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Mechanical response of 3-dimensional tensegrity lattices

Most available techniques for the design of tensegrity structures can be grouped in two categories. On the one hand, methods that rely on the systematic application of topological and geometric rules to regular polyhedrons have been applied to the generation of tensegrity elementary cells. On the other hand, efforts have been made to either combine elementary cells or apply rules of self-similarity in order to generate complex structures of engineering interest, for example, columns, beams, and plates. However, perhaps due to the lack of adequate symmetries on traditional tensegrity elementary cells, the design of 3-dimensional tensegrity lattices has remained an elusive goal. In this work, we first develop a method to construct 3-dimensional tensegrity lattices from truncated octahedron elementary cells. The required space-tiling translational symmetry is achieved by performing recursive reflection operations on the elementary cells. We then analyze the mechanical response of the resulting lattices in the fully nonlinear regime via two distinctive approaches: we first adopt a discrete reduced-order model that explicitly accounts for the deformation of individual tensegrity members, and we then utilize this model as the basis for the development of a continuum approximation for the tensegrity lattices. Using this homogenization method, we study tensegrity lattices under a wide range of loading conditions and prestressed configurations. We present Ashby charts for yield strength to density ratio to illustrate how our tensegrity lattices can potentially achieve superior performance when compared to other lattices available in the literature. Finally, using the discrete model, we analyze the dynamic response of a finite tensegrity lattice impacting an elastic wall, where a strong asymmetry in the dispersion of tensile and compressive stress-waves propagating through the medium is observed.

Introduction

The term tensegrity, derived from tensional integrity, refers to a certain class of structural systems composed of bars and strings. Through adequate prestressing of their string members, tensegrity structures generally become mechanically stable, meaning that their load-bearing capability remains intact even after undergoing severe deformation. In the original patent application, Fuller [START_REF] Fuller | Tensile-integrity structures[END_REF] defines a tensegrity system as a structure that "will have the aspect of continuous tension throughout and the compression will be subjugated so that the compression elements become small islands in a sea of tension." This definition was later formalized by Pugh [START_REF] Pugh | An introduction to tensegrity[END_REF] as follows: "A tensegrity system is established when a set of discontinuous compression components interacts with a set of continuous tensile components to define a stable volume in space." It is precisely the isolation of compression members that renders tensegrity structures particularly well suited for impact absorption applications [START_REF] Rimoli | On the impact tolerance of tensegrity-based planetary landers[END_REF][START_REF] Rimoli | A reduced-order model for the dynamic and post-buckling behavior of tensegrity structures[END_REF].

Most available techniques for the design of tensegrity structures can be grouped into two categories. On the one hand, methods that rely on the systematic application of topological and geometric rules to regular polyhedrons have been applied to the generation of tensegrity elementary cells [START_REF] Motro | Tensegrity: structural systems for the future[END_REF][START_REF] Li | Constructing tensegrity structures from one-bar elementary cells[END_REF]. On the other hand, efforts have been made to either combine elementary cells or apply rules of self-similarity in order to generate complex structures of engineering interest, for example, columns, beams, and plates [START_REF] Motro | Tensegrity: structural systems for the future[END_REF][START_REF] Skelton | Tensegrity systems[END_REF]. In addition to these traditional approaches, recent research efforts have focused on the design of tensegrity structures via optimization techniques [START_REF] Li | A monte carlo form-finding method for large scale regular and irregular tensegrity structures[END_REF][START_REF] Kanno | Topology optimization of tensegrity structures under compliance constraint: a mixed integer linear programming approach[END_REF][START_REF] Liu | Tensegrity topology optimization by force maximization on arbitrary ground structures[END_REF][START_REF] Lee | A fully automatic group selection for form-finding process of truncated tetrahedral tensegrity structures via a double-loop genetic algorithm[END_REF].

Despite continuous advances in the field over the past few decades, the design of 3-dimensional tensegrity lattices has remained an elusive goal. The generation of a Bravais lattice requires that, upon translation by a linear combination of the Bravais vectors, the unit cell of the lattice seamlessly matches the neighboring cells. The low symmetries of elementary tensegrity cells (usually due to torsion components) makes this task very difficult to achieve, even for the 2-dimensional case. In the case of one-dimensional lattices, torsion is not an issue as its only effect is to generate a twist along the axis of the lattice. Furthermore, when considering one-dimensional lattices composed of 3-bar elementary cells, this twist can be mitigated by alternating cells with clockwise and counter-clockwise torsion [START_REF] Pinaud | Deployment of a class 2 tensegrity boom[END_REF]. However, this kind of lattice fails to comply with the most rigorous definition of tensegrity as three continuum paths of compression members are generated along the entire length of the lattice.

In this paper, we first introduce a method to construct 3-dimensional tensegrity lattices using unit cells built from a combination of truncated octahedron elementary cells. More precisely, the space-tiling translational symmetry required to generate the lattice is achieved by performing recursive reflection operations on the elementary cells, as described in Section 2. To the best of our knowledge, there are no references to 3-dimensional tensegrity lattices in the literature. In Section 3 we introduce two modeling approaches: in Subsection 3.1, we focus on the analysis of the mechanical response of the resulting lattices in the fully nonlinear regime through a discrete reduced-order model that explicitly accounts for the deformation of individual tensegrity members, whereas in Subsection 3.2, we utilize the discrete model as the starting point for the development of a continuum approximation for the tensegrity lattices, with the objective of efficiently modeling the constitutive behavior of tensegrity meta-materials. In Section 4, we present numerical results on the behavior of a single tensegrity unit cell under a wide range of loading conditions and compare the effective properties with existing natural and artificial materials. In the same section, using the discrete model, we also model the mechanical response of a finite tensegrity lattice impacting a rigid wall. Finally, in Section 5, we summarize our findings.

A 3-dimensional tensegrity lattice

Let us consider a tensegrity elementary cell obtained from a truncated octahedron as described in [START_REF] Li | Constructing tensegrity structures from one-bar elementary cells[END_REF], see Fig. 1. The cell contains 6 square faces, which are parallel in pairs, with the planes containing each pair being perpendicular to those corresponding to the other two pairs. We denominate those squares top, bottom, left, right, back, and front. That is, the top square is parallel to the bottom square, and perpendicular to all others. The same applies to the leftright and front-back pairs. At first sight, it might seem that because all squares are placed on the faces of a containing cube, this elementary cell could tile R 3 , thus generating a 3-dimensional lattice. However, the squares corresponding to each pair have opposite twists with respect to the normal to the plane and they do not coincide when projected on the plane parallel to the faces of the two squares (see Fig. 1, right). Thus, if we simply translate the elementary cell, we would end up with an incompatible configuration, as the nodes of the adjacent squares would not overlap.

