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Fast and robust single particle reconstruction in 3D
fluorescence microscopy

Thibaut Eloy, Étienne Baudrier, Marine Laporte, Virginie Hamel, Paul Guichard, Denis Fortun

Abstract—Single particle reconstruction has recently emerged
in 3D fluorescence microscopy as a powerful technique to improve
the axial resolution and the degree of fluorescent labeling. It
is based on the reconstruction of an average volume of a
biological particle from the acquisition of multiple views with
unknown poses. Current methods are limited either by template
bias, restriction to 2D data, high computational cost or lack of
robustness to low fluorescent labeling. In this work, we propose a
single particle reconstruction method dedicated to convolutional
models in 3D fluorescence microscopy that overcomes these
issues. We address the joint reconstruction and estimation of
the poses of the particles, which translates into a challenging
non-convex optimization problem. Our approach is based on a
multilevel reformulation of this problem, and the development of
efficient optimization techniques at each level. We demonstrate
on synthetic data that our method outperforms the standard
approaches in terms of resolution and reconstruction error, while
achieving a low computational cost. We also perform successful
reconstruction on real datasets of centrioles to show the potential
of our method in concrete applications.

I. INTRODUCTION

Fluorescence microscopy has experienced great resolution
improvements in recent years thanks to progress in super
resolution microscopy [1] and more recently in expansion
microscopy [2]. These advances have motivated the use of
fluorescence microscopy in structural biology, to decipher
the structure of macromolecular assemblies that were previ-
ously observable only with electron microscopy [3]. How-
ever, fluorescence microscopy is still limited by two issues.
Firstly, the resolution of most fluorescence microscopes is
strongly anisotropic (the resolution in the axial direction of
the microscope is typically 3 to 5 times lower than in the
lateral plane). Secondly, spurious intensity variations along the
protein structures can hinder the biological interpretation. This
phenomenon is explained by a low and non uniform degree of
labeling (DOL), which characterizes the density of fluorescent
dyes that attach to the protein of interest and emit fluorescent
light.

We address these issues with a single particle reconstruction
(SPR) approach. The principle is to combine several acquisi-
tions of identical biological particles observed from different
orientations, to reconstruct a single particle model. Thanks to
the fusion of complementary information in each view, we aim
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at reconstructing volumes with isotropic resolution and uni-
form DOL. This approach has received increasing attention in
recent years and offers new perspectives in structural biology
to decipher the protein architecture of large macromolecular
assemblies [4], [5], [2], [6], [7], [8], [9].

In this work, we focus on a category of fluorescence
microscopy techniques that we call convolutional modalities,
for which the observation model is the convolution with a
point spread function (PSF). Confocal and STED (stimulated-
emission-depletion) microscopy [10] are the main representa-
tives of this category and have been proven to be well suited
to observe important macromolecular assemblies such as the
centriole or the nuclear pore, in particular when combined with
expansion microscopy [2], [6].

A. Challenges and related works

Multiview reconstruction is a common practice in several
microscopy systems for which physical calibration procedures
provide an accurate estimation of the pose of each view. (e.g.
selective plane illumination microscopy, [11], [12], 3D total-
internal reflection fluorescence microscopy [13]). By contrast,
the specificity of the multiview reconstruction problem in SPR
is the absence of prior knowledge about the poses. This results
in a particularly challenging non-convex optimization problem
that requires the development of dedicated methods.

SPR has a longstanding and successful history in another
modality known as cryo-electron microscopy (cryo-EM), for
which a lot of efficient reconstruction methods have been
proposed over the past 20 years [14], [15]. However, the
imaging model of cryo-EM fundamentally differs from that
of convolutional modalities. The cryo-EM images are 2D
projections of the 3D densities, whereas convolutional modal-
ities acquire 3D images by convolution of the fluorescent
signal with a PSF. Despite this difference, the most common
practice for SPR in fluorescence imaging is to apply cryo-
EM reconstruction methods on 2D fluorescence data [4], [5],
which ignores the true imaging model of optical microscopes
and leads to coarse and suboptimal reconstructions.

Most methods developed specifically for fluorescence mi-
croscopy are either restricted to 2D input images [16], [17],
[18], or require the use of an initial template or a parametric
model [19], [20], [21], which inevitably introduces a bias in
the reconstruction. The method we proposed in [22] is the
only one, to the best of our knowledge, to take into account
an appropriate 3D imaging model. Despite good performance
on real data [2], [6], it has some major practical limitations.
Firstly, it requires a classification step to reduce the number
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of particles. Automatic classification often lacks robustness
on real data, and manual particle selection is tedious and
introduces an arbitrary bias. The computation time of [22]
can also be prohibitive for non-symmetric particles, for which
the space of the registration parameters cannot be reduced.
Finally, it is based on a sequential optimization procedure that
considers the views one by one in a predefined order, which
leads to reconstruction errors for low fluorescent labeling rates.

The SPR principle has also been applied in single molecule
localization microscopy (SMLM), a fluorescence imaging
technique that generates data in the form of point clouds.
A few studies have been dedicated to SPR for SMLM data
from the point of view of point clouds registration [20], [7].
Our reconstruction problem with convolutional modalities is
radically different since our data is a collection of volumes,
which cannot be processed with the same methods as for
point clouds. Moreover, our goal is reconstruction and not
only registration.

