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Abstract

In this paper we survey the methods for control and cre-
ative interaction with pre-trained generative models for au-
dio and music. By using reduced (lossy) encoding and sym-
bolization steps we are able to examine the level of informa-
tion that is passing between the environment (the musician)
and the agent (machine improvisation). We further use the
concept of music information dynamics to find an optimal
symbolization in terms of predictive information measure.
Methods and strategies for generative models are surveyed
in this paper and their implications for creative interaction
with the machine are discussed in the musical improvisation
framework.

1. Introduction

In our previous studies we developed SOTA generative
music models, with focus on interactive machine impro-
visation that can learn musical style from live or off-line
examples and then produce ‘more of the same” [3]. This
“same” was interesting in improvisation settings, since the
variations maintained resemblance to the immediate expres-
sions of the musician on stage, but were distinct enough to
create interest and inspire new interaction. The problem in
this setting was that it was the human who found interest
in the machine imitation and changed his playing strategies
by being inspired by the new machine generated materials,
while the artificial agent’s generation was oblivious to the
musician. In order to allow for more interactivity, special
tools were introduced, such as query-based improvisation
that biased the choices of the artificial music generator to-
wards materials that had more coherence with the human

musician (finding hot spots in the model memory, query-
matching, a-priori scenarios and more, see [28] ). Nonethe-
less, these modifications to the generation policy of the arti-
ficial agent that were hard-wired, are largely insufficient to
capture the complexity or the subtle expressive inflections
in joint multi-musician improvisations. Experiments with
multiple artificial musical agents that are capable of listen-
ing or influencing each other showed that varying interac-
tion regimes has an important effect on creating interest and
prolonging the interaction into a meaningful musical form
[22].

The research objective of this inter-disciplinary project is
to model and enhance co-creativity as it arises in improvised
musical interactions between human and artificial agents, in
a spectrum of practices spanning from interacting with soft-
ware agents to mixed reality involving instrumental physi-
cality and embodiment. Such creative interaction strongly
involves co-improvisation, as a mixture of more or less pre-
dictable events, reactive and planned behaviors, discovery
and action phases, states of volition or idleness. Improvisa-
tion is thus at the core of this project and indeed a funda-
mental constituent of co-creative musicianship, as well as
a fascinating anthropological lever to human interactions in
general. The outline of the project unfolds as follows:

¢ Understanding, modelling, implementing music gener-
ative and improvised interaction as a general template
for symbiotic interaction between humans and digital
systems (cyber-human systems)

* Creating the scientific and technological conditions for
mixed reality musical systems, based on the interrela-
tion of creative agents and active control in physical
systems.



* Achieving distributed co-creativity through complex
temporal adaptation of creative agents in live cyber-
human systems, articulated to field experiment in mu-
sical social sciences.

This project exploring co-creativity in many dimensions of
interaction, learning and generativity is notably linked to the
European REACH (Raising Co-creativity in Cyber-human
Musicianship) project involving the authors.

2. On Co-Creativity

The psychologist Margaret Boden has given much at-
tention to the many relations between creativity and ma-
chines [8] For her, creativity is the ability to find new, sur-
prising and socially valuable ideas or artifacts, and can oc-
cur in three main ways: it can be combinatorial (new con-
figurations of known materials), exploratory (discovering
new paths in conceptual / mental spaces) or transformative
(when the space itself is disrupted giving way to ideas that
were properly inconceivable before). But what is the situ-
ation when part of the creativity is delegated to machines,
when manifestations of co-creativity emerge from symbolic
interactions between human and artificial agents?

In addition to the novelty / effectiveness criteria, cyber-
human co-creativity is strongly felt when two features of
improvisation linked to emergence [9] and non-linear dy-
namics [27] are identified: (1) emergence of cohesive be-
haviors that are not reducible to, nor explainable by the
mere individual processes of agents; (2) apparition of non-
linear regimes of structure formation, leading to rich mu-
sical co-evolution of forms. In our work with jazz impro-
visers, Bernard Lubat mentions the machine seems, in his
words, to “liberate” him, perhaps from specific habits or au-
tomatisms. In other words, our inner atlases can be roamed
and even modified by creative thinking, in order for the “un-
thought” (or the yet unthinkable) to find its way.