This incompatibility is illustrated in Fig. 2 as follows. Let us consider the bottom-right elementary cell. In the figure, its main axes are aligned with the perspective of the reader in such a way that the top, bottom, left, and right planes remain perpendicular to the viewing plane, whereas the front and back squares are parallel to it. Even though the elementary cell stacked to its left maintains the alignment of the left and right planes, all other planes are rotated with respect to the normal to the coincident face between the cells. The same effect is observed on the elementary cell stacked to the top, with only the top and bottom planes remaining in place. This effect gets worse as we keep stacking cells next to each other. For example, the figure shows that the top-right elementary cell has lost all the alignments with respect to the original cell. Furthermore, due to this misalignment, it would be impossible to insert an elementary cell to connect the bottom-right and top-right cells.

Additionally, even if somehow we could remove the torsion of the elementary cell, e.g. by selecting cables and bars of varying lengths, another problem remains: for such a configuration, bars would generate continuum compression paths that always initiate an external surface of the lattice, then propagate through its interior to finally terminate at another external boundary of the structure. This kind of lattice would fail to comply with the most rigorous definition of tensegrity, as there would not be isolated compression islands within the structure. This, in turn, could negatively affect the stability of the lattice once buckling starts to develop on one of those paths. A continuum compression path is highlighted in red in Fig. 2 for purpose of illustration.

In order to address these issues, namely the incompatibility between cells and the presence of continuum compression paths within the structure, we propose to construct a lattice from a macro unit cell consisting of 8 elementary cells related to each other through consecutive reflection operations. The details of such procedure are explained in the following paragraphs.

First, we perform a reflection of the elementary cell (Fig. 3, top-left) with respect to the plane containing its right face, obtaining a system of two cells (Fig. 3, top-right). The left and right faces of this 2-cell unit now have coincident nodes due to the reflection operation. Consequently, this system can be considered as a building block for one-dimensional tensegrity lattices, or in structural terms, tensegrity columns. It is worth emphasising that, as a result of this operation, the top, bottom, front, and back squares of the resulting elementary cells remain aligned to those of the original one.

Subsequently, we proceed to reflect this 2-cell system with respect to the plane containing their top faces, resulting in the 4-cell configuration depicted in Fig. 3 (bottom-left). By construction, the left, right, top, and bottom squares of the resulting 4-cell unit have coincident nodes. Consequently, this system can be considered as a building block for 2-dimensional tensegrity lattices, or in structural terms, tensegrity plates. As in the previous step, all squares remain in their original planes, confined to the faces of a rectangular parallelepiped.

Finally, the resulting system is reflected with respect to the plane corresponding to their front faces, obtaining in this way an 8-cell system (Fig. 3, bottom-right). By construction, the left, right, top, bottom, front, and back squares of the resulting 8-cell unit have coincident nodes. Consequently, this system can be considered as a building block for 3-dimensional tensegrity lattices, or in structural terms, tensegrity solids. As a result of these reflections, the nodes of the four squares corresponding to the top face coincide with those at the bottom, and the same occurs with the other combinations. Once again, all squares remain in the planes defining a cube, with no associated twist or distortion.

It is worth noting that by following this procedure we not only generate a unit-cell with translational symmetry, but also ensure that there are no continuum compression paths that extend throughout the lattice. By applying successive reflection operations we generate closed compression loops that resemble a folded rhomboid, as depicted by the set of green bars on Fig. 3, bottom-left. In Fig. 3, bottom-right, we highlight three of these closed-loops in green, yellow, and blue. Each of them has a symmetric counterpart on the opposite side of the cube, totaling 6 closed loops for the unit cell. The bars that do not form closed loops are either isolated from other bars or forming 2-bar v-shape arrangements. All of them become part of closed loops once unit cells are stacked against each other to form a 3-dimensional lattice. In the case of an infinite lattice, every single bar in the structure is part of a closed compression loop, with loops connected to each other exclusively through cables. In this way, our construction recreates the concept of isolated compression islands in a sea of tension, in the spirit of Fuller's definition of tensegrity.

Modeling tensegrity lattices

Traditional approaches for modeling the behavior of tensegrity structures have their origin in form-finding applications or in models based on their quasi-static behavior. Consequently, most analysis techniques for this kind of systems rely on one or more of the following fundamental assumptions [START_REF] Sunspiral | Tensegrity based probes for planetary exploration: Entry, descent and landing (edl) and surface mobility analysis[END_REF][START_REF] Caluwaerts | Design and control of compliant tensegrity robots through simulation and hardware validation[END_REF][START_REF] Connelly | Globally rigid symmetric tensegrities[END_REF][START_REF] Vassart | Multiparametered formfinding method: application to tensegrity systems[END_REF][START_REF] Sultan | Reduced prestressability conditions for tensegrity structures[END_REF][START_REF] Kebiche | Geometrical non-linear analysis of tensegrity systems[END_REF][START_REF] Ben | Nonlinear elastoplastic analysis of tensegrity systems[END_REF][START_REF] Zhang | Geometrically nonlinear elasto-plastic analysis of clustered tensegrity based on the co-rotational approach[END_REF][START_REF] Skelton | Dynamics and control of tensegrity systems[END_REF]: (i) bars are perfectly rigid, (ii) strings are linear elastic, and (iii) bars experience pure compression and strings pure tension. See [START_REF] Skelton | Tensegrity systems[END_REF][START_REF] Tibert | Review of form-finding methods for tensegrity structures[END_REF] for an overview of tensegrity analysis techniques. In addition, in the quasi-static regime, all members of tensegrity structures experience either compressive or tensile loads. This lack of complex stress states -such as bending or shear-implies that failure of tensegrity members can only occur through buckling (for bars) and yielding (for strings). Thus, common design methods for tensegrity systems assume that the structure would fail whenever one of its bars reaches its Euler buckling load.