B. Contributions
We propose a new method to estimate jointly the poses

(rotation and translation) of the particles and the reconstruction
in SPR for convolutional modalities in fluorescence imaging.
Our approach is based on a reformulation of the original joint
optimization problem with respect to (w.r.t.) the volume, the
rotations and the translations, into an equivalent hierarchical
optimization scheme that decouples the minimization w.r.t.
each variable in three nested levels. The volume is estimated
at the highest level with stochastic optimization, and the key
for the success of our approach is the development of fast
approximate solvers for the minimization w.r.t. to the rotations
and translations at the lower levels. Thanks to this approach,
the computational cost of a reconstruction is reduced to less
than 30 minutes, with a reference-free initialization. Moreover,
our approach does not require any critical hyper-parameter
tuning, which simplifies its usage in practice. We demonstrate
on several synthetic datasets that we outperform the standard
methods in terms of resolution and visual assessment. Finally,
we show the potential of our approach on real data of centri-
oles acquired with a combination of confocal and expansion
microscopy.

Our work builds upon the cryo-EM reconstruction method
cryoSPARC described in [15]. We deviate from it on the main
following points:
• cryoSPARC cannot be applied to our data since it is

designed for a forward model of 2D projection. Instead,
we develop a method dedicated to 3D convolutional
models.

• We estimate the poses with a multilevel optimization
scheme, whereas the strategy of [15] is to reconstruct
the volume without pose estimation by maximizing a
marginalized likelihood.

• We estimate the translations at the last level of our hier-
archical scheme with a fast phase correlation algorithm.
The decoupling of translations and rotations estimation is
crucial for computational tractability in our 3D case.

The organization of the manuscript is as follows. In Sec-
tion II, we present the observation model and formulate the

reconstruction as an optimization problem. In Section III, we
present our optimization method. In Section IV we present
the experimental results obtained both on simulated and real
datasets.

II. PROBLEM FORMULATION

A. Background on the representation of rotations

We use the axis-angle representation (d, ψ) to represent a
3D rotation, where d ∈ R3 is the rotation axis, and ψ ∈ [0, 2π[
is the rotation angle around this axis. The axis d is the unit
vector:

d =

cos(φ1) sin(φ2)
sin(φ1) sin(φ2)

cos(φ2)

 , (1)

where φ1 ∈ [0, 2π[ is the azimuth and φ2 ∈ [0, π[ is the
inclination (see Figure 1).

Our method requires a discretization of SO(3). We write
it {θi,j = (φ1,j , φ2,j , ψi) | (j, i) ∈ [[0,Md − 1]] × [[0,Mψ −
1]]}, where Md and Mψ are the discretization sample sizes
of (φ1, φ2) and ψ, respectively. For ψ, we choose a uniform
discretization of [0, 2π[: ∀i ∈ [[0,Mψ − 1]] : ψi = 2πi/Mψ .
For (φ1, φ2), we use the Fibonacci discretization, which gives
an almost uniform discretization of the unit sphere. This is
formalized as follows

∀j ∈ [[0,Md − 1]], φ1,j ≡
2πj

G
[2π] (2)

φ2,j = arccos

(
1− 2j + 1

Md

)
, (3)

with G = 1+
√

5
2 the golden ratio.

B. Forward model

Let us denote {yl}l∈[[1,N ]] a set of N volumes (we call
volume a function Ω → R where Ω is a bounded domain
in R3), where yl is a view that contains a single particle, with
an orientation θl ∈ R3 and a translation tl ∈ R3. From this set
of views, the goal is to reconstruct a volume f , that represents
the observed particle. The image acquisition model belongs to
convolutional modalities, defined by

yl(x) = (h ∗ Ttl(Rθl(f)))(x) + ε(x), (4)

where h is the PSF of the microscope, ε is an additive Gaussian
noise, Tt is the translation operator of vector t defined by

Tt(f)(x) = f(x− t), (5)

x

y

z

d

φ1

φ2

Fig. 1: Representation of a direction d (point on the unit
sphere) with its azimuth φ1 and inclination φ2.
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and Rθ is the rotation operator of angle θ defined by

Rθ(f)(x) = f(RTθ x), (6)

where Rθ ∈ SO3(R) is the rotation matrix of angle θ.
Examples of volumes f and views yl are represented in

Figure 2.
We do not make any assumption on the form of the

PSF, though in practice it has an anisotropic shape, more
elongated along the Z axis [23], which creates the anisotropy
of resolution.

C. Joint minimization problem

We formulate the reconstruction as a maximum likelihood
estimation of the volume, the rotation and the translation
parameters, which amounts to the following least squares
problem:

f∗,Θ∗, T ∗ = arg min
f,Θ,T

E(f,Θ, T ), (7)

where

E(f,Θ, T ) =

N∑
l=1

‖yl − h ∗ Ttl(Rθl(f))‖22, (8)

with
Θ = {θl}l∈[[1,N ]] and T = {tl}l∈[[1,N ]].

We found experimentally that using a regularization in (8)
did not improve the results (we considered an l2 penalization
of the Fourier coefficients). While regularization plays an
important role in single view deconvolution to prevent noise
fitting, the sum over N views in (8) induces an averaging
effect that acts as a smoothness constraint. Therefore, adding
a regularization term turned out to be unnecessary in our case

To reduce the computational cost, we formulate the en-
ergy (8) in the Fourier domain. This allows us to perform
convolutions with simple pointwise multiplication. In addition,
rotation and Fourier transform commute, and the translation
in the Fourier domain is simply a phase shift. Formally, we
have

F(h ∗ Ttl(Rθl(f))) = ĥρtlRθl(f̂), (9)

where F is the Fourier transform, ρtl is a phase factor defined
by ρtl : ω 7→ eitlω , and we use the notation F(f) = f̂ .
The energy, written in the Fourier domain is obtained with
Parseval’s theorem:

E(f,Θ, T ) =

N∑
l=1

‖ŷl − ĥρtlRθl(f̂)‖22. (10)

III. OPTIMIZATION

The optimization problem (7) is non-convex with many
local minima. It is reminiscent of auto-calibration problems
in microscopy, where the volume and some parameters of
the observation model are estimated jointly. The alternating
optimization scheme commonly used for auto-calibration is
unable to escape from local minima, and it relies on theoretical
observation models (such as PSF models in blind deconvolu-
tion) that provide a good initialization of the parameters. In
our case, an alternating scheme is destined to fail because we
do not have any initial guess of the volume or the poses.