By producing emergent information structures as a result
of cyber-human interaction, we might achieve an epistemo-
logical leap [4] beyond the difficulty of conceding creativ-
ity to artificial systems, and assess that creativity is not a
state anyway, but rather a dynamical effect of interaction in
a complex system, showing radical novelty as a marker of
emergence [12]. By building on this epistemological boost,
one would be able to model deep interactions that in turn
will trigger co-creative behaviors.

3. Architecture of Improvising Musical Agents

The architecture of an agent in the improvisation system
that we develop is shown in figure 1 The different elements
of the system comprise of the following:

* Musical signal : stream of audio or multimedia content

Symbolic signal :
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Figure 1. The flow of information between lis-
ten, learn and interact modules and the di-
verse data and control feed-backs channels
in an agent

* Symbolic signal : stream of quantized units (audio de-
scriptors, musical vocabulary, latent representations

* Informed listening : the more the structures are
learned, the more powerful the predictions become to
help machine listening recognize musical units

e Learn : statistical / deep modelling of musical struc-
ture and dynamics, reinforcement learning of interac-
tive musical behaviour

* Memory model : variety of generative models for sym-
bolic and audio signals, associated to activation states
assessing the influence of the live environment on fu-
ture predictions and their adequacy to musical input

* Interaction : the agent behaviour model; receive poli-
cies from the learning module ; queries the memory
for generative content; assess influence from the exter-
nal environment and weights on activation state of the
memory; sends reinforcement signals to the learning
module, follows or generate scenarios

This agent architecture can be replicated in a significant
number of units in a multi-agent system, producing interac-
tion between artificial agents as well as between agents and
humans. Only musical and control signals are exchanged,
with multiple cross-feedback loops (when agent A listens to
agent B who listens to agent A etc.) that will promote and
sustain emergence phases, such as in the Bayesian belief
propagation scheme followed in [25]. Signal-symbol quan-
tization [11], constitutes a critical part of the system as the
symbolic signal constitute the main vector of information in
the internal agent mechanism. Another important part is the
capacity for an agent to not only "follow" the musical input
from the context, but also to respect user defined scenario,
and in more extreme cases, to incrementally generate sce-
narios by itself as in [10], where a LSTM with bottleneck
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Figure 2. Noisy channel between encoder and
decoder

encoder - decoder and teacher forcing algorithm is used to
predict the next N chords of the harmony.

4 Reduced Representation

Studies of human cognition suggest Rate—Distortion as
a way of extracting useful or meaningful information from
noisy signals [30]. The idea of reduced representation also
has been recently explored in the context of representation
learning in deep neural networks using a framework known
as Information Bottleneck [31]. In deep learning some at-
tempts to consider predictive information through use of a
bottleneck or noisy representation in temporal models such
as RNNs have recently appeared in the literature[2],[14].
Accordingly, in order to achieve a better interaction be-
tween the human and the machine, we are seeking two types
of data reduction:

* lossy representation of the signal (audio or midi) that
effectively reduce the dimensionality of the latent rep-
resentation and allow for better generalization

 symbolization of the lossy encoding to allow for better
temporal representation by using language modeling
with variable memory length

Learning music representation with auto-encoder, a
schematic representation of the noise induced by bit-
reduction is given by Figure 2. Performing finite bit-size en-
coding and transmission of the quantized latent values from
encoder Z, to decoder Z, is not required, since we are in-
terested in gating and biasing the original signal towards the
prior distribution by encoding it at a limited bit-rate, which
is given by the following optimal channel [7]

Q(z4)ze) = Normal (g, 03) (1)
pa = ze + 27 (e — 2) )
o2 =274 (22R _1)42 3)

Table 1. The experiment results of control-
ling the rate to measure the mutual informa-
tion between the conditional latent variables
and the predictive latent variables. The first
column shows different predictive scenarios.
The left columns show the mutual information
with different rates.

Scenario R=10 | R=100 | R=1000 | R=10000 | Original
past-future 67.142 | 132.422 | 73.089 83.012 75.120

1st voice-2nd voice. | 36.963 | 148.054 | 93.637 77.848 126.631
2nd voice-1st voice | 61.643 | 91.893 | 104.920 | 91.821 82.037

To illustrate the effect of reduced data representation on
predictive properties of music, we performed quantization
at different rate for a monophonic encoding of music using
a disentangled VAE training for a dataset of 14 two-part
inventions composed by Johann Sebastian Bach. The MIDI
files are collected from the Complete Bach MIDI Index'.
Mutual information neural estimation (MINE) [6] was used
to analyze the relations in time and across voices from their
reduced latent representations.