These assumptions are generally adequate for form-finding and many quasi-static problems. However, in large deformation quasi-static problems as well as in dynamic situations such as those that arise from impact events, these simplifications tend to break down: bar members could undergo significant deformations, and the presence of body forces imply that both bars and strings can suffer off-axis (bending and shear) loads. This, in turn, can drastically affect the load distribution within the structure, rendering traditional approaches invalid. In this regard, some attempts have been made to account for bar deformations and nonlinearities, either through fully Lagrangian [START_REF] Kebiche | Geometrical non-linear analysis of tensegrity systems[END_REF][START_REF] Ben | Nonlinear elastoplastic analysis of tensegrity systems[END_REF] or corotational [START_REF] Zhang | Geometrically nonlinear elasto-plastic analysis of clustered tensegrity based on the co-rotational approach[END_REF] formulations of the Finite Element Method. It is worth noting that such models generally lack the simplicity and elegance of traditional methods for analyzing tensegrity structures, and typically require the use of excessive computational resources, rendering them impractical for modeling large structures as those arising when considering 3-dimensional lattices.
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For the purposes of this work, we analyze 3-dimensional tensegrity lattices by combining two recently developed models: one for the dynamic and post-buckling behavior of tensegrity structures [START_REF] Rimoli | A reduced-order model for the dynamic and post-buckling behavior of tensegrity structures[END_REF], and the other one for geometrically nonlinear lattices composed of linear and angular springs [START_REF] Kumar Pal | A continuum model for nonlinear lattices under large deformations[END_REF]. Both models are complementary: the first one provides a description of a continuum tensegrity structure that is based on discrete linear and angular springs, and this discretization is precisely the kind of system for which the second model was developed for. For the sake of completeness, both models are outlined in the following Subsections.

Reduced order discrete model

Let us consider a bar of length L and constant cross-section as depicted at the top of Fig. 4. Let A be its crosssectional area and I the corresponding moment of inertia. The bar is made of homogeneous material with mass density ρ and Young's modulus E. The bar is discretized through a set of four masses, three linear springs, and two angular springs as depicted at the bottom of Fig. 4.

We require for this discrete system to capture the main features of the continuum bar that are relevant for the problem under consideration. First, we enforce for the discrete system to have the same overall axial stiffness as the continuum bar. This is easily attained by specifying the following values for the stiffness of the linear springs:

k 1 = 2EA L -h = 2EA L(1 -α) (1) 
k 2 = EA h = EA αL (2) 
where we expressed h = αL, with 0 < α < 1 being another parameter of the discretization scheme to be determined later. Second, we would like for the discrete system to have the same total mass and mass moment of inertia as the continuum bar. This can be achieved by assigning the following values to the discrete masses:

m 1 = 1 6 ρAL 1 -3α 2 1 -α 2 (3) m 2 = 1 3 ρAL 1 1 -α 2 (4)
Then, we would like for the discrete system to have the same buckling load as the continuum bar. By computing the buckling load for the discrete system and equating it to that given by Euler's formula, it is possible to solve for the value of the angular stiffness such that this requirement is met, giving

k t = 1 -α 2 π 2 EI L 1 - Iπ 2 AL 2 (5) 
By adopting the parameters depicted in the paragraphs above, the discrete system has the same axial stiffness, mass, mass moment of inertia, and critical buckling load as the continuum bar. Moreover, it was shown that this discretization scheme leads to an almost exact response of simply supported bars in the post-buckling regime, which is particularly appealing when modeling the large-deformation behavior of tensegrity structures [START_REF] Rimoli | A reduced-order model for the dynamic and post-buckling behavior of tensegrity structures[END_REF]. Finally, for α = 1/2, the resulting model is able to reproduce, with a relatively low error of 4.5%, the first two natural frequencies of the continuum bar.

Finally, cables are modeled with the same discretization scheme as bars, with the difference that the angular stiffness is set to zero. In this way, cables automatically exhibit tension-compression asymmetry as their load bearing capability under compression (buckling load) is zero.

In summary, the adopted discretization scheme has the following properties: (i) the total mass of the discrete system equals the mass of a continuum bar, (ii) the mass moment of inertia of the discrete system matches that of the continuum bar, (iii) the discrete system naturally buckles at the Euler buckling load of the continuum bar, (iv) its postbuckling behavior closely follows the elastica solution, and (iv) the natural frequencies of the discrete system closely resemble the first two of the continuum bar. Moreover, the same discretization is also applied to cables, automatically reflecting their inability to carry compressive loads. All of this is achieved with closed-form expressions for the mass and stiffness matrices, and with only 12 degrees of freedom per bar (or cable) for the 3-dimensional case.

Continuum model

Even though the discrete model introduced in the previous section is able to capture extremely rich details of the behavior of tensegrity structures with relatively few degrees of freedom, its computational cost can become prohibitive when trying to capture the effective response of large tensegrity lattices. Thus, we recommend to adopt this discrete model for cases in which either the local dynamics or global behavior of relatively small lattices is of interest. When modeling a tensegrity lattice as a meta-material, its effective constitutive response at the macroscopic scale becomes much more relevant than its localized cell-level behavior. In this case, a continuum model able to capture the nonlinear response of the lattice is desired.

Pal and co-workers recently developed a continuum model for nonlinear lattices under large deformations, which they applied to analyze the quasi-static [START_REF] Kumar Pal | A continuum model for nonlinear lattices under large deformations[END_REF] and dynamic [START_REF] Kumar Pal | Effect of large deformation pre-loads on the wave properties of hexagonal lattices[END_REF] response of 2-dimensional hexagonal lattices subject to large deformations. In its most general form, their model is well suited for lattices composed of masses and springs, both linear and angular. Thus, it is only logical to combine their approach with the discrete model introduced in the previous section to obtain the effective response of 3-dimensional tensegrity lattices. The only caveat of the problem under consideration in this paper is that our unit cells are relatively large, preventing us from adopting the analytical approach outlined in [START_REF] Kumar Pal | A continuum model for nonlinear lattices under large deformations[END_REF]. In our approach, numerical simulations are performed at the unit-cell level to obtain the effective response of the lattice. The corresponding model is summarized in the remainder of this section.

The strain energy density functional of the equivalent continuum medium is equal to the potential energy of the lattice normalized by the lattice volume. The equivalent continuum behavior is obtained by solving a discretized problem, for example by using finite elements. The key assumption is a separation of length scales between the characteristic length scales of the finite element solution and the lattice. The length scale of the continuum solution is assumed to be much larger than the lattice unit cell size. We further assume that the length scale associated with variation of deformation gradient (averaged over a unit cell) is much larger than a unit cell size. Hence a first-order homogenization is used in our work. Indeed, if the length scale of deformation gradient is of the order of unit cell size, then higher order homogenization methods [START_REF] Kouznetsova | Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme[END_REF] would be required.