A. Multilevel reformulation of the optimization problem

To overcome this issue, we reformulate the problem (7) in
the multilevel equivalent form

f̂∗ = arg min
f̂

E(f,Θ∗, T ∗) (11a)

s.t. Θ∗ = arg min
Θ

E(f,Θ, T ∗) (11b)

s.t. T ∗ = arg min
T

E(f,Θ, T ). (11c)

In this scheme, a subproblem at a given level in (11) is
nested as a constraint in the subproblem of the upper level.
The main interest of this reformulation is to decompose the
original intractable problem into three tractable subproblems,
similarly with alternating optimization. However, differently
from an alternating scheme, the locally optimal points of the
joint problem (7) are also optimal points of the multilevel
formulation. The counterpart is that if an iterative method
is used to solve a problem at a given level, the lower
level problem must be solved at each iteration. Thus, the
computational cost of this nested optimization can become
prohibitive if the solvers of the subproblems are not efficient
enough (for more details on multilevel optimization see [24]).
In the following three subsections, we detail our fast and
complementary optimization strategies for the subproblems
in 11.

B. Optimization with respect to the volume

When the pose parameters Θ and T are known, the
minimization problem (11a) can be solved easily in closed
form [22]. However, since pose estimation is formulated as
constraints (11b) and (11c), we have to adopt an iterative
approach to update the poses at each iteration. Moreover
the constrained problem is non-convex, and the sum over
a potentially large number N of particles can dramatically
increase the computational cost. To overcome these issues, we
use a simple stochastic gradient descent strategy. The volume
is updated with the following equation:

f̂ (n+1)(ω) = f̂ (n)(ω)− µ∇f̂Eln(f (n), θ∗ln , t
∗
ln)(ω), (12)

where ln ∈ [[1, N ]] is a randomly selected view index at
iteration n, El(f, θl, tl) = ‖ŷl − ĥρtlRθl(f̂)‖22 is the energy
associated to index l and µ is the gradient descent step. The
random indices ln are imposed to cycle through all the views,
in order to divide the optimization procedure in epochs. The
computational cost at iteration n is reduced to the evaluation
of the gradient of Eln (the derivation of the gradient is
detailed in Appendix VII). The robustness of SGD to non-
convex problems has been established for similar objective
functions in the context of learning applications or for cryo-
EM reconstruction [15], although convergence properties can
be guaranteed only in the convex case.

C. Optimization with respect to the orientations

The secondary optimization problem (11b), dedicated to the
estimation of the orientations, has to be solved at each iteration
of the main problem (11a) for the evaluation of the gradient
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∇f̂Eln . The N views are considered independently, so (11b)
can be rewritten as:

∀l ∈ [[1, N ]] θ∗l = arg min
θl

El(f, θl, t
∗
l ). (13)

A gradient based approach to solve (13) is very likely to reach
a poor local minimum because of the non convexity of the
problem, such that it can be used only for refinement. On
the other hand, an exhaustive search over a discretization of
SO(3) would be computationally too expensive.

To tackle this issue, we perform an exhaustive search on a
restricted set of orientations {θi,j | (j, i) ∈ Iψ,l×Id,l}, where
Iψ,l ⊂ [[0,Mψ − 1]] and Id,l ⊂ [[0,Md − 1]] are subsets of
indices in the SO(3) discretization defined in Section II-A.
The sizes Nd and Nψ of Il,d and Il,ψ, respectively, are chosen
such that Nd � Md and Nψ � Mψ . Let us define Eli,j =
El(f, θi,j , t

∗
l ) the energy associated to orientation θi,j . The

solution of (13) is approximated by θi∗,j∗ with

i∗, j∗ = arg min
i∈Iψ,l,j∈Id,l

Eli,j .

The critical issue is to design a fast method to build subsets
Iψ,l and Id,l that are adapted to the landscape of the energy
Eli,j . Let us define Ql,d and Qψ,d the sampling distributions
from which we create Iψ,l and Id,l. Since we are looking for
the maximum likelihood in (13), we can follow the approach
of [15] and defineQl,d andQψ,d from the marginal likelihoods
w.r.t d and ψ, respectively. These marginal likelihoods are
defined at each point of the discretization by

∀i ∈ [[0,Md − 1]], πl,ψi =

Md−1∑
j=0

pli,j , (14)

∀j ∈ [[0,Mψ − 1]], πl,dj =

Mψ−1∑
i=0

pli,j , (15)

where pli,j ∝ exp
(
−Eli,j

)
is the likelihood associated to the

orientation θi,j . However the likelihoods are unknown and we
need to approximate them. The key observation is that the
variation of the volume f̂ between two consecutive iterations
of (12) is small. Therefore, the solution of (13) at a given
iteration is close to the solution at the previous iteration. Thus,
we can reasonably approximate the likelihoods in (14) and (15)
by their values at the previous iterations (in what follows, pli,j
refers to its value at the previous iteration, without notation
change for the sake of readability).