From the results, we conclude that the mutual informa-
tion values between conditional latent variables and predic-
tive latent variables depend on the level of reduced represen-
tation. We find that reducing bit-allocation can effectively
improve the mutual information between conditional latent
variables and predictive latent variables for each scenario.
For more details of this and other polyphonic and audio ex-
periments we refer the readers to [17].

5. Musical Information Dynamics

Assuming the music signal X = xz[n] is encoded into a
sequence of latent representations Z = z[n|, with n denot-
ing discrete time step n. We would like to algorithmically
discover the sequential structure of Z, and be able to present
the structures quantitatively. Music Information Dynamics
(MID)[1, 15, 29] provides a theoretical framework that uti-
lizes mutual information between past and present observa-
tions to model the predictability of the signal. The advan-
tage of adopting MID is that it optimizes or calculates an
information theoretic measurements on the input sequence
Z and is agnostic of specific sequence related applications,
such as motifs discovery or structure segmentation. MID
was shown to be important for understanding human per-
ception of music in terms of anticipation and predictability
[1, 15].

An efficient formal method for studying MID for se-
quence Z[n] is the Information Rate (IR) that considers the
relation between the present measurement Z = z[n] and

Uhttp://www.bachcentral.com/midiindexcomplete htm]
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it’s past Z = z[1],2[2],...,z[n],..., z[IN], formally de-
fined as the maximum of mutual information over different
quantized level of the sequence S = Q(Z)

IR(Z)=  max 1Q2).QZ) @
= H(S) — H(S|S) )

According to this measure, the maximal value of IR is
obtained when the difference between the uncertainty of
H (S) and predictability H (S |<§) is at its greatest, meaning
that there is a balance between variation and predictability.
Quantization Q(Z) is needed due to the need to detect in-
exact repetitions in the sequence Z, which in turn signifies
the allowed level of similarities between observations in Z,
or the amount of signal detail that is significant when com-
paring the present to the past.

6. Symbolization and Music Analysis using
VMO

Variable Markov Oracle (VMO) [33] accepts a represen-
tation Z = z[1],2[2], ..., 2[/V] and turns it into a symbolic
sequence S = s[1],s[2],...,s[n],..., s[N], with M states
over a finite alphabet . The labels are formed by finding
suffixes in a graph structure constructed by the VMO algo-
rithm. Due to space consideration, we leave out the VMO
construction and refer the readers to [16, 34]. The essential
step in symbolization is finding a threshold with the high-
est MID value. The threshold 6 partitions the space of fea-
tures into categories that capture and represent the different
sound elements by determining if the incoming z[n] is sim-
ilar to one of the frames following previous instances in the
sequence pointed to be a suffix link from n — 1. VMO sym-
bolization step assigns two frames z[i] and z[j] the same
label s[i] = s[j] € X if ||z[i] — z[j]|| < 6. To find the
optimal threshold 6, MID measure can be estimated by any
predictive compression algorithm C(-). The compression
gain over blocks of symbols is used to replace the the en-
tropy term H (-) as our measure of complexity[26]

max_[C(s[n]) — C(s[n]|S). (6

IR(Z) =
( ) 0,s[n]€Xg

It should be noted that the alphabet out of the quantiza-
tion is constructed dynamically, as new labels can be added
when an input sample cannot be assigned to one of the ex-
isting clusters of samples already labeled by existing labels.

As an example of the effect of different levels of symbol-
ization on discovery of the motif structure in different mu-
sical styles, we performed comparative analysis of several
works for the flute [18] using human engineered (Chroma
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Figure 3. Motifs found in different flute pieces
using the best VMO for VAE,.;;, Chroma fea-
tures, and MFCCs.

and MFCC) and machine learned representations (VAE).
We provide a partial example of the finding in the figure
3. It can be seen that the Dongxiao music is character-
ized by much shorter motifs, which were found at much
finer threshold value compared to Telemann that is charac-
terized by longer motifs that required a coarse quantization.
In a different work, a VMO based MID estimator was used
to evaluate the performance of generative recurrent latent
models for MIDI data. The results showed that Variational
encoding, which added randomization into the latent repre-
sentation of the generative model, resulted in an improved
motif structure of musical generation output as it better re-
sembled the motif statistics found in the original data com-
pared to RNN methods that tend to overly reproduce repe-
titions having looping sub-sequences[19].

