P,Q) =
(ρ−1)P +2αQ. In both cases, G3(α, P,Q) is convex since ρ ≥ 1 and P,Q are convex. Thus,
suppose that we also know how to minimize G3(α, P,Q) over X3.

Let G(α, P,Q) represent G2(α, P,Q) and G3(α, P,Q) in our algorithm. Note that if we
optimize G(α, P,Q), that means we maximize G2(α, P,Q) over X2 or minimize G3(α, P,Q)
over X3, depending on the considered problem is Max-Min BODO with ρ > 1 or Min-Min
BODO . We first state Procedure VERIFY () as follows.
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Algorithm 3 Verifying if α0 ∈ C
Input: α0 ∈ [0, αsup].
Output: True if α0 ∈ C and False otherwise.
1: procedure VERIFY (α0)
2: Optimizing F (α0, P,Q) and G(α0, P,Q) to obtain the solutions (P0, Q0) and (P1, Q1)
3: if G(α0, P1, Q1) = F (α0, P0, Q0) then
4: Return True
5: else
6: Return False
7: end if
8: end procedure

For a given α0 ∈ [0, αsup], if we assert that α0 ̸∈ C by Procedure VERIFY(α0), then we
can use Procedure FIND(α0) for finding an element of C from α0. This procedure is also
based on the application of Newton’s method for linear programming. It can be stated as
follows.

Algorithm 4 Finding an element of C from α0 ̸∈ C
Input: α0 ∈ [0, αsup] and α0 ̸∈ C.
Output: A unique element of C in the closed interval defined by itself and α0.
1: procedure FIND(α0)
2: Optimizing F (α0, P,Q) to obtain a solution (P0, Q0)
3: i← 0
4: repeat
5: αi+1 ← Pi/Qi

6: Optimizing F (αi+1, P,Q) to obtain a solution (Pi+1, Qi+1)
7: Ti ← F (αi+1, Pi+1, Qi+1)− F (αi+1, Pi, Qi)
8: i← i+ 1
9: until Ti = 0

10: Return αi+1

11: end procedure

Then, for each subinterval [αi, αj] ⊆ [0, αsup], we present Procedure EXPLORE([αi, αj])
for finding all elements of C in such subinterval.
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Algorithm 5 Finding the elements of C in the interval [αi, αj]

Input: αi < αj and αi, αj ∈ [0, αsup], (Pi, Qi) ̸≡ (Pj, Qj) are respectively the solutions for
optimizing F (αi, P,Q) and F (αj, P,Q).

Output: All elements of C in the interval [αi, αj].
1: procedure EXPLORE ([αi, αj])
2: C = {}
3: if VERIFY(αi) == True then C = C ∪ αi

4: end if
5: if VERIFY(αj) == True then C = C ∪ αj

6: end if
7: αk ← |ρ(Pi−Pj)

Qi−Qj
|

8: while αi < αk and αk < αj do
9: if VERIFY(αk) == True then

10: C ← C ∪ αk ▷ αk is an element of C
11: EXPLORE([αi, αk]),EXPLORE([αk, αj])
12: else
13: Optimizing F (αk, P,Q) to obtain a solution (Pk, Qk)
14: if (Pk, Qk) ̸≡ (Pi, Qi) and (Pk, Qk) ̸≡ (Pj, Qj) then ck ← FIND(αk)
15: if αi == ck then EXPLORE([αk, αj])
16: else if αj == ck then EXPLORE([αi, αk])
17: else if αi < ck and ck < αk then C ← C ∪ ck
18: EXPLORE([αi, ck]), EXPLORE([αk, αj])
19: else if αj > ck and ck > αk then C ← C ∪ ck
20: EXPLORE([αi, αk]), EXPLORE([ck, αj])
21: end if
22: end if
23: end if
24: end while
25: Return C
26: end procedure

Finally, we state the main algorithm for determining the ρ-NF solution set by finding
all elements of C.

Algorithm 6 Finding the ρ-NF solution set
Input: A BODO instance (either Max-Min BODO with ρ > 1 or Min-Min BODO).
Output: Set C whose elements correspond to all ρ-NF solutions.
1: Compute αsup from the given BODO instance.
2: EXPLORE([0, αsup])

In the next two sections, we show that Algorithm 6 returns all elements of C, which
correspond to all ρ-NF solutions for Max-Min BODO with ρ > 1 and Min-Min BODO.
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Note that the two cases’ statements of lemmas and theorems are almost similar. However,
their proofs are different due to their different characterization of the ρ-NF solution.

4.3.2. Proofs for Max-Min BODO with ρ > 1

For Max-Min BODO with ρ > 1, the set C is defined as follows: C contains all elements
α∗ > 0 such that there exists a ρ-NF solution (P ∗, Q∗) ∈ S2 for maximizing F2(α

∗, P,Q)
with α∗ = P ∗/Q∗. Moreover, F (α, P,Q), G(α, P,Q) become respectively F2(α, P,Q) and
G2(α, P,Q) in our algorithm.

We first assert that each element of C corresponds to a unique ρ-NF solution and vice
versa. Consequently, determining the ρ-NF solution set is equivalent to finding all elements
of C.

Lemma 3. For Max-Min BODO with ρ > 1, there is a bijection between the set C and the
ρ-NF solution set.

Proof. According to Lemma 1, each ρ-NF solution corresponds to a unique element of C.
We show that each element of C corresponds to a unique ρ-NF solution with respect to

the values of P and Q.
Suppose that (P ∗, Q∗), (P ∗∗, Q∗∗) ∈ S2 are two ρ-NF solutions corresponding to α∗ ∈ C.

Since both (P ∗, Q∗) and (P ∗∗, Q∗∗) are the solutions for maximizing F2(α
∗, P,Q), we have

ρP ∗ − α∗Q∗ = ρP ∗∗ − α∗Q∗∗, (8)

Furthermore, since α∗ ∈ C, we get

P ∗ − α∗Q∗ = P ∗∗ − α∗Q∗∗ = 0, (9)

From (8) and (9), we have (ρ− 1)P ∗ = (ρ− 1)P ∗∗. Since ρ− 1 > 0, we obtain P ∗ = P ∗∗

and consequently Q∗ = Q∗∗. Thus, (P ∗, Q∗) ≡ (P ∗∗, Q∗∗).

According to Lemma 3, although both Max-Min BODO with ρ = 1 and Max-Min BODO
with ρ > 1 have possibly multiple ρ-NF solutions, they have a main difference. That is,
unlike for Max-Min BODO with ρ > 1, all ρ-NF solutions for Max-Min BODO with ρ = 1
correspond to a unique value, which is the maximal value of the ratio P/Q, ∀(P,Q) ∈ S2.

We then determine αsup as the upper bound for the elements of C. Let αsup be exactly
the maximal value of the ratio P/Q, ∀(P,Q) ∈ S2. We recall that for Max-Min BODO with
ρ = 1, each ρ-NF solution (Pf , Qf ) is a solution of the optimization problem

max
(P,Q)∈S2

P − αsupQ,

satisfying Pf − αsupQf = 0 (i.e., αsup = Pf/Qf ), see [6]. By the following lemma, we
prove αsup is the upper bound for the elements of C.

Lemma 4. Let α∗ ∈ C. We have α∗ ≤ αsup.
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Proof. Let (P ∗, Q∗) ∈ S2 be a ρ-NF solution for Max-Min BODO with ρ > 1 correspond-
ing to α∗ ∈ C and (Pf , Qf ) ∈ S2 be a ρ-NF solution for Max-Min BODO with ρ = 1
corresponding to αf . From P ∗ = α∗Q∗ and the optimality of (Pf , Qf ), we have

P ∗ − α∗Q∗ = 0 = Pf − αsupQf ≥ P ∗ − αsupQ∗,

Thus, α∗ ≤ αsup.