The difficulty is that the likelihood is not evaluated for
all the elements of the sums in (14) and (15), but only
at the indices Il,d and Il,ψ. This issue is overcome by
using importance sampling [25] to approximate the marginal
likelihoods (14) and (15). Since the indices are drawn from the
distributions Ql,d and Qψ,d, they can be used as importance
distributions to create the following approximations of πl,ψ

and πl,d:

∀i ∈ Il,ψ π̃l,ψi =
∑
j∈Il,d

pli,j

Ql,dj
, (16)

∀j ∈ Il,d π̃l,dj =
∑
i∈Il,ψ

pli,j

Ql,ψi
. (17)

To compute the approximated likelihoods π̆l,ψ and π̆l,d as-
sociated to all the discretization elements of SO(3), a kernel
estimation method is used:

∀i ∈ [[0,Mψ − 1]], π̆l,ψi = Z−1
ψ

∑
k∈Il,ψ

Kψ
i,kπ̃

l,ψ
k , (18)

∀j ∈ [[0,Md − 1]], π̆l,dj = Z−1
d

∑
k∈Il,d

Kd
j,kπ̃

l,d
k , (19)

where Zψ and Zd are normalization constants given by

Zψ =

Mψ∑
i=1

∑
k∈Il,ψ

Kψ
i,kπ̃

l,ψ
k and Zd =

Md∑
j=1

∑
k∈Il,d

Kd
j,kπ̃

l,d
k ,

and Kψ and Kd are kernels defined by:

∀i, k ∈ [[0,Mψ − 1]], Kψ
i,k = exp(βψ cos(ψi − ψk)), (20)

∀j, k ∈ [[0,Md − 1]], Kd
j,k = exp

(
βdd

T
j dk

)
, (21)

where βψ and βd are hyperparameters.
In the first iterations of (12), the hypothesis of small varia-

tion can be violated until reaching a stable coarse reconstruc-
tion. To account for this, the final sampling distributions are
defined as linear combinations of the approximated likelihoods
with a uniform distribution:

Ql,d = αUd + (1− α)π̆l,d, (22)

Ql,ψ = αUψ + (1− α)π̆l,ψ, (23)

where Uψ = 1
Mψ

and Ud = 1
Md

are the uniform components,
and α is the coefficient adjusting the proportion of uniform
component. The uniform component makes it possible to
explore the entire rotation space at the beginning of the re-
construction process, and the evolution of α gradually restricts
the search space around plausible solutions. It is set to 1 at
the beginning of the gradient descent, and is divided by αr
between two epochs of the SGD (12).

D. Optimization with respect to the translations

The problem (11c) has to be solved at each evaluation of
the energy E in the minimization of (11b) described in the
previous section. It can be written

∀l ∈ [[1, N ]], t∗l = arg min
tl

‖ŷl − ρtl b̂l‖22, (24)

where b̂l = ĥRθl(f̂) is the rotated and convolved volume in
the Fourier domain. The problem amounts to the estimation
of a phase shift ρtl of b̂l to match the view ŷl. It can be
straightforwardly reformulated as the maximization of the
cross-correlation [26]:

t∗l = arg max
tl

∫
ρtl(ω) ŷl(ω) b̂l(ω)dω, (25)

where z̄ refers to the conjugate of z. Since the phase shift
corresponds to a translation in the spatial domain, the most
efficient way to solve (25) is to find the spatial position
of the correlation peak in the inverse Fourier transform of
the cross-correlation. In practice we use a standard phase
correlation algorithm which considers a normalized cross-
correlation instead of a simple cross-correlation in (25), in
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order to get a sharper and more accurate correlation peak
[27]. The computational cost of this step essentially lies in
a single inverse Fourier transform. This efficiency is crucial
for the computational tractability of the overall reconstruction
algorithm since this step is nested in the two upper problems
(11a) and (11b).

The detailed reconstruction steps are regrouped in Algo-
rithm 1.

IV. EXPERIMENTAL RESULTS

In this section, we present experiments to evaluate the
performance of our method. First, we show reconstructions
on synthetic data sets and compare our results with other
standard approaches. We also analyze the robustness of our
method to different imaging conditions and its sensitivity to
hyperparameters. Finally, we show results obtained on a real
dataset of centrioles.

A. Simulated data

We use particle models obtained by reconstruction in cryo-
EM and available in the databank EMDataRessource1. We
select the particles AMPA receptor [28], NLR resistosome
[29], Clathrin [30], HIV-vaccine [31]. We consider these mod-
els as ground truth and simulate the convolutional acquisition
process (4) to obtain a set of views, with random orientations.
We used a Gaussian PSF h with covariance Σh defined by:

Σh =

σ2
xy 0 0
0 σ2

xy 0
0 0 σ2

z

 , (26)

where σz and σxy are the standard deviations along and
perpendicular to the microscope axis, respectively. To mimic
a realistic anisotropic blur, we choose σz = 5 and σxy = 1.5
(unless stated otherwise). Note that we choose this particular
PSF model because it corresponds to a realistic PSF, but our
method can be applied to any PSF. The ground truth volumes
are resized to 50×50×50 pixels before generating the views.
We apply a Gaussian additive noise with a standard deviation
of 0.2 (images are scaled from 0 to 1). Intensity variations
due to non uniform DOL are simulated by subtracting small
Gaussian spots (3D uniform Gaussian functions) at random
locations in the image. The standard deviation of the Gaussian
spots is uniformly sampled between 2 to 5 percent of the
image size, the intensity of the spots is uniformly sampled
between 0 and 1 and the number of spots to be removed is
set to 120. In Figure 2, we show the ground truth volumes
and examples of simulated views, aligned with the ground
truth. To represent them, we use two complementary types
of visualizations: three orthogonal views (planes XY, YZ and
XZ), and an isosurface 3D visualization (with Chimera 2).
The anisotropy of resolution can be visualized on the intensity
maps XZ and YZ.