The continuum problem solution procedure involves solving a macro-scale problem by imposing boundary conditions on the full domain and solving using finite elements. At each quadrature point in the finite element solution, a micro-scale problem is solved by imposing the deformation gradient F = I + ∇u over a representative volume element (RVE) of the lattice under periodic boundary conditions. Note that the deformation gradient over the entire lattice domain is assumed to be slowly varying and the response at each point of the continuum is thus dominated by the constant part of this deformation gradient function. Consequently, for our first-order homogenization, we consider only affine deformations (constant deformation gradient) imposed on a lattice RVE. This micro-scale problem yields the effective stress on the lattice RVE under the imposed deformation gradient and is used to solve the macro-scale problem. We start by developing a procedure to get the equilibrium configuration of the lattice RVE under the imposed boundary conditions. The corresponding effective stress and tangent stiffness tensors are then derived and variational formulation and numerical implementation for the continuum medium are presented.

Potential energy functional

To evaluate the effective continuum properties at a point occupied by the lattice under a particular deformed configuration, we first solve for the equilibrium of an infinite lattice subjected to the same deformed configuration. This infinite lattice is an idealization under the assumption of separation of length scales, and it is valid in the limit of the relative size of length scales of lattice to continuum going to zero. Since the lattice is periodic, it suffices to consider a single unit cell as the RVE of our lattice.

We first outline the procedure to obtain the equilibrium solution of our unit cell RVE. The potential energy of a unit cell is the sum of potential energies of the bars and cables in the lattice. Consider the reduced-order model of a bar illustrated in Fig. 4 in an arbitrary deformed configuration. To evaluate the energy, note that the change in length of the springs and the angles between segments having torsional springs can be determined from the position of the two interior m 2 masses relative to the m 1 masses at the ends. Since the bar interacts only with its neighboring bars at the ends, applying force and moment equilibrium on the bar shows that the bar can only support axial forces at its ends. By symmetry, the change in length of the two segments having k 1 springs are equal and the angles between the springs k 1 and k 2 (at the two m 2 masses) are equal in the buckled configuration. The potential energy of each bar (or cable) is given by

P bar = k 1 (∆l 1 ) 2 + k t (∆θ ) 2 + 1 2 k 2 (∆L 2 ) 2 , (6) 
where ∆L 1 , ∆L 2 and θ are, respectively, the change in length of the first and second segments, and the change in angle between them. The deformed configuration can be uniquely determined when the end positions of the bar are prescribed by minimizing the above potential energy with respect to the coordinates of the mass m 2 . Again, using symmetry, we only need to determine the horizontal and vertical coordinates of one of the interior m 2 masses. After solving for the bar configuration, in subsequent computations, the degrees of freedom associated with the interior m 2 masses are condensed out and the effective behavior, i.e., stiffness or force response of a bar (or cable) is expressed solely as a function of the end coordinates. Consider the unit cell shown in Fig. 3 (bottom right). It has 48 interior nodes and 96 boundary nodes, with 96/6 = 16 nodes on each face. Let us fix the origin at the center of the unit cell and let 2L be the length of the cube enclosing the unit cell. The three coordinate axes are chosen to be normal to the faces of the cube. Let X i and x i denote, respectively, the coordinates of node i in the reference (at F = I) and deformed configurations. Under periodic boundary conditions, the nodes at the surfaces x = L, y = L, z = L have identical displacement corresponding to the nodes at x = -L, y = -L, z = -L. The nodes at these two sets of surfaces are designated as master and slave nodes, respectively, with each slave node associated with a unique master node. Finally, the interior nodes are denoted by x i and let x f be a vector having the collection of interior and master nodes.

Let us now subject an infinite lattice to affine deformation F at its boundary and consider an arbitrary unit cell in the interior. Assuming that all unit cells deform identically (periodic boundary conditions), and imposing displacement continuity and force equilibrium at the boundary nodes of this unit cell with its adjacent unit cells, leads to the following constraints for the positions x and forces f between the master and slave nodes

x s = x m + F(X s -X m ), f s + f m = 0. (7) 
Note that the forces in the above expression are internal forces on a node due to a single unit cell. The equilibrium configuration is obtained by minimizing the energy of a single unit cell subject to periodic boundary conditions in Eqn. [START_REF] Skelton | Tensegrity systems[END_REF]. Let P be the potential energy of the unit cell and it is solely a function of the nodal coordinates. The minimization problem giving the equilibrium condition leads to the following relations

∂ P ∂ x i = 0, ∂ P ∂ x m + ∂ P ∂ x s = 0, (8a) 
∂ 2 P ∂ x f ∂ x f 0, (8b) 
x s = x m + F(X s -X m ), (8c) x 0 = 0. ( 8d 
)
The term on the left in Eqn. (8b) is the stiffness matrix and we enforce its positive definitiveness to ensure that the equilibrium solution is stable. The last equation fixes the first node to prevent zero-energy rigid body translations of the RVE. Note that rigid body rotations are not zero-energy under periodic boundary conditions. To solve the above system, we employ a combination of Newton-Raphson and conjugate gradient solvers, similar to the method used in [START_REF] Kumar Pal | A continuum model for nonlinear lattices under large deformations[END_REF].

Equivalent stress and consistent tangent stiffness

The energy in a unit cell is a function of solely the deformation gradient F and hence the lattice can be modeled as a hyper-elastic material [START_REF] Me Gurtin | An introduction to continuum mechanics[END_REF]. The strain energy density functional W of the equivalent continuum material is assumed to be equal to the potential energy of the unit cell normalized by the cell volume and the derivatives of this normalized energy with respect to the deformation gradient give the first Piola Kirchhoff stress T and stiffness or first elasticity tensors:

T = ∂W ∂ F , C = ∂ 2 W ∂ F∂ F . ( 9 
)
Note from the above expression that, in general, T i j (F) = T ji (F).

As the strain energy density is the potential energy of the unit cell normalized by its volume, it is solely determined by the nodal coordinates at equilibrium and is written as W (F) = W (x i , x m , x s ). From the constraint equation Eqn. [START_REF] Skelton | Tensegrity systems[END_REF], we may express the slave node coordinates x s in terms of the master node coordinates x m and deformation gradient F. Recalling that x f is a vector having the interior and master nodes, the energy functional associated with the unit cell may be written as

W (F) = W (F, x f ).
The first Piola-Kirchhoff stress is given by

T = ∂W ∂ F = ∂W ∂ F + ∂W ∂ x f ∂ x f ∂ F . ( 10 
)
The expression within the bracket in the second term equals zero and it is the equilibrium condition. To evaluate the first term in the above equation, note from Eqn. (8c) that the slave nodes x s are an explicit function of the deformation gradient and the master node coordinates. Expanding this first term using chain rule with N s = 48 coordinates x s of the slave nodes leads to

T = N s ∑ p=1 ∂W ∂ x sp ∂ x sp ∂ F = N s ∑ p=1 ∂W ∂ x sp ⊗ (X sp -X mp ) , (11) 
where the tensor product of two vectors is given by (a ⊗ b) i j = a i b j and the last equality is obtained using Eqn. (8c).