For a given α0 ∈ [0, αsup], we show that verifying if α0 ∈ C can be done by solving
F2(α, P,Q) and G2(α, P,Q).

Lemma 5. For a given α0 ∈ [0, αsup], let (P0, Q0), (P1, Q1) ∈ S2 be respectively the solutions
for maximizing F2(α0, P,Q) and G2(α0, P,Q). Then α0 ∈ C if and only if G2(α0, P1, Q1) =
F2(α0, P0, Q0).

Proof. =⇒ Suppose that α0 ∈ C. According to Lemma 1, there exists a feasible solution
(P ∗, Q∗) ∈ S2 such that (P ∗, Q∗) is a solution for maximizing F2(α0, P,Q) and P ∗ = α0Q

∗.
Since both (P0, Q0) and (P ∗, Q∗) are the solutions for maximizing F2(α0, P,Q) and P ∗ −
α0Q

∗ = 0, we have

ρP0 − α0Q0 = ρP ∗ − α0Q
∗ − |P ∗ − α0Q

∗|,

The optimality of (P0, Q0) gives

ρP0 − α0Q0 ≥ ρP1 − α0Q1,

Since |P1 − α0Q1| ≥ 0, we deduce ρP0 − α0Q0 ≥ ρP1 − α0Q1 − |P1 − α0Q1|. Thus,

ρP ∗ − α0Q
∗ − |P ∗ − α0Q

∗| ≥ ρP1 − α0Q1 − |P1 − α0Q1|, (10)

Since (P1, Q1) is a solution for maximizing G2(α0, P,Q), we have

ρP1 − α0Q1 − |P1 − α0Q1| ≥ ρP ∗ − α0Q
∗ − |P ∗ − α0Q

∗|, (11)

From (10) and (11), we get

ρP1 − α0Q1 − |P1 − α0Q1| = ρP ∗ − α0Q
∗ − |P ∗ − α0Q

∗| = ρP0 − α0Q0,

which implies G2(α0, P1, Q1) = F2(α0, P0, Q0).
⇐= Suppose that G2(α0, P1, Q1) = F2(α0, P0, Q0). We obtain ρP1−α0Q1−|P1−α0Q1| =

ρP0 − α0Q0. Since ρP1 − α0Q1 − |P1 − α0Q1| ≤ ρP1 − α0Q1 ≤ ρP0 − α0Q0, we must have
|P1 − α0Q1| = 0 and ρP1 − α0Q1 = ρP0 − α0Q0. Consequently, (P1, Q1) is a solution for
maximizing F2(α0, P,Q) and P1 = α0Q1. Thus, (P1, Q1) is a ρ-NF solution and α0 ∈ C due
to Lemma 1.
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Let Ti = F2(αi+1, Pi+1, Qi+1) − F2(αi+1, Pi, Qi) where (Pi, Qi) is the solution for max-
imizing F2(αi, P,Q) and {αi}i≥0 (including α0) is the sequence constructed by Procedure
FIND(α0). We then prove that if α0 ̸∈ C, Procedure FIND(α0) returns an element of C such
that it is a unique element of C in the closed interval defined by α0 and itself.

Lemma 6. For α0 ∈ [0, αsup], during the execution of Procedure FIND(α0), αi+1 > 0,
(Pi+1, Qi+1) is a Pareto-optimal solution and Ti ≥ 0 ∀i ≥ 0. Furthermore, Procedure
FIND(α0) terminates after a finite number of iterations.

Proof. Since Pi, Qi > 0, we have αi+1 = Pi/Qi > 0,∀i ≥ 0. Thus, (Pi+1, Qi+1) is a Pareto-
optimal solution due to Theorem 5, ∀i ≥ 0.

For all i ≥ 0, the optimality of (Pi+1, Qi+1) gives

ρPi+1 − αi+1Qi+1 ≥ ρPi − αi+1Qi, (12)

Thus, Ti = F2(αi+1, Pi+1, Qi+1)−F2(αi+1, Pi, Qi) = ρPi+1−αi+1Qi+1−(ρPi−αi+1Qi) ≥ 0.
Moreover, replacing αi+1 by Pi/Qi, (12) yields

ρPi+1 ≥
Pi

Qi

Qi+1 + (ρ− 1)Pi =⇒ Pi+1

Pi

≥ 1

ρ
× Qi+1

Qi

+
ρ− 1

ρ
,

Using Young’s inequality for products, we have

Pi+1

Pi

≥ 1

ρ
× Qi+1

Qi

+
ρ− 1

ρ
≥ (

Qi+1

Qi

)
1
ρ =⇒

P ρ
i+1

Qi+1

≥ P ρ
i

Qi

,

In other words, the value of P ρ
i /Qi is increasing after each iteration of Procedure

FIND(α0). Since S2 is finite, the set of values P ρ/Q is also finite. Thus, we get P ρ
k+1

Qk+1
=

P ρ
k

Qk

after a finite number of iterations. Now the equality of Young’s inequality above must
hold. We have then Pk+1

Pk
= Qk+1

Qk
= 1 =⇒ Pk+1 = Pk and Qk+1 = Qk. Consequently,

Tk = F2(αk+1, Pk+1, Qk+1) − F2(αk+1, Pk, Qk) = ρPk+1 − αk+1Qk+1 − (ρPk − αk+1Qk) = 0.
That is to say, Procedure FIND(α0) terminates after a finite number of iterations.

Suppose that Procedure FIND(α0) returns a coefficient αn+1 satisfying Tn =
F2(αn+1, Pn+1, Qn+1) − F2(αn+1, Pn, Qn) = 0 where n ≥ 0. Thus, (Pn, Qn) is a ρ-NF
solution and αn+1 ∈ C due to Lemma 2. In addition, if n ≥ 1 then Ti > 0, ∀0 ≤ i ≤ n− 1.

In the next lemma, we show the monotonic relationship between α ∈ [0, αsup] and the
solution for maximizing F2(α, P,Q) with respect to the values of P and Q.

Lemma 7. Let α′, α′′ ∈ [0, αsup], α′ < α′′ and (P ′, Q′), (P ′′, Q′′) ∈ S2 be respectively the
solutions for maximizing F2(α

′, P,Q) and F2(α
′′, P,Q). Then P ′ ≥ P ′′ and Q′ ≥ Q′′.

Proof. The optimality of (P ′, Q′) and (P ′′, Q′′) gives

ρP ′ − α′Q′ ≥ ρP ′′ − α′Q′′, and (13a)
ρP ′′ − α′′Q′′ ≥ ρP ′ − α′′Q′ (13b)

Adding (13a) and (13b) gives (α′ − α′′)(Q′ −Q′′) ≤ 0. Since α′ < α′′, we have Q′ ≥ Q′′.
On the other hand, the inequality (13a) implies ρ(P ′ − P ′′) ≥ α′(Q′ − Q′′) ≥ 0. Since

ρ > 1, we get P ′ ≥ P ′′.
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Theorem 6. For α0 ∈ [0, αsup] and α0 ̸∈ C, Procedure FIND(α0) returns αn+1 as the unique
element of C in the closed interval defined by α0 and αn+1.

Proof. Since (P0, Q0) is a solution for maximizing F2(α0, P,Q) and α0 ̸∈ C, we have P0 −
α0Q0 ̸= 0. Thus, we consider two cases: P0 − α0Q0 > 0 and P0 − α0Q0 < 0.