1https://www.emdataresource.org/
2https://www.cgl.ucsf.edu/chimera/

Ground truth Example of view
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Fig. 2: Examples of simulated data. On the left: ground truth
volume; on the right: example of a view simulated from the
ground truth. For each volume, we show 3 orthogonal views
and a 3D isosurface visualization.

B. Metrics

We use three evaluation metrics to evaluate the performance
of our method on simulated data. To quantify the visual quality
of the reconstruction, we compute the Structural Similarity
Index (SSIM) [32] between the ground truth image and the
reconstructed volume.

To measure the resolution of the reconstruction, we follow
the standard practice in electron microscopy and compute the
Fourier Shell Correlation (FSC) [33]. The FSC between the
reconstruction f∗ and the ground truth fgt is a function FSC :
R→ R defined by:

FSC(r) =

∑
x∈Sr F(f∗)(x)F(fgt)(x)√∑

x∈Sr F(f∗)2(x)
∑
x∈Sr F(fgt)2(x)

(27)
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where Sr denotes the sphere of radius r. Thus, the FSC
measures the normalized cross-correlation between spherical
shells of f∗ and fgt at different frequency magnitudes in
the Fourier space. The resolution of f∗ can be derived from
the FSC by determining the frequency limit after which the
correlation becomes lower than a cutoff value (we consider
a standard cutoff of 0.143). In what follows, we will use the
name FSC to refer to to the resolution derived from the FSC
curve.

In our case, since the resolution of the input data is
anisotropic, it is important to assess the ability of our method
to make it isotropic. To quantify the degree of isotropy of
the resolution, we use a variant of the FSC named conical
FSC (cFSC) [34]. The principle of the cFSC is to compute
a FSC curve locally for each direction. Thus, we can derive
a resolution value for several directions and plot them on a
map. Each point on the map is a direction represented by
two angles φ1 ∈ [0, 2π] and φ2 ∈ [0, π] (see Figure 1). In
Figure 4a we show the cFSC map between the ground truth
object AMPA receptor and a generated view (aligned with
the ground truth). This figure highlights the anisotropy of
resolution: the resolution in the Z axis (φ2 = 0 and φ2 = 180)
is much lower than in other directions. The resolution values
are expressed as the inverse of the pixel size.

Since the orientation of the reconstruction does not match
the orientation of the ground truth object, the reconstructed
volume is registered on the ground truth before computing the
FSC, cFSC or the SSIM. The registration is performed with a
first step of exhaustive search method maximizing the mutual
information. The discretization step is set to 10 degrees. To
refine the registration we then use a gradient descent.

C. Reconstruction results on simulated data

1) Experimental setting: In all our experiments, the volume
f̂ is initialized with random values uniformly distributed
between 0 and 1. In the default experimental settings, we
used 20 views for reconstruction. The standard approach for
reference-free particle averaging in fluorescence imaging is the
application of cryo-EM reconstruction methods on 2D data. To
apply this idea, we create artificial 2D projections from our
3D input volumes, and perform reconstruction with a state-of-
the-art cryo-EM reconstruction method based on the RANSAC
algorithm [35] (integrated in the Scipion software [36]). We
name this method cryo-RANSAC in what follows. We also
compare with the results of the SPR method dedicated to 3D
convolutional models described in [22]. We name it MP3DR
(Multiple Particles 3D Reconstruction) for convenience. This
method requires the selection of a small number of particles
to maintain a tractable computational cost. We selected 5
representative particles manually for each dataset. Finally, in
order to evaluate the impact of orientation estimation errors,
we show reconstructions results obtained with known poses,
using the gradient-based reconstruction method presented in
III-B.

2) Estimation of the orientations: In order to evaluate
the accuracy of the orientation estimation, we show the ap-
proximated marginal likelihoods π̆l,d and π̆l,ψ obtained in

(a) First 10 views.

(b) Last 10 views.

(c)

Fig. 3: Approximated likelihoods π̆l,ψ and π̆l,d at the last
iteration of the reconstruction on data simulated from the
AMPA receptors (see Figure 2). (a) and (b): Likelihoods
alkl,ψ, where each curve represents a view and the vertical
bars represent the true values (the results are split in two plots
for a better visualization). (c): Sum of the likelihoods π̆l,d of
all the views. The yellow crosses are the true values of d.

the last iteration of the reconstruction. We recall that these
distributions are used to sample several axes d and angles
ψ, from which the optimal angle axis-angle representation is
estimated. The likelihoods π̆l,ψ are shown on Figure 3a and
3b, where each colored curve represents the likelihood of one
view. The vertical bars represent the ground truth values of ψ
for each view. The sum of the likelihoods π̆l,d of all the views
is shown on Figure 3c in a 2D map where each axis represents
a dimension of d = (φ1, φ2). The ground truth values of d are
represented with yellow crosses.