The first elasticity tensor is obtained by taking the derivative of Eqn. [START_REF] Liu | Tensegrity topology optimization by force maximization on arbitrary ground structures[END_REF] with respect to the deformation gradient F, leading to

C = ∂ 2 W ∂ F∂ F + ∂ 2 W ∂ F∂ x ∂ x f ∂ F . ( 12 
)
Since the equilibrium condition is satisfied for all deformation gradients, we have the following relation

d dF ∂W ∂ x f = 0 =⇒ ∂ 2 W ∂ F∂ F + ∂ 2 W ∂ F∂ x f ∂ x f ∂ F = 0 (13) 
Combining Eqns. ( 12) and ( 13) leads to the following expression for the stiffness tensor

C = ∂ 2 W ∂ F∂ F - ∂ 2 W ∂ F∂ x f ∂ 2 W ∂ x f ∂ x f -1 ∂ 2 W ∂ x f ∂ F .
Again, we invoke chain rule to evaluate the derivatives with respect to F appearing in the above equation, which results in the following expression in indicial notation

∂ 2 W ∂ F i j ∂ F kl = N s ∑ p=1 N s ∑ q=1 ∂ 2 W ∂ x p i ∂ x q j X p j X q l , ∂ 2 W ∂ F i j ∂ x f k = N s ∑ p=1 ∂ 2 W ∂ x p i ∂ x f k X p j . ( 14 
)

Variational formulation

We now present the variational formulation, which can be used to study the behavior of an equivalent continuum material undergoing large deformations. Consider a body occupying a domain Ω ⊂ R 2 in the undeformed reference configuration, subjected to an external traction t e over a part of the boundary ∂ Ω T , while displacement is prescribed over the remaining part of the boundary 

∂ Ω u = ∂ Ω \ ∂ Ω T . Let Γ = {v ∈ W 1 (Ω), v(x) = 0 ∀ x ∈ ∂ Ω u }
v • ∇.TdV + ∂ Ω T v • (t -t e )dS = 0 ∀v ∈ Γ.
Note that the integrals, gradient operator, and vector t e are expressed in the reference configuration. Since the problem is nonlinear, an iterative procedure like Newton-Raphson is required to solve it. Let u k be the solution at the k-th iteration and let u k+1 = u k + u δ . Applying integration by parts, and linearizing the first term in the above principle of virtual work equation with respect to the incremental displacement u δ , leads to the following incremental variational formulation, which can be solved by a standard nonlinear finite element method:

Ω ∇v : (C∇u δ + T) dV + ∂ Ω T v • t e = 0 ∀v ∈ Γ. ( 15 
)

Numerical results

Having presented the design of the tensegrity lattice and an equivalent continuum formulation based on the analysis of a single unit cell, we now show numerical results displaying the mechanical properties of our lattice. We first study the effective behavior of an infinite lattice subjected to various affine deformations by analyzing the response of a single unit cell. Then we compute the yield strength of our lattice under tensile and compressive loadings and compare with the yield strength-density Ashby charts. We conclude this section by analyzing, via the full discrete model, the mechanical response of a finite tensegrity lattice impacting a rigid wall.

Unit cell behavior

We first analyze the behavior of our unit cell under uniaxial tension. The material properties corresponding to titanium alloy Ti-6Al-4V, having Young's modulus E = 91GPa and yield strength σ y = 720MPa, are used for both the cables and bars.

The dimensions of the unit cell are computed so that the bars under compression undergo purely elastic buckling, which would allow bars to recover even after severe deformation [START_REF] Rimoli | A reduced-order model for the dynamic and post-buckling behavior of tensegrity structures[END_REF]. Using the engineering Euler-Johnson criterion, elastic buckling of a simply supported column is ensured when:

L b ≥ β r g 2π 2 E σ y ( 16 
)
where L g is the length of the bar, r g the radius of gyration of its cross-section, and β ≥ 1 a safety factor. For a circular bar, we have that the radius of gyration is r g = D b /4, where D b is the diameter of its cross section. Thus, adopting a safety factor β = 2 we get

D b = L b π 2σ y E ( 17 
)
We emphasize that, for this sizing criterion, the ratio D b /L b is constant for a given material. Furthermore, for the given unit cell geometry, the ratio L b /L = 0.46, where L is the length of the (8-cell) lattice unit cell. Consequently, our solutions are independent of the particular length scale chosen and all our results are applicable if we scale the bar and cable diameters and lengths proportionately with the unit cell span L. Indeed, note that both the energy and volume of the unit cell scale as L 3 , and thus the effective stress computed is independent of the actual dimensions of the unit cell. The stress is solely a function of the imposed strain, material properties, and the two relative dimensions: bar diameter to unit cell length ratio D b /L and cable to bar diameter ratio D c /D b . For simplicity, the span of the unit cell in the coordinate directions is set to L = 1 m, which results in bar length L b = 0.46 m. The corresponding bar diameter to ensure elastic buckling is then 1.8 cm. We adopt a cable diameter that is half that of the bar.

Before we proceed, we define the cable pre-strain λ as the ratio between the undeformed length of the cable and the distance between two nodes connecting a cable in the canonical unit cell. For instance, λ = 0.99 means that the undeformed cable is 1% shorter than the distance connecting two nodes in the canonical unit cell. When a lattice with these cables and bars is assembled, the bars compress and the cables stretch leading to a new equilibrium position for the lattice. The lattice is then said to be under a pre-strain λ and this equilibrium configuration is determined by minimizing the energy of a single unit cell with respect to the lattice coordinates subject only to the connectivity constraints. This equilibrium configuration is taken to be the reference configuration X of the lattice. In this section, we present solutions for 4 levels of pre-strain in the cables, corresponding to λ =1 (no pre-strain), 0.998, 0.995, and 0.993.