We first suppose that P0−α0Q0 > 0. We will prove αi < αi+1,∀i ≥ 0 by induction on i.
Since P0−α0Q0 > 0, we have α0 < P0/Q0 = α1. Thus, our hypothesis is true with i = 0.
Suppose our hypothesis is true until i = k ≥ 0. We have αi < αi+1, ∀0 ≤ i ≤ k. The

optimality of (Pk+1, Qk+1) gives

ρPk+1 − αk+1Qk+1 ≥ ρPk − αk+1Qk,

which is equivalent to

(ρ− 1)Pk+1 + Pk+1 − αk+1Qk+1 ≥ (ρ− 1)Pk + Pk − αk+1Qk, (14)

Since αk < αk+1, Pk ≥ Pk+1 and Qk ≥ Qk+1 due to Lemma 7.
If Pk = Pk+1 and Qk = Qk+1 then Tk = ρPk+1 − αk+1Qk+1 − (ρPk − αk+1Qk) = 0.

Consequently, Procedure FIND(α0) returns the value αk+1 and the sequence {αi}0≤i≤k+1 is
strictly increasing.

If Pk = Pk+1 and Qk > Qk+1 then αk+1 =
Pk

Qk
< Pk+1

Qk+1
= αk+2.

If Pk > Pk+1 then (14) yields Pk+1 − αk+1Qk+1 > Pk − αk+1Qk = Pk − Pk

Qk
Qk = 0. Thus,

αk+1 <
Pk+1

Qk+1
= αk+2.

Since we obtain αk+1 < αk+2 in both two cases above, our hypothesis is also true with
i = k + 1. Hence, {αi} is strictly increasing, ∀i ≥ 0.

In the following, we will show that αn+1 is the unique element of C in the interval
[α0, αn+1].

Suppose that we have α∗ = (α0, αn+1) ∩ C corresponding to a ρ-NF solution (P ∗, Q∗).
Since the sequence {αi}0≤i≤n+1 is strictly increasing, there exists 0 ≤ k ≤ n such that
α∗ ∈ (αk, αk+1].

Since α∗ > αk, we have P ∗ ≤ Pk and Q∗ ≤ Qk due to Lemma 7. Furthermore, as
(P ∗, Q∗) is a ρ-NF solution, we get

ρ
Pk

P ∗ −
Qk

Q∗ ≤ ρ− 1 =⇒ Pk

P ∗ −
Qk

Q∗ ≤ (ρ− 1)(1− Pk

P ∗ ) ≤ 0, (15)

If Pk

P ∗ = Qk

Q∗ then (15) yields Pk

P ∗ = Qk

Q∗ = 1. It follows that Pk = P ∗, Qk = Q∗ and
αk+1 = Pk

Qk
= P ∗

Q∗ = α∗. Since αk+1 = α∗ < αn+1, we have k ≤ n − 1 and n ≥ 1. As
both (P ∗, Q∗) and (Pk+1, Qk+1) are the solutions for maximizing F2(αk+1, P,Q), we obtain
ρPk+1 − αk+1Qk+1 − (ρP ∗ − αk+1Q

∗) = 0. Consequently, Tk = ρPk+1 − αk+1Qk+1 − (ρPk −
αk+1Qk) = 0 which leads to a contradiction due to Tk > 0, ∀0 ≤ k ≤ n− 1.

Thus, we have
Pk

P ∗ <
Qk

Q∗ =⇒ α∗ =
P ∗

Q∗ >
Pk

Qk

= αk+1,
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which leads to a contradiction due to the fact that α∗ ≤ αk+1.
Hence, αn+1 is the unique element of C in the interval [α0, αn+1].
Similarly, in case P0 − α0Q0 < 0, we obtain that the sequence {αi} is strictly decreasing

and αn+1 is the unique element of C in the interval [αn+1, α0]. That concludes the proof.

According to Theorem 6, from α0 ∈ [0, αsup] and α0 ̸∈ C, we can use Procedure FIND(α0)
to find an element αn+1 of C such that there does not have any other element of C in the
half-open interval[α0, αn+1) (if α0 < αn+1) or (αn+1, α0] (if α0 > αn+1). Note that the ρ-NF
solution (Pn, Qn) obtained by Procedure FIND(α0) is also a local optimum of H2 with ρ > 1
in the such interval (see Appendix A).

For each interval [αi, αj] ⊆ [0, αsup] and (Pi, Qi) ̸≡ (Pj, Qj) are respectively the solutions
of F2(αi, P,Q) and F2(αj, P,Q) where 0 ≤ αi < αj ≤ αsup, we present some criteria to
quickly verify if there does not exist any ρ-NF solution in the interval (αi, αj) which is
different to (Pi, Qi) and (Pj, Qj).

Lemma 8. Given an interval [αi, αj] defined by 0 ≤ αi < αj ≤ αsup and let (Pi, Qi), (Pj, Qj)
be respectively the solutions for maximizing F2(αi, P,Q) and F2(αj, P,Q) such that (Pi, Qi) ̸≡
(Pj, Qj). Let αk = |ρ(Pi−Pj)

Qi−Qj
| and (Pk, Qk) be a solution for maximizing F2(αk, P,Q). If one

of the following conditions is satisfied, then there does not exist any ρ-NF solution which is
different to (Pi, Qi) and (Pj, Qj) in the interval (αi, αj).

1. αk ∈ {αi, αj}.
2. αk ̸∈ C and (Pk, Qk) ≡ (Pi, Qi) or (Pk, Qk) ≡ (Pj, Qj).

Proof. We first show that αk is well defined. Since αi < αj, we have Pi ≥ Pj, Qi ≥ Qj due
to Lemma 7. Assume that Qi = Qj. The optimality of (Pj, Qj) gives

ρPj − αjQj ≥ ρPi − αjQi,

Since Qi = Qj, we obtain Pj ≥ Pi. Thus, Pi = Pj and then (Pi, Qi) ≡ (Pj, Qj) which
leads to a contradiction.

Hence, Qi > Qj and consequently, αk is well defined.
Since Pi ≥ Pj and Qi > Qj, we have αk =

ρ(Pi−Pj)

Qi−Qj
. Now we show that αk ∈ [αi, αj].

The optimality of (Pi, Qi) and (Pj, Qj) gives

ρPi − αiQi ≥ ρPj − αiQj,

ρPj − αjQj ≥ ρPi − αjQi,

Thus, we obtain αi ≤ ρ(Pi−Pj)

Qi−Qj
≤ αj which leads to αi ≤ αk ≤ αj.

If αk = αi then ρPi−αiQi = ρPj−αiQj. Thus, (Pi, Qi) and (Pj, Qj) are both solutions for
maximizing F2(αi, P,Q). Hence, for all α ∈ (αi, αj), (Pj, Qj) is the solution for maximizing
F2(α, P,Q) as a result of Lemma 7.

Similarly, if αk = αj, (Pi, Qi) is the solution for maximizing F2(α, P,Q) for all α ∈
(αi, αj).
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As a result, in case αk ∈ {αi, αj}, there does not exist any ρ-NF solution which is
different to (Pi, Qi) and (Pj, Qj) in the interval (αi, αj).

Now let (Pk, Qk) be a solution for maximizing F2(αk, P,Q). Without loss of generality,
we suppose that αk ̸∈ C and (Pk, Qk) ≡ (Pi, Qi).