For both ψ and d, we observe that the likelihoods are
approximately centered around the true values, which shows
that the orientations are well estimated. Note that we aim
at a coarse ab initio reconstruction that is destined to serve
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Known poses Our method cryo-RANSAC MP3DR
SSIM FSC SSIM FSC SSIM FSC SSIM FSC

AMPA receptors 0.91 0.42 0.82 0.27 0.54 0.05 0.72 0.14
HIV Vaccine 0.93 0.44 0.83 0.28 0.53 0.06 0.72 0.13

clathrine 0.92 0.34 0.82 0.29 0.55 0.11 0.67 0.14
NLR resistosome 0.93 0.35 0.88 0.28 0.53 0.10 0.81 0.17

TABLE I: Quantitative comparison of the results of our method, cryo-RANSAC, MP3DR and the reconstruction with known
poses.

(a) Input view

(b) Our method

(c) cryo-RANSAC

Fig. 4: cFSC maps between the ground truth object (here the
AMPA receptor) and a view 4a, our reconstruction 4b and
cryo-RANSAC reconstruction 4c. Each point on the map is a
direction, represented by two angles φ1 ∈ [0, 360] and φ2 ∈
[0, 180] (see Figure 1).

as an initialization for a refinement algorithm [22]. Only one
estimated likelihood is not located close to the true value (the
black curve on Figure 3b).

3) Quantitative reconstruction results: Table I reports the
SSIM and FSC values obtained on the simulated data with
our algorithm, cryo-RANSAC, MP3DR, and the reconstruc-
tion with known poses. Since our method, as well as the
generation of the views involves randomness, we perform 100

experiments for the 4 particles and report the average.
We found that for all the particles, our algorithm provides

significantly better SSIM and FSC than cryo-RANSAC recon-
structions. This result illustrates the importance to take into
account an appropriate 3D imaging model, whereas working
on 2D projections induces an irreversible and critical loss
of information. We also consistently outperform MP3DR on
the two considered metrics. Note that in addition to this
quantitative improvement, one of the main advantages of our
method compared to MP3DR is that we do not need to select
a reduced number of views, which is subject to classification
error or human bias, and we can use directly all the data for
the reconstruction. As expected, our method provides slightly
lower SSIM and FSC than the reconstruction with known
poses. This results shows that the orientation estimation errors
analyzed in Section IV-C2 only have a small impact on the
final reconstruction.

To quantify the resolution isotropy of the reconstructions,
we show in Figure 4 the cFSC maps associated to a view
(aligned with the ground truth image), our reconstruction
and cryo-RANSAC reconstructions, for the particle AMPA
receptors. We clearly see on Figure 4b that the axial resolution
has been improved. Indeed, on the cFSC map associated to
the view 4a, the cFSC values along the Z axis (φ2 = 180
or φ2 = 0) is almost zero, while it is between 0.35 and
0.45 for our reconstruction. Besides, the resolution along X
and Y axis (φ2 = 90°) of our reconstruction is preserved
since we observe similar values to that of the view (between
0.4 and 0.5). Regarding the cryo-EM dedicated algorithm, the
resolution along Z axis is also improved, but the resolution
along X and Y axis is degraded: the cFSC values are around
0.3, while they are around 0.4 for the view.

4) Visual reconstruction: In Figure 5, we present visual
reconstructions obtained with the different methods. If we
compare the intensity map in the plane XZ between a view
and our reconstruction, we clearly see that the axial resolution
has been enhanced. Visually, we do not see a clear difference
between our method and the reconstruction obtained with
known poses. Moreover, our reconstructions are visually closer
to the ground truth than those of cryo-RANSAC and MP3DR,
which confirms the quantitative results of Section IV-C3.

5) Robustness to anisotropy: In order to evaluate the ro-
bustness of our method to different levels of anisotropy, we
performed reconstructions on data generated with different
values of σz . The visual results are given on Figure 6, where
we also show the impact of the number of views. When the
number of views increases, the reconstruction algorithm is able
combine more complementary information, which improves
the quality of the reconstruction. As the anisotropy increases,
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Fig. 5: Reconstruction results obtained on synthetic data. Each volume is represented with an orthogonal view in the XZ plane
and a 3D isosurface. From left to right columns: ground truth object, reconstruction with known poses, reconstruction with
our method, cryo-RANSAC reconstruction, MP3DR reconstruction. 20 views are used for the reconstruction.
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Example of
input view 5 views 10 views 20 views 30 views 40 views 60 views

σz = 5

σz = 10

σz = 15

Fig. 6: Reconstructions obtained with different numbers of views and anisotropy levels σz .

MP3DR Our method

High DOL Low DOL High DOL Low DOL

Fig. 7: Comparison of the reconstruction of our method and
MP3DR in case of low and high DOL.

a single view contains less information and the minimum
number of views to obtain a satisfying reconstruction also
increases. For σz = 5, the minimum number of views is
approximately 20, and is about 40 views for σz = 10, and for
an extremely high anisotropy level of σz = 15, more than 60
views would be necessary to obtain a correct reconstruction.

6) Robustness to low DOL: In this section, we focus on the
comparison with MP3DR and evaluate the impact of the DOL.
Let us recall that we simulate the variation of DOL along the
structure by subtracting Gaussian spots at random locations. In
Figure 7, we show reconstructions obtained with our method
and MP3DR in two different experimental conditions:
• Low DOL: Default simulation parameters used to sim-

ulate the data shown in Figure 2. It corresponds to a
realistic situation.

• High DOL: no Gaussian spot is removed from the ground
truth image.

Our method is able to achieve satisfying reconstructions
in both cases, whereas MP3DR fails in case of low DOL.
This is explained by the sequential nature of MP3DR: a first

reconstruction with two views is performed, and the other
views are then introduced one by one. The flaw of this
procedure is that in the case of low DOL, the views are too
different to achieve a correct pose estimation with only two of
them, and it is necessary to combine the information of all the
views jointly. Therefore, the initial two-view reconstruction is
inaccurate and introduces a detrimental bias that is propagated
when the other views are sequentially added. On the contrary,
since our approach uses all the views jointly in an unordered
way, we are able to use all the information and achieve good
reconstruction.