7. RL tuning of musical generators

There have been a lot of research in modelling music
generation and synthesis as a Maximum Likelihood Esti-
mation (MLE) problem [35, 13, 20], where the objective is
to predict the next best likely note/symbol. However, one
of the key issues is exposure bias -the training and test-
ing conditions might be completely different, due to the
vast possibilities in music improvisation. Hence, we need a
mechanism to facilitate zero-shot learning. Another issue is
Greedy vs Dynamic Programming - in MLE, the approach



is greedy i.e the note/symbol which is best suited for the
current time-step is chosen. This might cause issues in long-
term music generation, as we need a solution to optimize for
long term rewards (dynamic programming). We solve the
above issues by treating music improvisation/generation as
a reinforcement learning problem. An agent maximizes a
long-term discounted reward function by exploring differ-
ent states. In order to achieve this, some key challenges in
applying RL to music need to be addressed:

* Representation of States: a trivial solutions could be
representing a state as the sequence of notes played so
far, or sequence of past spectral feature, symbolized
into a discrete representation. This poses a problem as
we need a state space independent of the previous ob-
servations, so as to allow the musical agent to explore.

* Reward function: Another key aspect of RL is finding
a good reward function. The rewards are responsible
for tuning the agent towards ’good behavior’. In an
open-ended topic such as music improvisation, it can
be very hard to quantify what ’good music’ is across
different styles and cultures.

Recent works [13] have used similar representations to
model raw audio. They use MLE to synthesize audio se-
quentially, by fitting another model, say a transformer, on
top of these learned representations. This is extremely time
consuming and also computationally expensive. Since, our
goal is to have real-time music improvisation, we need to
parallelize this synthesis process.

We address the problem of representation by consider-
ing VMO symbolization and using ideas from VQ-VAE
[32] and VQ-GAN [21]. We use raw audio signals as the
training dataset to train a codebook model to obtain the
vector-quantized embeddings (codified audio) as our repre-
sentation. The representation of a state would be the com-
bined sequences of vector-quantized embeddings of both
the user input audio and the machine improvised audio ob-
served so far. More formally, given a raw audio signal (user
input) x and a VQ model F, we represent the signal as
E(x) = [h1, ha, hg, ha, ..., hy], Where hq,ha,h, are indices
corresponding to the embedding vectors in the codebook.
Similarly, we represent the generated music signal as a se-
quence of codes [m1,ma, ..., m,]. To represent a state s;,
we use a concatenated representation of [spy, ;¢ Where
Spt = ho:t—1 and sy = Mo:—1.

We design our rewards based on recent works on using
RL for music synthesis [24, 23]. Given state s; at timestep
t, our reward agent assigns a score based on p(mi_a; :
met+At]Se), where m, denotes the codified audio generated
by our synthesizer at timestep ¢ and At is a parameter to
control the window size. Note that this is different than
MLE, as the RL agent tries to maximize the discounted

Figure 4. Percussion phrase generated with
CNN trained on music notation, without (top)
and with (bottom) RL refinement

reward over the entire sequence, which accounts for long-
term structure and eliminates the problem of greedy selec-
tion at every timestep. The effect of discounted rewards is
demonstrated in figure 4. It is evident that the top example
is repetitive while RL creates more varied musical structure.

For negative reinforcement, the reward agent penalizes
compositions, where the pitch remains the same for more
than n timesteps. Our framework also allows for customiza-
tion where the rules of different synthesizers can be cus-
tomized according to the needs of the user. The reward
agent for the composer is based on the mutual information
between the observed input signal and the current signal of
the music agent.

For our synthesis component, we choose a RL module,
where each action is replaced with skills (options)[5]. We
can think about these skills as a series of temporally ex-
tended courses of actions. Our RL agent consists of two
components: lower-level components (specializers) that are
specialized in a skill, and a higher level component (com-
poser) that synthesizes improvisations by using a combina-
tion of the lower level components. Each of the specializ-
ers are generators that output sequences of vector-quantized
codes such that the decoded raw audio satisfies a particular
rule, i.e optimizes for a reward function. The composer is
responsible for selection of options or combining these op-
tions to compose improvisations to human-played compo-
sitions at real-time.
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