Since (Pk, Qk) ≡ (Pi, Qi), (Pi, Qi) is the solution for maximizing F2(αk, P,Q). Since
αk =

ρ(Pi−Pj)

Qi−Qj
, we have ρPi − αkQi = ρPj − αkQj. Thus, (Pj, Qj) is also a solution for

maximizing F2(αk, P,Q).
Consequently, if α ∈ (αi, αk) then (Pi, Qi) is the solution for maximizing F2(α, P,Q) and

if α ∈ (αk, αj) then (Pj, Qj) is the solution for maximizing F2(α, P,Q). That means there
does not exist any ρ-NF solution in the interval (αi, αj) which is different to (Pi, Qi) and
(Pj, Qj).

Theorem 7. Algorithm 6 returns all the elements of C corresponding to all ρ-NF solutions
for Max-Min BODO with ρ > 1.

Proof. According to Lemma 4, the interval [0, αsup] contains all the elements of C.
Let K2 denote the finite number of Pareto-optimal solutions. Consequently, [0, αsup] can

be separated by at most K2 consecutive subintervals [ci, cj] where 0 ≤ ci < cj ≤ αsup

and ci, cj correspond to two different Pareto-optimal solutions. By using Procedure
EXPLORE([ci, cj]), each recursive call gives us a ρ-NF solution where the corresponding
coefficient in the subinterval [ci, cj] or show that such subinterval is well explored without
any new ρ-NF solution. As we use Procedure FIND() and Procedure VERIFY () in each
recursive call, Procedure EXPLORE ([0, αsup]) also terminates after a finite number of iter-
ations. Since Algorithm 6 terminated when the interval [0, αsup] is totally explored, it found
all elements of C corresponding to all ρ-NF solutions.

4.3.3. Proofs for Min-Min BODO
For Min-Min BODO, the set C is defined as follows: C contains all elements α∗ > 0

such that there exists a ρ-NF solution (P ∗, Q∗) ∈ S3 for minimizing F3(α
∗, P,Q) with α∗ =

P ∗/Q∗. Moreover, F (α, P,Q), G(α, P,Q) become respectively F3(α, P,Q) and G3(α, P,Q)
in our algorithm.

We also assert that each element of C corresponds to a unique ρ-NF solution and vice
versa.

Lemma 9. For Min-Min BODO, there is a bijection between the set C and the ρ-NF solution
set.

Proof. According to Lemma 1, each ρ-NF solution corresponds to a unique element of C.
We also show that each element of C corresponds to a unique ρ-NF solution with respect

to the values of P and Q.
Suppose that (P ∗, Q∗), (P ∗∗, Q∗∗) are two ρ-NF solutions corresponding to α∗ ∈ C. Since

both (P ∗, Q∗) and (P ∗∗, Q∗∗) are the solutions for minimizing F3(α
∗, P,Q), we have

ρP ∗ + α∗Q∗ = ρP ∗∗ + α∗Q∗∗, (16)
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Furthermore, since α∗ ∈ C, we get

P ∗ − α∗Q∗ = P ∗∗ − α∗Q∗∗ = 0, (17)

Adding (16) and (17) gives (ρ + 1)P ∗ = (ρ + 1)P ∗∗. Since ρ ≥ 1, we obtain P ∗ = P ∗∗

and consequently Q∗ = Q∗∗. Thus, (P ∗, Q∗) ≡ (P ∗∗, Q∗∗).

We then determine the upper bound αsup for the elements of C. Let (Pq, Qq) ∈ S3 be a
solution for minimizing Q and αsup = Pq/Qq. We state the following lemma.

Lemma 10. Let α∗ ∈ C. We have α∗ ≤ αsup.

Proof. Let (P ∗, Q∗) ∈ S3 be a ρ-NF solution for Min-Min BODO corresponding to α∗ ∈ C.
The optimality of (P ∗, Q∗) gives

ρP ∗ + α∗Q∗ ≤ ρPq + α∗Qq, (18)

Moreover, since (Pq, Qq) ∈ S3 is a solution for minimizing Q, we have Q∗ ≥ Qq which
implies P ∗ ≤ Pq due to (18). Thus,

α∗ =
P ∗

Q∗ ≤
Pq

Qq

= αsup,

For a given α0 ∈ [0, αsup], we show that verifying if α0 ∈ C can be done by solving
F3(α, P,Q) and G3(α, P,Q).

Lemma 11. For a given α0 ∈ [0, αsup], let (P0, Q0), (P1, Q1) ∈ S3 be respectively the solutions
for minimizing F3(α0, P,Q) and G3(α0, P,Q). Then α0 ∈ C if and only if G3(α0, P1, Q1) =
F3(α0, P0, Q0).

Proof. =⇒ Suppose that α0 ∈ C. According to Lemma 1, there exists a feasible solution
(P ∗, Q∗) ∈ S3 such that (P ∗, Q∗) is a solution for minimizing F3(α0, P,Q) and P ∗ = α0Q

∗.
Since both (P0, Q0) and (P ∗, Q∗) are the solutions for minimizing F3(α0, P,Q) and P ∗ −
α0Q

∗ = 0, we have

ρP0 + α0Q0 = ρP ∗ + α0Q
∗ + |P ∗ − α0Q

∗|,

The optimality of (P0, Q0) gives

ρP0 + α0Q0 ≤ ρP1 + α0Q1,

Since |P1 − α0Q1| ≥ 0, we deduce ρP0 + α0Q0 ≤ ρP1 + α0Q1 + |P1 − α0Q1|. Thus,

ρP ∗ + α0Q
∗ + |P ∗ − α0Q

∗| ≤ ρP1 + α0Q1 + |P1 − α0Q1|, (19)
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Since (P1, Q1) is a solution for minimizing G3(α0, P,Q), we have

ρP1 + α0Q1 + |P1 − α0Q1| ≤ ρP ∗ + α0Q
∗ + |P ∗ − α0Q

∗|, (20)

From (19) and (20), we get

ρP1 + α0Q1 + |P1 − α0Q1| = ρP ∗ + α0Q
∗ + |P ∗ − α0Q

∗| = ρP0 + α0Q0,

which implies G3(α0, P1, Q1) = F3(α0, P0, Q0).
⇐= Suppose that G3(α0, P1, Q1) = F3(α0, P0, Q0). We obtain ρP1+α0Q1+ |P1−α0Q1| =

ρP0 + α0Q0. Since ρP1 + α0Q1 + |P1 − α0Q1| ≥ ρP1 + α0Q1 ≥ ρP0 + α0Q0, we must have
|P1 − α0Q1| = 0 and ρP1 + α0Q1 = ρP0 + α0Q0. Consequently, (P1, Q1) is a solution for
minimizing F3(α0, P,Q) and P1 = α0Q1. Thus, (P1, Q1) is a ρ-NF solution and α0 ∈ C due
to Lemma 1.

Let Ti = F3(αi+1, Pi+1, Qi+1) − F3(αi+1, Pi, Qi) where (Pi, Qi) is the solution for min-
imizing F3(αi, P,Q) and {αi}i≥0 (including α0) is the sequence constructed by Procedure
FIND(α0). We then prove that if α0 ̸∈ C, Procedure FIND(α0) returns an element of C such
that it is a unique element of C in the closed interval defined by α0 and itself.

Lemma 12. For α0 ∈ [0, αsup], during the execution of Procedure FIND(α0), αi+1 > 0,
(Pi+1, Qi+1) is a Pareto-optimal solution and Ti ≤ 0 ∀i ≥ 0. Furthermore, Procedure
FIND(α0) terminates after a finite number of iterations.

