Switching Machine Improvisation Models by Latent Transfer Entropy Criteria - Archive ouverte HAL
Article Dans Une Revue Physical Sciences Forum Année : 2023

Switching Machine Improvisation Models by Latent Transfer Entropy Criteria

Résumé

Music improvisation is the ability of musical generative systems to interact with either another music agent or a human improviser. This is a challenging task, as it is not trivial to define a quantitative measure that evaluates the creativity of the musical agent. It is also not feasible to create huge paired corpora of agents interacting with each other to train a critic system. In this paper we consider the problem of controlling machine improvisation by switching between several pre-trained models by finding the best match to an external control signal. We introduce a measure SymTE that searches for the best transfer entropy between representations of the generated and control signals over multiple generative models.
Fichier principal
Vignette du fichier
Maxent 22.pdf (1.79 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04010744 , version 1 (02-03-2023)

Licence

Identifiants

Citer

Shlomo Dubnov, Vignesh Gokul, Gérard Assayag. Switching Machine Improvisation Models by Latent Transfer Entropy Criteria. Physical Sciences Forum, 2023, 5 (1), pp.49. ⟨10.3390/psf2022005049⟩. ⟨hal-04010744⟩
83 Consultations
62 Téléchargements

Altmetric

Partager

More