In the first example, an affine deformation corresponding to uniaxial tensile strain in the x 3 direction is imposed on the lattice unit cell. The quasi-static response is governed by the system of Eqns. ( 8) and the stress is computed from Eqn. [START_REF] Lee | A fully automatic group selection for form-finding process of truncated tetrahedral tensegrity structures via a double-loop genetic algorithm[END_REF]. Fig. 5(a) displays the stress-strain response of the lattice for different levels of pre-strain. The large square markers show the onset of plastic yielding in at least one of the lattice unit cell members. In our lattices, yielding always starts at the cables. Note, however, that the results presented in Fig. 5(a) assume elastic behavior even after the onset of plastic yielding and are not representative of the post-yield lattice behavior.

When there is no pre-strain, both the bars and cables experience tensile stresses as the lattice is stretched. However, the situation becomes more complex in lattices with pre-strained cables. In this case, in the unloaded configuration, cables are under tension and bars under compression, with the intensity of the corresponding stresses depending on the imposed pre-strain (the higher the pre-strain, the higher the tensile stress on cables and compressive stress on bars). Since in this case cables are already in a tensile state, a lower uniaxial stretch of the lattice is required to reach the yield point. Furthermore, Fig. 5(a) shows that the stress T 33 at a given strain level is higher for lattices with low pre-strain. To explain this behavior, note that as a uniaxial tensile strain is imposed on the lattice unit cell, the bars, which are under compression in the undeformed configuration, begin to relax by expanding and their strain energy decreases. Simultaneously, the cables experience further tensile strain and their strain energy increases. The net effect of bars relaxing and cables experiencing further tensile strain results in a lower increase of energy compared to the zero pre-strain lattice. This explains why, although counterintuitive at first, the effective stress T 33 , which is related to the change in unit cell potential energy as a uniaxial tensile strain is imposed (cf. Eqn. 9), increases more rapidly when the pre-strain is lower. In summary, as the pre-strain increases, both the effective tensile stress on the lattice and the strain at which yielding starts, decrease. strain λ . For low levels of lattice pre-strain, the stress is zero even for significant strains. The lattice deforms in such a way that none of the bars or cables undergo strain and the stiffness in compression is zero. After a certain strain value is reached, the lattice members start deforming and the stress increases. The stress increases monotonically until the bars buckle, at which point the stress levels-off and does not increase further. For high levels of pre-strain (λ = 0.993), it is possible to achieve non-zero stiffness in compression in the undeformed configuration.

To conclude with the analysis of these two examples, we define the toughness of the lattice as the area under the effective tensile stress-strain curve up to the point in which yielding occurs. From the tensile and compressive tests on a unit cell, we infer that the lattice with zero pre-strain has a higher toughness and stiffness in tension, while it has zero stiffness until about 17% strain in compression. On the other hand, a lattice with high pre-strain (λ = 0.993 for example) has a lower stiffness and toughness in tension, but it has non-zero stiffness in compression even in the undeformed configuration. However the peak load carrying capacity in compression is the same for all levels of prestrain and it is a function of the elastic buckling strength of the bars, in a similar fashion to the results reported for single tensegrity cells [START_REF] Rimoli | A reduced-order model for the dynamic and post-buckling behavior of tensegrity structures[END_REF].

Fig. 6 displays a unit cell of the lattice in the deformed configuration at a compressive strain F 33 = 0.70. The lattice has zero pre-strain (λ = 1) in the undeformed configuration and it has the same material properties as listed above. Fig. 6(a) shows an isometric view of the lattice, while Fig. 6(b) shows a side view in the x 1 x 2 -plane of the lattice. The bars are all under compressive stress and are shown in red (thick lines), while the cables experience tensile stress and are represented by blue (thin) lines. Note that when the lattice is under compression, the cables experience tensile stress. This observation can be explained by considering the geometry and connectivity of our lattice. As discussed earlier, the bars form closed loops of 4 members in the lattice. Thus every node has 2 bars and they are not co-linear. Now, we consider the equilibrium of a single unit cell, where the cables and bars form a convex envelope of a sphere. If both the bars at a node are under compression, then the cables at the node have to be in tension to ensure force equilibrium at the node. Indeed, this observation follows from the geometry and connectivity of our tensegrity lattice. Thus, in contrast with conventional truss structures, part of the lattice is always under tension even when the lattice is under compression.

Our final example in this Subsection considers shear loading on a lattice unit cell. The material and geometric parameters of the lattice are the same as in the normal loading case discussed above. The lattice unit cell is subjected to shear, with two non-zero shear strain components F 12 = F 21 . Fig. 7 F 12 . The stress increases monotonically with shear strain for all levels of lattice pre-strain and the stress is higher for a lattice with lower pre-strain.

Fig. 8 displays the deformed lattice configuration of a unit cell subjected to a shear strain F 12 = F 21 = 0.25. The red and blue colors denote compression and tension respectively. Thick lines are used to represent bars, while thin ones depict cables. Note that some cables in the constant x 3 planes undergo rigid body translation and thus remain unstretched (gray color). The bars are under a combination of tension and compression, as shear in the x 1 x 2 -plane can be decomposed into equal tension and compression along the 45 • planes to the coordinate axes. This observation is consistent with the deformation pattern observed in the top view displayed in Fig. 8(b). Indeed, the figure shows that the bars along the x 1 = x 2 direction (45 • from the horizontal axis) are all in tension (blue color), while those along the x 1 = -x 2 direction (-45 • from the horizontal axis) are all in compression (red color). However, we add a note of caution that the shear deformation mode should not be construed as a simple linear superposition of the tensile and compressive loadings mentioned above, since the behavior is nonlinear even for small strains. Indeed, this nonlinear and asymmetric behavior of the lattice under tension and compression is evident by comparing the stress-strain response in Figs. 5(a In summary, we demonstrated a rich and unique set of deformation behavior when an infinite tensegrity lattice is subjected to simple affine deformations. In particular, the geometry and connectivity of the lattice ensure that the cables are always under tension for the entire range of loading conditions considered here. Furthermore, pre-strain results in a lower effective stress in tension, but in a higher stress under compression, compared to lattices with zero pre-strain. These unique properties can potentially lead to dynamic behavior very distinct from conventional bulk media and truss-based lattice structures.