Proof. Since Pi, Qi > 0, we have αi+1 = Pi/Qi > 0,∀i ≥ 0. Thus, (Pi+1, Qi+1) is a Pareto-
optimal solution due to Theorem 5, ∀i ≥ 0.

For all i ≥ 0, the optimality of (Pi+1, Qi+1) gives

ρPi+1 + αi+1Qi+1 ≤ ρPi + αi+1Qi, (21)

Thus, Ti = F3(αi+1, Pi+1, Qi+1)−F3(αi+1, Pi, Qi) = ρPi+1+αi+1Qi+1−(ρPi+αi+1Qi) ≤ 0.
Moreover, replacing αi+1 by Pi/Qi, (21) yields

ρPi+1 +
Pi

Qi

Qi+1 ≤ (ρ+ 1)Pi =⇒ 1 ≥ ρ

ρ+ 1
× Pi+1

Pi

+
1

ρ+ 1
× Qi+1

Qi

,

Using Young’s inequality for products, we have

1 ≥ ρ

ρ+ 1
× Pi+1

Pi

+
1

ρ+ 1
× Qi+1

Qi

≥ (
Pi+1

Pi

)
ρ

ρ+1 (
Qi+1

Qi

)
1

ρ+1 =⇒ P ρ
i Qi ≥ P ρ

i+1Qi+1,

In other words, the value of P ρ
i Qi is decreasing after each iteration of Procedure

FIND(α0). Since S3 is finite, the set of values P ρQ is also finite. Thus, we get P ρ
k+1Qk+1 =

P ρ
kQk after a finite number of iterations. Now the equality of Young’s inequality above must

hold. We have then Pk+1

Pk
= Qk+1

Qk
= 1 =⇒ Pk+1 = Pk and Qk+1 = Qk. Consequently,

Tk = F3(αk+1, Pk+1, Qk+1) − F3(αk+1, Pk, Qk) = ρPk+1 + αk+1Qk+1 − (ρPk + αk+1Qk) = 0.
That is to say, Procedure FIND(α0) terminates after a finite number of iterations.
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Suppose that Procedure FIND(α0) returns a coefficient αn+1 satisfying Tn =
F3(αn+1, Pn+1, Qn+1) − F3(αn+1, Pn, Qn) = 0 where n ≥ 0. Thus, (Pn, Qn) is a ρ-NF
solution and αn+1 ∈ C due to Lemma 2. In addition, if n ≥ 1 then Ti < 0, ∀0 ≤ i ≤ n− 1.

Like Lemma 7, we also show the monotonic relationship between α ∈ [0, αsup] and the
solution for minimizing F3(α, P,Q) with respect to the values of P and Q.

Lemma 13. Let α′, α′′ ∈ [0, αsup], α′ < α′′ and (P ′, Q′), (P ′′, Q′′) ∈ S3 be respectively the
solutions for minimizing F3(α

′, P,Q) and F3(α
′′, P,Q). Then P ′ ≤ P ′′ and Q′ ≥ Q′′.

Proof. The optimality of (P ′, Q′) and (P ′′, Q′′) gives

ρP ′ + α′Q′ ≤ ρP ′′ + α′Q′′, and (22a)
ρP ′′ + α′′Q′′ ≤ ρP ′ + α′′Q′ (22b)

Adding (22a) and (22b) gives (α′ − α′′)(Q′ −Q′′) ≤ 0. Since α′ < α′′, we have Q′ ≥ Q′′.
On the other hand, the inequality (22a) implies ρ(P ′′ − P ′) ≥ α′(Q′ − Q′′) ≥ 0. Since

ρ ≥ 1, we get P ′ ≤ P ′′.

Theorem 8. For α0 ∈ [0, αsup] and α0 ̸∈ C, Procedure FIND(α0) returns αn+1 as the unique
element of C in the closed interval defined by α0 and αn+1.

Proof. For Min-Min BODO, we also consider two cases: P0−α0Q0 > 0 and P0−α0Q0 < 0.
We first suppose that P0−α0Q0 > 0. We will prove αi < αi+1,∀i ≥ 0 by induction on i.
Since P0 − α0Q0 > 0, α0 < P0/Q0 = α1. Thus, our hypothesis is true with i = 0.
Suppose our hypothesis is true until i = k ≥ 0. We have αi < αi+1,∀0 ≤ i ≤ k. Since

αk < αk+1, we have Pk+1 ≥ Pk > 0 and Qk ≥ Qk+1 > 0 due to Lemma 13. It leads to
QkPk+1 ≥ PkQk+1 and QkPk+1 = PkQk+1 ⇐⇒ (Pk, Qk) ≡ (Pk+1, Qk+1).

If Tk = 0 then Procedure FIND(α0) returns the value αk+1. Hence, the sequence {αi}
for i = 0, 1, ..., k + 1 is strictly increasing.

If Tk < 0 then we have (Pk, Qk) ̸≡ (Pk+1, Qk+1). It implies QkPk+1 > PkQk+1. We get

αk+1 =
Pk

Qk

<
Pk+1

Qk+1

= αk+2,

Thus, in this case, our hypothesis is also true with i = k + 1. Consequently, {αi} is
strictly increasing, ∀i ≥ 0.

In the following, we will show that αn+1 is the unique element of C in the interval
[α0, αn+1].

Suppose that we have α∗ = (α0, αn+1) ∩ C corresponding to a ρ-NF solution (P ∗, Q∗).
Since the sequence {αi}0≤i≤n+1 is strictly increasing, there exists 0 ≤ k ≤ n such that
α∗ ∈ (αk, αk+1].

Since α∗ > αk, we have P ∗ ≥ Pk and Q∗ ≤ Qk due to Lemma 13. Furthermore, as
(P ∗, Q∗) is a ρ-NF solution, we get

ρ
Pk

P ∗ +
Qk

Q∗ ≥ ρ+ 1 =⇒ Qk

Q∗ −
Pk

P ∗ ≥ (ρ+ 1)(1− Pk

P ∗ ) ≥ 0, (23)
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If Qk

Q∗ = Pk

P ∗ then (23) yields Qk

Q∗ = Pk

P ∗ = 1. It follows that Pk = P ∗, Qk = Q∗ and
αk+1 = Pk

Qk
= P ∗

Q∗ = α∗. Since αk+1 = α∗ < αn+1, we have k ≤ n − 1 and n ≥ 1. As
both (P ∗, Q∗) and (Pk+1, Qk+1) are the solutions for minimizing F2(αk+1, P,Q), we obtain
ρPk+1 + αk+1Qk+1 − (ρP ∗ + αk+1Q

∗) = 0. Consequently, Tk = ρPk+1 + αk+1Qk+1 − (ρPk +
αk+1Qk) = 0 which leads to a contradiction due to Tk < 0, ∀0 ≤ k ≤ n− 1.

Thus, we have
Qk

Q∗ >
Pk

P ∗ =⇒ α∗ =
P ∗

Q∗ >
Pk

Qk

= αk+1,

which leads to a contradiction due to the fact that α∗ ≤ αk+1.
Hence, αn+1 is the unique element of C in the interval [α0, αn+1].
Similarly, in case P0 − α0Q0 < 0, we obtain that the sequence {αi} is strictly decreasing

and αi+1 is the unique element of C in the interval [αn+1, α0]. That concludes the proof.

According to Theorem 8, from α0 ∈ [0, αsup] and α0 ̸∈ C, we can use Procedure FIND(α0)
to find an element αn+1 of C such that there does not exist any other element of C in the
half-open interval [α0, αn+1) (if α0 < αn+1) or (αn+1, α0] (if α0 > αn+1). Note that the ρ-NF
solution (Pn, Qn) obtained by Procedure FIND(α0) is also a local optimum of H3 in the such
interval (see Appendix B).