7) Sensitivity to hyperparameters: A low sensitivity to
hyperparameters is crucial to avoid tedious and difficult fine
tuning on each new dataset. In this section, we show the
robustness of our method to the variation of the following
hyperparameters:
• The ratio 1/αr of the geometric progression at each

epoch of the proportion α of uniform component in the
distributions Ql,ψ and Ql,d (22).

• The parameters βd and βψ that determine the width of the
kernels used for the estimation of the marginal likelihood
distributions (see (20) and (21))

• The number of orientations sampled at each iteration Nd
and Nψ .

For each combination of hyperparameters, we performed 10
reconstructions, and report the average SSIM index. The de-
fault values are: Nψ = 8, Nd = 64, αr = 1.2, βψ = βd = 50,
and values are taken in a range around them.

Figure 8 illustrates the influence of these hyperparameters
on the SSIM between the reconstruction and the ground
truth object (the considered particle is AMPA receptors). We
observe in Figures 8a and 8b that the choice of βd and βψ has a
low impact on the final reconstruction. In Figure 8c, we report
the influence of αr on the SSIM. We observe that low values
of αr (from 1.02 to 1.15) provide slightly lower SSIM, and
that the SSIM is relatively stable from αr = 1.15 to αr = 2. In
Figure 8d, we report the influence of the number of sampled
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(a) (b)

(c) (d)

Fig. 8: Influence of the hyperparameters βd, βψ , αr and NdNψ on the SSIM and the computation time per iteration. Each
point is an average performed on 10 reconstructions on the AMPA receptor. The vertical bars represent the standard deviation
on the 10 experiments, and the blue area is the range between the minimum and maximum values.

orientations NdNψ in terms of both SSIM and computation
time per iteration (We set Nd = N2

ψ). We can see that the
SSIM increases with the number of sampled orientations.
Indeed, if NdNψ is too small, the algorithm is likely not
to explore the region of the search space which contains the
optimal solution. On the other hand, the computation time is
proportional to NdNψ (see part IV-D). Then, choosing Nd and
Nψ is a compromise between the quality of the reconstruction
and the computation time.

D. Computation time

The computation time for one epoch depends on three
parameters: the number of views N , the number of sampled
orientations NdNψ and the number of voxels Nv in the
volume. Each epoch contains as many iterations as the number
of views, thus the computation time per epoch is proportional
to N . Most of the computation is devoted to evaluate the
energies corresponding to the randomly sampled rotations
(lines 9 to 11 of Algorithm 1). Thus, the computation time per
iteration is proportional to NdNψ . Let us give more detail:

• In line 9, f̂ is rotated with orientation θi,j , then a term by
term multiplication is performed. The computation time
devoted to the multiplication and to a rotation are O(Nv).

• In line 10, the phase correlation is computed between
ĥRθi,j (f̂) and ŷl to estimate the translation vector
t∗l (θi,j). The complexity is dominated by the Fourier
transform and is O(Nv log(Nv)).

• In line 11, the computation of the energy Eli,j given the
rotated volume Rθi,j and the translation vector t∗l (θi,j)
is O(Nv).

To speed up the computation, we use a GPU implementation
of the rotation and the phase correlation, available in CuPy3

and cuCIM4 packages, respectively. The computation time
devoted to one epoch Tep is O(N Nv log(Nv)NdNψ). With
the default parameters N = 20, Nd = 64, Nψ = 8 and
Nv = 503, a complete reconstruction takes approximately 24
minutes on a Titan Xp graphic card. Comparatively, MP3DR
takes 90 minutes for a reconstruction with N = 5 and the
same Nv = 503.

E. Experimental results on real data

To test our method on real data, we imaged human centri-
oles from RPE1 cells, an organelle critical for cell division
and templating the cilium (PMID: 19914163). As centriole
dimensions, about 450 nm in length and 250 nm in diameter,
are below the diffraction limit, we imaged them using ultra-
structure expansion microscopy (U-ExM). U-ExM is a super-
resolution approach that consists in embedding a biological
sample into a swellable polymer that will expand 4 times in
pure water, allowing to reach a resolution of 50-70 nm with
a conventional widefield microscope [37]. After expansion,
the biological sample is immuno-labelled with antibodies
against Cep164 (2227-1-AP, Proteintech, 1:500), a protein that

3https://cupy.dev/
4https://pypi.org/project/cucim/
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(a) side view (b) top view

(c) top view (d) inclined view

Fig. 9: Examples of views of our real data set.

composes the distal appendages of the centriole [38], and
therefore appears with 9 dots arranged in a ring in super-
resolution microscopy [39]. Expanded gels were mounted onto
24 mm coverslips coated with poly-D-lysine (0.1 mg/ml) and
imaged with an inverted widefield Leica DM18 microscope.
Images were taken with a 63× 1.4 NA oil immersion objective.
3D stacks were acquired with 0.21µm Z-intervals and a 100
nm XY pixel size. The PSF was experimentally measured
with images of beads. We manually selected 47 views in the
acquired volumes. The protein Cep164 of the centriole has
a ring shape with a ninefold cylindrical symmetry. In Figure
9, we show 4 examples of views that include 2 top views of
the ring, one side view and one inclined view. The resolution
along the Z axis is clearly much lower than the resolution on
the XY plane. Besides, the non-uniformity of the distribution
of fluorophores is observable by comparing the two top views.
The ninefold cylindrical symmetry is also clearly visible on
view 9c.