Yield strength of unit cell

Having demonstrated the deformation response of a unit cell to uniaxial strain loading, we now turn our attention to quantifying the yield strength of the lattice for various characteristic parameters. Note from Eqns. ( 1), ( 2), ( 5), and ( 6) that the energy is a linear function of the Young's modulus E. Hence the stress, given by Eqn. [START_REF] Lee | A fully automatic group selection for form-finding process of truncated tetrahedral tensegrity structures via a double-loop genetic algorithm[END_REF], is also a linear function of E even for large deformations. Thus, it suffices to perform computations using a fictitious value of E = 1 and extend the results to real materials by multiplying by the corresponding Young's modulus.

Similarly, the lattice density ρ l is given in terms of the material density ρ m by

ρ l = ρ m π(96L b D 2 b + 288L c D 2 c ) L 3 ,
where L is the span of the undeformed unit cell along the coordinate directions, D b(c) and L b(c) are the diameters and lengths of the bars (cables), respectively. The lattice is said to undergo yielding when either a cable or bar yields under We illustrate results for tensegrity lattices made of 3 materials: aluminum, titanium, and metallic glass, with their material properties shown in Table 1. The results are computed for a range of bar and cable diameters. The bar diameter normalized by the span of the unit cell along the coordinate axes is 0.036 to prevent failure by plastic buckling under compression. For our chosen size of unit cell (L = 1m), this critical ratio corresponds to a diameter D b = 3.8cm. We present results for three values of bar diameter: D b = 0.4, 0.8, 1.6 cm which are well below the plastic buckling threshold. The simulations are performed over a range of values of cable to bar diameter ratios η ∈ {0.5, 0.7, 0.8, 1, 1.2}. Note that the lattice would resemble truss structures for the last two values of η. As mentioned earlier, the stress and hence the yield strength is solely a function of the geometric ratios and independent of the actual physical dimensions of the unit cell. For a given material, the density of the unit cell is also solely dependent on the geometric ratios of cable and bar diameters to the unit cell length. Thus, the results presented here are independent of the actual physical dimensions of the unit cell and are applicable to any lattice, as long as the same geometric ratios are kept. unit cell. The dashed (solid) curves correspond to tensile (compressive) yield strength and the hollow (filled) markers correspond to uniaxial stress (strain) loading. Two sets of values for the three materials are observed in the figure. The lower set of values correspond to compressive yield strength. The markers lumped together correspond to a fixed bar diameter while varying the cable diameter over the range of values η = D c /D b listed above. The failure in both tensile and compressive loading is due to the yielding of the cables under tensile strain. The yield strength values for both uniaxial stress and strain loadings are seen to be in the same range, with the tensile strength being higher in uniaxial strain, while the compressive strength being higher in uniaxial stress loading. However, note that the behavior is very distinct in both these loading cases, with the lattice having a significant Poisson effect under uniaxial stress loading, and being able to take more than 80% compressive strain without yielding. Furthermore, the effective stress reaches a constant value under uniaxial strain compressive loading, while under uniaxial stress loading, the stress continues to increase until the onset of failure.

The tensile strength is observed to be higher than the compressive yield strength, as the effective stress on the lattice is almost constant in the latter case when the bars are in the post-buckled configuration. Furthermore, under uniaxial strain loading, the yield strength is observed to be constant for a fixed bar diameter, independent of the cable diameter, since the strength depends on the elastic buckling load of the bar. In contrast, under tensile loading, all the members are in tension until the cable yields at a critical value of strain. Thus the yield strength increases with increasing cable diameter η for a fixed bar diameter. However, it should be noted that the effective behavior of the lattice is a nonlinear function of both the cable and bar diameter. Finally, the yield strength of the lattice also increases with increasing bar diameter.

The effective range of density and strength attained by tensegrity lattices places them in the domain of applications generally dominated by foams. In this range, very few materials are able to outperform foams, with the notable exception of the ceramic nanolattices reported in [START_REF] Lucas R Meza | Strong, lightweight, and recoverable three-dimensional ceramic nanolattices[END_REF]. For purposes of illustration, Fig. 9(b) compares the tensile data of our lattices with the aforementioned ceramic ones. Remarkably, for larger values of bar diameters, the yield strength to density scaling of our lattices lies within the same range of brittle ceramic nanolattices. Furthermore, as the bar diameter is reduced, superior yield strength to density scaling is obtained for our tensegrity lattices when compared to both the brittle and ductile nanolattices. We emphasize here that the behavior of our lattices is independent of the length-scale, and that our results are valid independent of the characteristic dimensions of the lattice. Note that in contrast to the earlier works involving hollow nanolattices, our lattices show superior behavior even with solid bars and cables of macro-scale dimensions. The superior yield strength in tension compared to existing natural and man-made materials is attributed to the nonlinear geometric effects associated with our unit cell. We finally remark on the potential for further enhancement of mechanical properties of our tensegrity lattices by optimizing the unit cell geometry and using multiple materials in the unit cell. Our results suggest that the framework presented here forms the basis for the systematic design and analysis of tensegrity lattices with superior mechanical properties across the scales.

Wave propagation on a of finite tensegrity lattice

To conclude this section, we investigate the dynamic response of a finite tensegrity lattice impacting an elastic wall. The lattice is composed of 8 × 8 × 8 elementary cells (or 4 × 4 × 4 unit cells), as shown in Fig. 10 E, F, G, andH, corresponding to snapshots of the simulation at times t = 0, 0.04, 0.07, 0.11, 0.13, 0.21, 0.28, and 0.36 seconds respectively, with t = 0 s corresponding to the moment right before contact initiates. In each sub-figure we display: (i) the component of the velocity normal to the wall for each node of the discrete system as a function of the distance to the wall (light blue dots), (ii) a mean particle velocity obtained from a moving average of 1,000 data points (dark-blue continuous line), and (iii) an image showing the configuration of the lattice at the corresponding time.

Figs. 11 B,C, and D clearly show a compression wave traveling from the wall (bottom face) towards the opposite side of the lattice (top face), and Fig. 11 E displays the instant at which the wave reaches the wall. In the figure, points placed to the left of the wave exhibit almost no velocity whereas points on the opposite side of the wave-front travel at approximately the impact velocity v = -6 m/s. If the medium were non-dispersive, once the wave reaches the top wall it should be reflected as an expansion wave with the velocity on its expanded side being of equal and opposite sign, i.e., v = +6 m/s. However, we observe in Figs. 11 F and G that there is no clear reflected wave. Furthermore, the expansion of the lattice once the compressive wave reaches the top surface seems to be rather uniform until the lattice separates from the wall (Fig. 11 H).