For each interval [αi, αj] and (Pi, Qi) ̸≡ (Pj, Qj) are respectively the solutions for mini-
mizing F3(αi, P,Q) and F3(αj, P,Q) where 0 ≤ αi < αj ≤ αsup, we also present some criteria
to quickly verify if there does not exist any ρ-NF solution in the interval (αi, αj) which is
different to (Pi, Qi) and (Pj, Qj).

Lemma 14. Given an interval [αi, αj] defined by 0 ≤ αi < αj ≤ αsup and let (Pi, Qi),
(Pj, Qj) be respectively the solutions for minimizing F3(αi, P,Q) and F3(αj, P,Q) such
that (Pi, Qi) ̸≡ (Pj, Qj). Let αk = |ρ(Pi−Pj)

Qi−Qj
| and (Pk, Qk) be a solution for maximizing

F2(αk, P,Q). If one of the following conditions is satisfied, then there does not exist any
ρ-NF solution which is different to (Pi, Qi) and (Pj, Qj) in the interval (αi, αj).

1. αk ∈ {αi, αj}.
2. αk ̸∈ C and (Pk, Qk) ≡ (Pi, Qi) or (Pk, Qk) ≡ (Pj, Qj).

Proof. We first show that αk is well defined. Since αi < αj, we have Pi ≤ Pj, Qi ≥ Qj due
to Lemma 13. Assume that Qi = Qj. The optimality of (Pj, Qj) gives

ρPj + αjQj ≤ ρPi + αjQi,

Since Qi = Qj, we obtain Pj ≤ Pi. Thus, Pi = Pj and then (Pi, Qi) ≡ (Pj, Qj) which
leads to a contradiction.

Hence, Qi > Qj and consequently, αk is well defined.
Since Pi ≤ Pj and Qi > Qj, we have αk =

ρ(Pj−Pi)

Qi−Qj
. Now we show that αk ∈ [αi, αj].

The optimality of (Pi, Qi) and (Pj, Qj) gives

ρPi + αiQi ≤ ρPj + αiQj,

ρPj + αjQj ≤ ρPi + αjQi,
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Thus, we obtain αi ≤ ρ(Pj−Pi)

Qi−Qj
≤ αj which leads to αi ≤ αk ≤ αj.

If αk = αi then ρPi+αiQi = ρPj+αiQj. Thus, (Pi, Qi and (Pj, Qj) are both solutions for
minimizing F3(αi, P,Q). Hence, for all α ∈ (αi, αj), (Pj, Qj) is the solution for minimizing
F3(α, P,Q) as a result of Lemma 13.

Similarly, if αk = αj, (Pi, Qi) is the solution for minimizing F3(α, P,Q) for all α ∈ (αi, αj).
As a result, in case αk ∈ {αi, αj}, there does not exist any ρ-NF solution which is

different to (Pi, Qi) and (Pj, Qj) in the interval (αi, αj).
Now let (Pk, Qk) be a solution for minimizing F3(αk, P,Q). Without loss of generality,

we suppose that αk ̸∈ C and (Pk, Qk) ≡ (Pi, Qi).
Since (Pk, Qk) ≡ (Pi, Qi), (Pi, Qi) is a solution for minimizing F3(αk, P,Q). Since αk =

ρ(Pj−Pi)

Qi−Qj
, we have ρPi + αkQi = ρPj + αkQj. Thus, (Pj, Qj) is also a solution for minimizing

F3(αk, P,Q).
Consequently, if α ∈ (αi, αk) then (Pi, Qi) is the solution for minimizing F3(α, P,Q) and

if α ∈ (αk, αj) then (Pj, Qj) is the solution for minimizing F3(α, P,Q). That means there
does not exist any ρ-NF solution in the interval (αi, αj) which is different to (Pi, Qi) and
(Pj, Qj).

Theorem 9. Algorithm 6 returns all the elements of C corresponding to all ρ-NF solutions
for Min-Min BODO.

Proof. The proof of this theorem is similar to the proof of Theorem 7.
According to Lemma 10, the interval [0, αsup] contains all the elements of C.
Like Theorem 7, let K3 denote the finite number of Pareto-optimal solutions for Min-

Min BODO. Consequently, [0, αsup] can be separated by at most K3 subintervals [ci, cj]
where 0 ≤ ci < cj ≤ αsup and ci, cj correspond to two different Pareto-optimal solutions.
Using Procedure EXPLORE([ci, cj]), each recursive call gives us a ρ-NF solution where
the corresponding coefficient in the subinterval [ci, cj] or show that such subinterval is well
explored without any new ρ-NF solution. As we use Procedure FIND() and Procedure
VERIFY () in each recursive call, Procedure EXPLORE ([0, αsup]) also terminates after a
finite number of iterations. Since Algorithm 6 terminated when the interval [0, αsup] is
totally explored, it found all elements of C corresponding to all ρ-NF solutions.

According to Theorem 7 and 9, Algorithm 6 returns all the elements of C, which cor-
respond to all ρ-NF solutions, in a finite number of iterations. In general, estimating its
complexity may be difficult. This difficulty comes from the fact that we do not know the
BODO problem’s context and the expressions for the objective functions. In some particular
problems, we can show that Algorithm 6 terminates in polynomial time (for example, the
bi-objective assignment problem described in Section 5).

5. Illustrative example

In this section, the recursive Newton-like algorithm for determining the ρ-NF solution set
is tested on an instance of Min-Min BODO as a variant of the assignment problem, called bi-
objective assignment problem (BOAP). The BOAP can be formally defined as follows. Given
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a set of n workers, a set of n jobs, and a n× n cost matrix M whose positive elements mij

represent the cost assignments of worker i to job j, the BOAP finds a one-to-one worker-job
assignment (i.e., a perfect bipartite matching) that minimizes simultaneously the total cost
and the max-min distance, which is the difference between the maximum cost assignment
and the minimum one in the assignment solution. Note that the problem minimizing only the
max-min distance, called balanced assignment problem, has been introduced for finding the
solution where the equitable distribution of assignments is important, which is considered
in some real-life instances of the assignment problems [11].

As shown in Section 4, for finding the ρ-NF solution set, we aim to minimize F3(α, P,Q)
and G3(α, P,Q) where α ∈ [0, αsup]. In the following, we present linear programming (LP)
for minimizing F3(α, P,Q).

min ρP + αQ (24a)

s.t. P =
∑

i∈[n],j∈[n]

mi,jxi,j (24b)

Q = u− l (24c)∑
j∈[n]

xj,i =
∑
j∈[n]

xi,j = 1 ∀i ∈ [n] (24d)

u ≥
∑
j∈[n]

mi,jxi,j ∀i ∈ [n] (24e)

l ≤
∑
j∈[n]

mi,jxi,j ∀i ∈ [n] (24f)

xi,j ≥ 0 ∀i, j ∈ [n] (24g)

where [n] = {1, ..., n} and xi,j represents the assignment between worker i and job j
corresponding to the cost mi,j. In this formulation, the value of P represents the total cost.
To calculate the max-min distance Q, we determine the maximum and the minimum cost
assignments u and l in the assignment solution. Constraints (24e) allow bounding u from
below by the maximum cost assignment in the assignment solution. Similarly, constraints
(24f) allow bounding l from above by the minimum cost assignment in the assignment
solution. As Q = u − l is minimized, u and l will take the maximum and minimum cost
assignments, respectively.