In Figure 10, we show the reconstruction obtained with
this dataset and the same hyperparameters as those presented
in Section IV-C7. We compare our result with that of cryo-
RANSAC. In order to get a high-accuracy result, the ab initio
reconstructions are refined using an alternated optimization
scheme described in [22]. In addition to the basic refinement,
we also show reconstructions obtained with an additional nine-
fold symmetry constraint. For the sake of visualization, the
axis of symmetry of the reconstructed centrioles are aligned
with the Z-axis in Fig 10. The axis of symmetry is determined
by using a PCA on a binarized version of the reconstruction

The reconstructed shape found by our method is a ring that
is consistent with the input views. Indeed, the diameter of the
ring observable on the XY plane is similar to the diameter
of the top views 9b and 9c . Besides, the thickness of the

ring, observable on the XZ and ZY cuts is similar to what
we observe on the side view 9a. The ninefold symmetry is
fuzzy in the ab-initio reconstruction, but sufficient to allow
for a clearly visible symmetry in the refined volume. If we
impose the ninefold symmetry in the refinement, the ring has a
perfectly regular symmetry. The cryo-RANSAC reconstruction
is not able to retrieve the same details, since the ring shape is
not correctly reconstructed, and the ninefold symmetry is not
visible.

V. CONCLUSION

We proposed a reference-free SPR approach that jointly
estimates the poses and the reconstruction, to address the
limitations of resolution anisotropy and non-uniform DOL
in fluorescence microscopy. Our approach is based on a
reformulation of the original joint optimization problem in
a multilevel scheme. We have developed fast approximate
solvers at each level to end up with a computationally ef-
ficient method able to estimate the particle poses and the
reconstruction. We have demonstrated experimentally that our
method yields more accurate reconstructions than the standard
methods, on both simulated and real data. In addition, our
method is fast, it is robust to low DOL, it has a very low
sensitivity to hyperparameters, and it does not require any
particles classification step. These features are crucial for
practical applications of the method on a variety of real data.
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Fig. 10: Reconstruction results obtained on a real dataset of centriole, with our method and cryo-RANSAC.
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VII. APPENDIX

Here we derive the computation of the gradient of the energy
El with respect to the volume f̂ used in the SGD update

equation (12). We have

El(f, θl, tl) = ‖ŷl − ĥρtlRθl(f̂)‖2 (28)

=

∫
[ŷl(ω)− ĥ(ω)ρtl(ω)f̂(RTθlω)]2dω.(29)

Let us consider a particular frequency ω0 and compute the
derivative ∂El

∂f̂
(ω0). In the integral (29), only the term that

verifies RTθlω = ω0 depends on f̂(ω0):

∂f̂(RTθlω)

∂f̂
(ω0) =

{
1 if RTθlω = ω0

0 otherwise
. (30)

Then we have
∂El

∂f̂
(ω0) = 2

[
ρRθl tl(ω0)ĥ(Rθlω0)f̂(ω0)− ŷl(Rθlω0)

]
(31)

ρRθl tl(ω0)ĥ(Rθlω0)

= 2
[
ρRθl tl(ω0)R−θl(ĥ)(ω0)f̂(ω0)−R−θl(ŷl)(ω0)

]
(32)

ρRθl tl(ω0)R−θl(ĥ)(ω0).

Finally, the gradient can be written

∇f̂El(f, θ
∗
l , t
∗
l )

= 2ρRθl tlR−θl(ĥ)
[
ρRθl tlR−θl(ĥ)f̂ −R−θl(ŷl))

]
.

(33)
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Algorithm 1: Reconstruction algorithm

1: Initialize f̂ randomly
2: Initialize probability distributions, with uniform

distributions Ql,ψ = U and Ql,d = U
3: while stopping criteria do
4: Randomly mix the views
5: for l =1 to N do
6: Randomly draw indices Il,ψ and Il,d from Ql,ψ

and Ql,d
7: for (i, j) ∈ Il,ψ × Il,d do
8: θi,j = (dj , ψi)
9: Compute ĥRθi,j (f̂)

10: Evaluate t∗l (θi,j), using phase correlation between
ĥRθi,j (f̂) and ŷl.

11: Compute Eli,j = ‖ĥρt∗l (θi,j)Rθi,j (f̂)− ŷl‖22
12: end for
13: θ∗l = (dj∗ , ψi∗) with

i∗, j∗ = arg min{Eli,j | i, j ∈ Il,ψ × Il,d}
14: ∀(i, j) ∈ Il,ψ × Il,d, compute pli,j = exp

(
−Eli,j

)
.

15: Compute marginalized likelihoods:
16: ∀i ∈ Il,ψ π̃l,ψi =

∑
j∈Il,d

pli,j

Ql,dj

17: ∀j ∈ Il,d π̃l,dj =
∑
i∈Il,ψ

pli,j

Ql,ψi
18: Update probability distributions
19: Ql,dj = αUdj + (1− α)Z−1

d

∑
k∈Il,d K

d
j,kπ̃

l,d
k

20: Ql,ψi = αUψi + (1− α)Z−1
ψ

∑
k∈Il,ψ K

ψ
i,kπ̃

l,ψ
k

21: α = α/αr
22: f̂ = f̂ − µ∇f̂El(f, θ

∗
l , t
∗
l )

23: end for
24: end while
25: f̂∗ = f̂
26: return F−1(f̂∗), (θ∗l )l∈[[1,N ]], (t

∗
l )l∈[[1,N ]]
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