The asymmetric nature between the compressive and tensile stress waves traveling over the lattice is further highlighted in Fig. 12. The left figure shows the position of the top and bottom faces of the lattice, whereas the right one displays the corresponding mean velocity of the points on those faces. From the figures we observe 4 distinct stages. During the first stage, from the start of contact up to label E, a compressive wave travels through the body towards the top face. We observe from Fig. 12 (right) that the acceleration of the top face is initially very small and increases as time progresses. This is an indication that, even though at first this compressive wave seems to be non-dispersive, the contrary is true. The second stage occurs between the times corresponding to labels E and F. During this stage, the velocity on the top face remains very low when compared to the initial velocity of the lattice, and a reflected expansion wave slowly starts to buildup. This phenomenon highly contrasts with the typical sharp reflection of waves observed at the interfaces of non-dispersive materials. One can observe the asymmetry between tension and compression in the transition from the first to the second stage. Notice how, as we pass through label E, the bottom face velocity sharply increases from -10 m/s to zero. At this point, the lattice is undergoing compression (since velocity is negative). As the lattice starts to expand, after point E, it takes much longer to attain a velocity of 6 m/s. This shows that the lattice is more dispersive under tension when compared to compression, at least in the presence of a large compressive deformation. During the next stage, between labels F and H, the lattice expands almost uniformly until it finally reaches the last stage, after label H, during which the lattice is finally separated from the wall and oscillates between stretched and compressed states.

Summary and final remarks

Even though there is an abundance of catalogs with well known tensegrity shapes, and design methods have been developed to discover new tensegrity forms, the existence of 3-dimensional tensegrity lattices has not been reported in the literature before. In this work, we first propose a method for generating a novel 3-dimensional tensegrity lattice. Our approach is based on the application of successive reflections to an elementary tensegrity cell to build a unit cell with translational symmetry. This technique allows us to build tensegrity columns, plates, solids, and any combination of them. Furthermore, bars in the unit cell form close compression loops connected to each other exclusively through cables. In this way, the resulting tensegrity lattice is continuous in tension and discontinuous in compression, which could provide precious post-buckling stability to this kind of structures.

Then, we adopted a nonlinear homogenization method to study the effective response of tensegrity lattices. In contrast to earlier works involving hollow nanolattices, our lattices show superior strength in the low-density regime, which depends only on lattice proportions and not on its scale. That is, it is possible to achieve tensegrity lattices with these excellent properties across the scales, all the way from metamaterials, to sandwich beam and plate cores, to large-scale civil, mechanical, and aerospace structures. This high performance is attributed to the nonlinear geometric effects and buckling associated with the unit cell.

Finally, we analyzed the dynamic response of an 8 × 8 × 8 tensegrity lattice by means of a discrete reduced-order model. We observed that wave propagation in this kind of structure is highly dispersive and asymmetric. Consequently, the superior strength at low densities of tensegrity lattices, coupled with their resilience when subject to extremely large deformations and their dispersive and asymmetric nature when it comes to wave propagation, makes tensegrity-based metamaterials good candidates for energy absorption applications.

In summary, we believe that tensegrity-based lattices have enormous potential for developing metamaterials with unique static and dynamic properties. Some potential future research directions include investigating the nature of
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 1 Figure 1: Building elementary cell for lattice. Perspective (left) and top (right) views with legends indicating naming convention.

Figure 2 :

 2 Figure 2: Simply stacking of elementary cells leads to continuum compression paths extending throughout the structure.

Figure 3 :

 3 Figure 3: Sequence of reflection operations needed to generate a unit cell compatible with translational symmetries.

Figure 4 :

 4 Figure 4: Schematic of the discretization scheme. The continuum bar shown at the top of the figure is replaced by the discrete system shown beneath it.

Figure 5 :

 5 Figure 5: Unit cell subjected to uniaxial strain, (a) tensile and (b) compressive along the x 3 direction for 4 distinct values of cable pre-strain λ . Large square markers show onset of plastic yielding in at least one of the lattice unit cell members.
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 56 Figure 6: Deformed configuration of the lattice unit cell subjected to uniaxial compression along x 3 direction at strain ε 3 = -0.3. (a) Isometric and (b) side views show the cables under tension (blue) and the bars under compression (red).

  displays the T 12 component of stress with strain

Figure 7 :

 7 Figure 7: Stress-strain response of a Ti unit cell subjected to shear F 12 = F 21 . The response is nonlinear due to large deformation geometric effects.

  ) and 5(b).

Figure 8 :

 8 Figure 8: Deformed configuration of the lattice unit cell subjected to shear ε 12 = ε 21 = 0.25. (a) Isometric and (b) top views show the bars under both tension (blue) and compression (red). Most of the cables remain under tension (blue), while some remain stress-free (gray).
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 99 Figure 9: Yield strength-density variation for tensegrity lattices made of 3 materials and having various diameters of cables and bars. (a) Tensile (dashed curves) and compressive (solid curves) yield strengths for both uniaxial strain (filled markers) and uniaxial stress (hollow markers) conditions. (b) Comparison of tensile yield strength under uniaxial strain loading with brittle and ductile ceramic nanolattices.
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 10 Figure 10: Three-dimensional tensegrity lattice considered for wave propagation analysis.

  . The compression members are standard titanium bars with length L b = 58 cm, external diameter φ b = 1.9 cm, and thickness t = 1 mm. The cables are made of the same material as the bars and have diameter φ c = 5 mm. Both bars and cables have Young's modulus E = 91 GPa and density ρ = 4, 480 kg/m 3 . The lattice is discretized using the model introduced in Subsection 3.1, and contact against the wall is implemented through a penalty method with wall constant K w = 1 × 10 6 N/m. Fig. 11 illustrates the temporal evolution of the lattice. The figure consists of eight sub-figures, labeled A, B, C, D,
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 11 Figure 11: Temporal evolution a 3-dimensional tensegrity lattice impacting a wall.

Figure 12 :

 12 Figure 12: Position and mean velocity of the top an bottom faces of the lattice.

  be the space of test functions having zero Dirichlet boundary conditions on ∂ Ω u . The principle of virtual work is
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Table 1 :

 1 Material properties of tensegrity lattice base materials.

		Density Young's modulus Yield strength
	Material	[kg/m 3 ]	[GPa]	[MPa]
	Aluminum	2700	71	500
	Titanium	4480	91	720
	Metallic glass	6000	95	1800

localization associated with compression paths and optimizing the material properties of the various members. Also of potential interest is wave-guiding using these lightweight but stiff tensegrity lattice structures. Thus, we envision that the area of tensegrity-based lattices and metamaterials will be a topic of active research in the near future.