We also present the following LP for minimizing G3(α, P,Q). This LP contains all the
constraints from (24b) to (24g). However, to avoid duplication, they are omitted.

min ρP + αQ+ t (25a)
s.t. t ≥ P − αQ (25b)

t ≥ −P + αQ (25c)
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Note that using two additional constraints (25b) and (25c), the parameter t represents
the absolute value of P − αQ in G3(α, P,Q).

We will show that the solutions of LP formulations (24) and (25) are integral, which
correspond to the assignment solutions (i.e., perfect bipartite matching). Moreover, for
BOAP, determining the ρ-NF solution set can be done in polynomial time.

Lemma 15. The solutions of LP formulations (24) and (25) are integral.

Proof. The objective function of (24) assures that u and l will be equal, respectively, to the
maximum and the minimum cost assignments in the optimal solution. Consequently, the
solution of LP formulation (24) is always integral since the constraints matrix of (24d) is
totally unimodular (e.g., see [5]), and the constraints (24e) and (24f) are bound constraints.

Similarly, the solution of LP formulation (25) is also integral since the constraints (25b)
and (25c) are bound constraints.

Theorem 10. For BOAP, determining the ρ-NF solution set can be done in polynomial
time.

Proof. Consider an instance of BOAP with a n × n cost matrix and suppose that there
are K distinct Pareto-optimal solutions (Pi, Qi) where 1 ≤ i ≤ K. We first show that
K ≤ C2

n2 =
n2(n2−1)

2
.

Let mmax
i and mmin

i be the maximum and the minimum cost assignment in the as-
signment solution corresponding to (Pi, Qi) then Qi = mmax

i − mmin
i . For two dis-

tinct Pareto-optimal solutions (Pi, Qi), (Pj, Qj), we have Qi ̸= Qj which is equivalent to
mmax

i − mmin
i ̸= mmax

j − mmin
j . We have then (mmax

i ,mmin
i ) ̸≡ (mmax

j ,mmin
j ). Thus, the

assignment solutions corresponding to (Pi, Qi), (Pj, Qj) have distinct pairs of assignments
representing the maximum and the minimum cost assignment. Since we have at most n2

distinct assignments, the number of distinct pairs of assignments is at most C2
n2 . Thus,

K ≤ C2
n2 .

According to Lemma 6, the iterations of Procedure FIND() return distinct Pareto-
optimal solutions. Thus, it terminates in a polynomial number of iterations. Consequently,
it terminates in polynomial time since LP formulation (24) for minimizing F3(α, P,Q) can be
solved in polynomial time. Note that Procedure VERIFY () also terminates in polynomial
time.

We know that [0, αsup] can be separated by at most K consecutive subintervals [ci, cj] such
that ci < cj and ci, cj correspond to two distinct Pareto-optimal solutions. For Procedure
EXPLORE ([0, αsup]), we use Procedure FIND() and Procedure VERIFY () in each recursive
call, and we have at most K recursive calls. Hence, Procedure EXPLORE ([0, αsup]) also
terminates in polynomial time.

We now consider an instance of BOAP with 17 workers, 17 jobs, and a cost matrix where
its elements are randomly uniformly generated in the range [1,30] (see Appendix C). Let
P,Q represent the total cost and the max-min distance in a feasible assignment solution.
Note that we have Q > 0 in this instance. Furthermore, we consider ρ = 1 (i.e., P and
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Q are equally important from the CDM’s point of view). We present the computational
procedures for determining the ρ-NF solution set based on Algorithm 6.

Step 1 We compute a solution (P0, Q0) for minimizing F3(0, P,Q). We obtain
(P0, Q0) = (68, 9). Then we compute a solution (Pq, Qq) for minimizing Q. We obtain
(Pq, Qq) = (262, 3). Thus, αsup = Pq/Qq = 262

3
. We also assert that αsup ̸∈ C by using

Procedure VERIFY(αsup). We aim to explore the interval [0, 262
3
].

Step 2 Since (131, 4) is a solution for minimizing F3(α
sup, P,Q), we take α1 = |68−131

9−4
| =

63
5

and (80, 7) as a solution for minimizing F3(α1, P,Q). By using Procedure VERIFY(α1),
we obtain that α1 ̸∈ C. Thus, we use Procedure FIND(α1) to find an element of C. We
obtain c1 = 80

7
∈ C corresponding to the ρ-NF solution (80, 7). We have two subintervals

[0, 63
5
] and [80

7
, 262

3
] to be explored.

Step 3 For the subinterval [80
7
, 262

3
], we take α2 = |80−131

7−4
| = 17 and (110, 5) as a

solution for minimizing F3(α2, P,Q). By using Procedure VERIFY(α2), we obtain α2 ̸∈ C.
Thus, we use Procedure FIND(α2) to find another element of C. We obtain c2 = 131

4
∈ C

corresponding to the ρ-NF solution (131, 4). According to Lemma 14, there is no ρ-NF
solution in the interval [17, 262

3
] except (131, 4). We have two subintervals [0, 63

5
] and [80

7
, 17]

to be explored.
Step 4 For the subinterval [80

7
, 17], we take α3 = |80−110

7−5
| = 15 and (80, 7) as a solution

for minimizing F3(α3, P,Q). We have α3 ̸∈ C. According to Lemma 14, there is no ρ-NF
solution in this subinterval except (80, 7).

Step 5 For the subinterval [0, 63
5
], we take α4 = |68−80

9−7
| = 6 and (71, 8) as a solution for

minimizing F3(α4, P,Q). By using Procedure VERIFY(α4), we obtain α4 ̸∈ C. Thus, we use
Procedure FIND(α4) to find another element of C. We obtain c3 =

71
8
∈ C corresponding to

the ρ-NF solution (71, 8). We have two subintervals [0, 6] and [71
8
, 63

5
] to be explored.

Step 6 For the subinterval [71
8
, 63

5
], we take α5 = |70−80

8−7
| = 10 and (80, 7) as a solution

for minimizing F3(α5, P,Q). We have α5 ̸∈ C. According to Lemma 14, there is no ρ-NF
solution in this subinterval except (71, 8) and (80, 7).

Step 7 Finally, for the subinterval [0, 6], we take α6 = |68−71
9−8
| = 3 and (68, 9) as a

solution for minimizing F3(α6, P,Q). We have α6 ̸∈ C. According to Lemma 14, there is no
ρ-NF solution in this subinterval except (71, 8).

Hence, the interval [0, 262
3
] is totally explored and we obtain three ρ-NF solutions:

(71, 8), (80, 7) and (131, 4).

March 2, 2023



Figure 1: Pareto frontier with ρ-NF solutions in red

We can also compute all the Pareto-optimal solutions for this instance as (68, 9),(71, 8),
(80, 7),(110, 5),(131, 4), and (262, 3). Figure 1 shows the Pareto frontier with three ρ-NF
solutions in red. In this instance, we can easily see that the ρ-NF solution set is a strict
subset of the Pareto set. Moreover, (131, 4) is the ρ-NF solution that minimizes the product
of P and Q among all the feasible solutions. In general, for Min-Min BODO (resp. Max-Min
BODO with ρ > 1), we can determine the global optimums of the optimization problem
H3 = max

(P,Q)∈S3

P ρQ (resp. H2 = max
(P,Q)∈S2

P ρ/Q with ρ > 1) through determining the ρ-NF

solution set, which represents all its local optimums.

6. Conclusion

In this paper, we have generalized the concept of the ρ-NF solution for Bi-Objective
Discrete Optimization (BODO), where the feasible set is discrete, and the two objectives
take only positive values. We first discussed the definition and the existence of the ρ-NF
solutions for BODO. Then, we showed that the ρ-NF solution set is a subset of the Pareto
set, and this inclusion can be strict. We also designed several algorithms to determine
the ρ-NF solution set, including a recursive Newton-like algorithm. Finally, an illustrative
example of BODO is given.

Future work should clarify the quantitative link between the ρ-NF solution set and
the Pareto set in more specific BODO cases (for example, the bi-objective combinatorial
optimization problems with linear objectives). We are also interested in determining our
algorithm’s complexity in such cases.
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Appendix A.

Proposition 1. For Max-Min BODO with ρ > 1, the ρ-NF solution (Pn, Qn) obtained by
Procedure FIND(α0) is a local optimum of H2 with ρ > 1 in the half-open interval [α0, αn+1)
(if α0 < αn+1) or (αn+1, α0] (if α0 > αn+1). More precisely, if (P ′, Q′) ̸= (Pn, Qn) be a
solution for maximizing F2(α

′, P,Q) where α′ in the such interval. Then

P ′ρ

Q′ <
P ρ
n

Qn

,

Proof. Without loss of generality, we suppose that the sequence {αi}0≤i≤n+1 is strictly in-
creasing.

If α′ = αk for any 0 ≤ k ≤ n then we have P ′ρ

Q′ < P ρ
n

Qn
due to Lemma 6 and the fact that

(P ′, Q′) ̸= (Pn, Qn).
If α′ ̸= αk for 0 ≤ k ≤ n, there exists 0 ≤ i ≤ n such that α′ ∈ (αi, αi+1). Thus,

Pi ≥ P ′ ≥ Pi+1 and Qi ≥ Q′ ≥ Qi+1 due to Lemma 7.
The optimality of (P ′, Q′) gives

ρP ′ − α′Q′ ≥ ρPi − α′Qi =⇒ α′(Qi −Q′) ≥ ρ(Pi − P ′), (A.1)

Since α′ < αi+1 = Pi/Qi, Qi −Q′ ≥ 0 and Pi − P ′ ≥ 0, (A.1) yields

Pi

Qi

(Qi −Q′) ≥ ρ(Pi − P ′) =⇒ Qi −Q′

Qi

≥ ρ(Pi − P ′)

Pi

=⇒ P ′

Pi

− Q′

Qi

≥ (ρ− 1)(1− P ′

Pi

) ≥ 0,

Thus, P ′

Pi
≥ Q′

Qi
=⇒ αi+1 =

Pi

Qi
≤ P ′

Q′ . Moreover, the optimality of (Pi+1, Qi+1) gives

ρPi+1 − αi+1Qi+1 ≥ ρP ′ − αi+1Q
′ =⇒ αi+1(Q

′ −Qi+1) ≥ ρ(P ′ − Pi+1),

Consequently, we obtain

P ′

Q′ (Q
′ −Qi+1) ≥ ρ(P ′ − Pi+1) =⇒ Q′ −Qi+1

Q′ ≥ ρ(P ′ − Pi+1)

P ′ =⇒ ρ
Pi+1

P ′ ≥
Qi+1

Q′ + ρ− 1,

Using Young’s inequality for products, we have

Pi+1

P ′ ≥
1

ρ
× Qi+1

Q′ +
ρ− 1

ρ
≥ (

Qi+1

Q′ )
1
ρ =⇒

P ρ
i+1

Qi+1

≥ P ′ρ

Q′ ,

Since the value of P ρ
i /Qi is increasing after each iteration of Procedure FIND(α0) due

to Lemma 6 and (P ′, Q′) ̸= (Pn, Qn), we get

P ′ρ

Q′ <
P ρ
n

Qn

,
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Appendix B.

Proposition 2. For Min-Min BODO, the ρ-NF solution (Pn, Qn) obtained by Procedure
FIND(α0) is a local optimum of H3 in the half-open interval [α0, αn+1) (if α0 < αn+1) or
(αn+1, α0] (if α0 > αn+1). More precisely, if (P ′, Q′) ̸= (Pn, Qn) be a solution for minimizing
F3(α

′, P,Q) where α′ in the such interval. Then

P ′ρQ′ > P ρ
nQn,

Proof. Without loss of generality, we suppose that the sequence {αi}0≤i≤n+1 is strictly in-
creasing.

If α′ = αk for any 0 ≤ k ≤ n then we have P ′ρQ′ > P ρ
nQn due to Lemma 12 and the fact

that (P ′, Q′) ̸= (Pn, Qn).
If α′ ̸= αk for 0 ≤ k ≤ n, there exists 0 ≤ i ≤ n such that α′ ∈ (αi, αi+1). Thus,

Pi ≤ P ′ ≤ Pi+1 and Qi ≥ Q′ ≥ Qi+1 due to Lemma 13.
The optimality of (Pi+1, Qi+1) gives

ρPi+1 + αi+1Qi+1 ≤ ρP ′ + αi+1Q
′ =⇒ ρ(Pi+1 − P ′) ≤ αi+1(Q

′ −Qi+1),

In addition, αi+1 =
Pi

Qi
≤ P ′

Q′ due to Pi ≤ P ′ and Qi ≥ Q′. Thus, we obtain

ρ(Pi+1 − P ′) ≤ P ′

Q′ (Q
′ −Qi+1) =⇒ ρ(Pi+1 − P ′)

P ′ ≤ Q′ −Qi+1

Q′ =⇒ ρ
Pi+1

P ′ +
Qi+1

Q′ ≤ ρ+ 1,

Using Young’s inequality for products, we have

1 ≥ ρ

ρ+ 1
× Pi+1

P ′ +
1

ρ
× Qi+1

Q′ ≥ (
Pi+1

P ′ )
ρ

ρ+1 (
Qi+1

Q′ )
1

ρ+1 =⇒ P ′ρQ′ ≥ P ρ
i+1Qi+1,

Since the value of P ρ
i /Qi is decreasing after each iteration of Procedure FIND(α0) due

to Lemma 12 and (P ′, Q′) ̸= (Pn, Qn), we get P ′ρQ′ > P ρ
nQn.
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Appendix C. Cost matrix for the instance of BOAP used in Section 5

M =



1 29 14 22 12 27 1 11 9 10 4 1 3 28 5 9 5
23 23 12 24 20 17 21 9 19 17 16 16 12 19 20 19 10
21 10 29 3 28 14 6 15 26 17 4 12 2 29 20 25 1
25 7 21 17 20 28 20 17 19 11 24 17 20 2 15 7 26
19 3 14 10 18 20 7 9 17 11 16 19 8 20 13 22 23
17 1 7 3 12 14 16 11 24 27 15 23 8 29 12 10 22
10 1 8 15 28 26 6 15 12 10 27 21 9 22 9 9 17
19 15 10 17 9 24 21 6 17 21 13 28 15 8 27 21 29
12 3 20 4 24 13 13 18 23 23 18 23 9 10 15 28 28
15 21 22 5 20 2 4 29 5 18 8 29 2 1 17 29 10
16 9 16 26 6 20 15 15 11 25 13 8 26 15 18 2 3
1 8 14 5 1 18 6 4 6 15 15 15 12 15 22 17 12
7 9 2 25 14 1 25 13 28 6 16 3 4 5 28 28 1
21 12 6 8 25 6 26 8 17 17 13 28 16 24 27 5 18
2 27 10 25 6 24 4 29 26 28 25 4 24 16 1 17 22
22 21 29 8 24 17 19 3 22 9 13 4 14 14 3 29 9
27 27 6 18 23 11 4 16 19 15 5 15 3 8 22 3 28


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